Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (ФГБОУ ВО «АмГУ»)

Факультет энергетический

Кафедра энергетики Направление подготовки 13.04.02 - Э)пектроэнергетика	а и эпектротехника
Направленность (профиль) образоват		
системы и сети		
	ДОПУС'	СТИТЬ К ЗАЩИТЕ
	Зав. каф	•
		Н.В. Савина
	« <u> </u> »	20 г.
МАГИСТЕРСІ	КАЯ ДИССЕРТА	АЦИЯ
на тему: Разработка схемы выдачи мо станции мощностью 335 МВт с при цифровых технологий		
Исполнитель студент группы 342-ом —	подпись, дата	– Д.Е. Ялама
Руководитель профессор, докт. техн. —— наук	подпись, дата	— Н.В. Савина
Руководитель научного содержания программы магистратуры профессор, докт. техн. наук	подпись, дата	Н.В. Савина
Нормоконтроль старший преподаватель ——	подпись, дата	— Л.А. Мясоедова
Рецензент		
	подпись, дата	_
Благо	вещенск 2025	

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (ФГБОУ ВО «АмГУ»)

Факультет энергетический			
Кафедра энергетики			
	VTBF	ЕРЖДАЮ	
		афедрой	
			Н.В. Савина
	<u>«</u>		20 г.
ЗАДАНИЕ	2		
К выпускной квалификационной работе студента Ялам	иа Дми	трия Евгень	ьевича
1. Тема выпускной квалификационной работы:	, ,	1	
Разработка схемы выдачи мощности Ивановской ветря	ной эл	лектрическо	й станции мощностью
335 МВт с применением инновационного оборуд		=	
(утверждено приказом от $06.03.20$	<u>25</u> № <u>609</u>	<u>9-уч</u>)	
2. Срок сдачи студентом законченной работы (проекта)16.06	.2025	
3. Исходные данные к выпускной квалификационной	работе	е: Материалі	ы производственной и
преддипломной практик			
4. Содержание выпускной квалификационной работы (перече	ень подлежа	щих разработке вопро-
сов): Анализ современного состояния схемно-режимно	й ситу	ации в элект	грических сетях Амур-
ской области Ивановского района, характеристика ин	новаці	ионного обо	рудования, применяе
мого при развитии электрических сетей, проектирован	ие разн	вития рассма	атриваемой электриче-
ской сети 110-220 кВ Амурской области в связи с подкл	іючені	ием Ивановс	ской ВЭС, техническая
проработка выбранного варианта развития электричес	кой се	ти, выбор о	птимального варианта
развития сети			
5. Перечень материалов приложения: (наличие чертеже	ей, табл	лиц, графико	ов, схем, программных
продуктов, иллюстративного материала и т.п.) 2 листа	форма	ата А1 графі	ической части, презен-
тация			
6. Консультанты по выпускной квалификационной раб	оте (с	указанием о	тносящихся к ним
разделов)			
7. Дата выдачи задания <u>26.02.2025</u>			
Руководитель выпускной квалификационной работы:	Савина	а Наталья Ви	икторовна, зав. кафед-
рой энергетики, профессор, доктор технических наук_			
(фамилия, имя, отчество, должность, ученая	степень, у	ученое звание)	
Задание принял к исполнению (дата):26.02.2025			
	(полпи	сь студента)	

РЕФЕРАТ

Магистерская диссертация содержит 128 стр., 23 рисунка, 39 таблиц, 5 приложений, 81 источник, 62 формулы.

ВОЗДУШНАЯ ЛИНИЯ, НОМИНАЛЬНОЕ НАПРЯЖЕНИЕ, ЭЛЕКТРО-ЭНЕРГЕТИЧЕСКАЯ СИСТЕМА, ИСТОЧНИК ПИТАНИЯ, УЗЛОВАЯ ПОД-СТАНЦИЯ, ПОТОКИ АКТИВНОЙ МОЩНОСТИ, ДЛИТЕЛЬНО ДОПУСТИ-МЫЙ ТОК, ТРАНСФОРМАТОР, ЭЛЕКТРОСТАНЦИЯ, ВЕТРЯНАЯ ЭЛЕКТРО-СТАНЦИЯ, ПОТРЕБИТЕЛЬ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ.

Актуальность темы обусловлена экономическим развитием Амурской области в связи со строительством Ивановской ВЭС.

Целью работы является повышение надежности электроснабжения потребителей путем ввода новых генерирующих мощностей в электрическую сеть Амурской области, за счет подключения Ивановской ВЭС на инновационной основе.

По результатам расчета и анализа режимной ситуации электрической сети Амурской области, а также в ходе структурного анализа были определены следующие проблемные места: низкий коэффициент использования пропускной способности ЛЭП, что приводит к неэффективному использованию инфраструктуры электросетевого комплекса. Действующие источники питания имеют топологические ограничения в своей структуре и для оптимизации режимной ситуации требуют масштабной реконструкции и модернизации.

В результате был определен эквивалент рассматриваемого участка сети. На основании результатов расчётов и анализа режимов разработаны варианты подключения Ивановской ВЭС. Проведена техническая проработка предложенных вариантов. Выполнен выбор оптимального варианта подключения на основании расчёта экономической эффективности.

СОДЕРЖАНИЕ

Определения, обозначения, сокращения	8
Введение	9
1 Анализ современного состояния схемно-режимной ситуации в электрическ	их
сетях Амурской области Ивановского района	12
1.1 Экономическая характеристика Амурской области	12
1.2 Климатические характеристики и территориальные особенности Амур	9 -
ской области в Ивановском районе	13
1.3 Определение эквивалента рассматриваемого участка сети	15
1.4 Структурный анализ электроэнергетической системы района	16
1.5 Расчёт и анализ установившихся режимов существующей сети	23
1.6 Выводы	32
2 Характеристика инновационного оборудования, применяемого при развити	и
электрических сетей	34
2.1 Инновационные технологии, применяемые при проектировании элект	po-
станции	34
2.1.1 Цифровой двойник	34
2.2 Инновационные технологии, применяемые при проектировании РУ	46
2.2.1 Цифровизация РУ путем применения систем управления коммута	ци-
онными аппаратами с АРМ диспетчера	46
2.2.2 Применения контроллеров управляемой коммутации	53
2.3 Выводы	55
3 Проектирование развития рассматриваемой электрической сети 110-220 кВ	}
Амурской области в связи с подключением Ивановской ВЭС	57
3.1 Разработка вариантов развития электрической сети Амурской области	I B
районе подключения Ивановской ВЭС	57
3.2 Разработка однолинейной схемы распределительного устройства Иван	нов-
ской ВЭС	69
3.3 Технический анализ и выбор конкурентно способных вариантов разви	пия

сети	70
3.4 Вариант развития электрической сети при подключении Ивановской В	ЭС
к ПС 220 кВ Завитая, ПС 220кВ Благовещенская и сети 220 кВ	71
3.5 Вариант развития электрической сети при подключении Ивановской В	ЭС
к ПС 220 кВ Благовещенская и сети 220 кВ	74
3.6 Расчет капитальных вложений	78
3.7 Расчет ежегодных эксплуатационных издержек	81
3.8 Определение статических приведенных затрат и выбор оптимального в	3a-
рианта сети	82
3.9 Определение величины ущерба от перерывов электроснабжения и пока	13а-
телей надежности	83
3.10 Выводы	86
4 Техническая проработка выбранного варианта развития электрической сети	88
4.1 Выбор генераторов и трансформаторов для подключаемой электростан	[-
ции	88
4.2 Расчет токов короткого замыкания	89
4.3 Разработка варианта конструктивного исполнения распределительного)
устройства, выбор и проверка основного оборудования	91
4.3.1 Выбор и проверка выключателей	92
4.3.2 Выбор и проверка разъединителей	94
4.3.3 Выбор и проверка трансформаторов тока и трансформаторов напряж	ке-
ния	95
4.3.4 Выбор и проверка ошиновки РУ ВН	98
4.3.5 Выбор и проверка сборных шин и изоляторов	100
4.3.6 Выбор ограничителей перенапряжения	101
4.4 Выводы	108
5 Выбор оптимального варианта развития сети	110
5.1 Интегрированный эффект от ввода ВЭС и применения цифровых технол	10-
гий	110

5.2 Оценка инвестиционной привлекательности проекта	112
5.3 Выводы	116
Заключение	117
Библиографический список	119
Приложение А Структурная схема рассматриваемого участка сети	127
Приложение Б Расчёт в программе Mathcad	129
Приложение В Расчёт в программе RastWin 3 исходного режима	148
Приложение Г Расчёт в программе RastWin 3 варианта 1	157
Приложение Д Расчёт в программе RastWin 3 варианта 2	166

ОПРЕДЕЛЕНИЯ, ОБОЗНАЧЕНИЯ, СОКРАЩЕНИЯ

АВР – автоматический ввод резерва;

АПВ – автоматическое повторное включение;

КЗ – короткое замыкание;

ОРУ – открытое распределительное устройство;

ВКР – выпускная квалификационная работа;

ВЭС – ветряная электрическая станция;

ЦД – цифровой двойник;

ВЛ – воздушная линия;

ВН – высокое напряжение;

ЕЭС – единая энергосистема;

КРУН – комплектное распределительное устройство наружное;

ЛЭП – линия электропередачи;

НН – низкое напряжение;

ОЗ – операционная зона;

СТ – силовой трансформатор;

ТН – трансформатор напряжения;

ТТ – трансформатор тока;

ОПН – ограничитель перенапряжений нелинейный;

ПБВ – переключение без возбуждения;

 Π С – подстанция;

ПУЭ – правила устройств электроустановок;

РПН – регулирование под нагрузкой;

РУ – распределительное устройство;

ТСН – трансформатор собственных нужд;

ЭЭС – электроэнергетическая система;

ЭОБ – электронно-оптический блок.

ВВЕДЕНИЕ

В данной магистерской диссертации проводится разработка схемы выдачи мощности ветряной электрической станции в Ивановском районе Амурской области мощностью 335 МВт с использованием инновационного оборудования. Данная тема была рекомендована системным оператором ЕЭС.

Актуальность темы обусловлена активным экономическим развитием Амурской области, сопровождающимся увеличением электропотребления и необходимостью модернизации существующей энергетической инфраструктуры.

По поручению Минвостокразвития России совместно с регионами проведена работа по актуализации новых инвестиционных проектов, не учтенных в документах перспективного планирования, чтобы определить необходимость строительства генерации для их энергоснабжения. Дальневосточными регионами заявлено около 500 дополнительных инвестпроектов с общей необходимой мощностью почти в 8 ГВт

Современные условия эксплуатации электрических сетей региона характеризуются устойчивым ростом нагрузок, интеграцией распределённой генерации, а также увеличением доли возобновляемых источников энергии, включая ветроэлектростанции. Дополнительным фактором, повышающим актуальность рассматриваемой темы, является ужесточение нормативных требований к качеству и надёжности электроснабжения потребителей. В этих условиях особенно важно обеспечить эффективную и стабильную схему выдачи мощности новых объектов генерации.

Актуальность возобновляемых источников энергии (ВИЭ), в частности ветроэнергетических систем (ВЭС), в современном мире обусловлена рядом глобальных вызовов и тенденций. Климатические изменения, вызванные антропогенными выбросами парниковых газов, требуют перехода к низкоуглеродной экономике, и ВЭС играют ключевую роль в этом процессе. В отличие от традиционных ископаемых источников энергии, ветрогенерация не производит вредных

выбросов в атмосферу, что способствует улучшению экологической обстановки и снижению углеродного следа.

Экономическая эффективность ВЭС также растет благодаря технологическому прогрессу. Удешевление ветротурбин, увеличение их КПД и мощности, а также развитие систем накопления энергии делают ветроэнергетику конкурентоспособной по сравнению с угольными и газовыми электростанциями. Во многих регионах мира, особенно с высоким ветропотенциалом, энергия ветра уже стала одним из самых дешевых источников электроэнергии.

Энергетическая безопасность — еще один важный аспект актуальности ВЭС. Страны, зависящие от импорта ископаемого топлива, могут снизить эту зависимость за счет развития собственной ветроэнергетики. Это особенно важно в условиях геополитической нестабильности и колебаний цен на нефть и газ.

Социально-экономические выгоды включают создание новых рабочих мест в сфере "зеленой" энергетики, развитие инфраструктуры в удаленных регионах и улучшение качества жизни за счет снижения загрязнения воздуха. Кроме того, ветроэнергетика способствует децентрализации энергосистем, позволяя локальным сообществам использовать местные ресурсы для генерации электроэнергии.

Таким образом, актуальность ВЭС обусловлена их вкладом в борьбу с изменением климата, экономической эффективностью, укреплением энергонезависимости и социально-экономическим развитием. В условиях растущего спроса на энергию и необходимости устойчивого развития ветроэнергетика остается одним из ключевых элементов глобального энергоперехода.

Объект исследования – электрические сети 110 - 220 кВ Амурской области в районе размещения Ивановской ВЭС.

Предмет исследования – инновационные технологии, применяемые на электрических станциях, содержащих возобновляемые источники энергии.

Целью данной магистерской диссертации является повышение надежности электроснабжения потребителей путем ввода новых генерирующих мощностей в

электрическую сеть Амурской области за счет подключения Ивановской ВЭС на инновационной основе.

Для достижения поставленной цели необходимо решить следующие задачи:

- 1) произвести анализ современного состояния схемно-режимной ситуации электрической сети Амурской области, для выявления проблемных мест и возможности подключения Ивановской ВЭС;
- 2) на основе системного анализа инновационного оборудования и цифровых технологий предложить оптимальный состав цифровых решений для ветряной электрической станции;
- 3) разработать технически осуществимые варианты подключения Ивановской ВЭС к энергосистеме и выбрать оптимальный вариант развития сети;
- 4) произвести техническую проработку выбранного варианта развития сети, осуществить выбор и проверку основного оборудования распределительного устройства Ивановской ВЭС;
- 5) произвести оценку технической и экономической целесообразности предложенного варианта развития электрической сети Амурской области в районе подключения Ивановской ВЭС и определить интегрированные эффекты.

Научная новизна заключается в выборе оптимального состава цифровых технологий и инновационного оборудования на Ивановской ВЭС и применении цифровых технологий и инновационного оборудования при подключении Ивановской ВЭС.

Практическая значимость работы заключается в повышении надежности электроснабжения потребителей Ивановского района и улучшении схемно-режимной ситуации электрической сети Амурской области.

В работе использовались следующие методы исследования: системный анализ, структурный анализ, компьютерно-математическое моделирование.

В первом разделе был выполнен анализ современного состояния схемно-режимной ситуации в электрических сетях Амурской области Ивановского района.

Во втором разделе дана характеристика инновационного оборудования, применяемого при подключении электрических станций, содержащих возобновляемые источники энергии.

В третьем разделе были рассмотрены варианты развития электрической сети 110-220 кВ Амурской области в районе подключения Ивановской ВЭС и выбор оптимального.

В четвертом разделе осуществлялась техническая проработка выбранного варианта развития сети, а также выбор и проверка основного оборудования распределительного устройства Ивановской ВЭС.

В пятом разделе была произведена оценка технической и экономической целесообразности предложенного варианта развития электрической сети, а также определены интегрированные эффекты.

В ходе работы использовались следующие программные продукты: Операционная система MS Windows 10 Education, Visio 2, MS Office 2010 standard; Mathcad Education – University Edition, RastrWin3 Базовый комплекс.

В процессе обучения магистратуры были опубликованы две работы и принято участие в двух конференциях:

В дне науки АмГУ. Работа опубликована в журнале «Вестник Амурского государственного университета» - 2024. - №105. – С. 60-67. – тема: «Повышение надежности функционирования распределительных устройств электрических станций путем применения цифровых технологий».

В региональной научно-практической конференции «Молодежь XXI века: Шаг в будущее». Работа опубликована в материалах XXV региональной научно-практической конференции, том 2. — 2024. — С. 651-652. — тема: «Повышение надежности коммутационного оборудования посредством использования контроллеров управляемой коммутации».

По результатам выполнения магистерского исследования были представлены 2 листа формата А1 графической части.

1 АНАЛИЗ СОВРЕМЕННОГО СОСТОЯНИЯ СХЕМНО–РЕЖИМНОЙ СИ-ТУАЦИИ В ЭЛЕКТРИЧЕСКИХ СЕТЯХ АМУРСКОЙ ОБЛАСТИ И ИВА-НОВСКОГО РАЙОНА

Задачей данного раздела является исследование текущего положения схемно-режимной ситуации в электрических сетях Амурской области в Ивановском районе, выявление проблемных мест в существующей сети и последующее определение возможности подключения нового генерирующего оборудования.

1.1 Экономическая характеристика Амурской области

Строительство новой электрической станции в Амурской области продиктовано комплексом взаимосвязанных причин, которые можно разделить по ключевым категориям.

Потребление электроэнергии в ЕЭС России в период за 2024 год составило 1174 $\kappa Bm \cdot u$, что на 3,1% больше показателя 2023 года. Темпы роста электропотребления стремительно растут и в 2025 году прогнозируется рост свыше 4% [2].

Социально-экономическое развитие Амурской области ведётся активными темпами, что влечет за собой рост энергопотребления. Строительство новой электростанции и создание дополнительных генерирующих мощностей позволит компенсировать дефицит мощностей и обеспечить стабильное электроснабжение для промышленных предприятий и населения.

Строительство электростанции и дальнейшая ее эксплуатация потребуют привлечения высококвалифицированных специалистов, что создаст дополнительные рабочие места и положительно скажется на социально-экономическом положении региона.

Строительство такого крупного энергообъекта стимулирует развитие транспортной сети и промышленной инфраструктуры региона, что также привлечет инвестиции в регион и ускорит экономическое развитие Амурской области. Важным аспектом при проектировании энергетических объектов является соответствие экологическим требованиям. Одним из ключевых способов сокращения негативного влияния на окружающую среду является использование возобновляемых источников энергии, таких как гидроэнергетика, ветроэнергетика или солнечная энергетика. Они способствуют минимизации экологического ущерба и обеспечивают устойчивое развитие энергосистемы региона.

На основании проведенного экономического анализа планируется ввод новых генерирующих мощностей на территории Амурской области в Ивановском районе.

1.2 Климатические характеристики и территориальные особенности Амурской области в Ивановском районе.

Характеристика территориальных и климатических особенностей Амурской области производится для выбора оптимального места строительства электростанции, а также для подбора оборудования с соответствующим климатическим исполнением. Основные климатические параметры, использованные в работе, приведены в таблице 1 в соответствии с данными источника [3].

Ивановский район Амурской области обладает особыми географическими и климатическими характеристиками, которые необходимо учитывать при проектировании новой электростанции. Регион расположен в азиатской части России, в приграничной зоне с Китаем, и отличается резко континентальным климатом. Это проявляется в экстремальных температурных перепадах: продолжительных морозных зимах и коротких, но жарких летних периодах. Такие условия требуют тщательного анализа при выборе технологий и материалов для строительства электростанции. Ивановский район обладает высоким ветровым потенциалом, обусловленным местным ландшафтом, в частности, преобладанием равнинного типа местности, отсутствия гористых возвышенностей, а также больших лесных массивов, что в свою очередь позволяет беспрепятственно проходить большим объемам ветряных масс с северных регионов Китая.

Большое колебание среднегодовых температур (от +30° до -40°С) требует особого внимания к теплоизоляции и защите оборудования как от низких температур холодной зимой, так и эффективных решений для охлаждения, чтобы обеспечить стабильную работу электростанций жарким летом.

Таблица 1 – Сводная таблица климатических параметров

№	Характеристика	Значение	Климатическое исполнение оборудования
1	Преобладающее направление ветра	3, C3	
2	Нормативная скорость ветра (один раз в 25 лет) на высоте 10 м	24 м/с	
3	Скорость ветра при гололеде (один раз в 25 лет)	14 м/с	
4	Нормативная толщина стенки гололеда (один раз в 25 лет)	14 мм	
5	Температура воздуха при гололеде	- 5 °C	УХЛ
6	Абсолютный минимум температуры воздуха	- 49 °C	y AJI
7	Абсолютный максимум температуры воздуха	+ 39 °C	
8	Глубина промерзания грунта	2,85 м	
9	Среднегодовая продолжительность гроз	35 часов	
10	Среднегодовое количество осадков	400-800 мм	
11	Район по гололеду	3	
12	Ветровой район	3	

В Амурской области наблюдается активная циклоническая деятельность. Сильные ливни, шквалистые ветры, интенсивные грозы и метели создают неблагоприятные условия для работы энергетической инфраструктуры, повышая вероятность повреждения линий электропередач и электрооборудования.

Наличие в регионе крупных рек открывает перспективы для развития гидроэнергетики. Однако при этом возникает необходимость комплексного анализа антропогенного влияния на экосистемы.

Тщательная оценка природно-климатических и территориальных особенностей Амурской области перед началом строительства электростанции является

важным этапом для надежности и эффективности работы, а также сохранения экологического баланса региона.

В соответствии с климатическими условиями выбранного региона необходимо применение оборудования исполнения УХЛ.

1.3 Определение эквивалента рассматриваемого участка сети

Для детального анализа и разработки вариантов развития электрической сети необходимо определить эквивалент рассматриваемого участка сети в районе предполагаемого подключения новых объектов.

В качестве эквивалента выбран участок сетей Амурской области, Ивановского района, непосредственно в районе предполагаемо места подключения (рисунок 1). Эквивалент ограничен тремя источниками питания с приведенной к данным узлам генерацией и нагрузкой, а именно Благовещенской ТЭЦ, ПС Благовещенская, Райчихинская ГРЭС.

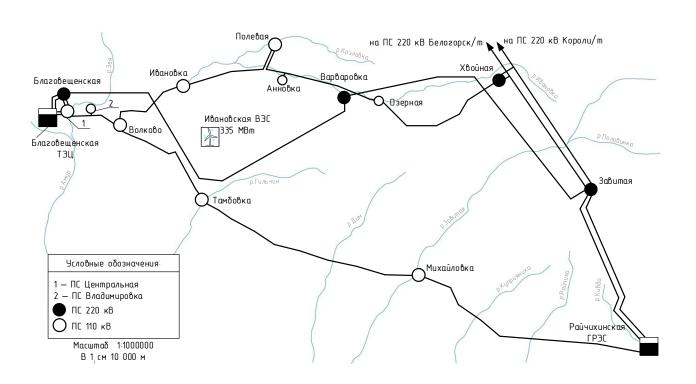


Рисунок 1 – Структурная схема рассматриваемого участка сети

В качестве эквивалента рассматриваемого участка сети выбраны следующие объекты генерации:

- 1. Благовещенская ТЭЦ;
- 2. Райчихинская ГРЭС;
- 3. ПС Благовещенская.

Также выбрано три подстанции с высшим классом напряжения 220 кВ: ПС Хвойная; ПС Варваровка; ПС Завитая, 9 подстанций с высшим классом напряжения 110 кВ: ПС Центральная; ПС Владимировка; ПС Волково; ПС Ивановка; ПС Полевая; ПС Анновка; ПС Озерная; ПС Михайловка; ПС Тамбовка.

Этот район выбран для последующего детального анализа схемно-режимной ситуации.

Выдача мощности в другие части электрической сети, не входящие в эквивалент учтена при расчете режима и структурном анализе электрической сети.

1.4 Структурный анализ электроэнергетической системы района

Структурный анализ электроэнергетической системы района производится для определения источников питания, питающих его, ЛЭП, проходящих в данном районе и подстанций, находящихся в нем.

Благовещенская ТЭЦ

Благовещенская теплоэлектроцентраль — это тепловая паротурбинная электростанция с комбинированным производством тепла и электроэнергии. Установленная мощность — 404 МВт, тепловая мощность — 1005,6 Гкал/час. Тепловая схема станции выполнена с поперечными связями по основным потокам пара и воды. В соответствии с проектом в качестве основного топлива предполагалось использование бурого угля Райчихинского месторождения, но фактически используются бурые угли Ерковецкого и Переясловского месторождений.

К функциям Благовещенской ТЭЦ относятся:

- Выдача мощности и выработка электроэнергии;
- Отпуск пара и горячей воды потребителям.

Электроэнергия, производимая станцией, выдаётся в энергосистему Амурской области по линиям электропередачи 110 кВ:

- ВЛ-110 кВ Благовещенская ТЭЦ Благовещенская №1 с отпайками;
- ВЛ-110 кВ Благовещенская ТЭЦ Благовещенская №2 с отпайками;
- ВЛ-110 кВ Благовещенская ТЭЦ Западная №1;
- ВЛ-110 кВ Благовещенская ТЭЦ Западная №2;
- ВЛ-110 кВ Благовещенская ТЭЦ Центральная №1 с отпайками;
- ВЛ-110 кВ Благовещенская ТЭЦ Центральная №2 с отпайками.

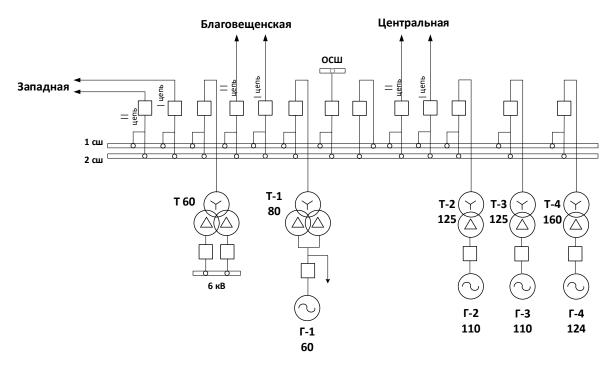


Рисунок 2 – Главная схема Благовещенской ТЭЦ

Таблица 2 – Генераторы

Марка	Кол–во	Рном, МВт	U _{НОМ,} кВ	Номинальная частота вра- щения, об/мин
ТВФ-63-2У3	1	60	6,3	3000
ТВФ-120-2У3	2	110	10,5	3000
ТЗФП-130-2У3	1	124	10,5	3000

Таблица 3 – Силовые трансформаторы

Марка	Кол-во	U _K ,%	ΔP _K , κΒτ	ΔP _X , κΒτ	ΔQx, кВАр	I _X , %
ТРДЦН- 80000/110/6,3/6,3	1	10,5	310	70	480	0,6
ТДЦ- 125000/110/10,5	2	10,5	400	120	687,5	0,55
ТДЦ- 160000/110/10,5	1	12	525	167	960	0,6

Райчихинская ГРЭС

Райчихинская ГРЭС представляет собой тепловую паротурбинную электростанцию с комбинированной выработкой электроэнергии и тепла. Установленная мощность электростанции — 83 МВт, тепловая мощность — 173,1 Гкал/час. Станция работает по конденсационному графику с попутной выработкой тепла. Проектное и фактическое топливо — бурый уголь Райчихинского месторождения. Конструктивная схема — с поперечными связями по основным потокам воды и пара. Помимо выработки электроэнергии, Райчихинская ГРЭС обеспечивает теплоснабжение п. Прогресс (теплоснабжение производится только в холодное время года, в летний период отпуск тепла отсутствует). Электроэнергия выдаётся в энергосистему с открытых распределительных устройств (ОРУ) напряжением 110 кв и 220 кВ, а также с закрытого распределительного устройства (ЗРУ) напряжением 35 кВ по следующим линиям электропередачи:

```
ВЛ-220 кВ Райчихинская ГРЭС — Завитая, 2 цепи;
```

ВЛ-220 кВ Райчихинская ГРЭС — Архара, 2 цепи;

ВЛ-110 кВ Райчихинская ГРЭС — Бурейск, 2 цепи;

ВЛ-110 кВ Райчихинская ГРЭС — Бурея-тяга;

ВЛ-110 кВ Райчихинская ГРЭС — Михайловка;

ВЛ-35 кВ Райчихинская ГРЭС — Широкий;

ВЛ-35 кВ Райчихинская ГРЭС — Н.Райчихинск;

ВЛ-35 кВ Райчихинская ГРЭС — А;

ВЛ-35 кВ Райчихинская ГРЭС — Усть-Кивда;

ВЛ-35 кВ Райчихинская ГРЭС — Прогресс;

ВЛ-35 кВ Райчихинская ГРЭС — Малиновка.

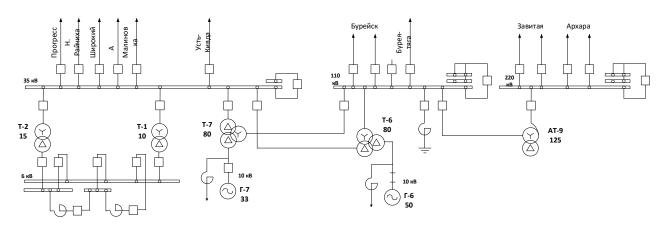


Рисунок 3 – Главная схема Райчихинской ГРЭС

Таблица 4 – Генераторы

Марка	Кол–во	Рном, МВт	U _{НОМ,} кВ	Номинальная частота вра- щения, об/мин
TB-60-2	2	50	10,5	3000

Таблица 5 – Силовые трансформаторы

Марка Кол–во		U _K , %			ΔP_K ,	ΔP_X ,	ΔQ_X ,	I 0/
Марка	KOH-BO	В-С	В–Н	С–Н	кВт	кВт	кВАр	I _X , %
ТДТН- 80000/115/38,5/11	2	17	10,5	6,5	390	82	480	0,6
АТДЦТН- 125000/220/110	1	11	45	28	305	65	625	0,5

Анализ источников питания показал, что рассматриваемые электрические станции имеют ограничения в топологической структуре, что усложняет подключение новых объектов без крупной реконструкции и модернизации.

Структурный анализ ЛЭП

Структурный анализ ЛЭП — это процесс изучения и оценки конструктивных, технических и эксплуатационных характеристик ЛЭП с целью обеспечения её надежности, безопасности и эффективности. Он состоит в определении класса

напряжения линии, марки провода, длины, интервальной оценке сечений. Полученные данные в ходе анализа сведены в таблицу 6, 7.

Таблица 6 – Линии электропередачи на рассматриваемом участке сети

Наименование линии	U _{ном} , кВ	Марка провода	Длина ли- нии, км
Райчихинская ГРЭС – Завитая I цепь	220	AC-300/66	44,5
Райчихинская ГРЭС – Завитая II цепь		AC-300/66	44,7
Завитая – Варваровка		AC-300/66	79,2
Варваровка – Благовещенская	220	AC-300/66	112
Завитая – Белогорск/т с отпайкой на ПС Хвойная		AC-300/39	121,46
Завитая – Короли/т с отпайкой на ПС Хвойная		AC-300/39	51,66
Благовещенская ТЭЦ – Благовещенская I цепь		AC-300/39	9,17
Благовещенская ТЭЦ – Благовещенская II цепь		AC-300/39	9,17
Благовещенская – Центральная I цепь		AC-185/29	6,69
Благовещенская – Центральная II цепь		AC-185/29	6,69
Благовещенская ТЭЦ – Центральная I цепь	-	AC-300/39	5,9
Благовещенская ТЭЦ – Центральная II цепь	-	AC-300/39	5,9
Центральная – Волково с отпайкой на ПС Владимировка	110	AC- 185/128	20,03
Волково – Тамбовка		AC-185/29	27,1
Тамбовка – Михайловка		AC-185/29	64,35
Райчихинская ГРЭС – Михайловка		AC-185/29	69,4
Хвойная – Озерная	-	AC-120/19	36,7
Озерная – Полевая с отпайкой на ПС Анновка	1	AC-120/19	44,13
Полевая – Ивановка	-	AC-120/19	33
Ивановка – Волково	110	AC-120/19	22,7

Таблица 7 – Интервальная оценка сечений проводов АС

U _{НОМ} , кВ	Сечение	Суммарная протяженность, км
220	300/39	168,92
220	300/66	191,2
	300/39	30,14
110	185/29	174,23
110	185/128	26,49
	120/19	162,48

Анализ линий электропередач показал, что в рассматриваемом районе преобладают линии напряжением 110 кВ, что накладывает ограничение на возможную выдачу мощности в сеть без проведения модернизации ЛЭП. Линии классом напряжения 220 кВ имеют достаточное сечение и пропускную способность, что позволит выдать планируемую мощность в рассматриваемом участке.

Структурный анализ ПС

Проведем анализ ПС по способу присоединения к сети, по схемам РУ, выделим количество и марки установленных на них трансформаторов. Данные сведены в таблицы 8, 9.

Таблица 8 – ПС по способу присоединения к сети и мощности СТ

Наименование ПС	Способ присоединения к сети	Количество и марки транс- форматоров
ПС Благовещенская	Узловая	2 x АТДЦТН- 125000/220/110
ПС Центральная	Узловая	2 х ТДТН-25000/110
ПС Владимировка	Ответвительная	2 х ТДН-10000/110
ПС Волково	Проходная	2 х ТДТН-10000/110
ПС Тамбовка	Узловая	1 х ТДТН-10000/110
THE TUMOOBRU	ПС Тамоовка Узловая	
ПС Ивановка	Узловая	1 х ТДТН-10000/110
Узловая		1 х ТДТН-16000/110

Продолжение таблицы 8

Наименование ПС	Способ присоединения к сети	Количество и марки транс- форматоров
ПС Варваровка	Проходная	2 х ТДТН-40000/220
ПС Михайловка	Проходная	1 x ТДТН-10000/110 1 x ТМТН-6300/110
ПС Завитая;	Узловая	2 х ТДТН-25000/220
ПС Хвойная;	Проходная	АТДЦТН-30000/220/110 АТДЦТН-32000/220/110
ПС Озерная	Проходная	ТДТН-10000/110 ТДТН-6300/110
ПС Анновка	Ответвительная	2xTMH-2500/110
ПС Полевая	Проходная	2хТДТН-10000/110

Таблица 9 – ПС по схемам РУ

Наименование ПС	Схема РУ
	ВН: Одна рабочая секционированная выключателем система шин
ПС Газавания	(9)
ПС Благовещенская	СН: Одна рабочая секционированная выключателем и обходная
	система шин (12)
ПС Завитая	Две рабочие и обходная системы шин (13Н)
ПС Полевая	Одна рабочая секционированная выключателем система шин (9)
ПС Хвойная	Мостик с выключателями в цепях трансформаторов и ремонтной
	перемычкой со стороны трансформаторов (5АН)
ПС Озерная	Мостик с выключателями в цепях трансформаторов и ремонтной
	перемычкой со стороны линии (5Н)
ПС Анновка	Блок трансформатор с разъединителем (1)
ПС Центральная	Одна рабочая секционированная выключателем система шин (9)
ПС Владимировка	Блок трансформатор с выключателем (3Н)
ПС Волково	Одна рабочая секционированная выключателем система шин (9)
ПС Тамбовка	Одна рабочая секционированная выключателем система шин (9)
ПС Ивановка	Одна рабочая секционированная выключателем система шин (9)

Продолжение таблицы 9

Наименование ПС	Схема РУ
ПС Варваровка	Мостик с выключателями в цепях трансформаторов и ремонтной
	перемычкой со стороны трансформаторов (5АН)
ПС Михайловка	Заход-выход (6)

Рассматриваемый участок электрической сети имеет структуру с замкнутым контуром и с слабыми связями. Слабыми связями обладают проходные и отпаечные подстанции 110 кВ, так как связность этих подстанций ограничивается связью в основном с двумя другими элементами сети. Сильные связи у узловых подстанций 220 кВ, которые имеют не менее четырех связных элементов. Рассмотрим их при разработке вариантов подключения Ивановской ВЭС. Всего в рассматриваемом районе 13 подстанций, большая часть из которых - двухтрансформаторные.

1.5 Расчёт и анализ установившихся режимов существующей сети

Основными задачами данного раздела являются выявление режимных проблем, определение возможности и необходимости реконструкции сети и оптимизации режима для подключения новой станции [47].

Для расчёта режимов использовался ПВК «RastrWin3». В качестве исходных данных использовались:

- Данные контрольного замера по подстанциям Амурской области за 2019-2024 годы;
- Нормальная схема электрических соединений объектов электроэнергетики, входящих в операционную зону Амурского РДУ 2024 г [28];
 - Схема потокораспределения Амурских электрических сетей за 2024 г [66].

Согласно приказу по проектированию развития энергосистем Минэнерго России от 06 декабря 2022 г. N 1286 расчёт режимов следует осуществлять в соответствии [39], где расчет нормальной схемы сети предполагает включение в работу всех ВЛ и трансформаторов.

В данном исследовании, максимальная и минимальная мощность нагрузок были взяты из данных контрольных измерений на соответствующих подстанциях из массива за период 2019-2024 год. Максимальные нагрузки на подстанции были взяты из данных зимних контрольных измерений в часы максимальных нагрузок, в то время как минимальные нагрузки на подстанции были взяты из данных летних контрольных измерений в часы минимальных нагрузок. Данные по нагрузкам представлены в таблице 10.

Аналогично определяются прогнозируемые мощности для всех ПС сети.

Данные контрольных замеров взяты из суточных максимумов нагрузки и минимумов нагрузки при температурах: летом $+25 \circ$, зимой $-25 \circ$.

Таблица 10 – Данные контрольных замеров

Название ПС	19.12.20	024, 06:00	13.06.29	924, 12:00
	Активная мощ-	Реактивная мощ-	Активная мощ-	Реактивная мощ-
	ность по дан-	ность по данным	ность по дан-	ность по данным
	ным КЗ, МВт	КЗ, МВар	ным КЗ, МВт	КЗ, МВар
1	2	3	4	5
Благовещенская-110	120,51	14,53	96,41	11,62
Центральная-110	85,13	34,53	68,10	27,62
БТЭЦ-110	28,03	12,14	22,43	9,71
Короли/т-Хвойная	23,76	9,50	19,01	7,60
Белогорск/т-Хвойная	21,37	8,55	17,09	6,84
РГРЭС-110	19,31	7,72	15,45	6,18
Тамбовка-10	18,70	7,49	14,96	5,99
РГРЭС-35	18,12	9,40	14,50	7,52
Полевая-110	13,42	5,21	10,74	4,17
Михайловка-35	6,38	2,55	5,11	2,04
Хвойная-35	4,44	1,79	3,56	1,44
Ивановка-110	4,10	2,22	3,28	1,78
Варваровка-220	4,09	1,63	3,27	1,31
Михайловка-10	3,77	1,51	3,02	1,21
Тамбовка-35	3,62	1,44	2,89	1,16
Завитая-220	3,50	1,03	2,80	0,82

Продолжение таблицы 10

				1 -
1	2	3	4	5
Волково-110	3,42	1,54	2,74	1,23
Озерная-110	3,01	1,20	2,41	0,96
Благовещенская-220	2,48	0,99	1,98	0,79
Владимировка-10	2,31	1,54	1,85	1,23
Благовещенская-35	1,62	0,65	1,30	0,52
Анновка-110	0,86	0,34	0,69	0,27

Для дальнейших расчетов необходимо произвести прогнозирование нагрузок [47]. Прогноз нагрузки осуществляется по формуле сложных процентов:

$$P^{npo\varepsilon} = P^{\delta a3} \cdot (1 + \varepsilon)^{t_{npo\varepsilon} - t_{\delta a3}}, \tag{1}$$

где $P^{\delta as}$ – базовая средняя мощность;

 ϵ — среднегодовой относительный прирост электрической нагрузки; принимаем равный 0,046, согласно СиПР ЕЭС РФ 2025-2030 гг. [64];

 $t_{\text{прог}}$ – год, на который определяется электрическая нагрузка;

 $t_{\text{баз}}$ – год, в который снимался первый из анализируемых графиков.

Определим прогнозируемые мощности для БТЭЦ:

$$P_{ETJU}^{npoc} = 28,03 \cdot (1+0,046)^{2030-2024} = 32,8 \text{ MBT};$$

$$Q_{ET3II}^{npoc} = 12,14 \cdot (1+0,046)^{2030-2024} = 14,2 \text{ MBap.}$$

Аналогично определяются прогнозируемые мощности для всех ПС сети, результаты расчета представлены в таблице 11.

Для проведения анализа необходимо сопоставить эквивалент с данными контрольных замеров. Допустимые расхождения между расчетными и фактическими значениями напряжений в узловых точках не должны превышать 10%. Только при соблюдении этого условия полученный эквивалент может быть

использован для дальнейшего проектирования и оптимизации существующего режима работы сети.

Таблица 11 — Прогнозируемые мощности для ΠC

		Зима	2030г.	Лето 2	030г.
№	Название ПС	Активная мощность, МВт	Реактивная мощность, МВар	Активная мощ- ность, МВт	Реактивная мощность, МВар
1	Благовещенская-110	141	17	112,80	13,60
2	Центральная-110	99,6	40,4	79,68	32,32
3	БТЭЦ-110	32,8	14,2	26,24	11,36
4	Короли/т-Хвойная	27,8	11,12	22,24	8,90
5	Белогорск/т-Хвойная	25	10	20,00	8,00
6	РГРЭС-110	22,59	9,036	18,07	7,23
7	Тамбовка-10	21,88	8,76	17,50	7,01
8	РГРЭС-35	21,2	11	16,96	8,80
9	Полевая-110	15,7	6,1	12,56	4,88
10	Михайловка-35	7,47	2,988	5,98	2,39
11	Хвойная-35	5,2	2,1	4,16	1,68
12	Ивановка-110	4,8	2,6	3,84	2,08
13	Варваровка-220	4,78	1,91	3,82	1,53
14	Михайловка-10	4,41	1,764	3,53	1,41
15	Тамбовка-35	4,23	1,69	3,38	1,35
16	Завитая-220	4,1	1,2	3,28	0,96
17	Волково-110	4	1,8	3,20	1,44
18	Озерная-110	3,52	1,408	2,82	1,13
19	Благовещенская-220	2,9	1,16	2,32	0,93
20	Владимировка-10	2,7	1,8	2,16	1,44
21	Благовещенская-35	1,9	0,76	1,52	0,61
22	Анновка-110	1,01	0,4	0,81	0,32

Полученные нагрузки применяются для расчета режима в приложении. В рамках электротехнических расчетов выполняется анализ распределения активной и реактивной нагрузок по элементам сети, определяется величина потерь

электроэнергии (как активной, так и реактивной составляющих) в линиях электропередачи, а также производится оценка уровней напряжения на шинах подстанций потребителей при различных режимах эксплуатации энергосистемы - как в штатных условиях, так и в аварийных ситуациях. При выполнении расчетов установившихся режимов решаются следующие задачи:

- 1) проверка работоспособности сети для рассматриваемого расчетного уровня электропотребления;
 - 2) выбор схем и параметров сети;
- 3) проверка соответствия рекомендуемой схемы сети требованиям надежности электроснабжения;
- 4) проверка выполнения требований к уровням напряжений и выбор средств регулирования напряжения и компенсации реактивной мощности;
- 5) разработка экономически обоснованных мероприятий по снижению потерь мощности и электроэнергии в электрических сетях;
 - 6) разработка мероприятий по повышению пропускной способности.

Исходными параметрами для определения рабочих режимов служат эксплуатационные характеристики потребителей, структурная компоновка сетевой схемы и технические параметры её компонентов. Анализ режимов рекомендуется выполнять с использованием специализированного ПВК RastrWin3 [47].

Моделирование существующего участка электрической сети

Моделирование участка действующей электрической сети производится в ПВК RastrWin3. В нём линии электропередач вводятся параметрами, описывающими П — образную схему замещения. Трансформаторы и автотрансформаторы задаются параметрами, соответствующими Г-образной схеме замещения, так же имеется возможность задания устройств регулирования напряжения (РПН, ПБВ). Все характеристические параметры элементов задаются вручную.

Расчёт режима существующей сети с учетом прогноза электрических нагрузок приведён в приложении В.

Анализ режимов существующей сети.

Рассмотрим нормальный режим данной сети, когда все элементы сети включены и находятся в работе.

Токовая загрузка ЛЭП наиболее загруженных линий, представлена в таблице 12.

Таблица 12 – Загрузка ЛЭП в нормальном режиме

Название	I_{\max} , A	$I_{\partial on}$, A	$I_{\mathrm{max}}/I_{\partial on}$,%
1	2	3	4
БТЭЦ-110 - Центральная-110	373,04	600	62,20
БТЭЦ-110 - Центральная-110	373,04	600	62,20
Центральная-110 - Отп. Владимировка	225,84	500	45,23
БТЭЦ-110 - Благовещенская-110	256,90	600	42,83
БТЭЦ-110 - Благовещенская-110	256,90	600	42,83
Отп. Владимировка - Волково-110	209,54	500	42,09
Волково-110 - Тамбовка-110	130,02	500	26,35
Ивановка-110 - Волково-110	71,67	300	23,89
Хвойная-110 - Озерная-110	65,91	300	22,67
Михайловка-110 - РГРЭС-110	99,20	500	19,84
Озерная-110 - Отп. Анновка	50,72	300	17,47
Полевая-110 - Ивановка-110	48,51	300	16,36
Отп. Анновка - Полевая-110	47,70	300	16,34
Завитая-220 - Короли/т-Хвойная	92,43	600	15,88
Завитая-220 - Белогорск/т-Хвойная	91,91	600	15,80
Благовещенская-110 - Центральная-110	60,24	500	12,17
Благовещенская-110 - Центральная-110	60,24	500	12,17
РГРЭС-220 - Завитая-220	55,94	600	9,32
РГРЭС-220 - Завитая-220	55,73	600	9,29
Тамбовка-110 - Михайловка-110	41,38	500	8,82

Продолжение таблицы 12

		T - 7	
1	2	3	4
Отп. Владимировка - Владимировка-110	16,71	300	5,57
Варваровка-220 - Благовещенская-220	24,38	600	5,19

Проведенный анализ показал, что вычисленные значения, полученные на основе разработанного эквивалента, соответствуют фактическим данным контрольных замеров. Это позволяет сделать заключение о достоверности и применимости разработанной модели. Анализ режима показал, что напряжение в узлах центров питания соответствует установленным требованиям, наблюдаем малую загрузку линий, что требует провести мероприятия по оптимизации режима. Наиболее загруженными линиями являются ВЛ 110 кВ БТЭЦ-Благовещенская и ВЛ 110 кВ БТЭЦ — Центральная с нагрузкой 42% и 62% соответственно. Схема и расчет нормального режима сети приведена в Приложении В.

Для проверки соответствия рекомендуемой схемы сети требованиям надежности электроснабжения выполняются расчеты послеаварийных режимов.

Исходными условиями в послеаварийных режимах следует считать [47]: для сети региональной энергосистемы или участка сети - отключение одного наиболее нагруженного элемента энергосистемы (энергоблок, автотрансформатор связи шин на электростанции или элемент сети) в период максимальных нагрузок.

Рассмотрены следующие варианты послеаварийного режима:

- 1) отключена ВЛ 110 кВ Благовещенская ТЭЦ Центральная с отпайками;
- 2) отключена ВЛ 110 кВ Центральная Волково с отпайкой на ПС Владимировка.

При отключении ВЛ 110 кВ Благовещенская ТЭЦ — Центральная с отпайками мы можем наблюдать что уровни напряжения в данном режиме находятся в допустимых пределах, а ток по линиям не превышает длительно допустимого. Токовая загрузка ЛЭП, представлена в таблице 13.

Таблица 13 – Загрузка ЛЭП в послеаварийном режиме

Название	I_{\max} , A	$I_{\partial on}$, A	$I_{\mathrm{max}}/I_{\partial on}$,%
БТЭЦ-110 - Центральная-110	585,44	600	97,60
БТЭЦ-110 - Благовещенская-110	336,05	600	56,03
БТЭЦ-110 - Благовещенская-110	336,05	600	56,03
Центральная-110 - Отп. Владимировка	221,48	500	44,36
Отп. Владимировка - Волково-110	205,14	500	41,21
Волково-110 - Тамбовка-110	127,87	500	25,92
Хвойная-110 - Озерная-110	68,38	300	23,49
Ивановка-110 - Волково-110	69,60	300	23,20
Михайловка-110 - РГРЭС-110	101,54	500	20,31
Благовещенская-110 - Центральная-110	91,13	500	18,33
Благовещенская-110 - Центральная-110	91,13	500	18,33
Озерная-110 - Отп. Анновка	53,08	300	18,24
Отп. Анновка - Полевая-110	49,97	300	17,09
Завитая-220 - Короли/т-Хвойная	93,10	600	16,00
Завитая-220 - Белогорск/т-Хвойная	92,56	600	15,91
Полевая-110 - Ивановка-110	46,63	300	15,77
РГРЭС-220 - Завитая-220	55,90	600	9,32
РГРЭС-220 - Завитая-220	55,68	600	9,28
Тамбовка-110 - Михайловка-110	42,77	500	9,04
Отп. Владимировка - Владимировка-110	16,75	300	5,59
Варваровка-220 - Благовещенская-220	24,38	600	5,19
Белогорск/т-Хвойная - Хвойная-220	29,03	600	4,85
Короли/т-Хвойная - Хвойная-220	22,33	600	3,72
Завитая-220 - Варваровка-220	15,99	600	2,67

Отключение ВЛ 110 кВ Центральная — Волково с отпайкой на ПС Владимировка показало, что уровни напряжения в данном режиме находятся в допустимых пределах. Ток по линиям электропередач не превышает длительно допустимого,

как и при нормальном режиме большинство линий являются загружены оптимально. Токовая загрузка ЛЭП наиболее загруженных линий, представлена в таблице 14.

Таблица 14 – Загрузка ЛЭП в послеаварийном режиме

Название	I_{\max} , A	$I_{\partial on}$, A	$I_{\mathrm{max}}/I_{\partial on}$,%
Хвойная-110 - Озерная-110	199,09	300	66,93
Озерная-110 - Отп. Анновка	181,43	300	60,86
Отп. Анновка - Полевая-110	176,89	300	59,24
БТЭЦ-110 - Центральная-110	335,01	600	55,85
БТЭЦ-110 - Центральная-110	335,01	600	55,85
БТЭЦ-110 - Благовещенская-110	283,89	600	47,33
БТЭЦ-110 - Благовещенская-110	283,89	600	47,33
Михайловка-110 - РГРЭС-110	235,90	500	47,18
Тамбовка-110 - Михайловка-110	163,84	500	32,77
Полевая-110 - Ивановка-110	88,91	300	30,25
Завитая-220 - Короли/т-Хвойная	127,63	600	21,81
Завитая-220 - Белогорск/т-Хвойная	126,48	600	21,62
Ивановка-110 - Волково-110	62,00	300	21,14
Благовещенская-110 - Центральная- 110	96,81	500	19,40
Благовещенская-110 - Центральная- 110	96,81	500	19,40
Белогорск/т-Хвойная - Хвойная-220	63,39	600	10,58
РГРЭС-220 - Завитая-220	62,33	600	10,39
РГРЭС-220 - Завитая-220	62,08	600	10,35
Короли/т-Хвойная - Хвойная-220	57,24	600	9,54
Волково-110 - Тамбовка-110	31,55	500	6,74

Продолжение таблицы 14

Название	I_{max} , A	$I_{\scriptscriptstyle \partial on}, { m A}$	$I_{\mathrm{max}}/I_{\partial on}$,%
Отп. Владимировка - Владимировка- 110	19,54	300	6,52
Варваровка-220 - Благовещенская-220	24,38	600	5,19

Расчетные данные по потерям сведены в таблицу 15.

Таблица 15 – Потери активной мощности в существующей сети

Режим	Потери активной мощности, МВт	
Нормальный режим	7.77	
Отключена ВЛ 110 кВ Благовещенская ТЭЦ – Цен-	10.4	
тральная с отпайками		
Отключена ВЛ 110 кВ Центральная – Волково с от-	11.5	
пайкой на ПС Владимировка	11.3	

По результатам расчета режима можно сделать вывод что в послеаварийном режиме ВЛ не перегружены, напряжение в узлах центров питания также не превышает допустимые значения, поэтому в данном районе возможно подключение новых мощностей к существующим сетям. Схемы послеаварийных режимов сети показаны в Приложении В.

1.6 Выводы

В результате анализа существующего режима, наблюдается проблема в недостаточной загруженности линий электропередач. Структурный анализ сети показал, что действующие источники питания имеют ограничения в топологической структуре, что делает невозможным подключение новых объектов к существующей сети без объемной модернизации и реконструкции.

Из экономической характеристики Амурской области можно отметить стремительный рост электропотребление и вытекающую из нее необходимость ввода новых генерирующих мощностей.

Исходя из климатической характеристики Ивановского района, рекомендуется применения оборудования с климатическим исполнением УХЛ, что касается линий электропередач, рекомендуется использование усиленных опор в районах с ветровыми нагрузками, а также использование морозостойких изоляторов.

2 ХАРАКТЕРИСТИКА ИННОВАЦИОННОГО ОБОРУДОВАНИЯ, ПРИМЕНЯЕМОГО ПРИ РАЗВИТИИ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ

Согласно Энергетической стратегией Российской Федерации на период до 2050 года, основной фокус в развитии смещен в сторону цифровизации объектов энергетики. В последние годы все более актуальными становятся вопросы применения возобновляемых источников энергии, в частности, с использованием энергии ветра для производства электроэнергии. При проектировании ветряной электрической станции (ВЭС) сегодня активно применяются инновационные технологии и оборудование, направленные на повышение эффективности, устойчивости и экологичности проектов. В данном разделе рассмотрены, проанализированы и рекомендованы к применению, цифровые технологии, реализованные в аналогичных проектах.

2.1 Инновационные технологии, применяемые при проектировании электростанции

Современные исследования подтверждают, что переход на возобновляемую энергетику в большинстве случаев является экономически выгодным решением. Однако из-за непостоянства выработки энергии, особенно на ветровых электростанциях, особое значение приобретают системы накопления электроэнергии. Кроме того, ключевую роль играет оптимизация энергопотребления, включая вовлечение конечных пользователей в процесс управления спросом. Для эффективного решения этих задач необходимо внедрение цифровых платформ и инновационных технологических решений.

2.1.1 Цифровой двойник

В Российской Федерации значимость внедрения возобновляемых источников энергии (ВИЭ) связана с отсутствием централизованного энергоснабжения во многих регионах страны. Районы децентрализованного энергоснабжения занимают около 60% площади Российской Федерации и находятся в основном в северных регионах страны [4]. В данных районах сосредоточено

множество мелких изолированных населенных пунктов, единственным источником электроснабжение которых служат дизельные электростанции, работающие на привозном топливе, что существенно увеличивает затраты.

Однако основной проблемой при использовании ВИЭ является их поведение, в особенности солнечных и ветровых электростанций, которое находится в сильной зависимости от внешних факторов, а именно от погодных условий. Следовательно, эффективное использование ВИЭ требует разработки не только системы управления, но также систем прогнозирования поведения этих объектов в изменяемых условиях. Благодаря внедрению технологии цифрового двойника, которая является виртуальным прототипом реального объекта, можно проводить эксперименты и проверять гипотезы, прогнозировать поведение объекта и решать задачу управления его жизненным циклом [5].

Цифровой двойник открывает новые возможности для оптимизации затрат как на этапе проектирования оборудования и систем, так и в процессе их эксплуатации. Благодаря этой технологии становится возможным переход от плановых ремонтов к текущим. В контексте ветровых электростанций (ВЭС) применение цифровых двойников демонстрирует высокую эффективность, обеспечивая преимущества на всех этапах жизненного цикла — от разработки до повседневной эксплуатации.

Анализ существующих решений в области применения цифровых двойников в ветроэнергетике.

В современном мире, где глобальная конкуренция становится все более жесткой, вопрос внедрения передовых технологий и создания высокоэффективных производственных систем приобрел особую значимость. Стремительное развитие информационных технологий предоставило возможность обработки и анализа больших массивов данных, собранных с реальных объектов. Благодаря этому обнаружилась необходимость пересмотра стандартных подходов к управлению производственными процессами на предприятиях. Эти

факторы побудили в ряде стран разработку и принятие программ стратегического развития промышленности, таких, как «Платформа индустрия 4.0» (Германия), «Сделано в Китае 2025» (Китай), «Национальная технологическая инициатива» (Россия). Все предложенные программы направлены на увеличение производительности труда, повышение экономической эффективности производств и внедрение современных наукоемких технологий [6].

Использование указанных стратегий ускоряет цифровизацию предприятий, расширяя масштабы автоматизации производственных операций. Данная тенденция продиктована запросом отрасли на сокращение сроков разработки продуктов и их технологий при одновременном повышении экономической эффективности и минимизации издержек в условиях современной конкуренции.

Эту задачу и решает цифровой двойник, который объединяет как виртуальную среду предприятия (данные, поступающие с датчиков, математические и геометрические модели и др.), так и физическую (исполнительные механизмы, станки, схемы и др.), а также описывает процесс взаимодействия между этими средами и дополняет это технологиями автоматизации. В 2018 году международная исследовательская и консалтинговая компания «Gartner» признала технологию цифровых двойников одной из десяти ключевых инноваций, определяющих технологический вектор будущего. По оценкам экспертов, «цифровые двойники, особенно в сочетании с решениями для Интернета вещей, демонстрируют значительный потенциал для трансформации различных отраслей в ближайшие три-пять лет». [7].

Цифровые двойники сегодня занимают лидирующие позиции среди перспективных технологических направлений, активно изучаемых и внедряемых в различных отраслях [8-14].

Зарождение концепции цифровых двойников началось с авиакосмической промышленности. В одной из своих работ Глесген и Штаргель [15] приводят объяснение принципа использования цифровых двойников для

сертификации транспортных средств и управления автопарком: «Цифровой двойник – это интегрированная мультифизическая, мультимасштабная, теоретико-вероятностная модель собранного транспортного средства или системы, в которой используются лучшие доступные физические модели, данные датчиков, а также история парка транспортных средств для моделирования состояния оригинала, работающего в реальных полевых условиях».

Научные исследования в области цифровых двойников ветроэнергетических комплексов развиваются по двум основным векторам: разработка цифровых двойников отдельных частей ветровой электростанции, в частности, разработка цифрового двойника структурной модели лопасти ротора ветрогенератора [11], и разработка цифрового двойника ветрогенератора [9, 10].

На основе анализа современных подходов к реализации цифровых двойников (ЦД) в ветроэнергетике предлагается концепция, предусматривающая использование операционных данных, полученных в процессе эксплуатации ветроустановок. Эти данные могут быть применены не только для оптимизации текущего функционирования объектов, но и для стратегического планирования их развития, эффективной интеграции в изолированные энергосистемы с применением технологий цифрового моделирования. В перспективе такой подход позволит обеспечить бесшовное включение ветроэнергетических комплексов в единое цифровое пространство энергетической инфраструктуры.

Для решения задачи комплексной интеграции предлагается использовать методы онтологического инжиниринга, направленные на анализ и определение критически важных информационных потоков, обеспечивающих как автономную работу каждого центра данных, так и их слаженное взаимодействие в рамках единой системы.

Современные исследования, посвящённые применению цифровых двойников [20, 21], демонстрируют востребованность данной технологии применительно к объектам ветроэнергетики.

Онтологический инжиниринг при построении цифрового двойника.

Применение онтологий в структуре ЦД приводится в работе [21]. Онтологический инжиниринг для построения ЦД был так же применен при построении ЦД солнечной электростанции (СЭС) [22]. В рамках данной работы были рассмотрены классические этапы онтологического инжиниринга относительно разработки ЦД ВЭС.

- 1) Первый этап разработка онтологической модели ветроэнергетической станции и ее гармоничная интеграция в существующую онтологию ТЭК. Формализация экспертных знаний в сфере ветрогенерации для последующего создания цифрового двойника. Определение предметной области и установление границ онтологии, а также классификация ее типа. Создаваемая онтология соответствует категории «легких онтологий» и предназначена для формирования цифровой тени, а также цифрового двойника ветроэнергетических объектов.
- 2) Второй этап систематизация и анализ данных, относящихся к исследуемой предметной области. Главная задача данного этапа заключается в выявлении, структурировании и четком формулировании ключевых элементов и терминов. Основная цель этого этапа отбор и вербализация всех основных объектов и понятий в области. В результате, отбираются основные объекты и понятия, которые относятся к следующим областям:
 - а) система генерации;
 - б) возобновляемые источники энергии;
 - в) ветровые электростанции;
 - г) оборудование ВЭС.
- 3) Третий этап определение всех основных объектов и концептов предметной области (основных уровней абстракции). Формирование четкой иерархической структуры составляет одну из ключевых задач текущего этапа. Иерархия, построенная с использованием результатов предыдущего этапа, представлена ниже:

- а) электроэнергетические системы;
- б) системы генерации;
- в) возобновляемые источники энергии;
- г) ветровые электростанции;
- д) оборудование ВЭС.
- 4) Четвертый этап направлен на проверку и оптимизацию визуальной структуры: удаляются дублирующие элементы, устраняются смысловые повторы и логические несоответствия. В процессе дорабатываются ключевые концепты и их взаимосвязи, что повышает ясность и удобство восприятия онтологической системы. Реализация данного четырехэтапного подхода позволяет создать непротиворечивую и логически стройную онтологическую модель ветроэлектростанции. На рис. 4 приведена метаонтология, концепты которой, отмеченные значком, могут быть детализированы (пример для оборудования ВЭС приведен на рис. 5).

Рисунок 4 - Метаонтология ветровых электростанций

Математическая модель.

В качестве примера математической модели для ЦД может быть рассмотрен подход, предлагаемый Оганесяном Э.В., Бекировым Э.А. и др. [23]. В соответствии с ним приводится описание математической модели для определения параметров работы ветроэнергетической установки, которая необходима для построения ЦД ВЭС.

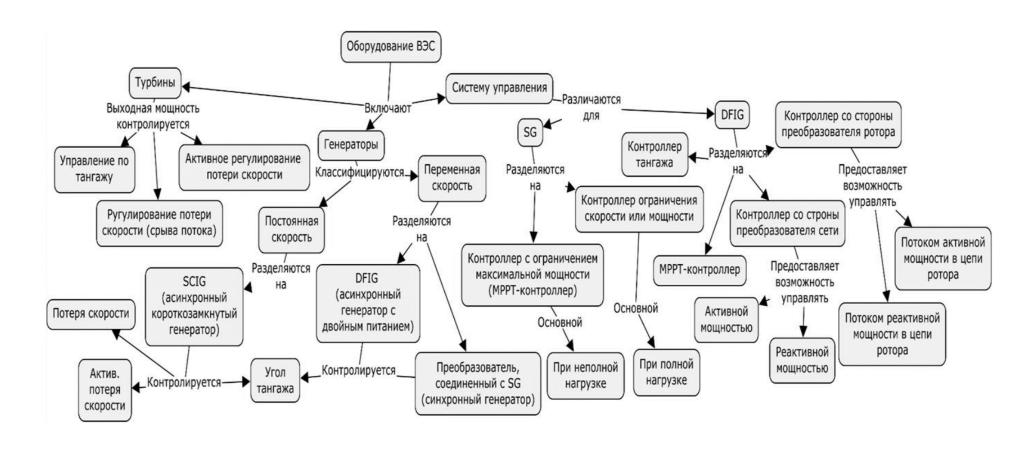


Рисунок 5 - Онтология оборудования ВЭС

Расчёт мощности, производимой ветрогенератором, основывается на ряде важных характеристик: скорость ветра, коэффициент использования энергии ветра, быстроходность, КПД и площадь ометаемой поверхности.

В формуле (1) проводится расчет мощностной характеристики ВЭУ в зависимости от скорости ветра:

$$P_{B \ni V}(V_i) = \rho C_p S_0 \eta \frac{V_i}{2} 10^{-3} . {2}$$

Рассчитаем характеристику коэффициента использования энергии ветра $C_p \ \, \text{от быстроходности Z (} \, Z_{opt} < Z < Z_{\max} \, \text{)(2)}.$

$$C_p = C_{p \max} - \frac{C_{p \max}}{(Z_{\max} - Z_{opt})^2} (Z - Z_{opt})^2,$$
 (3)

где $C_{p\max}$ - максимальный коэффициент использования энергии ветра.

При $Z \leq Z_{opt}$:

$$C_p = C_{p \,\text{max}} - (\frac{Z}{Z_{opt}})^2 (3 - 2\frac{Z}{Z_{opt}})^2$$
 (4)

Для нахождения быстроходности используется следующее выражение.

$$Z = \frac{\omega R}{V_0} , \qquad (5)$$

где ω - угловая скорость; R — радиус ветроколеса; V_0 - скорость набегающего потока воздуха.

Эффективная выходная удельная мощность ΔP на 1M^2 ометаемой поверхности ветротурбины (ВТ) вычисляется по формуле:

$$\Delta P = \Delta P_{B\Pi} C_p \eta , \qquad (6)$$

где $\Delta P_{B\Pi} = \rho 10^{-3} \, \frac{V_{_{HOM}}}{2}$ - удельная мощность ветрового потока при скорости ветра $V_{_{HOM}}$; ρ - плотность воздуха (зима – 1,25, лето 0,72 K2 / M ; C_p - средний коэффициент использования энергии ветра (принят равным 0,31); $\eta = \eta_A \eta_{PEJ} \eta_{2\Gamma}$ - суммарный КПД ВЭУ; η_A - аэродинамический КПД ВТ

(принят в пределах 0,91..0,916); η_{PEJ} - КПД редуктора (принят в пределах 0,95..0,96); $\eta_{3\Gamma}$ - КПД электрогенератора, зависящий от его мощности.

После расчета величины ΔP определяется площадь ометаемой поверхности BT:

$$S_0 = \frac{P_{B \ni Y_{HOM}}}{\Lambda P} \ . \tag{7}$$

Разработанная математическая модель позволяет точно определять ключевые параметры работы системы, выделяясь за счет интеграции влияния изменяющихся метеоусловий и динамического взаимодействия компонентов ветроэнергетической установки.

Данная модель служит основой для анализа поведения системы в различных условиях. Полученные с ее помощью данные обеспечивают цифровому двойнику возможность точного прогнозирования состояния объекта и оптимизации управления на всех этапах его жизненного цикла.

Реализованный пример проектирование ЦД ВЭС.

Проектирование и работа цифрового двойника ветровой электростанции требует обработки большого массива данных, таких как характеристики погодных условий, характеристики оборудования. Для организации и хранения этого набора в приведенном примере используется реляционная база данных PostgreSQL.

Проектирование базы данных приводится на основе онтологий (рис. 7 и 8), представленных в пункте "онтологический инжиниринг". В результате были выделены следующие сущности:

- 1) характеристики погоды;
- 2) характеристики ветрогенератора;
- 3) характеристики сетевого инвертора;
- 4) изолированная система;
- 5) сетевой инвертор;

- б) расчет сетевого инвертора;
- 7) ветрогенератор;
- 8) расчет ветрогенератора;
- 9) изолированная система Погода.

Логическая модель данных приведена на рис.6.

Для понимания роли и места базы данных в общей архитектуре ЦД ВЭС на основе онтологии представлена архитектура типового ЦД, представленная на рис. 7.

Архитектура включает в себя следующие блоки.

1) Цифровая тень:

Включает в себя модуль цифровой тени, обеспечивающий взаимодействие с базой данных, а также комплекс алгоритмов машинного обучения, предназначенных для моделирования поведения системы и восстановления недостающих данных, что гарантирует корректное функционирование цифрового двойника в целом.

2) Программный комплекс:

Служит для функционирования комплекса в целом, поскольку отвечает за интеграцию пользовательского интерфейса, вычислительных алгоритмов и механизма оперативного мониторинга данных, что позволяет формировать управляющие сигналы через контролирующий модуль.

3) Система управления:

Используется для корректировки параметров реального объекта на основе данных, полученных от его цифрового двойника.

Пример интерфейса для работы с базой данных.

Для взаимодействия с базой данных доступны специализированные средства администрирования, встроенные в СУБД PostgreSQL.

Операции добавления и удаления записей в таблицу требуют применения SQL-запросов, что создаёт дополнительные сложности при взаимодействии с централизованной базой данных.

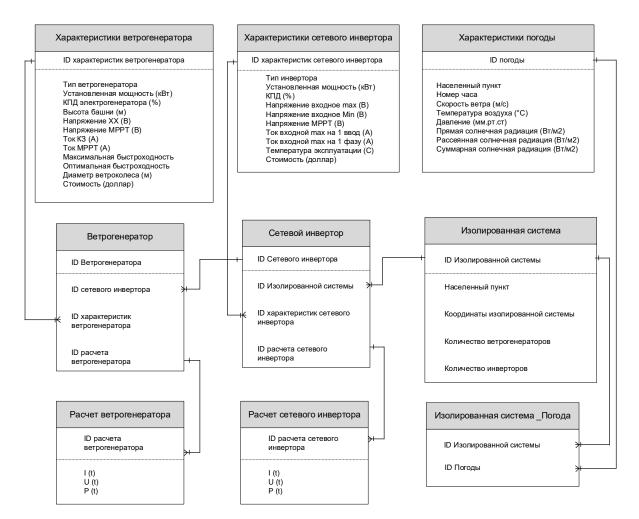


Рисунок 6 - Логическая модель данных

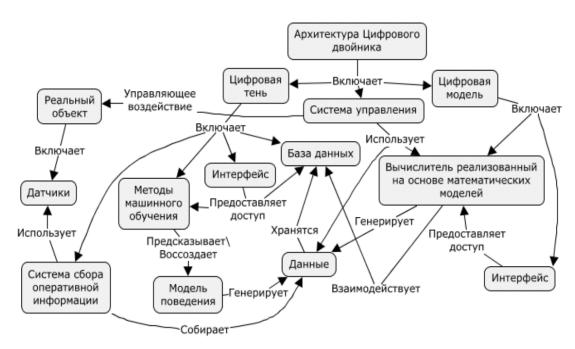


Рисунок 7 - Онтология цифрового двойника

Однако архитектура PostgreSQL открывает широкие возможности для разработки специализированных решений, включая создание пользовательских интерфейсов и программных оболочек, упрощающих работу с БД. Пример существующего решения приведен на рисунке 8 и предоставляет следующие возможности:

- 1) добавление форм для редактирования (добавления/изменения/удаления) таблиц;
- 2) разработка формы с возможностью подключения ветрогенератора к инверторам по особым условиям (количество портов в инверторе, подключение в инвертор только одинаковых ветрогенераторов и т.д.).

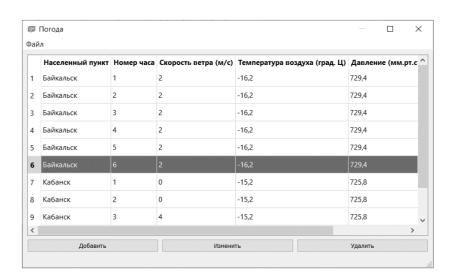


Рисунок 8 - Интерфейс программы для редактирования записей в таблице «Характеристики погоды»

Современные технологии цифровых двойников (ЦД) открывают новые перспективы для оптимизации информационных моделей. Одним из ключевых направлений развития является интеграция цифровой тени, которая позволяет разделить вычислительный модуль (математическую модель) и модуль обработки данных. Такой подход значительно повышает эффективность

сопровождения цифрового двойника, обеспечивая более гибкое управление и анализ информации.

В условиях промышленной эксплуатации необходимо обеспечить способность системы обрабатывать значительные объемы данных, поступающих с физических объектов. Особенно актуальна эта задача в электроэнергетике, где потоки информации от датчиков требуют высокоскоростной обработки и надежного хранения. Внедрение технологий Big Data позволяет решить эту проблему, обеспечивая анализ больших массивов данных в приемлемые сроки.

Реализация предложенного подхода создает основу для постоянной верификации модели на основе актуальных данных с реального объекта. Это, в свою очередь, позволяет своевременно выявлять расхождения и вносить необходимые корректировки, повышая точность и надежность цифрового двойника.

2.2 Инновационные технологии, применяемые при проектировании РУ

При проектировании распределительного устройства (РУ) для ветряной электростанции (ВЭС) применяются современные инновационные технологии, направленные на повышение надёжности, автоматизации, энергоэффективности и цифровизации всей системы.

2.2.1 Цифровизация РУ путём применения систем управления коммутационными аппаратами с APM диспетчера

Цифровизация распределительного устройства электрических станций — это процесс внедрения современных цифровых технологий и решений в работу электроэнергетических систем на РУ. Данная трансформация предполагает комплексное обновление методов управления, диагностики и эксплуатации энергетических систем. Ключевыми аспектами цифровизации РУ являются автоматизированный мониторинг рабочих параметров, оптимизация процессов управления, повышение уровня безопасности, своевременное

обнаружение аномалий и внедрение интеллектуальных систем технического обслуживания. Основные векторы модернизации распределительных устройств включают следующие направления:

Использование цифровых решений позволяет разрабатывать умные системы контроля, которые существенно повышают скорость и эффективность реагирования на изменения в работе электрооборудования. За счёт удалённого мониторинга и управления обеспечивается своевременное предотвращение аварий и надзор за эксплуатацией распределительных устройств из диспетчерских центров.

Современная автоматизация основана на применении интеллектуальных программно-аппаратных платформ, которые не только обрабатывают большие массивы данных, но и самостоятельно принимают решения, руководствуясь заложенными алгоритмами. На практике это проявляется в использовании интеллектуальных систем мониторинга, способных в реальном времени контролировать работоспособность оборудования, оптимизировать параметры энергопередачи и оперативно адаптироваться к изменяющимся условиям эксплуатации. Таким образом, цифровизация становится ключевым фактором повышения эффективности, надежности и гибкости энергетической инфраструктуры.

Применение технологий дистанционного управления коммутационными устройствами позволяет оперативному персоналу осуществлять контроль и настройку работы распределительных сетей без физического присутствия. Данный подход существенно повышает скорость реагирования на аварийные события, оптимизирует эксплуатационные и ремонтные процедуры, а также способствует росту надежности энергетической инфраструктуры. Благодаря удаленному мониторингу и управлению специалисты могут оперативно корректировать параметры работы электросетей и оборудования распределительных устройств, минимизируя время вынужденных остановок в случае неисправностей.

Внедрение инновационных цифровых технологий в распределительные устройства позволяет существенно увеличить производительность электроэнергетических комплексов, снизить количество аварийных случаев и улучшить устойчивость энергосистем к отказам.

Применение интеллектуальных цифровых систем позволяет осуществлять непрерывный мониторинг работоспособности техники, а также выполнять детальный анализ и предугадывать возможные неисправности. Это дает возможность не только своевременно предотвращать поломки, но и рационально планировать сервисное обслуживание, что в долгосрочной перспективе увеличивает надежность и срок эксплуатации.

Цифровизация позволяет оснастить распределительные устройства сенсорами и устройствами Интернета вещей (IoT), которые собирают данные о состоянии оборудования, окружающей среде и других параметрах. Эти данные помогают операторам принимать обоснованные решения и оптимизировать процессы на РУ.

В контексте цифровизации энергетического сектора принципиальное значение приобретает вопрос создания комплексной системы киберзащиты распределительных сетей. На фоне активного внедрения инновационных технологий критически важным становится проектирование эффективных инструментов нейтрализации киберугроз и обеспечения устойчивой работы критически важных элементов энергетической инфраструктуры.

Применение инновационных цифровых инструментов способствует оптимизации важнейших рабочих процессов, уменьшению энергопотребления и грамотному использованию ресурсов. В результате достигается заметное снижение расходов на обслуживание и эксплуатационные нужды.

Цифровизация РУ играет ключевую роль в современной электроэнергетике, обеспечивая повышение эффективности, надежности и безопасности работы электроэнергетических систем.

К несомненным преимуществам данной технологии относятся:

- 1) невысокая стоимость реализации;
- 2) существенное (25-30%) сокращение объема кабельной продукции;
- 3) ПДС полевые контроллеры, устанавливаемые в помещении в непосредственной близости к силовому оборудованию;
- 4) габариты РУ существенно меньше, чем с РУ аналогичного класса напряжения, что снижает экономический эффект от применения данного решения;
- 5) ПДС, выполняющие сбор сигналов всех коммутационных аппаратов присоединения, в том числе с отключением выключателя от P3A по GOOSE.

Преимуществом применения данных технологий является полная «оцифровка» дискретных сигналов ТС, ТУ, ОБ для всех коммутационных аппаратов и сокращение объема кабельной продукции ориентировочно на 50% в сравнении с традиционным вариантом исполнения. В представленных данных детально рассматриваются актуальные подходы к организации функционирования цифровых распределительных устройств (ЦРУ) и их структурных уровней. На процессном уровне решаются задачи интеграции первичного оборудования с программно-техническим комплексом централизованной системы управления, а также осуществляется сбор данных с различных датчиков и передача информации на вышестоящие уровни управления. Уровень присоединения отвечает за прием, обработку и обмен данными между различными компонентами системы.

Несмотря на очевидные преимущества цифровизации энергетических систем, такие как снижение затрат на оборудование и оптимизация проектных решений, существует ряд проблемных аспектов. Среди них можно выделить отсутствие унифицированных стандартов цифровой трансформации, потребность в создании специализированного ПО, а также риски, связанные с кибербезопасностью и необходимостью профессионального роста персонала.

Внедрение цифровых технологий в электроэнергетике направлено на оптимизацию ключевых аспектов функционирования энергосистем, включая производительность, отказоустойчивость, защищенность и контроль.

Использование инновационных цифровых решений на распределительных устройствах обеспечивает переход к автоматизированным системам регулирования, наблюдения и технического анализа, что дает ряд значимых преимуществ:

- 1) внедрение цифровых технологий способствует совершенствованию методов администрирования и мониторинга, благодаря чему достигается более рациональное использование энергоресурсов и минимизация непроизводительных затрат в системах электроснабжения;
- 2) цифровые решения обеспечивают мгновенный мониторинг и контроль за состоянием энергосистемы, позволяя предотвращать критические нарушения и гарантировать устойчивое функционирование всех элементов инфраструктуры;
- 3) внедрение цифровых технологий дает возможность непрерывно отслеживать работу техники, своевременно обнаруживать возможные угрозы и минимизировать риски возникновения чрезвычайных происшествий, что способствует защите сотрудников предприятия и окружающей среды.

Следовательно, внедрение цифровых технологий направлено на повышение эффективности, надежности, безопасности и управляемости энергетических систем, что является важнейшим фактором прогресса в современной энергетике и гарантией устойчивого энергоснабжения

Экономический эффект может быть значительным и проявляется в:

- 1) сокращении расходов на персонал, техническое обслуживание и эксплуатацию, путем автоматизации процессов управления и мониторинга;
- 2) снижении энергопотребления и экономии на операционных расходах благодаря улучшенному контролю и оптимизации работы электрооборудования;

- 3) сокращение потерь электроэнергии и чрезвычайных расходов на восстановительные работы, благодаря оперативному выявлению и устранению неисправностей;
- 4) оптимальном использовании ресурсов и снижении эксплуатационных издержек, ввиду более точному и эффективному распределению нагрузки, реагированию на изменения в энергосистеме и оптимизированию работы;
- 5) уменьшении потерь от простоя оборудования и трат на восстановительные работы благодаря предотвращению аварийных ситуаций путем оперативного мониторинга и реагирования на угрозы.

Таким образом, цифровизация способствует не только росту технических показателей и операционной эффективности распределительных устройств, но и открывает возможности для значительной экономии ресурсов. Это достигается за счет рационализации рабочих процессов, минимизации затрат и усиления стабильности функционирования энергетической инфраструктуры.

Для успешного внедрения цифровых решений в энергетическом секторе необходимо устранить существующие барьеры, усилить защиту от киберугроз, унифицировать нормативные требования и обеспечить профессиональную подготовку кадров. Интеграция цифровых технологий представляет собой ключевой этап модернизации энергосетей, способный принести существенную пользу при грамотном планировании и комплексном контроле всех этапов преобразований.

Анализ существующих решений в области применения цифровых технологий в ветровых энергетических комплексах.

Цифровые распределительные устройства становятся важным элементом современной ветроэнергетики, обеспечивая высокий уровень автоматизации, надёжности и гибкости в управлении энергопотоками. В отличие от традиционных, цифровые РУ используют цифровые датчики, интеллектуальные электронные устройства (IED), оптоволоконные линии связи и стандарт IEC

61850 для обмена данными в реальном времени. Это позволяет более эффективно управлять ветропарками, особенно расположенными в труднодоступных или морских районах.

Ведущие мировые производители электрооборудования — Siemens, ABB/Hitachi Energy, Schneider Electric, GE Grid Solutions — предлагают интегрированные решения, специально адаптированных для ВЭС. Например, Siemens 8DN8 — цифровая элегазовая подстанция, активно применяемая на оффшорных ветропарках в Европе. Она поддерживает удалённый мониторинг, диагностику оборудования и связь с облачными платформами на базе ПоТ. Аналогично, ABB ELK-3 с AirPlus сочетает экологически чистую изоляцию и полную цифровизацию оборудования — от трансформаторов тока до реле защиты.

Одним из ключевых направлений развития является интеграция цифровых РУ с системами SCADA и предиктивной аналитикой, что позволяет не только управлять сетевыми параметрами, но и прогнозировать отказ оборудования. Это особенно критично для ветроэнергетики, где сбои могут привести к потерям значительных объёмов выработки. Например, решение GE Digital Substation включает поддержку цифровых трансформаторов напряжения и тока, цифрового шинного уровня (Process Bus) и киберзащищённых каналов связи.

Кроме технологических аспектов, цифровые РУ способствуют снижению стоимости строительства и эксплуатации благодаря уменьшению количества медных кабелей, упрощению архитектуры и снижению требований к персоналу. Они также позволяют легко интегрировать системы накопления энергии и солнечные установки, что актуально для гибридных ВИЭ-комплексов.

Вызовами при внедрении цифровых распределительных устройств остаются высокая начальная стоимость, потребность в переобучении персонала, а также обеспечение надёжной киберзащиты. Однако опыт ведущих стран показывает, что переход к цифровым технологиям оправдан с точки зрения

долгосрочной надёжности, устойчивости и адаптивности ветроэнергетических систем.

2.2.2 Применение контроллеров управляемой коммутации

С учетом перспективных целей энергетической стратегии Российской Федерации ключевым направлением развития становится укрепление стабильности работы электроэнергетического комплекса. Это предполагает комплексное решение задач по обеспечению бесперебойного энергоснабжения, оптимизации эксплуатационной устойчивости, а также усилению контроля и безопасности технологических процессов в рамках единой энергосистемы [3].

Одним из потенциальных вариантов решения поставленной стратегической задачи является повышение надежности коммутационного оборудования, что в свою очередь может быть достигнуто путем применения цифровых контроллеров управляемой коммутации.

Традиционный (неуправляемый) процесс коммутации осуществляется включением-отключением выключателя оборудования, воздушных и кабельных линий в произвольный момент времени, что в ряде случаев сопровождается наличием бросков токов, большими перенапряжениями, переходными процессами, способными вызвать его постепенные или мгновенные повреждения. Наведенные переходные процессы могут также вызвать большое количество различных помех во вторичных цепях — устройствах релейной защиты и автоматики, противоаварийной автоматики, в системах связи и сигнализации. Амплитудные значения переходных процессов и потенциальный ущерб от них в существенной степени зависят от точки на кривых тока и напряжений, от состава оборудования в сетях, в которых происходит размыкание или замыкание контактов выключателей. В неуправляемой коммутации, размыкание или замыкание контактов силового выключателя может произойти в наихудшей для этого точке кривой.

В ходе традиционной коммутации наблюдаются описанные ранее процессы, которые оказывают непосредственное воздействие на уровень

надежности коммутационного оборудования. В связи с этим целесообразно изучить возможность применения альтернативного подхода — управляемой коммутации, осуществляемой с помощью цифрового управляемого коммутационного устройства (известного также как контроллер точечно-волнового типа). Данная технология позволяет реализовать контролируемое переключение (точечное или синхронное), суть которого состоит в обеспечении управляемого срабатывания выключателя. При этом замыкание и размыкание контактов происходит в строго заданный, наиболее благоприятный момент времени, синхронизированный с фазовым углом на каждой из фаз выключателя. [4]. Принцип работы выключателя в управляемом и неуправляемом режиме представлен на рисунке 9.

Рисунок 9 — Работа выключателя в управляемом и неуправляемом режиме

Цифровой контроллер осуществляет обработку входных сигналов, включая параметры напряжения и силы тока в первичной цепи. При поступлении управляющего сигнала на активацию или деактивацию контактной группы, устройство генерирует импульсы управления для каждого полюса коммутационного аппарата с программно заданной временной задержкой. Данная задержка рассчитывается индивидуально для каждой фазы с учетом оптимальных значений фазовых углов, обеспечивая тем самым минимизацию переходных процессов в электрической сети [5]. Применяемая методика

выполнения операций включения и отключения коммутационных аппаратов позволяет значительно снизить интенсивность переходных процессов, а также предотвратить возможные негативные последствия, обусловленные их возникновением. В результате достигается продление ресурса электрооборудования, рост его эксплуатационной надежности, повышение качества подаваемой электроэнергии и, как следствие, сокращение операционных расходов.

В дополнение к уже указанным достоинствам, переход от классических методов коммутации к управляемым решениям обладает рядом других значимых преимуществ. Ключевым аспектом является непрерывное развитие этих технологий, обеспечивающее их адаптацию к любым сетевым инфраструктурам и оборудованию.

Современные управляемые системы отличаются высокой гибкостью, отказоустойчивостью и интуитивностью в эксплуатации. При этом их внедрение требует относительно modestных финансовых затрат, а дальнейшее обслуживание становится все более экономически выгодным. Эти факторы не только подчеркивают актуальность перехода на управляемую коммутацию, но и делают ее массовое применение практически осуществимым в ближайшей перспективе.

2.3 Выволы

В ходе системного анализа инновационного оборудования и цифровых технологий был проработан и предложен ряд цифровых решений для ветряной электрической станции и распределительного устройства.

Использование инновационной технологии цифрового двойника при проектировании ветряной электростанции (ВЭС) представляет собой важный шаг на пути повышения эффективности, надежности и экологической безопасности ветровых проектов. Цифровизация РУ обеспечивает централизованное управление и мониторинг всех ключевых компонентов ВЭС, что значительно повышает оперативность реагирования на возможные неисправности и снижает время простоя оборудования. Внедрение современных систем

автоматизации и интеллектуальных алгоритмов позволяет оптимизировать работу станции в реальном времени, обеспечивая баланс между производственной мощностью и стабильностью электроснабжения.

Использование контроллеров управляемой коммутации способно существенно увеличить срок службы коммутационных аппаратов, а наряду с удаленным управлением из диспетчерских центров и организации плановых переключений с использованием автоматизированных программ позволит значительно уменьшить количество ошибочных действий оперативного персонала.

Интеграция этих инновационных технологий обеспечивает более высокую эффективность эксплуатации ВЭС, способствует снижению эксплуатационных издержек и повышает ее устойчивость к внешним возмущениям. Также использование цифровых решений способствует более точному прогнозированию производительности и оптимизации работы станции, что особенно важно при внедрении возобновляемых источников энергии в энергосистему. В целом, применение цифровых технологий в процессе проектирования и эксплуатации ВЭС открывает новые возможности для достижения высокой производительности, экологической безопасности и экономической эффективности ветровых проектов, что соответствует современным требованиям энергетического развития и устойчивого развития в целом.

3 ПРОЕКТИРОВАНИЕ РАЗВИТИЯ ЭЛЕКТРИЧЕСКОЙ СЕТИ 110-220 кВ АМУРСКОЙ ОБЛАСТИ В СВЯЗИ С ПОДКЛЮЧЕНИЕМ ИВАНОВ-СКОЙ ВЭС

В соответствии с принятым эквивалентом сети (рис. 1), а также структурным анализом электрической сети произведенном в пункте 1.4, в данном разделе разработаны варианты развития электрической сети Амурской области путём подключения Ивановской ВЭС в существующую сеть 110-220 кВ.

Для решения поставленной задачи следует проработать несколько альтернативных схем электрической сети, провести их всесторонний технический анализ и определить наиболее рациональный вариант. Данный этап предполагает разработку и анализ нескольких возможных решений по подключению Ивановской ВЭС к существующей системе. По итогам проведенного анализа будет выбран оптимальный вариант для дальнейшей проработки и реализации.

3.1 Разработка вариантов развития электрической сети Амурской области в районе подключения Ивановской ВЭС

Задачей данного пункта является разработка и описание нескольких вариантов развития электрической сети, и их обоснование.

Согласно «Схеме и программе развития электроэнергетики ЕЭС РФ на период до 2050 года» предполагается строительство Ивановской ВЭС, предполагаемая электрическая мощность станции составит 335 МВт [64].

Для разработки вариантов подключения также необходимо определить рациональное напряжение предполагаемого объекта для каждого из вариантов.

Вариант 1. Предусматривает подключение Ивановской ВЭС к сети 220 кВ между двумя узловыми подстанциями ПС 220 кВ Завитая, ПС 220 кВ Благовещенская. На рисунке 10 изображена структурная схема данного варианта

подключения, на рисунке 11 однолинейная схема. Данный вариант подключения подразумевает:

- строительство Ивановской ВЭС;
- строительство 2х заходов от ВЛ 220 кВ Благовещенская Варваровка длиной 20 км.;
- строительство ВЛ 220 кВ Ивановская ВЭС Благовещенская длиной 60 км.;
 - строительство ВЛ 220 кВ Ивановская ВЭС Завитая длиной 150 км.

Для последующего технико-экономического сравнения, данные варианта №1 занесены в таблицу 16.

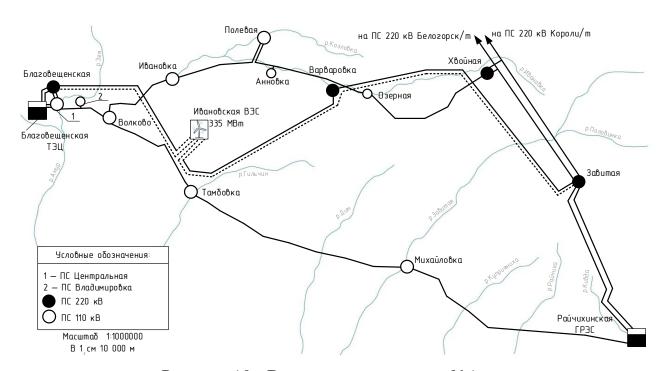


Рисунок 10 - Вариант подключения №1

Проверка номинального напряжения

При определении рационального напряжения выбранных схем воспользуемся формулой Илларионова.

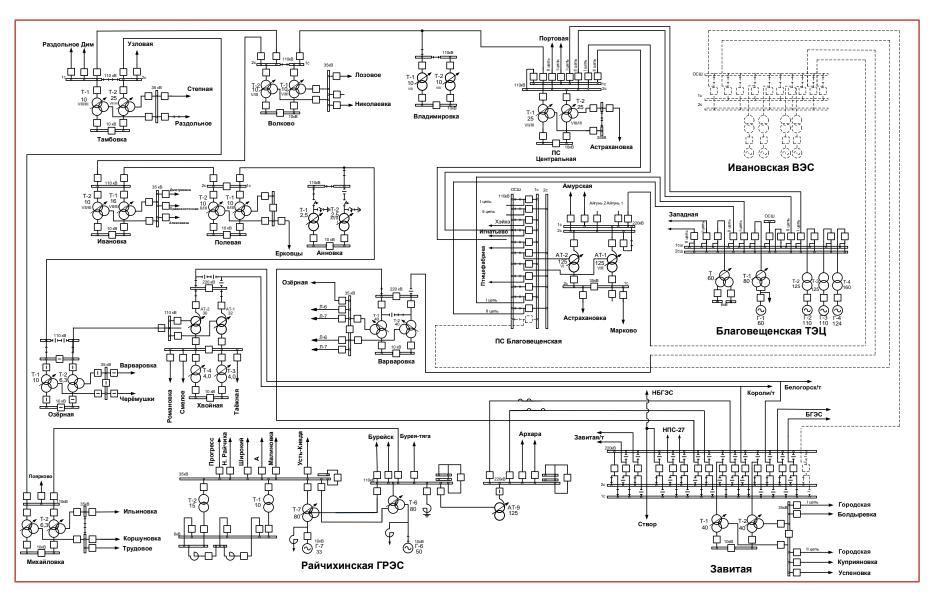


Рисунок 11 – Однолинейная схема подключения вариант №1

$$U_{paij} = \frac{1000}{\sqrt{\frac{500}{L_{ij}} + \frac{2500}{P_{ij}}}},$$
(8)

где L – длина линии электропередач, км;

Р – мощность, протекающая по линии, МВт.

Определим номинальное напряжение для первого варианта:

$$U_{pay(B \ni C - \mathit{Благовещенская})} = \frac{1000}{\sqrt{\frac{500}{60} + \frac{2500}{335}}} = 178 \,\mathrm{kB},$$

$$U_{pay(B \ni C - 3abuman)} = \frac{1000}{\sqrt{\frac{500}{150} + \frac{2500}{335}}} = 236 \text{ kB}.$$

Принимаем номинальное напряжение сети, к которой будем подключать новый объект 220 кВ.

Вариант 2. Предусматривает подключение Ивановской ВЭС к узловой ПС 220 кВ Благовещенская и к сети 220 кВ. На рисунке 12 изображена структурная схема данного варианта подключения, на рисунке 13 однолинейная схема. Данный вариант подразумевает:

- строительство Ивановской ВЭС;
- строительство 2х заходов от ВЛ 220 кВ Благовещенская Варваровка длиной 20 км.;
- строительство 2хВЛ 220 кВ Ивановская ВЭС Благовещенская длиной 60 км.

Для последующего технико-экономического сравнения, данные варианта №2 занесены в таблицу 16.

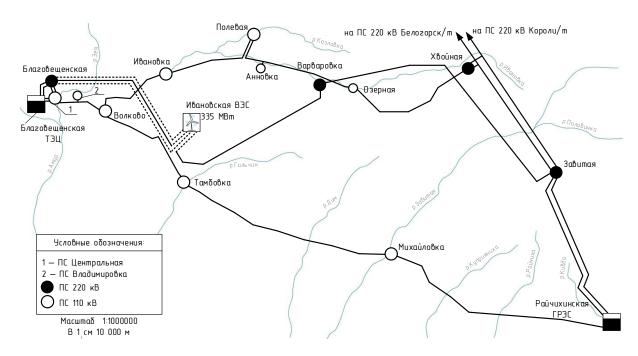


Рисунок 12 - Вариант подключения №2

Проверка номинального напряжения

Определим номинальное напряжение для второго варианта:

$$U_{pay(B \ni C - E \land a zobe u e h c \kappa a s)} = \frac{1000}{\sqrt{\frac{500}{120} + \frac{2500}{335}}} = 212 \text{ кB}$$

Принимаем номинальное напряжение сети, к которой будем подключать новый объект 220 кВ.

Вариант 3. Предусматривает подключение Ивановской ВЭС к узловой ПС 220 кВ Завитая и к сети 220 кВ. На рисунке 14 изображена структурная схема данного варианта подключения, на рисунке 15 однолинейная схема. Данный вариант подразумевает:

- строительство Ивановской ВЭС;
- строительство 2х заходов от ВЛ 220 кВ Благовещенская Варваровка длиной 20 км.;
 - строительство 2хВЛ 220 кВ Ивановская ВЭС Завитая длиной 150 км.

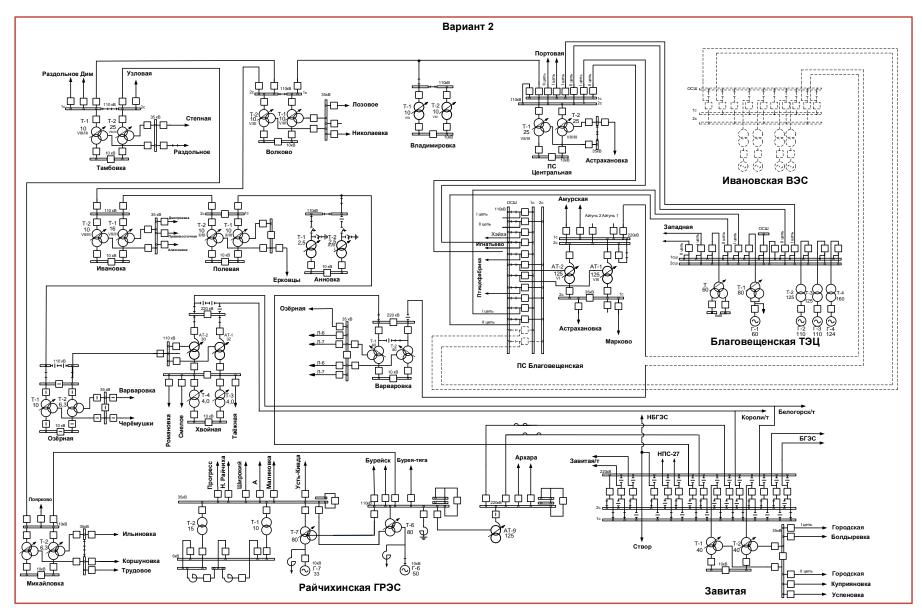


Рисунок 13 - Однолинейная схема подключения вариант №2

Для последующего технико-экономического сравнения, данные варианта №3 занесены в таблицу 16.

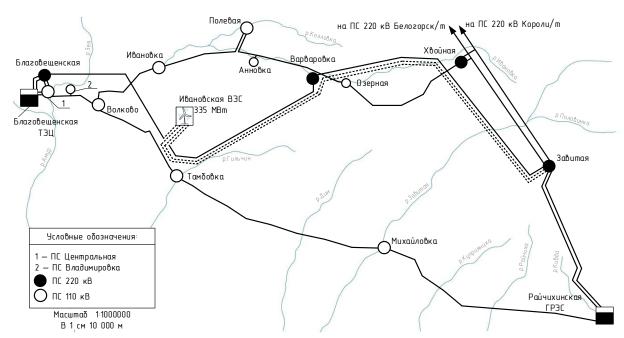


Рисунок 14 - Вариант подключения №3

Проверка номинального напряжения

Определим номинальное напряжение для третьего варианта:

$$U_{\textit{pay}(B \ni C - 3\textit{asumas})} = \frac{1000}{\sqrt{\frac{500}{150} + \frac{2500}{335}}} = 236 \text{ kB}.$$

Принимаем номинальное напряжение сети, к которой будем подключать новый объект 220 кВ.

Вариант 4. Предусматривает подключение Ивановской ВЭС между ПС 220 кВ Завитая и ПС 220 кВ Благовещенская. На рисунке 16 изображена структурная схема данного варианта подключения, на рисунке 17 однолинейная схема. Данный вариант подразумевает:

- строительство Ивановской ВЭС;

Вариант 3

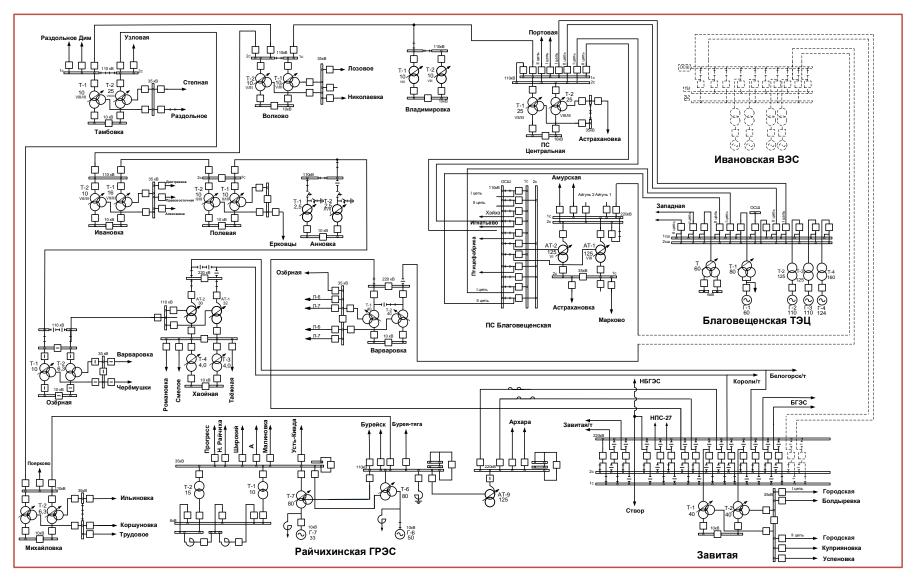


Рисунок 15 - Однолинейная схема подключения вариант №3

- строительство 2хВЛ 220 кВ Ивановская ВЭС Благовещенская длиной 60 км.;
 - строительство 2хВЛ 220 кВ Ивановская ВЭС Завитая длиной 150 км.

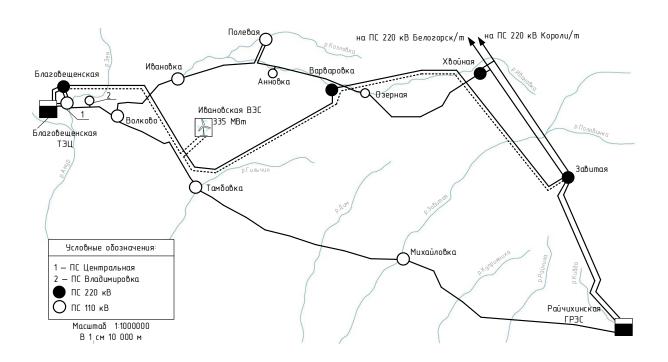


Рисунок 16 - Вариант подключения №4

Для последующего технико-экономического сравнения, данные варианта №4 занесены в таблицу 16.

Проверка номинального напряжения

Определим номинальное напряжение для четвертого варианта:

$$U_{pay(B \ni C - \mathit{Благовещенская})} = \frac{1000}{\sqrt{\frac{500}{60} + \frac{2500}{335}}} = 178 \, \mathrm{kB}.$$

Принимаем номинальное напряжение сети, к которой будем подключать новый объект 220 кВ.

Вариант 5. Предусматривает подключение Ивановской ВЭС между ПС 220 кВ Завитая и ПС 220 кВ Благовещенская, а также выдачу мощности в сеть

Вариант 4

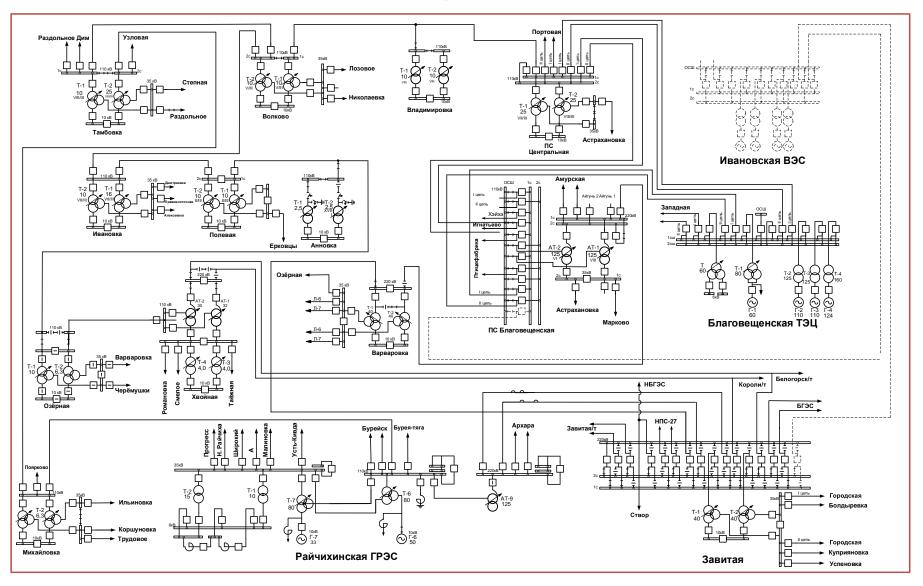


Рисунок 17 - Однолинейная схема подключения вариант №4

110 кВ между ПС 110 кВ Волково и ПС 110 кВ Тамбовка. На рисунке 18 изображена структурная схема данного варианта подключения, на рисунке 19 однолинейная схема. Данный вариант подразумевает:

- строительство Ивановской ВЭС;
- строительство 2хВЛ 220 кВ Ивановская ВЭС Благовещенская длиной $60~\mathrm{km.};$
 - строительство 2хВЛ 220 кВ Ивановская ВЭС Завитая длиной 150 км;
- строительство 2х заходов от ВЛ 110 кВ Волково Тамбовка длиной 20 км.;
- модернизация ЛЭП сети 110 кВ для увеличения пропускной способност

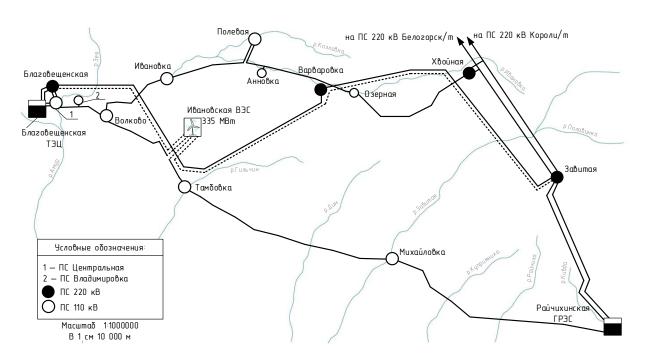


Рисунок 18 - Вариант подключения №5

Проверка номинального напряжения

Определим номинальное напряжение для пятого варианта:

$$U_{pau(B \ni C - 3asumas)} = \frac{1000}{\sqrt{\frac{500}{150} + \frac{2500}{335}}} = 236 \text{ kB}.$$

Вариант 5

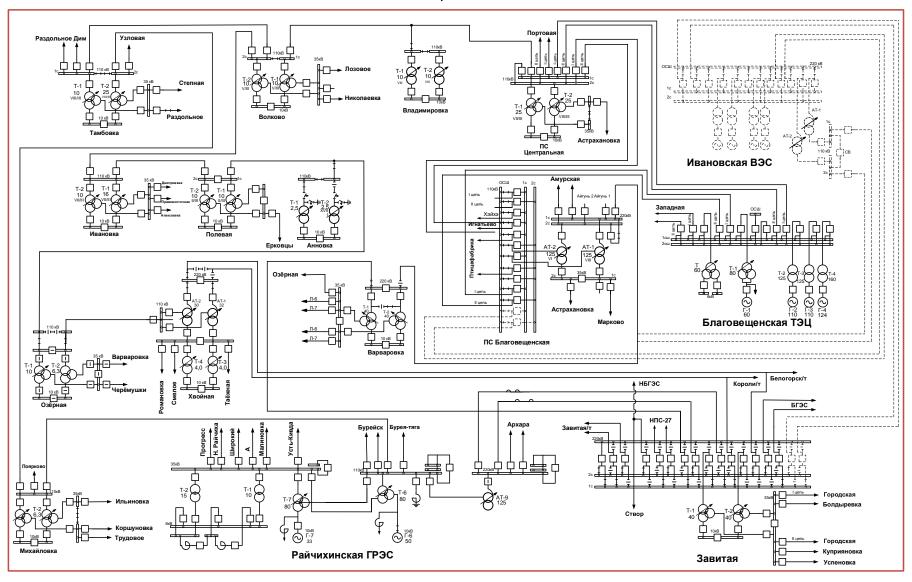


Рисунок 19 - Однолинейная схема подключения вариант №5

$$U_{pau(B \ni C - \mathit{Благовещенская})} = \frac{1000}{\sqrt{\frac{500}{120} + \frac{2500}{335}}} = 212 \, \mathrm{kB}.$$

Принимаем номинальное напряжение сети, к которой будем подключать новый объект 110 и 220 кВ.

3.2 Разработка однолинейной схемы распределительного устройства Ивановской ВЭС

Выбор схем РУ осуществляется исходя из количества присоединений, с учетом соблюдения надежного функционирования энергосистемы во всех режимах, в соответствии со стандартами организации ПАО «ФСК ЕЭС» [85].

В соответствии с СТО 56947007-29.240.30.010-2008 схема РУ должна отвечать следующим критериям:

- 1) обеспечивать требуемую надежность работы РУ исходя из условий электроснабжения потребителей в соответствии с категориями электроприемников и транзитных перетоков мощности по межсистемным и магистральным связям в нормальном режиме без ограничения мощности и в послеаварийном режиме при отключенных нескольких присоединениях с учетом допустимой нагрузки оставшегося в работе оборудования;
- 2) в послеаварийных режимах допускается снижение или даже перерыв транзитных перетоков мощности, а также ограничение электроснабжения потребителей при условии сохранения устойчивости в сечениях и обеспечения допустимых токовых нагрузок оборудования;
- 4) схемы должны быть максимально экономичными в эксплуатации, учитывая затраты на строительство, ремонт и обслуживание;

Варианты схем РУ 220 кВ для Ивановской ВЭС выбираются на основании указанных норм, с учетом количества присоединений согласно заданию на проектирования, а также с учетом дальнейшего перспективного расширения.

В соответствии с вышеуказанным, для разработанных вариантов подключения были приняты следующие РУ:

Вариант №1. Одна рабочая секционированная выключателем и обходная системы шин (12).

Вариант №2. Одна рабочая секционированная выключателем и обходная системы шин (12).

Вариант №3. Одна рабочая секционированная выключателем и обходная системы шин (12).

Вариант №4. Одна рабочая секционированная выключателем и обходная системы шин (12).

Варианта №5. Для класса напряжение 220 кВ - одна рабочая секционированная выключателем и обходная системы шин (12). Для класса напряжения 110 кВ – одна рабочая секционированная выключателем (9).

Схема РУ 220 кВ, РУ 110 кВ Ивановской ВЭС будут использованы для оценки технико-экономической целесообразности и выбора оптимальных вариантов для дальнейшей проработки.

3.3 Технический анализ и выбор конкурентно способных вариантов развития сети

В качестве исходных данных для анализа предложенных вариантов будут использованы данные из таблицы 16.

Таблица 16 - общие сведения о разрабатываемых вариантах

Длина	Дополнительная	Количество	вы-	Количество	вы-	Количество выклю-
линии,	реконструкция	ключателей	110	ключателей	220	чателей, приведен-
KM		кВ, шт		кВ, шт		ное к 220 кВ, шт
230	Добавление 2х	0		12		12
	линейных ячеек					
140	Добавление 2х	0		12		12
	линейных ячеек					
320	Добавление 2х	0		12		12
	линейных ячеек					
420	Добавление 4х	0		14		14
	линейных ячеек					
440	Добавление 4х	5		16		19
	линейных ячеек,					
	модернизация					
	ЛЭП 110 кВ, АТ					
	линии, км 230 140 320 420	линии, км 230 Добавление 2х линейных ячеек 140 Добавление 2х линейных ячеек 320 Добавление 2х линейных ячеек 320 Добавление 2х линейных ячеек 420 Добавление 4х линейных ячеек 440 Добавление 4х линейных ячеек 440 Добавление 4х линейных ячеек, модернизация	линии, км реконструкция ключателей кВ, шт 230 Добавление 2х линейных ячеек 0 140 Добавление 2х линейных ячеек 0 320 Добавление 2х линейных ячеек 0 420 Добавление 4х линейных ячеек 0 440 Добавление 4х линейных ячеек, модернизация 5	линии, км реконструкция ключателей кВ, шт 230 Добавление 2х линейных ячеек 0 140 Добавление 2х линейных ячеек 0 320 Добавление 2х линейных ячеек 0 420 Добавление 4х линейных ячеек 0 440 Добавление 4х линейных ячеек, модернизация 5	линии, км реконструкция ключателей кВ, шт кв, шт <td>линии, км реконструкция ключателей кВ, шт 110 кВ, шт 230 Добавление 2х линейных ячеек 0 12 140 Добавление 2х линейных ячеек 0 12 320 Добавление 2х линейных ячеек 0 12 420 Добавление 4х линейных ячеек 0 14 440 Добавление 4х линейных ячеек, модернизация 5 16</td>	линии, км реконструкция ключателей кВ, шт 110 кВ, шт 230 Добавление 2х линейных ячеек 0 12 140 Добавление 2х линейных ячеек 0 12 320 Добавление 2х линейных ячеек 0 12 420 Добавление 4х линейных ячеек 0 14 440 Добавление 4х линейных ячеек, модернизация 5 16

Проведем анализ представленных вариантов по технико-экономическим показателям [71].

Такими показателями являются:

- а) протяженность трасс линий;
- б) протяженность линий в одноцепном исчислении;
- в) суммарное количество ячеек выключателей 110(35) 220 кВ на подстанциях сети;
 - г) необходимая реконструкция существующих объектов.

По результатам технико-экономического анализа, были выбраны варианты 1 и 2. Рассмотрим их более подробно для дальнейшего анализа и выбора оптимального варианта развития сети.

3.4 Вариант развития электрической сети при подключение Ивановской ВЭС к ПС 220 кВ Завитая, ПС 220 кВ Благовещенская и к сети 220 кВ.

При подключении Ивановской ВЭС на напряжение 220 кВ необходимо строительство двух заходов от ВЛ 220 кВ Благовещенская — Варваровка длиной 20 км., строительство ВЛ 220 кВ Ивановская ВЭС — Благовещенская длиной 60 км., строительство ВЛ 220 кВ Ивановская ВЭС — Завитая длиной 150 км.

Проектируемые ЛЭП, обеспечивающие подключение Ивановской ВЭС, будут выполнены проводами марки АС-300/39, расчет приведен в приложении Б.

Также, для данного варианта подключения Ивановской ВЭС произведен расчёт нормального и послеаварийного режима. Для проверки возможности выдачи всей мощности электрической станцией не будем снижать существующие генерирующие мощности. Результаты расчета представим в таблице 17 токовую загрузку ЛЭП, а в таблице 18 отклонения напряжения. Схема потокораспределения представлена в Приложении Г.

По результатам расчета нормального режима мы не наблюдаем перегруженных ЛЭП, значения токов не превышают максимально допустимые значения и уровни напряжения находятся в допустимых пределах, станцией может быть выдана вся электрическая мощность.

Таблица 17 – Токовая загрузка ЛЭП в нормальном режиме

Название	I_{max} , A	$I_{\partial on}$, A	$I_{\mathrm{max}}/I_{\partial on}$,%
БТЭЦ-110 - Центральная-110	373,04	600	62,20
БТЭЦ-110 - Центральная-110	373,04	600	62,20
Центральная-110 - Отп. Владимировка	225,84	500	45,23
БТЭЦ-110 - Благовещенская-110	256,90	600	42,83
БТЭЦ-110 - Благовещенская-110	256,90	600	42,83
Отп. Владимировка - Волково-110	209,54	500	42,09
Ивановская ВЭС - Благовещенская-220	221,98	600	37,00
Благовещенская-220 - Ивановская ВЭС	233,82	690	35,51
Волково-110 - Тамбовка-110	130,02	500	26,35
Ивановка-110 - Волково-110	71,67	300	23,89
Хвойная-110 - Озерная-110	65,91	300	22,67
Завитая-220 - Варваровка-220	114,73	600	20,25
Михайловка-110 - РГРЭС-110	99,20	500	19,84
Ивановская ВЭС - Варваровка-220	134,45	690	19,49
Ивановская ВЭС - Завитая-220	133,49	690	19,35
Озерная-110 - Отп. Анновка	50,72	300	17,47
Полевая-110 - Ивановка-110	48,51	300	16,36

Таблица 18 – Отклонение напряжения в нормальном режиме

Название	$U_{{\scriptscriptstyle HOM}}$, кВ	U, кВ	Δ U, %	
Ивановская ВЭС	220	230,44	4,74	
ВЭС 1	10,5	10,50	0,00	

Продолжение таблицы 18

Название	$U_{_{\scriptscriptstyle HOM}}$, к $_{\scriptscriptstyle m B}$	U, ĸB	Δ U, %
ВЭС 2	10,5	10,50	0,00
ВЭС 3	10,5	10,50	0,00
B3C 4	10,5	10,50	0,00

Произведем расчет послеаварийного режима для оценки возможности выдачи всей мощности Ивановской ВЭС для этого отключим ВЛ 220 кВ Ивановская ВЭС — Благовещенская при ремонте второй цепи ВЛ 220 кВ Ивановская ВЭС — Благовещенская. Результаты расчета представим в таблице 19 токовую загрузку ЛЭП, а в таблице 20 отклонения напряжения. Схема потокораспределения представлена в Приложении Г.

По результатам расчета послеаварийного режима мы не наблюдаем перегруженных ЛЭП и уровни напряжения находятся в допустимых пределах, станцией может быть выдана вся электрическая мощность.

Таблица 19 — Токовая загрузка ЛЭП в послеаварийном режиме при отключении ВЛ 220 кВ Ивановская ВЭС — Благовещенская при ремонте ВЛ 220 кВ Ивановская ВЭС — Благовещенская

Название	I_{\max} , A	$I_{\partial on}$, A	$I_{\mathrm{max}}/I_{\partial on}$,%
БТЭЦ-110 - Центральная-110	373,04	600	62,20
БТЭЦ-110 - Центральная-110	373,04	600	62,20
Завитая-220 - Варваровка-220	328,20	600	55,75
Ивановская ВЭС - Варваровка-220	347,33	690	50,34
Ивановская ВЭС - Завитая-220	335,43	690	48,61
Центральная-110 - Отп. Владимировка	225,84	500	45,23
БТЭЦ-110 - Благовещенская-110	256,90	600	42,83
БТЭЦ-110 - Благовещенская-110	256,90	600	42,83
Отп. Владимировка - Волково-110	209,54	500	42,09

Продолжение таблицы 19

		родолжен	ис таблицы ту
Название	I_{\max} , A	$I_{\partial on}$, A	$I_{\mathrm{max}}/I_{\partial on}$,%
Волково-110 - Тамбовка-110	130,02	500	26,35
Ивановка-110 - Волково-110	71,67	300	23,89
Хвойная-110 - Озерная-110	65,91	300	22,67
Михайловка-110 - РГРЭС-110	99,20	500	19,84
Озерная-110 - Отп. Анновка	50,72	300	17,47
Полевая-110 - Ивановка-110	48,51	300	16,36
Отп. Анновка - Полевая-110	47,70	300	16,34
Завитая-220 - Короли/т-Хвойная	92,43	600	15,88

Таблица 20 — Отклонение напряжения в послеаварийном режиме при отключении ВЛ 220 кВ Ивановская ВЭС — Благовещенская при ремонте ВЛ 220 кВ Ивановская ВЭС — Благовещенская

Название	$U_{{\scriptscriptstyle HOM}}$, к ${ m B}$	U, кВ	Δ U, %
Ивановская ВЭС	220	226,45	2,93
ВЭС 1	10,5	10,50	0,00
ВЭС 2	10,5	10,50	0,00
ВЭС 3	10,5	10,50	0,00
ВЭС 4	10,5	10,5	0,00

В таблицах представлены узлы, отклонение напряжения в которых максимальное от номинального значения. Также в таблицах представлены максимально загруженные ЛЭП. В послеаварийном режиме ток не превышает длительно допустимый, а напряжения в узлах остается в допустимых пределах.

3.5 Вариант развития электрической сети при подключение Ивановской ВЭС к ПС 220 кВ Благовещенская и к сети 220 кВ.

При подключении Ивановской ВЭС на напряжение 220 кВ необходимо строительство двух заходов от ВЛ 220 кВ Благовещенская — Варваровка

длиной 20 км., строительство 2хВЛ 220 кВ Ивановская ВЭС – Благовещенская длиной 60 км.

Проектируемые ЛЭП, обеспечивающие подключение Ивановской ВЭС, будут выполнены проводами марки АС-300/39, расчет приведен в приложении Б.

Трансформаторы выбираем такой же мощности, как и для первого варианте.

Для данного варианта развития произведен расчёт нормального и послеаварийного режима. Результаты расчета представим в таблице 21 токовую загрузку ЛЭП, а в таблице 22 отклонения напряжения. Схема потоко-распределения представлена в Приложении Д.

Как можно видеть из результатов расчета режимов, уровни напряжения и токовая нагрузка по оборудованию в сети находятся в допустимых пределах. В таблицах представлены узлы, отклонение напряжения в которых максимальное от номинального значения. Также в таблицах представлены максимально загруженные ЛЭП. В послеаварийном режиме ток по оборудованию не превышает длительно допустимый, а напряжения в узлах сети остаются в допустимых пределах.

Таблица 21 – Токовая загрузка ЛЭП в нормальном режиме

Название	I_{\max} , A	$I_{\partial on}$, A	$I_{ m max}/I_{\partial on}$,%
1	2	3	4
БТЭЦ-110 - Центральная-110	373,04	600	62,20
БТЭЦ-110 - Центральная-110	373,04	600	62,20
Центральная-110 - Отп. Владимировка	225,84	500	45,23
БТЭЦ-110 - Благовещенская-110	256,90	600	42,83
БТЭЦ-110 - Благовещенская-110	256,90	600	42,83
Отп. Владимировка - Волково-110	209,54	500	42,09
Ивановская ВЭС - Благовещенская-220	192,61	600	32,10

Продолжение таблицы 21

	родолжен	ис таблицы 21
2	3	4
201,52	690	30,88
201,52	690	30,88
130,02	500	26,35
71,67	300	23,89
65,91	300	22,67
99,20	500	19,84
101,32	600	18,02
121,09	690	17,55
50,72	300	17,47
48,51	300	16,36
47,70	300	16,34
92,43	600	15,88
91,91	600	15,80
60,24	500	12,17
60,24	500	12,17
	2 201,52 201,52 130,02 71,67 65,91 99,20 101,32 121,09 50,72 48,51 47,70 92,43 91,91 60,24	2 3 201,52 690 201,52 690 130,02 500 71,67 300 65,91 300 99,20 500 101,32 600 121,09 690 50,72 300 48,51 300 47,70 300 92,43 600 91,91 600 60,24 500

Таблица 22 – Отклонение напряжения в нормальном режиме

Название	$U_{{\scriptscriptstyle HOM}}$, кВ	U, кB	Δ U, %
Ивановская ВЭС	220	230,76	4,89
B9C 1	10,5	10,50	0,00
ВЭС 2	10,5	10,50	0,00
ВЭС 3	10,5	10,50	0,00
ВЭС 4	10,5	10,50	0,00

Произведем расчет послеаварийного режима для оценки возможности выдачи всей мощности Ивановской ВЭС для этого отключим ВЛ 220 кВ Ивановская ВЭС — Благовещенская при ремонте ВЛ 220 кВ Благовещенская —

Варваровка. Результаты расчета представим в таблице 23 токовую загрузку ЛЭП, а в таблице 24 отклонения напряжения. Схема потоко-распределения представлена в Приложении Д.

По результатам расчета послеаварийного режима мы не наблюдаем перегруженных ЛЭП и уровни напряжения находятся в допустимых пределах, станцией может быть выдана вся электрическая мощность.

Таблица 23 – Токовая загрузка ЛЭП в послеаварийном режиме при отключении одной из питающих ВЛ

$I_{\partial on}$, A	$I_{\text{max}}/I_{\partial on}$,%
3	4
600	76,26
600	62,20
600	62,20
500	45,23
600	42,83
600	42,83
500	42,09
600	38,05
690	34,96
500	26,35
300	23,89
300	22,67
500	19,84
300	17,47
300	16,36
300	16,34
600	15,88
600	15,80
500	12,17
	500

Продолжение таблицы 23

		7 1	1
1	2	3	4
Благовещенская-110 - Центральная-110	60,24	500	12,17

Таблица 24 — Отклонение напряжения в послеаварийном режиме при отключении одной из питающих ВЛ

Название	$U_{{\scriptscriptstyle HOM}}$, кВ	U, кB	Δ U, %
Ивановская ВЭС	220	227,89	3,59
B3C 1	10,5	10,50	0,00
ВЭС 2	10,5	10,50	0,00
ВЭС 3	10,5	10,50	0,00
BЭC 4	10,5	10,50	0,00

В таблицах представлены узлы, отклонение напряжения в которых максимальное от номинального значения. Также в таблицах представлены максимально загруженные ЛЭП. В послеаварийном режиме ток не превышает длительно допустимый, а напряжения в узлах остается в допустимых пределах.

3.6 Расчет капитальных вложений

В задачи данного раздела входит определение капитальных вложений на сооружение ЛЭП и распределительного устройства, а также станционной части Ивановской ВЭС. Для создания новых, расширения действующих, а также реконструкции и технического перевооружения предприятий необходимы материальные, трудовые и денежные ресурсы. Совокупные затраты этих ресурсов называются капитальными вложениями.

Капитальные вложения в сооружение электрической сети состоят из двух слагаемых [72]:

- капитальные вложения на сооружение РУ;
- капитальные вложения на вооружение ЛЭП.

$$K = K_{IIC} + K_{BJI}. (9)$$

Учитывая многообразие компоновок, используемых материалов и состава основного оборудования ПС, а также весьма значительный и различный по составу объем работ при расширении и реконструкции ПС, их стоимость может быть определена набором отдельных основных элементов, к которым относятся:

- 1. стоимость распределительных устройств;
- 2. трансформаторы (АТ);
- 3. компенсирующие и регулирующие устройства;
- 4. постоянная часть затрат;
- 6. затраты на временные здания и сооружения, проектно-изыскательские работы, авторский надзор и прочие работы.

Затраты по п. 6 составляют значения, равные (в процентах от суммы затрат по п. 1-5) [72]:

1,5-2,0 % – временные здания и сооружения;

8,5-9,0 % – прочие работы и затраты;

1,0—1,2 % — содержание службы заказчика-застройщика, строительный контроль;

10,0-11,0 % - проектно-изыскательские работы и авторский надзор.

$$K_{\Pi C} = (K_{TP} + K_{BbIK\Pi} + K_{KV} + K_{\Pi OCT} + K_{\Pi A}) \cdot (1 + 0, 23) \cdot K_{\Pi C^*} \cdot K_{un\phi}, \quad (10)$$

где K_{TP} — стоимость трансформаторов, зависящая от мощности и класса номинального напряжения;

 $K_{uh\phi}$ – коэффициент инфляции;

 $K_{\Pi C^*}$ – зональный повышающий коэффициент на базовую стоимость ΠC ;

 K_{KY} – стоимость компенсирующих устройств;

 $K_{BЫКЛ}$ — стоимость ячеек выключателей, зависящая от исполнения и от класса номинального напряжения;

 $K_{\Pi OCT}$ – постоянная часть затрат.

Капиталовложения на сооружение воздушных линий определяются по формуле:

$$K_{BJI} = K_0 \cdot l \cdot K_{BJI^*} \cdot K_{uh\phi} \tag{11}$$

где K_0 – удельная стоимость километра линии [1];

l — длина трассы;

 K_{BJI^*} – зональный повышающий коэффициент на базовую стоимость ВЛ;

Стоимость электрооборудования приводится к текущему году с помощью коэффициента инфляции $K_{uu\phi}$ = 6,58, при условии, что цены взяты за 2000 год [69].

Расчёт капитальных вложений для варианта подключения объектов на напряжение 220 кВ приведён в приложении Б. Результаты расчета капитальных вложений для варианта №1 представлены в таблице 25, для варианта №2 в таблице 26.

Таблица 25 – Капитальные вложения для варианта №1

Элементы сети	К, тыс.руб	Оборудование
Проводники	552938.4	230 км АС-300/39
Трансформаторы	93600	4х ТДЦ -125000
Постоянная часть затрат	47500	-
Стоимость распределитель- ных устройств	295000	12 (220) 12 х выключатель 220 кВ
Стоимость станционной ча- сти ВЭС	35000000	ВЭС

Таблица 26 – Капитальные вложения для варианта №2

Элементы сети	К, тыс.руб	Оборудование
Проводники	336600	140 км АС-300/39
Трансформаторы	93600	4х ТДЦ -125000

Продолжение таблицы 26

Элементы сети	К, тыс.руб	Оборудование
Постоянная часть затрат	47500	-
Стоимость распределитель- ных устройств	295000	12 (220) 12 х выключатель 220 кВ
Стоимость станционной части ВЭС	35000000	ВЭС

Суммарные капитальные вложения для вариантов развития сети:

- вариант №1: Кобщ = 35989038,4 тыс.руб;
- вариант №2: Кобщ = 35772700,0 тыс.руб.

По результатам расчета капитальных вложений, наиболее выгодным является вариант №2.

3.7 Расчет ежегодных эксплуатационных издержек

Задачей данного пункта является определение ежегодных эксплуатационных издержек. Издержки рассчитываются по следующей формуле:

$$U = U_{AM} + U_{3,P} + U_{\Delta W}, (12)$$

где U_{AM} – амортизационные отчисления на реновацию;

 $M_{3.P}$ – издержки на ремонт и эксплуатационное обслуживание;

 $M_{\Delta W}$ – затраты на потери электроэнергии.

Издержки на амортизационные отчисления считаются по формуле:

$$M_{AM} = \frac{K_{\Sigma}}{T_{CA}},\tag{13}$$

где K_{Σ} - суммарные капитальные вложения в проект;

 $T_{\rm CЛ}$ - срок службы соответствующего оборудования (принимается 20 лет).

Издержки на эксплуатацию и ремонт определяются по формуле:

$$U_{\mathcal{I},P} = \alpha_{modRI} \cdot K_{RII} + \alpha_{modIC} \cdot K_{IIC}, \tag{14}$$

где $\alpha_{m ext{\tiny 20BЛ}}$, $\alpha_{m ext{\tiny 20BЛ}}$ — нормы ежегодных отчислений на ремонт и эксплуатацию ВЛ и ПС ($\alpha_{\text{\tiny 120BЛ}} = 0.007\%$; $\alpha_{\text{\tiny 120ПС}} = 0.05\%$).

Издержки на потери электроэнергии в сети:

$$U_{\Lambda W} = \Delta W \cdot C_{\Lambda W}, \tag{15}$$

где ΔW - потери электроэнергии, КВт-ч

 $C_{\Delta W}$ — стоимость потерь 1 КВт-ч электроэнергии, принята 5.3 руб/ КВт-ч [69].

Потери электроэнергии определяются по эффективным мощностям и включают в себя потери в ВЛЭП, трансформаторах и компенсирующих устройствах.

Расчёт ежегодных эксплуатационных издержек вариантов приведен в приложении Б. Результаты расчета представлены в таблице 27.

Таблица 27 – Издержки

Вариант	И _{АМ} , тыс.руб	И _{.Э.Р} , тыс.руб	И _{∆W} тыс.руб	И, тыс.руб
№ 1	1799451,92	18620,56	72.688	1818145,168
№ 2	1788635	17106,2	72.248	1805813,448

По результатам расчета эксплуатационных издержек наиболее выгодным является вариант №2.

3.8 Определение статических приведенных затрат и выбор оптимального варианта сети

Оптимальным считаем вариант, у которого среднегодовые эксплуатационные затраты меньше. Если среднегодовые эксплуатационные затраты отличаются не более чем на 5 %, то принимается в качестве оптимального тот вариант, у которого меньше стоимость потерь электроэнергии. Выбор оптимального варианта осуществляется по минимуму среднегодовых или приведенных затрат. При экономическом анализе воспользуемся методом расчета

приведенных затрат, а не чистого дисконтированного дохода по причине того, что скорость вложений одна и ликвидной стоимости нет так как станция и РУ являются вновь подключаемыми.

Затраты определяются по формуле [6]:

$$3 = E \cdot K + M \tag{16}$$

где E — норматив дисконтирования. Данная величина зависит от ставки, рефинансирования установленной Центробанком Российской Федерации. (E = 0,1);

K — капиталовложения, необходимые для сооружения электрической сети;

И – издержки.

Произведя расчет по вышеуказанным формулам с найденными капитальными вложениями и ежегодными эксплуатационными издержками, получим значения приведённых затрат, значения которых сведены в таблице 28.

Таблица 28 – Сравнение вариантов

Ромионт	Капитальные вложения	Издержки	Затраты
Вариант	тыс. руб	тыс. руб	тыс. руб
1	35989038,4	1818145,168	5417049,0
2	35772700	1805813,448	5383083,5

Из двух предложенных вариантов наиболее выгодным является вариант №2, так как капиталовложения, издержки и, соответственно, приведённые затраты на сооружение сети меньше.

3.9 Определение величины ущерба от перерывов электроснабжения и показателей надежности

Для определения показателей надежности ПС аналитическим методом для варианта 1 и варианта 2 составляются расчетные схемы. Расчетная схема

включает в себя только те элементы схемы, которые нормально включены в рассматриваемом режиме [16]. Расчетная схема для вариантов представлена на рисунке 20.

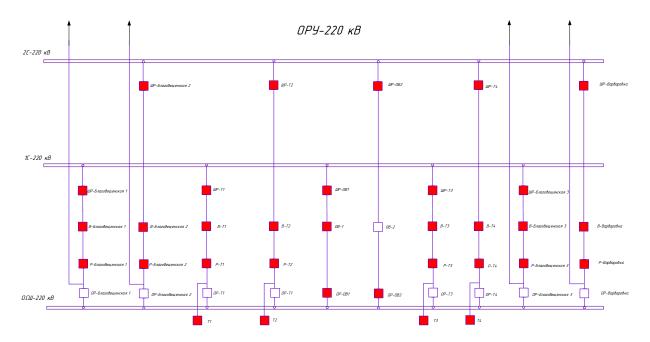


Рисунок 20 — Расчетная схема для определения показателей надежности

Для каждого элемента расчетной схемы по справочным или эксплуатационным данным определяются следующие показатели надежности:

- интенсивность отказа или параметр потока отказов;
- среднее время восстановления;
- частота плановых или преднамеренных отключений;
- время плановых или преднамеренных отключений.

По расчетной схеме составляется схема замещения. При этом каждый элемент, который может отказать, замещается прямоугольником. Прямоугольники соединяются последовательно или параллельно в смысле надежности. Последовательное соединение используется для не резервируемых частей схем; параллельное - для частей схем с резервированием замещением [16].

Последовательно соединенные элементы в схеме замещения заменяются одним эквивалентным, для которого рассчитываются следующие показатели надежности:

- параметр потока отказа ω, 1/год;
- время безотказной работы $t_{\textit{без}}$, лет;
- время восстановления t_{R} , час.

Расчет показателей надежности представлен в приложении Б.

Ущерб от отказа или нарушения электроснабжения – это комплексный показатель надежности электроснабжения потребителей, т.е. экономическая категория.

Он характеризует свойство потребительской стоимости электроэнергии, поставляемой с определенной надежностью. Его применяют при подсчете штрафов, пени и неустоек, связанных с нарушением договорных обязательств, вызванных перерывами электроснабжения потребителей.

При выборе стратегий оперативного и технического обслуживания учет фактора надежности осуществляется на основе количественной оценки ущерба [16].

Основной ущерб — ущерб, обусловленный перерывом в электроснабжении, при условии сохранения технологического процесса, оборудования, отсутствия брака, т.е. ущерб Y_0 из-за невыполнения плана по производству продукции.

Ущерб внезапности — составляющая ущерба, связанная с появлением фактора внезапности, в результате которого могут произойти нарушения технологического процесса, брак, поломка оборудования и т.д. Этот ущерб зависит от типа потребителя, величины недоданной энергии, глубины ограничения и наличия у потребителя резервов разного рода.

Величина основного ущерба [17]:

$$Y_{och} = y_{01} \cdot T_{\Gamma} \cdot P_{cn} \cdot q_{cx}, \tag{17}$$

где P_{cp} — средняя мощность потребителя МВт;

 y_{och} — удельный ущерб руб/кВт;

 q_{cx} – вероятность отказа.

Величина ущерба внезапности:

$$Y_{\rm gH} = y_{02} \cdot q_{\rm cx} \cdot P_{\rm max},\tag{18}$$

Величина полного ущерба при отключении электроснабжения за год [17]:

$$Y = Y_{OCH} + Y_{gy} \tag{19}$$

Подробный расчёт величины ущерба для варианта №1 и №2 приведён в приложении Б. Результаты расчета величины ущерба для ПС представлены в таблице 29.

Таблица 29 – Расчет величины ущерба для Ивановской ВЭС

Объект	Вариант	Увн, тыс.руб	Уосн, тыс.руб	T_{cp} , ч	У, тыс.руб
Ивановская	1	9449	22350	6.152	31800
ВЭС	2	9383	22190	6.152	31580

По результатам расчета ущерба можно сделать окончательный вывод, что наиболее экономически привлекательный по всем рассчитанным показателям является вариант №2.

3.10 Выводы

Были разработаны и проанализированы пять технически осуществимых вариантов развития электрической сети, включая описание необходимых мероприятий для их осуществления.

В результате технико-экономического анализа, для продолжения детального технического исследования были выбраны первый и второй варианты схем. Вариант №1 — подключение Ивановской ВЭС между двумя узловыми подстанциями ПС 220 кВ Благовещенская и ПС 220 кВ Завитая. Вариант №2 — подключение Ивановской ВЭС к узловой подстанции ПС 220 кВ Благовещенская.

Для двух предложенных вариантов были рассчитаны нормальный и послеаварийный режимы, в результате которого оба варианта оказались в пределах допустимых значений по токовой нагрузке линий, а также по напряжению.

Для выбора оптимального варианта из двух предложенных, был произведен расчет экономических показателей: капитальных вложений, ежегодных эксплуатационных издержек, статистических приведенных затрат, была определена величина ущерба от перерывов электроснабжения и показателей надежности. В ходе сравнения двух вариантов, лучшим оказался вариант №2, его принимаем окончательным. Дальнейшая техническая проработка, а также реализация цифровых технологий описанных в главе 2 будет реализована для варианта №2.

4 ТЕХНИЧЕСКАЯ ПРОРАБОТКА ВЫБРАННОГО ВАРИАНТА РАЗ-ВИТИЯ ЭЛЕКТРИЧЕСКОЙ СЕТИ.

В задачи данного раздела входит техническая проработка выбранного варианта развития сети, выбор и проверка основного оборудования распределительного устройства Ивановской ВЭС.

4.1 Выбор генераторов и трансформаторов для подключаемой электростанции

Количество, тип и мощность генераторов принимается по установленной мощности электростанции 335 МВт. Принимаем к установке 4 группы ветрогенераторов по 83,75 МВт каждая.

Для выдачи мощности в сеть высокого напряжения на электростанции устанавливаются блочные повышающие трансформаторы. Для электростанций повышающие трансформаторы выбираются без устройств РПН.

Мощность трансформаторных блоков согласовывается с мощностью генераторов. Она должна обеспечивать выдачу всей энергии, вырабатываемой генераторами, за вычетом энергии, потребляемой на собственные нужды.

Мощность двухобмоточных трансформаторов и трансформаторов с расщеплённой обмоткой низшего напряжения определяется по формуле:

$$S_{T.HOM} \ge \left| S_{T.HOM} - S_{CH} \right|,\tag{20}$$

где $S_{\Gamma.HOM}$ – номинальная полная мощность генератора, MBA;

 S_{CH} - мощность собственных нужд, MBA.

 S_{CH} определяется по выражению:

$$S_{CH.MAX} = \frac{P_{CH}}{\cos \omega},\tag{21}$$

где P_{ch} - мощность собственных нужд ветрогенераторов, выбирается исходя из типа электростанции, в данном случае это ВИЭ станция с мощностью с.н. 1% от P_{ycm} ;

 $P_{CH} = 83,75 \cdot 0,01 = 0,84 MBA$. для группы ветрогенераторов мощностью 83,75 MBT;

Полная мощность, потребляемая собственными нуждами генератора, выбирается из условия что $\cos \phi_{ch} = 0.8$:

$$S_{CH.MAX} = \frac{P_{CH}}{\cos \varphi} = \frac{0.84}{0.8} = 1.05~MBA$$
 для группы ветрогенераторов мощностью 83,75 MBт;

Произведем выбор трансформаторов для группы генераторов 83,75 MBт:

$$S_{T.HOM\,500} \ge |83,75-1,05| = 82,7MBA.$$

Принимаем к установке четыре трансформатора ТДЦ - 125000/220 на РУ 220 кВ.

4.2 Расчет токов короткого замыкания

В данном разделе будет произведен расчет токов КЗ на шинах ВН Ивановской ВЭС для выбора и проверки оборудования на термическую и динамическую стойкость [25]. Расчет токов КЗ будем проводить в ПВК RastrWin3. Сначала рассчитаем параметры схемы замещения с помощью макроса «МаkeNonSymm». Данный макрос рассчитывает не только токи КЗ, но и

постоянную времени затухания апериодической составляющей и коэффициент ударного тока.

Ударный ток рассчитывается по формуле [26]:

$$i_{y\partial} = \sqrt{2} \cdot K_{y\partial} \cdot I_{\Pi O}^{(3)}. \tag{22}$$

где $I_{IIO}^{(3)}$ — начальное действующее значение периодической составляющей тока К3;

 $K_{v\partial}$ – ударный коэффициент.

Для рассматриваемой части системы, с которой РУ связана ВЛ напряжением 220 кВ ударный коэффициент равен 1,75 [25] значение постоянной времени T_a = 0,35 [25].

Апериодическая составляющая тока КЗ, рассчитывается следующим образом:

$$i_a = \sqrt{2} \cdot I_{DO} \,. \tag{23}$$

Рассчитываем апериодическую составляющую трехфазного тока K3, прямой последовательности:

$$i_a = \sqrt{2} \cdot 9,45 = 12,926 \text{ KA}.$$

Рассчитываем ударный трехфазный ток КЗ, прямой последовательности:

$$I_{1.y\partial} = 1,75 \cdot \sqrt{2} \cdot 9,45 = 23,38$$
 KA.

Расчет токов короткого замыкания приведен в приложении Г, результаты расчета сведены в таблицу 30.

Таблица 30 - Токи КЗ.

Тип КЗ	Точка КЗ	I _{кз} кА	і _{уд} кА	$i_{ m ar}$
Трехфазный	K1	9,45	23.388	12.92
Двухфазный	K1	4,72	11.68	6.45
Однофазный	K1	6,58	16.28	9
Однофазный		3,41	8.43	4.66
на землю	K1			
Трехфазный	К2	70,86	185.391	98.55
Двухфазный	К2	35,43	92.69	49.27
Однофазный	К2	70,86	185.391	98.55
Однофазный		35,43	92.69	49.27
на землю	К2			

Также для выбора электрического оборудования РУ необходимо рассчитать максимальные рабочие токи. Оборудование должно выдерживать полную мощность транзита, на случай аварии или ремонта на одной из линий.

Максимальные рабочие токи:

$$I_{\text{p.max}} = \frac{(S)}{\sqrt{3} \cdot U_{\text{HOM}}},\tag{24}$$

$$I_{\text{p.max (BH)}} = \frac{335000}{2\sqrt{3}\cdot220} = 440 \text{ A},$$

$$I_{\text{p.max}} = \frac{S_{\square}}{\sqrt{3} \cdot U_{\text{HOM}} \cdot U_{\text{HH}}},\tag{25}$$

$$I_{\text{p.max (HH)}} = \frac{335000}{4\sqrt{3} \cdot 10} = 4605 \text{ A}.$$

Таблица 31 - Максимальные рабочие токи

Расположение	Максимальный рабочий ток, А.
ВН	440
НН	4605

4.3 Разработка варианта конструктивного исполнения распределительного устройства, выбор и проверка основного оборудования

Далее осуществим выбор и проверку основного оборудования. Учитывая климатические характеристики, указанные в разделе 1, а также эксплуатационные условия выбираем климатическое исполнение УХЛ1. Выбор и проверку будем осуществлять в соответствии с методикой, изложенной [25].

Применение цифровых технологий:

Для выбранного варианта развития электрической сети также следует принять к реализации цифровые технологии, описанные в разделе 2. Применение цифрового двойника на ветроэлектростанции (ВЭС) позволяет в режиме реального времени моделировать, анализировать и прогнозировать поведение оборудования и всей энергетической установки, что значительно повышает эффективность эксплуатации, упрощает техническое обслуживание и снижает риск аварийных ситуаций. Цифровой двойник обеспечивает непрерывный мониторинг ключевых параметров работы турбин, систем выдачи мощности и электрических соединений, позволяя оперативно выявлять отклонения и оптимизировать режимы работы. В сочетании с контроллерами управляемой коммутации на выключателях распределительного устройства ВЭС достигается более высокая надёжность коммутационных операций: включение и отключение осуществляется в оптимальные моменты электрического сигнала, что минимизирует перенапряжения, снижает износ оборудования и продлевает срок его службы. Совместное использование этих технологий способствует повышению общей надёжности, безопасности и энергоэффективности ВЭС, а также улучшает её интеграцию в цифровую энергосистему.

4.3.1 Выбор и проверка выключателей

Проверим выключатель по основным параметрам.

1) Выключатель проверяется по напряжению:

$$U_{\text{HOM}} \ge U_{\text{yct}}$$
, (26)

 $220\kappa B \ge 220\kappa B$.

2) Выключатель проверяется по длительно допустимому току самый большой ток будет на отходящих присоединениях 440 A, на трансформаторных выключателях от новой электростанции:

$$I_{\text{HoM}} \ge I_{\text{p.max}}$$
, (27)

 $4000A \ge 440A.$

3) Выключатель проверяется по отключающей способности:

$$I_{\text{откл.ном}} \ge I_{\Pi O},$$
 (28)

 $63\kappa A \ge 9,45A$,

$$i_{\text{\tiny BKT.HOM}} \ge 1,75 \cdot \sqrt{2} \cdot I_{\Pi O}, \tag{29}$$

$$i_{\text{\tiny BKT.HOM}} \ge 1,75 \cdot \sqrt{2} \cdot 9,45,$$

 $63 \text{KA} \ge 23,38 \text{A}$.

4) Выключатель проверяется на термическую стойкость по тепловому импульсу тока K3:

$$I_{mep}^2 \cdot t_{mep} \ge B_{\kappa},\tag{30}$$

где $t_{\text{тер}}-$ длительность протекания термического тока по каталогу.

$$63^2 \text{ KA} \cdot 3 \ge 81 \text{ KA}^2 \text{ c}$$

 $11907\kappa A^2 \cdot c \ge 81\kappa A^2 \cdot c.$

Результаты выбора сведем в таблицу 32.

Таблица 32 - Выключатель ВЭБ - УЭТМ - 220 - 40/2000УХЛ1

Паспортные данные	Расчётные данные	Проверка
$U_{\text{ном}} = 220 \text{ кB}$	$U_{ m yct} = 220~{ m \kappa B}$	$U_{ m yct} = U_{ m hom}$
I _{ном} 2000 А	$I_{max1} = 440 \text{ A}$	$I_{max} \leq I_{\text{HOM}}$
$I_{\text{отклном}} = 40 \text{ кA}$	$I_{\rm \pi 0} = 9,45 {\rm kA}$	$I_{\pi 0} < I_{\text{отклном}}$
$i_{{\scriptscriptstyle \mathrm{BKJL}}}=~40~\mathrm{\kappa A}$	$i_{\rm y} = 23,38~{\rm кA}$	$i_{ m y}{<}i_{ m _{BKЛ.}}$
$I_{\text{дин}} = 130$ кА	$I_{\rm \Pi \ 0} = 9,45 {\rm KA}$	$I_{\Pi 0} < I_{ДИН}$
$i_{\text{дин}} = 130 \text{ кA}$	$i_{ m y} = 23,38~{ m \kappa A}$	$i_{ m y} \leq i_{ m дин}$
$i_{ m .ahom}=~40~к A$	$i_{\rm a}=12,92~{ m \kappa A}$	$i_a < i_{a + om.}$
$B_{\text{KHOM}} = 11907 \text{ KA}^2 \text{c}$	$B_{\kappa} = 81 \text{ KA}^2 \text{c}$	$B_{\kappa} < B_{Khom}$

Выключатель ВЭБ — УЭТМ — 220 - 40/2000УХЛ1 проходит проверку и принимается к установке

4.3.2 Выбор и проверка разъединителей

Разъединитель представляет собой коммутационный аппарат для напряжения свыше 1кВ.

Основное назначение — создавать видимый разрыв и изолировать части системы, электроустановки, отдельные аппараты от смежных частей, находящихся под напряжением, для безопасного ремонта.

Разъединители выбирают по конструктивному выполнению, роду установки и номинальным характеристикам: напряжению, длительному току, стойкости при токах КЗ.

Рассмотрим параметры разъединителя РГ2 — 220/2000 УХЛ1 в таблице 33.

Таблица 33 – Разъединитель РГ2 – 220/2000 УХЛ1

Паспортные данные	Расчётные данные	Проверка				
$U_{\text{ном}} = 220 \text{ кB}$	$U_{ m ycr} = 220 \ m \kappa B$	$U_{ m yct} = U_{ m hom}$				
$I_{\text{HOM}} = 2000 \text{ A}$	$I_{max1} = 440 \text{ A}$	$I_{max} < I_{\text{HOM}}$				
$i_{ m пр. ckb} = 102 \ m кA$	$i_{y} = 23,38$ кА	$i_{ m y}\!<\!i_{ m пp.ckb}$				
	Главные ножи					
$B_{\text{Khom}} = 31,5^2 \cdot 2$ = 1984 MA ² c	$B_{\kappa} = 81 \text{ MA}^2 \text{c}$	$B_{\kappa} < B_{K_{HOM}}$				
Заземляющие ножи						
$B_{K_{HOM}} = 31,5^2 \cdot 1$ = 992 MA ² c	$B_{\kappa} = 81 \text{ MA}^2 \text{c}$	$B_{\kappa} < B_{K_{HOM}}$				

Данный разъединитель удовлетворяет условиям проверки и принимается к установке.

4.3.3 Выбор и проверка трансформаторов тока и трансформаторов напряжения

В рамках применения инновационных технологий при разработке схемы выдачи мощности, принимаем к установке комбинированный трансформатор тока и напряжения. ТТНК — высокоточный комбинированный трансформатор тока и напряжения, который генерирует выходной сигнал в соответствии со стандартом IEC 61850-9-2 [99]. ТТНК включает как минимум два электроннооптических блока (ЭОБ). Один для измерения тока, один для измерения напряжения. Для резервирования может быть использован дополнительный комплект ЭОБ.

ТТНК состоит из комбинации оптического датчика тока (трансформатора тока электронного оптического), датчика напряжения (с делителем напряжения емкостным электронным), волоконно-оптического кабеля, ЭОБ.

Внутри корпуса чувствительного элемента, может быть, до двух чувствительных контуров, способных перекрыть весь диапазон с точностью, необходимой для коммерческого учета и релейной защиты. Опционально может содержать встроенный измеритель мощности и качества. ТТНК представлен на рисунке 21 [81].

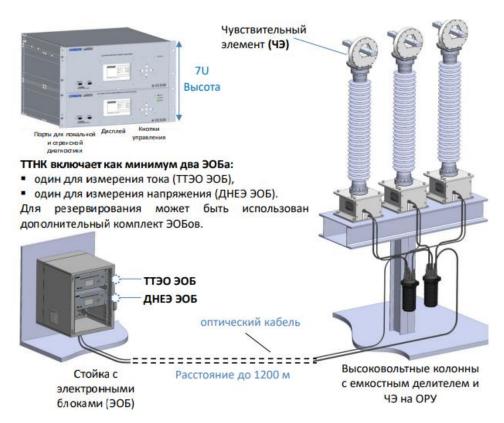


Рисунок 21 – Трансформатор тока и напряжения комбинированный

Трансформаторы тока и напряжения выбирают по номинальному напряжению, первичному и вторичному токам, по роду установки (внутренняя, наружная), конструкции, классу точности, проверяют на термическую и электродинамическую стойкость при КЗ, схеме соединения обмоток, также производится проверка по вторичной нагрузке.

Измерительные приборы и приборы учета занесены в таблицу 34.

Определим нагрузку от приборов, присоединённых к трансформаторам напряжения, которые установлены на каждой секции шин РУ 220 кВ.

Таблица 34 – Измерительные приборы и приборы учета в ячейках РУ 220 кВ

Прибор	Тип прибора	Потребляемая мощность токоизмерительными приборами, ВА, в фазах.		
		A	В	C
1	2	3	4	5
Амперметр	CA-3020	0,5	0,5	0,5
Ваттметр	CP-3020	0,5	0,5	0,5
Варметр	CT-3020	0,5	0,5	0,5
Счетчик АЭ РЭ	Меркурий 230	0,2	0,2	0,2
Счетчик АЭ РЭ	Меркурий 230	0,2	0,2	0,2
Итого		1,7	1,7	1,7

Данные сведены в таблицу 35

Таблица 35 – Вторичная нагрузка ТН на ВН

Прибор	Тип	S одной	Число	Число	S
Прибор	ТИП	обмотки	обмоток	приборов	приборов
Вольтметр	ЦВ 2136	2	1	2	4
Вольтметр регистрирующий	Прима- 200	10	1	2	20
Счетчик АЭ и РЭ	Меркурий 230	16	2	2	32
Итого					56

Сравним полученные данные с каталожными, результаты сведены в таблицу 36.

Таблица 36 – Каталожные и расчетные данные трансформатора тока

Каталожные данные	Расчетные данные	Условия выбора
$U_{{\scriptscriptstyle HOM}}=220~{ m \kappa B}$	U_{ycm} =220 кВ	$U_{ycm} \leq U_{\scriptscriptstyle H}$
$I_{HOM} = 3000 \text{ A}$	$I_{pa6.max} = 440 \text{ A}$	$I_{paб.max} \leq I_{\scriptscriptstyle H}$

Продолжение таблицы 36

$i_{np.c\kappa\theta}=100~\mathrm{\kappa A}$	$i_{y\partial}=23,38$ kA	$I_{y\partial} \leq i_{np.c\kappa heta}$
$B_{K_{HOM}}=11907\ \mathrm{\kappa A^2\cdot c}$	$B_{\kappa}=81~\mathrm{\kappa A^2 \cdot c}$	$B_{\mathit{K}\!\scriptscriptstyle HOM} > B_{\scriptscriptstyle K}$
$S_{\text{\tiny HOM}}=120~\mathrm{BA}$	$S_{\Sigma} = 56 \text{ BA}$	$S_{\scriptscriptstyle \Sigma} \leq S_{\scriptscriptstyle HOM}$

Оптический комбинированный датчик ТТНК удовлетворяет условиям проверки и принимается к установке.

4.3.4 Выбор и проверка ошиновки РУ ВН

На стороне высокого напряжения установлены гибкие шины марки AC - 400/51, допустимый ток которых $I_{\text{ДОП}} = 980 \text{ A} [25]$.

Проверка шин на схлестывание не производится так как периодическая составляющая тока трехфазного короткого замыкания в начальный момент времени меньше 20 кА

Проверка на термическое действие тока короткого замыкания не производится, так как шины выполнены голыми проводами на открытом воздухе.

Проверка по условиям коронирования.

Условие проверки:

$$1,07E \le 0,9E_0,\tag{31}$$

где E_0 — максимальное значение начальной критической напряженности электрического поля, определяется по формуле:

$$E_o = 30,3m(1 + \frac{0,299}{\sqrt{r_o}}),\tag{32}$$

где m — коэффициент, учитывающий шероховатость поверхности провода (для многопроволочных проводов m=0.82);

 r_o — радиус провода;

E – напряженность электрического поля около поверхности нерасщепленного провода определяется по выражению:

$$E = \frac{0.354 \cdot U}{r_o \cdot lg \frac{cp}{r_o}}, \tag{33}$$

где D_{CP} — среднее геометрическое расстояние между проводами фаз. При горизонтальном расположении фаз:

$$D_{cp} = 1,25 \cdot 400 = 500$$
 cm.

В результате расчета получим следующие значения напряженностей

$$E_o = 30.3 \cdot 0.82(1 - \frac{0.299}{\sqrt{0.7}}) = 34.2 \text{ kB/cm},$$

$$E = \frac{0,354 \cdot 110}{0,7 \cdot lg \frac{500}{0.7}} = 19,49 \text{ kB/cm}.$$

Проверяем по условию

$$1,07E \leq 0,9E_0$$

$$1,07 \cdot 19,49 \le 0,9 \cdot 34,2$$

$$20.9 \le 30.8$$

Выбранный провод проходит по проверке на корону.

Максимально рабочее значение тока на одну секцию принято из соображений что на каждой секции будет расположено по 2 повышающих трансформатора от ВЭС.

Таблица 37 - Сопоставление данных для гибких шин

Каталожные данные	Расчетные данные	Условия выбора
$I_{_{HOM}} = 980 \text{ A}$	$I_{pa6.max} = 440 \text{ A}$	$I_{\mathit{pa6.max}} \leq I_{\mathit{HOM}}$

4.3.5 Выбор и проверка сборных шин и изоляторов

Опорный изолятор предназначен для крепления токоведущих частей в электрических аппаратах, распределительных устройствах электрических станций и подстанций, комплектных распределительных устройствах. По конструкции представляет собой деталь из изоляционного материала цилиндрической или конической формы, внутрь которой заделана металлическая арматура с резьбовыми отверстиями для крепления шин и монтажа изолятора.

Условия выбора;

По номинальному напряжению

$$U_{ycm} \le U_{HOM}; \tag{34}$$

 $220 \le 220$;

Условие выполняется.

По допустимой нагрузке

$$F_{pac4} \le F_{ДО\Pi} \tag{35}$$

$$F_{\mathcal{I}O\Pi} = 0, 6 \cdot F; \tag{36}$$

 $F_{DOH} = 0.6 \cdot 30000 = 18000 H;$

Определяем максимальную силу, действующую на изгиб:

$$F_{pac4} = f \cdot l \cdot k_h; \tag{37}$$

$$k_{h} = \frac{H_{u3} + h + \frac{b}{2}}{H_{u3}};$$
(38)

$$k_h = \frac{900 + 64 + \frac{70}{2}}{900} = 1,11;$$

$$F_{pac4} = 198, 7 \cdot 1, 1 \cdot 2 = 437, 14H;$$

К установке приняты опорные изоляторы ИО-220-400 с допустимой нагрузкой на изгиб:

Таблица 38 - Сопоставление данных опорных изоляторов

Каталожные данные	Расчетные данные	Условия выбора
$U_{_{HOM}} = 220 \text{ kB}$	$U_{\it pacч} = 220 \; { m \kappa B}$	$U_{\scriptscriptstyle HOM} \leq U_{\scriptscriptstyle pac4}$
$F_{oon} = 18000 \text{ H}$	$F_{pacu} = 437,14 \text{ H}$	$F_{pacu} \le F_{\partial on}$

 $F_{\it pacu} \leq F_{\it ДОП} -$ данное условие выполняется и выбранный изолятор подходит для установки.

Таким образом, опорный изолятор ИО-220-400 проходит по механической прочности и может быть принят к установке.

4.3.6 Выбор ограничителей перенапряжения

Для ограничения перенапряжений на РУ применяют ОПН, назначение которых является защита энергооборудования от грозовых и коммутационных перенапряжений.

Порядок выбора ОПН:

- выбор наибольшего длительно допустимого рабочего напряжения OПН;
- выбор номинального напряжения ОПН по условиям работы в квазиустановившихся режимах;
 - выбор класса пропускной способности ОПН;
 - выбор ОПН по условиям обеспечения взрывобезопасности;
- определение защитного уровня ОПН при коммутационных перенапряжениях;
- определение защитного уровня ОПН при грозовых перенапряжениях; Выбор наибольшего длительно допустимого рабочего напряжения ОПН [21]:

$$U_{Hp} \ge 1.05 \cdot U_{Hc}; \tag{39}$$

Здесь 1.05 – коэффициент запаса, учитывающий увеличение максимального напряжения сети из-за гармоник.

Выбор номинального напряжения [21].

$$U_{_{_{_{3KB}}}} = U_{_{K}} \cdot \left(\frac{T_{_{K}}}{10}\right)^{m}; \tag{40}$$

где $\ U_{\kappa}$ - амплитуда квазистационарного перенапряжения;

Т_к - продолжительность квазистационарного перенапряжения в секудах;

m - показатель степени, описывающей характеристику ОПН «напряжение промышленной частоты в зависимости от времени». В качестве усредненного значения может принять m=0.02.

Выбор номинального разрядного тока и класса пропускной способности.

В сетях напряжением 220 кВ и выше, рекомендуются ОПН с номинальным разрядным током 10 кА.

Выбор ОПН по условиям обеспечения взрывобезопасности [21].

$$I_{K3} < I_{B3.6e3};$$
 (41)

Определение защитного уровня ОПН при коммутационных перенапряжениях [21]:

$$U_{\text{OCT,K}} \le U_{\text{KM}} / (1.15 - 1.2);$$
 (42)

Выдерживаемый уровень коммутационных перенапряжений можно определить по формуле:

$$U_{KH} = 1,41 \cdot 1,35 \cdot 0,9 \cdot U_{HCH50}; \tag{43}$$

где $U_{\text{исп50}} - 50 \%$ испытательное напряжение электрооборудования на коммутационном импульсе.

Защитный координационный интервал по внутренним перенапряжениям, $A_{\text{вн}}$:

$$A_{BH} = (U_{\text{доп}} - U_{\text{ост.к}}) / U_{\text{доп}} > (0.15 - 0.25);$$
 (44)

где $U_{\text{доп}}$ - допустимый уровень внутренних перенапряжений;

 $U_{\text{ост.k}}$ — остающееся напряжение на ОПН при коммутационном импульсе. Защитный координационный интервал по грозовым воздействиям, A_{rp} :

$$A_{rp} = (U_{ucn} - U_{ocr}) / U_{ucn} > (0.2-0.25); \tag{45}$$

где $U_{\text{исп}}$ – значение грозового испытательного импульса;

 $U_{\text{ост}}$ – остающееся напряжение на ОПН при номинальном разрядном токе;

(0.2 - 0.25) – координационный интервал.

ОПН, выбранный по всем указанным условиям, соответствующим его применению, обеспечит надежную защиту электроустановок [21].

На стороне ВН трансформаторов выбираем ограничитель перенапряжения типа ОПН – 220/86/10/550 УХЛ1 с классом напряжения 220 кВ, основные характеристики которых представлены в таблице 39.

Проверка ОПН – 220 кВ.

Выбор по напряжению установки выполняется по следующему соотношению:

$$U_{_{\text{VCT}}} \le U_{_{\text{HOM}}};$$
 (46)

220≤220 кB.

Условия выполняются.

Выбор по наибольшему длительно допустимому напряжению:

$$U_{\text{H.p.d}} = 1.05 \cdot \frac{U_{\text{H.p.c}}}{\sqrt{3}}$$
; (47)

где $U_{\text{нрс}}$ – наибольшее рабочее напряжение сети.

$$U_{\text{H.p.d}} = 1,05 \cdot \frac{242}{\sqrt{3}} = 146,705 \text{ kB}.$$

$$U_{\text{H.p.,J}} \le U_{\text{H.p.hom}} \tag{48}$$

146,705≤170 кB.

Условия выполняются.

Выбор по условию взрывобезопасности:

$$I_{B,F} > 1.2 \cdot I_{\Pi O}; \tag{49}$$

Для выбранного ОПН $I_{B.Б}$ ток взрывобезопасности равен 40 кА.

$$40 > 1, 2 \cdot 7, 6 = 9, 12$$
 KA.

Условие выполняется.

Выбор по временно допустимому повышению напряжения.

Максимальное значение напряжения при однофазном КЗ на шинах ОРУ:

$$U_{\text{H.p}} = 1,15 \cdot \frac{220}{\sqrt{3}} = 160,67 \text{ kB}.$$

$$U_{y} = 1.4 \cdot U_{H,p};$$
 (50)

 $U_v = 1, 4.160, 67 = 224,95 \text{ kB}.$

Кратность перенапряжения равна:

$$\frac{U_{y}}{U_{H,D,HOM}};$$
 (51)

$$\frac{224,95}{160}$$
 = 1,41.

Время в течении, которого выдерживается перенапряжение выбранного ОПН $t_{\text{ОПН}}$ = 1200 с.

Значение средней длительности при одностороннем отключении однофазного КЗ $t=4\ c.$

$$t_{OIIH} > t;$$
 (52)

1200 > 4 c.

Условие выполняется.

Максимальное значение остающихся перенапряжений при грозовом импульсе с амплитудой 10 кА для ОПН работающих в сетях 220 кВ не должно превышать 295 кВ.

Для выбранного ОПН $U_{\text{ост.ном}} = 247 \text{ кB}$ (взято из каталожных данных ОПН).

$$U_{\text{oct.hom}} < U_{\text{oct.rp}};$$
 (53)

247 < 295 kB.

Определение защитного уровня при коммутационных перенапряжениях:

$$U_{\text{ост.k}} = \frac{\sqrt{2} \cdot K_{\text{H}} \cdot K_{\text{K}} \cdot U_{\text{исп}}}{1.2};$$
 (54)

где $K_{\text{и}}$ - коэффициент импульса, учитывающий упрочнение изоляции придействии короткого импульса, по сравнению с испытательным одноминутным воздействием. Для трансформаторов и электрических машин $K_{\text{и}}$ =1.35;

 K_{κ} - коэффициент кумулятивности, учитывающий многократность воздействия перенапряжений и возможное старение изоляции. Для трансформаторов и электрических машин K_{κ} =0.9.

$$U_{\text{oct.k}} = \frac{\sqrt{2} \cdot 1,35 \cdot 0,9 \cdot 200}{1,2} = 286 \text{ kB}.$$

Для выбранного ОПН $U_{\text{ост.к.ном}}$ =204 кВ.

$$U_{\text{oct.k.hom}} < U_{\text{oct.k}};$$
 (55)

204 < 286 кВ.

Выбор по длине утечки внешней изоляции ОПН.

Для района с первой степенью загрязненности окружающей среды для оборудования РУ длина пути утечки должна быть не менее $l_{\text{утеч}} = 200 \text{ см}$.

Для выбранного ОПН $l_{\text{утеч.ном}} = 315$ см.

Данные, полученные в ходе расчетов, а также сведения из каталогов сведены и отображены в таблице 39.

Таблица 39 – Результаты сравнения расчетных и каталожных данных

Каталожные данные	Расчетные данные	Условия выбора
$U_{\text{\tiny HOM}} = 220 \text{ kB}$	$U_{ycr} = 110 \text{ kB}$	$U_{ m yct} \leq U_{ m hom}$
$U_{\text{н.р.ном}} = 160 \text{ кB}$	U _{н.р.д} = 146,71 кВ	$U_{\text{H.p.d}} \leq U_{\text{H.p.hom}}$
$I_{B.b} = 40 \text{ KA}$	$1,2 \cdot I_{\Pi O} = 9,12 \text{ кA}$	$I_{\mathrm{B.F}} > 1,2 \cdot I_{\Pi\mathrm{O}}$
$t_{\text{ОПH}} = 1200 \text{ c}$	t = 4 c	t _{OПH} > t
$U_{\text{ост. HOM}} = 247 \text{ kB}$	$U_{\text{ост.rp}} = 295 \text{ kB}$	$U_{\text{oct.hom}} \! < U_{\text{oct.fp}}$
$U_{\text{ост.к.ном}} = 204 \text{ kB}$	$U_{\text{ост. K}} = 286 \text{ kB}$	$U_{\text{oct.k.hom}} < U_{\text{oct.k}}$
$l_{\text{yteu.hom}} = 315 \text{ cm}$	$l_{\text{yreq}} = 200 \text{ cm}$	$l_{ m yreq.hom} > l_{ m yreq}$

4.4 Выводы

Была осуществлена техническая проработка выбранного варианта развития электрической сети. В соответствии с климатической характеристикой рассматриваемого района подключения, было выбрано и проверено основное оборудование для распределительного устройства Ивановской ВЭС с климатическим исполнением УХЛ1. В соответствии с особенностями эксплуатации, а также стандартами и требованиями предъявляемым к распределительным устройствам было выбрано открытое распределительное устройство по схеме одна рабочая секционированная выключателем и обходная системы шин (12).

В качестве инновационного оборудования, для реализации описанных во 2 разделе цифровых технологий был выбран и проверен комбинированный оптический трансформатор тока и напряжения. Применения последнего значительным образом увеличивает показатели надежности, что подтверждается расчетами произведенными в разделе 3.

Исходя из проделанных в данном разделе расчетов можно сделать вывод, что данный вариант развития электрической сети является технически осуществимым и соответствует всем нормам и требованиям предъявляемым к проектированию подключения новых генерирующих мощностей к существующей электрической сети.

5 ВЫБОР ОПТИМАЛЬНОГО ВАРИАНТА РАЗВИТИЯ СЕТИ

В данном разделе производится оценка технической и экономической целесообразности предложенного варианта развития электрической сети Амурской области в районе подключения Ивановской ВЭС. Определяются интегрированные эффекты от ввода новых генерирующих мощностей и применения цифровых технологий.

5.1 Интегрированный эффект от ввода ВЭС и применения цифровых технологий

Интегрированный эффект от ввода ветроэнергетических станций (ВЭС) и применения цифровых технологий проявляется в значительном повышении эффективности, надёжности и устойчивости всей энергетической системы. Совместное использование современных ветроустановок и цифровых решений создаёт синергию, обеспечивая более точное управление процессами генерации электроэнергии, снижая издержки на обслуживание и минимизируя влияние на окружающую среду. Благодаря цифровым двойникам и алгоритмам машинного обучения возможно в реальном времени оптимизировать работу турбин, учитывать изменения погодных условий и подстраивать параметры для максимального коэффициента полезного действия. Современные системы прогнозирования ветра позволяют значительно повысить точность планирования производства энергии, что особенно важно при высоких долях ВИЭ в энергобалансе.

Цифровизация также трансформирует процессы технического обслуживания. Предиктивная аналитика, основанная на данных с датчиков, позволяет заранее выявлять потенциальные неисправности и планировать ремонтные работы, снижая аварийность и продлевая срок службы оборудования. Автоматизированные средства диагностики, включая дроны и ИИ-системы, сокращают затраты на инспекцию и делают обслуживание более безопасным и эффективным. Дополнительно цифровые инструменты обеспечивают более точное

управление логистикой, запасами запчастей и распределением рабочих ресурсов.

Цифровые технологии значительно улучшают интеграцию ВЭС в энергосистему за счёт подключения к интеллектуальным сетям (Smart Grids), где станции способны гибко реагировать на колебания спроса и предложения. Становится возможным формирование виртуальных электростанций (VPP), объединяющих в цифровую структуру ВЭС, солнечные станции и накопители энергии. Это позволяет централизованно управлять распределённой генерацией и повысить стабильность энергоснабжения. Кроме того, цифровые платформы обеспечивают прозрачность в процессе диспетчеризации, что повышает доверие со стороны регуляторов и общества.

С экологической точки зрения, внедрение ВЭС и цифровых решений способствует существенному снижению выбросов парниковых газов и более экологичному использованию природных ресурсов. За счёт точного планирования, мониторинга и анализа цифровые технологии позволяют минимизировать воздействие на окружающую среду на всех этапах жизненного цикла станции. Прозрачность данных и возможность мониторинга в режиме реального времени делают процессы более открытыми и управляемыми.

С экономической стороны, эффект проявляется в снижении уровня удельной стоимости выработанной электроэнергии (LCOE), улучшении инвестиционной привлекательности проектов и росте смежных отраслей, включая ИТ, телекоммуникации и производство оборудования. Всё это способствует ускоренному развитию возобновляемой энергетики и формированию устойчивой низкоуглеродной экономики. Таким образом, сочетание ВЭС и цифровых технологий становится не только техническим, но и стратегическим решением в сфере энергетической трансформации.

Что касается режимных улучшений, то по результатам расчетов в разделе 3 для выбранного варианта наблюдается значительно улучшение загруженности линий, что в свою очередь улучшает баланс между генерацией и потреблением. За счет оптимизации режимной ситуации были уменьшены потери в электрической сети в сравнении с исходным режимом.

5.2 Оценка инвестиционной привлекательности проекта

Оценка экономической эффективности варианта №2

Основной задачей стоимостной оценки результатов деятельности инвестиционного проекта является оценка выручки от реализации проекта.

Объем продаж электроэнергии потребителю в год [72]:

$$O_{P_t} = W_t \cdot T \,, \tag{56}$$

где W_{t} – полезно отпущенная потребителю электроэнергия за год, $MBT \cdot \Psi$;

т – одноставочный тариф для потребителя, тыс.руб/МВт·ч;

Полезно отпущенная электроэнергия определяется [49]:

$$W_t = P_H \cdot T_{\text{max}} \,, \tag{57}$$

где P_{H} – активная мощность нагрузки потребителя, МВт;

 T_{max} — время использования максимума нагрузки в год, принято равным 5500 ч.

 $W_t = 335 \cdot 5500 = 1842500 \text{ MBт} \cdot \text{ч}.$

 $O_{Pt} = 1842500 \cdot 2 = 3685000$ тыс.руб.

Прибыль от реализации продукции определится [72]:

$$\Pi_{\delta t} = O_{Pt} - H_t - K_t - Y_t; \tag{58}$$

где K_t – суммарные капитальные вложения в год;

 U_t – суммарные эксплуатационные издержки в год;

 Y_t – суммарная величина ущерба в год.

Ежегодные отчисления налога на прибыль:

$$H_t = 0.2 \cdot (\Pi_{\delta t}). \tag{59}$$

Величина прибыли после вычета налогов ($\Pi_{\text{H}t}$) численно равна прибыли от реализации (Π_{bt}) за вычетом выплачиваемых налогов на прибыль:

$$\Pi_{\mathsf{Y}_t} = \Pi_{\delta t} - H_t \,; \tag{60}$$

Чистый дисконтированный доход рассчитывается дисконтированием чистого потока платежей Θ_t , который определяется как разность между притоками и оттоками денежных средств (без учета источников финансирования).

Сумма дисконтированных чистых потоков платежей — чистый дисконтированный доход (ЧДД) определяется следующим образом:

$$4/L/L = \sum_{t=0}^{T_p} \Im_t \cdot \frac{1}{(1+d)^t}; \tag{61}$$

где d = 9,25 % – коэффициент дисконтирования;

Тр – расчетный период, принимаем равным 20 лет;

t - год, к которому приводятся платежи.

Инвестирование капиталовложений в реконструкцию сетей 3 года.

Результаты расчёта ЧДД представлены на рисунке 22.

Из графика ЧДД рисунка 22 видно, что срок окупаемости проекта сети не превышает 17 лет. Значения ЧДД положительны и, следовательно, проект является инвестиционно-привлекательным и рекомендуется к реализации. Значение ЧД не превышает 11 лет.

Рентабельность инвестиций рассчитываются по каждому году расчётного периода после начала эксплуатации электросетевого объекта или только по некоторым характерным годам.

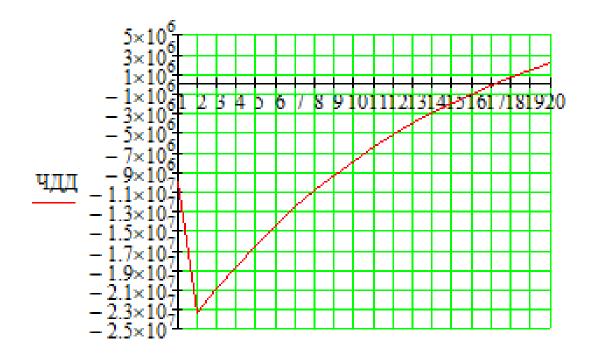


Рисунок 22 – График ЧДД

ŧ

В качестве характерных рассматриваются: год после выхода на режим нормальной эксплуатации, но с выплатой заемных средств и с финансовыми издержками, а также в период после выплаты всей суммы кредита и процентов. В нашем случае считаем, что объект построен без заёмных средств. Рентабельность инвестиций определяется по формуле [1]:

$$R_{t} = \frac{\mathcal{O}_{t} - \dot{M_{t}} - H_{t}}{K},\tag{62}$$

где К – суммарные капитальные вложения;

 Θ_t – системный эффект, обусловленный вводом объекта в год t;

 $\dot{M_t}$ – общие годовые издержки без учёта затрат на амортизацию;

 H_{t} - налог на прибыль.

Рентабельность в год после выхода на режим нормальной эксплуатации (3 года) равна 20%.

«Простым» сроком окупаемости называется продолжительность периода от начального момента до момента окупаемости. Начальный момент в нашем случае — начало строительства сетевого объекта. Моментом окупаемости называется тот наиболее ранний момент времени в расчетном периоде, после которого текущий ЧД становится и в дальнейшем остается положительным.

Сроком окупаемости с учетом дисконтирования называется продолжительность периода от начального момента до «момента окупаемости с учетом дисконтирования» — наиболее раннего момента времени в расчетном периоде, после которого текущий ЧДД становится и в дальнейшем остается положительным. Расчёт оценки экономической эффективности для варианта №2 в приложении Б.

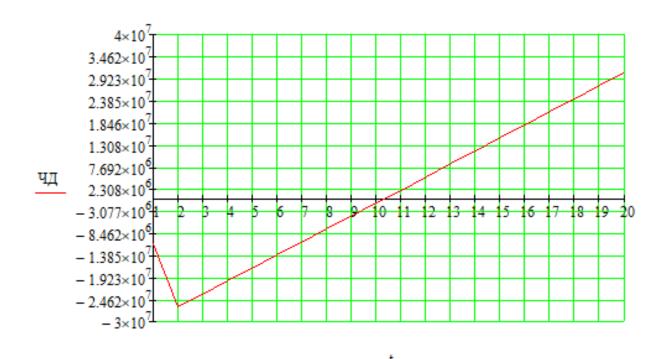


Рисунок 23 – График ЧД

5.3 Выводы

В ходе анализа, были определены интегрированные эффекты при подключении Ивановской ВЭС с использованием инновационного оборудования и цифровых технологий. Интегрированный эффект от ввода ветроэнергетических станций (ВЭС) и применения цифровых технологий проявляется в значительном повышении эффективности, надёжности и устойчивости всей энергетической системы. С экологической точки зрения, внедрение ВЭС и цифровых решений способствует существенному снижению выбросов парниковых газов и более экологичному использованию природных ресурсов. С экономической стороны, эффект проявляется в снижении уровня удельной стоимости выработанной электроэнергии.

Анализ режимной ситуации показал значительное улучшение загруженности линий электропередач, уменьшение потерь электроэнергии в электрической сети Амурской области.

По результатам проведения оценки технической и экономической целесообразности предложенного варианта развития электрической сети были получены следующие результаты. Срок окупаемости предложенного варианта электроснабжения при капитальных вложениях в 35772700 миллионов руб. составит 17 лет. Проект является экономически эффективным, так как индекс доходности дисконтированных инвестиций ИДД>1 (ИДД=1.045). Рентабельность проекта составит 13,213 % в год, начиная с третьего года расчётного периода (расчётный период - 20 лет).

ЗАКЛЮЧЕНИЕ

Для выполнения выпускной квалификационной работы были поставлены и решены ключевые задачи по разработке схемы выдачи мощности Ивановской ВЭС и проектированию электрической сети с учетом ввода новых генерирующих мощностей, учитывающие необходимые параметры надежности электроснабжения и качества электрической энергии. В результате проведенных мероприятий был разработан наиболее оптимальный вариант подключения Ивановской ВЭС к рассматриваемой сети, отвечающий как техническим требованиям режимов работы, так и экономическим показателям.

Подробно осуществлен анализ современного состояния электрической сети Амурской области и Ивановского района. При расчете существующего режима отклонений от параметра режима не наблюдается по его результатам сделан вывод о малой загруженности электрических сетей 220 кВ Ивановского района и Амурской области, и о возможности подключения крупной электростанции к существующим сетям.

На основе системного анализа инновационного оборудования и цифровых технологий, в качестве цифровых решений предложены - цифровой двойник, контроллеры управляемой коммутации, а также управление коммутационными аппаратами с APM диспетчерского персонала. Все вышеуказанные технологии открывают перед энергетическим сектором большие возможности для повышения эффективности, надежности, безопасности и управляемости производства электроэнергии.

Разработано 5 технически осуществимых вариантов подключения Ивановской ВЭС. Посчитаны и проанализированы установившиеся нормальный и послеаварийный режимы, отрегулировано напряжение. На основе расчета основных экономических показателей выбран оптимальный вариант развития

электрической сети – подключение Ивановской ВЭС к узловой ПС 220 кВ Благовещенская.

Для представленного варианта развития электрической сети произведена техническая проработка. Разработана схема выдачи мощности Ивановской ВЭС, рассчитаны токи короткого замыкания. Выбрано и проверено основное оборудование. В качестве инновационного решения, а также базиса для реализации цифровых технологий, был принят к установке комбинированный оптический трансформатор тока и напряжения.

Произведена оценка технической и экономической целесообразности предложенного варианта развития электрической сети Амурской области в районе подключения Ивановской ВЭС. По результатам оценки наблюдается улучшение режимной ситуации, увеличение загруженности линий электропередач, уменьшению потерь электроэнергии в электрической сети после ввода новых генерирующих мощностей. Определены интегрированные эффекты, такие как снижение выбросов парниковых газов, более экологичное использование природных ресурсов. С экономической стороны - снижении уровня удельной стоимости выработанной электроэнергии.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Энергетическая стратегия РФ на период до 2050 года. URL: http://static.government.ru/media/files/w4sigFOiDjGVDYT4IgsApssm6mZRb7wx .pdf (дата обращения 25.03.2025).
- 2. Отчет о функционировании энергосистемы России в 2024 году (на основе оперативных данных). URL: https://www.so-ups.ru/fileadmin/files/com-pany/reports/disclosure/2025/ups_rep2024.pdf (дата обращения 12.05.2025).
- 3. POC3EMKAДАСТР. URL: rosreestr.gov.ru/upload/Doc/16-upr/Аналитическая_записка_Амурская_область_Ивановский_район.pdf (дата обращения 12.03.2025).
- 4. Суслов К.В. Развитие систем электроснабжения изолированных территорий России с использованием возобновляемых источников энергии / К.В. Суслов // Вестник Иркутского государственного технического университета, 2017. Т. 21. № 5. С. 131-142. DOI: 10.21285/1814-3520-2017-5-131-142
- 5. Никитина Е. Попали в сети: как работают цифровые двойники в электроэнергетике./ Е. Никитина. URL: https://pro.rbc.ru/news/5db1b59a9a79474bb142a3fe (дата обращения 25.03.2025).
- 6. Цифровой двойник, Индустрия 4.0. Информатизация и системы управления в промышленности. URL: https://zen.yandex.ru/media/isup/cifrovoi-dvoinik-industriia-40-5b83b7155b279900a96c54e8.
- 7. Garfinkel J. Gartner Identifies the Top 10 Strategic Technology Trends for 2019 // Gartner Tech. Rep, 2018, Oct
- 8. Ebrahimi A. Challenges of developing a digital twin model of renewable energy generators // 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE). 2019, pp. 1059-1066, DOI: 10.1109/ISIE.2019.8781529

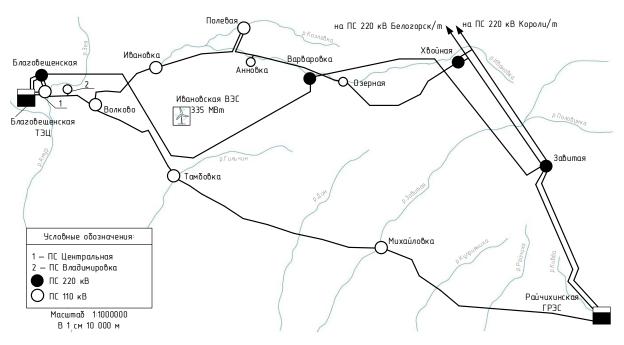
- 9. Pimenta, F., Pacheco, J., Branco, C. M., Teixeira, C. M., & Magalhães, F. Development of a digital twin of an onshore wind turbine using monitoring data // Journal of Physics: Conference Series, 2020, 1618, 022065, DOI:10.1088/1742-6596/1618/2/022065
- 10. Jahanshahi Zeitouni, M., Parvaresh, A., Abrazeh, S., Mohseni, S.-R., Gheisarnejad, M., & Khooban, M.-H. Digital Twins-Assisted Design of Next-Generation Advanced Controllers for Power Systems and Electronics: Wind Turbine as a Case Study // Inventions, 2020, 5(2), 19, DOI:10.3390/inventions5020019
- 11. Chetan, M., Yao, S., & Griffith, D. T. Multi-fidelity digital twin structural model for a sub-scale downwind wind turbine rotor blade. Wind Energy. 2021, DOI:10.1002/we.2636
- 12. Karl Merz, Valentin Chabaud, Paula B. Garcia-Rosa and Konstanze Kolle A hierarchical supervisory wind power plant controller. Journal of Physics: Conference Serie. 2018, DOI: 10.1088/1742-6596/2018/1/012026
- 13. H. Solman, J. K. Kirkegaard, M. Smits, B. V. Vliet, S. Bush Digital twinning as an act of governance in the wind energy sector. Environmental Science & Policy. 2022, v. 127, pp. 272-279, DOI: 10.1016/j.envsci.2021.10.027
- 14. F. Dembski, U. Wössner, M. Letzgus, M. Ruddat and C. Yamu Urban Digital Twins for Smart Cities and Citizens: The Case Study of Herrenberg, Germany. Sustainability. 2020, 12(6), 2307, DOI: 10.3390/su12062307
- 15. E. Glaessgen and D. Stargel, "The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles" // 53rd Structures. Structural Dynamics and Materials Conference. 2012.
- 16. Digital solutions for wind farms. URL: https://www.ge.com/renewa-bleenergy/windenergy/onshore-wind/digital-wind-farm
- 17. H. Pargmann, D. Euhausen, R. Faber, Intelligent Big Data Processing for Wind Farm Monitoring and Analysis Based on Cloud-Technologies and Digital Twins. 2018 the 3rd IEEE International Conference on Cloud Computing and Big Data Analysis. 2018, pp. 233-237.

- 18. Obafemi O. Olatunji, Paul A. Adedeji, N. Madushele, Tien-Chien Jen, Overview of Digital Twin Technology in Wind Turbine Fault Diagnosis and Condition Monitoring. 2021 IEEE 12th International Conference on Mechanical and Intelligent Manufacturing Technologies. 2021, pp. 201-207, DOI: 10.1109/ICMIMT52186.2021.9476186
- 19. D.J. Wagg, K. Worden, R.J. Barthorpe, P. Gardner, Digital twins: State-of-the-art and future directions for modeling and simulation in engineering dynamics applications. ASCE-ASME J. Risk Uncertain. Eng. Syst. 2020, B 6 (3), pp. 1–17, DOI: 10.1115/1.4046739
- 20. Андрюшкевич, С.К. Подходы к разработке и применению цифровых двойников энергетических систем / С.К. Андрюшкевич, С.П. Ковалев, Е. Нефедов // Цифровая подстанция, 2019. № 12. С.38-43.
- 21. Ковалѐв, С.П. Проектирование информационного обеспечения цифровых двойников энергетических систем / С.П. Ковалѐв // Системы и средства информатики, 2020. Т.30. №1. С. 66-81.
- 22. Ludmila Massel, Nikita Shchukin and Alexey Cybikov International Conference of Young Scientists "Energy Systems Research 2021". Vol. 289, Digital twin development of a solar power plant, DOI: 10.1051/e3sconf/202128903002
- 23. Оганесян Э.В., Бекиров Э.А., Асанов М.М. Математическая модель для определения параметров работы ветроэнергетический установки / Э.В. Оганесян, Э.А. Бекиров, М.М. Асанов // Строительство и техногенная безопасность, 2016. №3 (55). С. 82-86.
- 24. Ali Sayigh. Comprehensive Renewable Energy. Volume One. Photovoltaic Solar Energy // Elsevier Ltd 2012. Р. 746. [Электронный ресурс] Режим доступа: http://www.sciencedirect.com.focus.lib.kth.se/
- 25. Atmospheric Science Data Center. NASA Surface meteorology and Wind Energy, 2016. [Электронный ресурс] Режим доступа: https://eosweb.larc.nasa.gov/cgi-bin/sse/sse.cgi?

- 26. Germany's electricity generation mix 2015. STROM-Report Renewable energy Germany, 2015. [Электронный ресурс] Режим доступа: http://strom-report.de/renewable-energy/
- 27. Levent Bas. Thin film vs. crystalline silicon PV modules. Article, 2010. [Электронный ресурс] Режим доступа: https://www.civicsolar.com/resource/thin-film-vs-crystalline-silicon-pv-modules
- 28. Research cell record efficiency chart. The National Center for Photovol-taics (NCPV) at the National Renewable Energy Laboratory (NREL), 2015. [Электронный ресурс] Режим доступа: http://www.nrel.gov/ncpv/
- 29. Stan Gibilisco. Alternative Energy Demystified. McGraw-Hill Education. 2013. 375 p.
- 30. Что такое цифровая подстанция [Электронный ресурс] / Проект РЗА Режим доступа: hhtps//pro-rza.ru/chto-takoe-tsifrovaya-podstantsiya/ (дата обращения: 11.05.2025)
- 31. Васильева В.Я., Дробиков Г.А., Лагутин В.А. Эксплуатация электрооборудования электрических станций и подстанций: учебное пособие. Чебоксары: Чувашский гос. ун-т, 2000. 864 с.
- 32. Выбор силовых трансформаторов // Каталог силовых трансформаторов с характеристиками и фото [Электронный ресурс]. URL: http://silovoytransformator.ru/stati/silovye-transformatory.html (дата обращения 22.02.2025).
- 33. Габариты трансформаторов // Блог проектировщика: материалы для расчета и оформления проектов [Электронный ресурс]. URL: http://energoproekt.blogspot.ru/2009/05/gabarity-transformatorov.html (дата обращения 22.02.2025).
- 34. Городов Р.В, Губин В.Е., Матвеев А.С. Нетрадиционные и возобновляемые источники энергии: Учебное пособие. Томск: Изд-во Томского политех. ун-та, 2009. 294 с.

- 35. ГОСТ 16110-82. Трансформаторы силовые. Термины и определения.
- 36. ГОСТ 9680-77. Трансформаторы силовые мощностью 0,01 кВ·А и более. Ряд номинальных мощностей.
- 37. Зацаринная Ю.Н., Нурмеев Т.А. Современные виды элегазового оборудования высокого напряжения / Зацаринная Ю.Н., Нурмеев Т.А.// Вестник Казан. технол. ун-та.- 2014. №15
- 38. Зацаринная Ю.Н., Нурмеев Т.А. Элегазовые выключатели в современной энергетике / Зацаринная Ю.Н., Нурмеев Т.А.// Вестник Казан. технол. ун-та. -2014. №19.
- 39. Идельчик В.И. Электрические системы и сети: учеб./ В. И. Идельчик. -2014. №19.
- 40. Карапетян, И. Г. Справочник по проектированию электрических сетей. 4-е издание [Электронный ресурс] / И. Г. Карапетян, Д. Л. Файбисович, И. М. Шапиро. М.: ЭНАС, 2012. 376 с. Режим доступа: http://biblioclub.ru/index.php?page=book&id=84939
- 41. Китушин, В. Г. Надежность энергетических систем [Текст] : учеб. пособие / В. Г. Китушин Ч. 1 : Теоретические основы. Новосибирск : изд-во НГТУ, 2003. -255 с.
- 42. Линник Ю. Н., Жабин А. Б., Третьякова М. В. Возможности российского ТЭК в области энергосбережения и повышения энергетической эффективности // Известия Тульского государственного университета. Науки о Земле. 2017. Вып. 3. С. 231-240.
- 43. Лукутин Б.В., Суржикова О.А., Шандарова Е.Б. Возобновляемая энергетика в децентрализованном электроснабжении.— М.: Энергоатомиз-дат, 2008. 231 с.
- 44. Методические рекомендации по проектированию развития энергосистем СО 153-34.20.118-2003. Утверждены приказом Минэнерго России от

- 30.06.03 № 281. Режим доступа :http://files.stroyinf.ru/Data2/1/4294812/4294812999.pdf
- 45. Методические указания по устойчивости энергосистем СО 153-34.20.576-2003, утверждены приказом Минэнерго России от 30 июня 2003 г. № 277. Режим доступа : http://www.gostrf.com/normadata/1/4294814/4294814841.pdf
- 46. Мясоедов Ю.В. Проектирование электрической части электростанций и подстанций: Учебное пособие/ Ю.В. Мясоедов, Н.В. Савина, А.Г. Ротачева Благовещенск: АмГУ, 2013. 139 с.
- 47. Мясоедов, Ю. В. Электрические станции и подстанции : учебное пособие / Ю. В. Мясоедов, Н. В. Савина, А. Г. Ротачева. Благовещенск : АмГУ, 2013. 201 с. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/156454
- 48. Нормальная схема электрических соединений объектов электроэнергетики, входящих в ОЗ Амурского РДУ 2024 г;
- 49. Нуньес-де-Бальбоа: солнечная PV электростанция мощностью 500 МВт в Бадахос, Испания [Электронный ресурс]. Режим доступа: https://esfccompany.com/articles/solnechnaya-energetika/nunes-de-balboa-solnechnaya-pv-elektrostantsiya-moshchnostyu-500-mvt-v-badakhos-ispaniya/
- 50. О порядке расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств (групп энергопринимающих устройств) потребителей электрической энергии. Приказ Министерства энергетики Российской Федерации от 23 июня 2015 г. N 380. Режим доступа :www.sahen.elektra.ru/POTREBL/RASK_INF/19_380.docx
- 51. Посысаев Ю. Ю. Конкуренция альтернативных видов энергии на мировом рынке // Российский внешнеэкономический вестник. 2014. № 8. С. 68-88.
- 52. Правила технической эксплуатации электроустановок потребителей. М.: ЭНАС, 2004. 168 с.


- 53. Правила устройства электроустановок. 7-е изд.- М. : Омега-Л, 2006, 2013. 269 с.
- 54. Приказа по проектированию развития энергосистем Минэнерго России от 06 декабря 2022 г. N 1286.
- 55. Проектирование электроэнергетических систем [Электронный ресурс]: учебное пособие / С. Н. Антонов, Е. В. Коноплев, П. В. Коноплев, А. В. Ивашина. Электрон. текстовые данные. Ставрополь: Ставропольский государственный аграрный университет, 2014. 104 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/47343.html
- 56. Рац Г. И., Мординова М. А. Развитие альтернативных источников энергии в решении глобальных энергетических проблем // Известия Байкальского государственного университета. 2017. № 2. С. 132-136.
- 57. Розанов Ю.К., Основы современной энергетики. Том 2. Современная электроэнергетика. [Электронный ресурс] : учеб. / Розанов Ю.К., Старшинов В.А., Серебрянников С.В.. Электрон.дан. М. : Издательский дом МЭИ, 2010. 632 с. Режим доступа : http://e.lanbook.com/book/72256
- 58. Розанов Ю.К., Управление потоками электроэнергии и повышение эффективности электроэнергетических систем: учебное пособие. [Электронный ресурс]: учеб.пособие / Розанов Ю.К., Бурман А.П., Шакарян Ю.Г.. Электрон. дан. М.: Издательский дом МЭИ, 2012. 384 с. Режим доступа: http://e.lanbook.com/book/72311
- 59. Савина, Н. В. Практикум по электрическим сетям: учебное пособие / Н. В. Савина, Ю. В. Мясоедов, В. Ю. Маркитан. Благовещенск: АмГУ, 2014. 254 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/156469 (дата обращения: 14.03.2025).
- 60. Савина, Н. В. Проектирование развития электроэнергетических систем и электрических сетей : методические указания / Н. В. Савина. Благовещенск : АмГУ, 2013. 65 с. Текст : электронный // Лань : электронно-

- библиотечная система. URL: https://e.lanbook.com/book/156471 (дата обращения: 18.03.2025).
- 61. Савина, Н.В, Электрические сети в примерах и расчетах : Учеб. Пособие /Н.В.Савина, Ю.В.Мясоедов, Л.Н. Дудченко. Благовещенск : Издво АмГУ, 2010.– 238с.
- 62. Савина, Н.В. Надежность систем электроэнергетики [Электронный ресурс] : учеб. пособие / Н.В. Савина Благовещенск : Изд-во Амур. гос. ун-та, 2011. 268 с., 1898 Кб. Режим доступа : http://irbis.amursu.ru/DigitalLibrary/AmurSU_Edition/3060.pdf
- 63. Савина, Н.В. Надежность электроэнергетических систем / Н.В. Савина. Благовещенск: Изд–во АмГУ, 2013. 98 с.
- 64. Савина, Н.В. Надежность электроэнергетических систем [Электронный ресурс] :учебное пособие / Н. В. Савина. Благовещенск : Амурский гос. ун-т, 2014. 194 с. Режим доступа : http://irbis.amursu.ru/DigitalLibrary/AmurSU_Edition/7031.pdf
- 65. Савина, Н.В. Проектирование развития электроэнергетических систем и электрических сетей [Электронный ресурс] : метод. указ. к курсовому проектированию магист. направления подготовки «Электроэнергетика и электротехника» / Н. В. Савина ; АмГУ, Эн. ф. 2-е изд., испр. и доп. Благовещенск : Изд-во Амур. гос. ун-та, 2017. 46 с. Режим доступа : http://irbis.amursu.ru/DigitalLibrary/AmurSU_Edition/9633.pdf
- 66. Савина, Н.В. Проектирование развития электроэнергетических систем и электрических сетей: методические указания к курсовому проектированию / Н.В. Савина. Благовещенск: Изд–во АмГУ, 2013. 46 с.
- 67. Салыгин В. И., Гулиев И., Рябова М. И. Проблемы и перспективы развития сектора возобновляемых источников энергии в Китае // Вестник МГИМО. 2015. № 4. С. 36-45.

- 68. Симонова М. Д, Захаров В. Е. Статистический анализ тенденций развития мировой возобновляемой энергетики // Вестник МГИМО. 2018. №3. С. 214-220.
- 69. СО 153— 34.20.118— 2003 Методические рекомендации по проектированию развития энергосистем: Москва: ФГУП НТЦ "Промышленная безопасность" 2006 53 с. [Электронный ресурс]. Режим доступа: http://www.znaytovar.ru/gost/2/SO_15334201182003_Metodicheski.html.
- 70. СТО 34.01-21-004-2019. Цифровой питающий центр. Требования к технологическому проектированию цифровых подстанций напряжением 110-220 кВ и узловых цифровых подстанций напряжением 35 кВ. Стандарт организации; введен 2019-03-29. ПАО «Россети», 2019. 114 с.
- 71. СТО 56947007 25.040.30.309-2020. Корпоративный профиль МЭК 61850 ПАО «ФСК ЕЭС». Стандарт организации; введён 2020-10-05. ПАО «ФСК ЕЭС», 2020. 257 с.
- 72. СТО 59012820–29.240.30.003–2009. Схемы принципиальные электрические распределительных устройств подстанций 35–750 кВ. Типовые решения М.: ОАО «СО ЕЭС», 2009. 132 с.
- 73. Схема и программа развития электроэнергетики Амурской области на период 2022–2027 годов.
- 74. Схема нормального зимнего режима электрических соединений Амурских электрических сетей, зимний режим 2024 г.
- 75. Тарифы на электроэнергию [Электронный ресурс]. Режим доступа: https://energo-24.ru/authors/energo-24/12302.html- 09.05.2024
- 76. Третьякова М. В., Линник Ю. Н. Подход к оценке энергоэффективности организаций топливно-энергетического комплекса // Надежность и безопасность энергетики. 2017. Т. 10. №1. С. 18-25.
- 77. Ушаков, В. Я. Электроэнергетические системы и сети : учебное пособие для вузов В. Я. Ушаков. Москва : Издательство Юрайт, 2020. 446 с. (Высшее образование). ISBN 978-5-534-00649-0. Текст :

- электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/451327 (дата обращения: 07.04.2025).
- 78. Файбисович, Д. Л. Укрупненные стоимостные показатели сетей 35 1150 кВ / Д. Л. Файбисович, И. Г. Карапетян. М. : ЭНАС, 2013. 376 с.
- 79. Электротехнический справочник. Том 3: Производство, передача и распределение электрической энергии. [Электронный ресурс] : справ. Электрон.дан. М. : Издательский дом МЭИ, 2009. 964 с. Режим доступа : http://e.lanbook.com/book/72341
- 80. Электротехническое оборудование последнего поколения [Электронный ресурс] : учеб. пособие для магист. программы "Электроэнергет. системы и сети" / сост. А. Н. Козлов, В. А. Козлов, А. Г. Ротачева; АмГУ, Эн. ф. 2-е изд., испр. Благовещенск: Изд-во Амур. гос. ун-та, 2017. 165 с. Режим доступа: http://irbis.amursu.ru/DigitalLibrary/AmurSU_Edition/9692.pdf.
- 81. Измерительные трансформаторы АО «ПРОФОТЕК». [Электронный ресурс]. Режим доступа: https://profotech.ru/upload/Профотек.pdf (дата обращения 12.04.2025).

Приложение A Граф рассматриваемого эквивалента сети

Приложение Б.

Расчёт в программе Mathcad

Выбор вводных выключателей:
$$\alpha_{\mathsf{t}} \coloneqq 1$$

$$\alpha_i := 1.05$$
 $K_{y\pi 220} := 1.75$ $K_{y\pi 10} := 1.85$

$$I_{mo220} := 9.45$$

$$T_{a220} := 0.3$$
 $T_{a10} := 0.6$

$$I_{no10} := 70.86$$

$$i_{y\pi,220} := \sqrt{2} \cdot K_{y\pi,220} \cdot I_{no220} = 23.388$$

i..... :=
$$\sqrt{2}$$
 · K..... I.... = 185.391

$$I_{pa6220} := \frac{\sqrt{335^2}}{2\sqrt{3} \cdot 220} = 0.44$$

$$\begin{split} & i_{y\pi220} := \sqrt{2} \, \cdot \, K_{y\pi220} \, \cdot \, I_{no220} = 23.388 \\ & i_{y\pi10} := \sqrt{2} \, \cdot \, K_{y\pi10} \, \cdot \, I_{no10} = 185.391 \end{split} \qquad I_{pa6220} := \frac{\sqrt{335^2}}{2\sqrt{3} \, \cdot \, 220} = 0.44 \qquad I_{pa610.5} := \frac{\sqrt{335^2}}{4\sqrt{3} \, \cdot \, 10.5} = 4.605 \end{split}$$

$$B_{\kappa pac220} := I_{no220}^{2} (1.02 + T_{a220}) = 117.879$$

$$\mathtt{B_{\kappa pacl0}} := \mathtt{I_{nol0}}^2 \! \big(1.02 + \mathtt{T_{al0}} \big) = 8.134 \times 10^3$$

$$i_{ar220} := \sqrt{2} \cdot I_{no220} \cdot e^{\frac{-0.01}{T_{a220}}} = 12.926$$

$$i_{ar10} := \sqrt{2} \cdot I_{no10} \cdot e^{\frac{-0.01}{T_{a10}}} = 98.555$$

*Сравнить варианты пот дисконтированным затратам. Определить оптимальный.

Укрупнённые стоимостные показатели взяты из СТО 5694700729.240.124-2012.

Рассчёт приведённых затрат.

$$3 := \mathbf{E} \cdot \mathbf{K} + \mathbf{H}$$

$$E := 0.1$$

Капиталовложения на сооружение сети:

$$K := (K_{nn} + K_{nc}) \cdot \kappa_{nnh}$$

Капиталовложения в строительство ВЛ:

$$K_{\text{em}} := \mathbf{C_0} \cdot \mathbf{1}$$

Расчёт в программе Mathcad

Вариант №1.

$$K_{BR1} := C_{300} \cdot 230 = 483000$$

тыс.руб

Затраты, сопутствующие строительству:

3,3% - временные здания и сооружения;

3,18% - содержание службы заказчика, строительный контроль;

8% - проектно-изыскательные работы, затраты на проведение экспертизы проектной документации.

Итоговая стоимость ВЛ:

$$K_{\Sigma_{E\pi l}} := K_{E\pi l} + K_{E\pi l} \cdot \left(\frac{3.3 + 3.18 + 8}{100}\right) = 552938.4$$
 Teic.py6

Вариант №2.

$$K_{BR2} := C_{300} \cdot 140 = 2.94 \times 10^5$$

Итоговая стоимость ВЛ:

$$K_{\Sigma \text{em2}} := K_{\text{em2}} + K_{\text{em2}} \cdot \left(\frac{3.3 + 3.18 + 8}{100} \right) = 3.366 \times 10^5$$
 тыс.руб

Капиталовложения в строительство ПС:

$$K_{nc} := K_{noct} + K_{py} + K_{rp} + K_{ky}$$

Кпост - постоянная часть затрат;

Кру - стоимость распределительных устройств;

Ктр - стоимость трансформаторов;

Кку - стоимость компенсиующих устройств.

Расчёт в программе Mathcad

$$K_{ov1} := 28900 = 2.89 \times 10^4$$

$$K_{BbIK110} := 7000$$

$$K_{BhTK220} := 12500$$

$$K_{opy1} := K_{py1} + (K_{BbIK220} \cdot 2) = 5.39 \times 10^4$$

$$K_{opy2} := K_{py1} + (K_{BbIK220} \cdot 2) = 5.39 \times 10^4$$

$$K_{rp1} := 4K_{rp125} = 9.36 \times 10^4$$
 тыс.руб

$$K_{ro2} := 4K_{ro125} = 9.36 \times 10^4$$
 тыс.руб

$$K_{nc1} := K_{nocrogha} + K_{opy1} + K_{rp1} = 1.95 \times 10^5$$
 тыс.руб

$$K_{\text{пс2}} := K_{\text{постодна}} + K_{\text{ору2}} + K_{\text{тр2}} = 1.95 \times 10^5$$
 тыс.руб

Итоговые капиталовложения на сооружение ПС:

$$K_{\Sigma nc1} := K_{nc1} + K_{nc1} \cdot \left(\frac{3.3 + 3.18 + 8}{100}\right) = 2.232 \times 10^5$$
 Teic.py6

$$K_{\Sigma nc2} := K_{nc2} + K_{nc2} \cdot \left(\frac{3.3 + 3.18 + 8}{100}\right) = 2.232 \times 10^5$$
 тыс.руб

Капиталовложения на сооружение сети:

$$\kappa_{\text{инф}} := 6.58$$

Вариант №1.

$$K_1 := \left(K_{\Sigma \mathtt{E} \pi 1} + K_{\Sigma \mathtt{n} c 1}\right) \cdot \kappa_{\mathtt{H} \mathsf{H} \varphi} = 5107227.552$$
 тыс.руб

Расчёт в программе Mathcad

Вариант №2.

$$K_2 := (K_{\Sigma \text{вп2}} + K_{\Sigma \text{пc2}}) \cdot \kappa_{\text{инф}} = 3.684 \times 10^6$$
 тыс.руб

Затраты на издержки:

$$H := H_3 + H_{aM} + H_{\Delta W}$$

Эксплуатационные издержки:

$$\alpha_{9,ER} := 0.007$$
 $\alpha_{9,RC} := 0.05$

Вариант №1.

$$M_{\rm s1} := \alpha_{\rm s.e.m} \cdot {\rm K}_{\Sigma \rm e.m.l} + \alpha_{\rm s.m.c} \cdot {\rm K}_{\Sigma \rm m.c.l} = 1.503 \times 10^4$$
 тыс.руб

Вариант №2.

$$\text{И}_{s2} := \alpha_{s, nn} \cdot \text{K}_{\Sigma nn2} + \alpha_{s, nn} \cdot \text{K}_{\Sigma nn2} = 1.352 \times 10^4$$
 тыс.руб

Амортизационные издержки:

лет
$$T_{cn} := 20$$
 лет

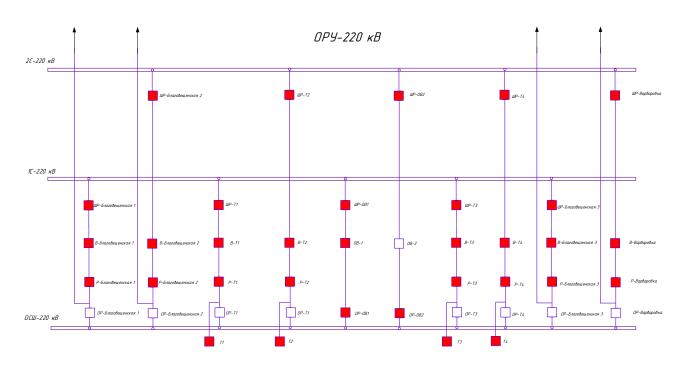
Вариант №1.

$$M_{am1} := \frac{K_1}{T_{cn.}} = 2.554 \times 10^5$$
 тыс.руб

Вариант №2.

$$M_{ass2} := \frac{K_2}{T_{crr}} = 1.842 \times 10^5$$
 тыс.руб

Стоимость потерь электроэнергии:


$$\mathbf{H}_{\Delta \mathbf{W}} := \Delta \mathbf{W} \cdot \mathbf{C}_0$$

Потери электроэнергии:

$$\Delta W := \Sigma W_{EII} + \Sigma W_{TP}$$

Потери в ВЛ:

Расчёт в программе Mathcad

Средняя частота устойчивых отказов линии 220 кВ:

$$\omega_{B\Pi}:=\frac{0.5}{100}$$

$$L_7 := 8$$
 KM

Средняя время восстановления линии 220 кВ:

$$t_{BЛвосст} := 11$$
 ч

$$\omega 2 := \omega_{\text{B}\Pi} \cdot L_1 = 0.1$$

$$\omega 18 := \omega_{BJI} \cdot L_5 = 0.02$$

$$ω6 := ω_{B,\Pi} \cdot L_2 = 0.1$$

$$\omega 22 := \omega_{BJI} \cdot L_6 = 0.025$$

$$\omega 10 := \omega_{BJI} \cdot L_3 = 0.04$$

$$\omega 41 := \omega_{BJI} \cdot L_7 = 0.04$$

$$\omega 14 := \, \omega_{B\Pi} \cdot \, L_4 = \, 0.02$$

Расчёт в программе Mathcad

Средняя частота устойчивых отказов трансформаторов 220 кВ, мощностью 10-80 MBA:

$$\omega_{TP} := 0.035$$

Средняя время восстановления трансформаторов 220 кВ:

$$t_{\text{ТРвосст}} := 60$$
 ч

Частота и время текущих ремонтов для трансформаторов 220 кВ:

$$\omega_{TP_{TEK}} := 0.75 \hspace{1cm} t_{TP_{TEK}} := 28$$

Частота и время капитальных ремонтов для трансформаторов 220 кВ:

$$\omega_{TP_{KAR}} := 0.166$$
 $t_{TP_{KAR}} := 300$

Средняя частота устойчивых отказов выключателей 220 кВ:

$$\omega_{\text{Вкз}} \coloneqq 0.004$$
 $\omega_{\text{Вразрыв}} \coloneqq 0.016$

Средняя время восстановления выключателей 220 кВ:

$$t_{\text{Ввосст}} := 55$$
 ч

Вероятность отказапри отключении на коммутационную опреацию и КЗ выключателей 220 кВ:

$$\alpha_{OII} := 0.004$$
 $\alpha_{K3} := 0.006$

Частота и время текущих ремонтов для выключателей 220 кВ:

$$\omega_{\text{BTeK}} := 0.2 \qquad \qquad t_{\text{BTeK}} := 122$$

Частота и время капитальных ремонтов для выключателей 220 кВ:

$$\omega_{\text{Bkan}} := 0.8$$
 $t_{\text{Bkan}} := 15$

Вероятности отказа и безотказной работы элементов схемы:

$$q_{B,T2} := \frac{\omega 2 \cdot t_{B,TBOCCT}}{8760} = 1.256 \times 10^{-4} \qquad \qquad q_{B,T6} := \frac{\omega 6 \cdot t_{B,TBOCCT}}{8760} = 1.256 \times 10^{-4}$$

$$p_{BJI2} := 1 - q_{BJI2} = 0.99987$$
 $p_{BJI6} := 1 - q_{BJI6} = 0.99987$

$$q_{B\Pi10} := \frac{\omega 10 \cdot t_{B\Pi BOCCT}}{8760} = 5.023 \times 10^{-5} \qquad \qquad q_{B\Pi14} := \frac{\omega 14 \cdot t_{B\Pi BOCCT}}{8760} = 2.511 \times 10^{-5}$$

$$p_{B\Pi 10} := 1 - q_{B\Pi 10} = 0.99995$$
 $p_{B\Pi 14} := 1 - q_{B\Pi 14} = 0.99997$

$$q_{B\Pi 18} := \frac{\omega 18 \cdot t_{B\Pi BOCCT}}{8760} = 2.511 \times 10^{-5} \qquad \qquad q_{B\Pi 22} := \frac{\omega 22 \cdot t_{B\Pi BOCCT}}{8760} = 3.139 \times 10^{-5}$$

$$p_{B\Pi18} := 1 - q_{B\Pi18} = 0.99997$$
 $p_{B\Pi22} := 1 - q_{B\Pi22} = 0.99997$

$$q_{B,\Pi 41} := \frac{\omega 41 \cdot t_{B,\Pi B O C C T}}{8760} = 5.023 \times 10^{-5}$$

$$p_{B\Pi 41} := 1 - q_{B\Pi 41} = 0.99995$$

Расчёт в программе Mathcad

$$q_{TP} := \frac{\omega_{TP} \cdot t_{TP_{BOCCT}}}{8760} = 2.397 \times 10^{-4}$$

$$p_{TP} := 1 - q_{TP} = 0.99976$$

$$q_{B_{BS}} \coloneqq \frac{\omega_{Brs} \cdot t_{Beoccr}}{8760} = 2.511 \times 10^{-5}$$

$$q_{Bpaspais} \coloneqq \frac{\omega_{Bpaspais} \cdot t_{Beoccr}}{8760} = 1.005 \times 10^{-4}$$

$$a_{\text{Вразрыв}} := \frac{\omega_{\text{Вразрыв}} \cdot t_{\text{Ввосст}}}{9760} = 1.005 \times 10^{-4}$$

$$p_{BKS} := 1 - q_{BKS} = 0.99997$$

$$p_{\text{Вразрыв}} := 1 - q_{\text{Вразрыв}} = 0.9999$$

Дополнительные параметры для выключателей:

$$N_{\text{on}} := 1$$
 $T_{\text{on}} := 45$ $a := 1$ $k_{\text{amb}} := 0.8$

$$q_1 := q_{B_{KS}} + \alpha_{K3} \cdot \left(1 + a \cdot k_{ang}\right) \cdot \left(q_{B_{KS}} \cdot q_{B,72}\right) + \alpha_{O\Pi} \cdot N_{o\pi} \cdot \frac{T_{o\pi}}{8760} = 4.5662 \times 10^{-5}$$

$$q2 \coloneqq q_{\text{BKS}} + \alpha_{\text{K3}} \cdot \left(1 + a \cdot k_{\text{ame}}\right) \cdot \left(q_{\text{BKS}} \cdot q_{\text{BJI6}}\right) + \alpha_{\text{OII}} \cdot N_{\text{oii}} \cdot \frac{T_{\text{oii}}}{\text{ergs}} = 4.566 \times 10^{-5}$$

$$q5 := q_{B_{K3}} + \alpha_{K3} \cdot \left(1 + a \cdot k_{ans}\right) \cdot \left(q_{B_{K3}} \cdot q_{BJI10}\right) + \alpha_{OII} \cdot N_{on} \cdot \frac{T_{on}}{\sigma_{CC}} = 4.566 \times 10^{-12}$$

$$q6 := q_{BK3} + \alpha_{K3} \cdot \left(1 + a \cdot k_{amB}\right) \cdot \left(q_{BK3} \cdot q_{B\Pi14}\right) + \alpha_{O\Pi} \cdot N_{o\pi} \cdot \frac{T_{o\pi}}{e_{GK0}} = 4.566 \times 10^{-5}$$

$$\begin{aligned} q_2 &:= q_{B_{K3}} + \alpha_{K3} \cdot \left(1 + a \cdot k_{anng}\right) \cdot \left(q_{B_{K3}} \cdot q_{B,\Pi 6}\right) + \alpha_{O\Pi} \cdot N_{on} \cdot \frac{T_{on}}{o - \epsilon_{on}} = 4.566 \times 10^{-5} \\ q_5 &:= q_{B_{K3}} + \alpha_{K3} \cdot \left(1 + a \cdot k_{anng}\right) \cdot \left(q_{B_{K3}} \cdot q_{B,\Pi 10}\right) + \alpha_{O\Pi} \cdot N_{on} \cdot \frac{T_{on}}{o - \epsilon_{on}} = 4.566 \times 10^{-5} \\ q_6 &:= q_{B_{K3}} + \alpha_{K3} \cdot \left(1 + a \cdot k_{anng}\right) \cdot \left(q_{B_{K3}} \cdot q_{B,\Pi 14}\right) + \alpha_{O\Pi} \cdot N_{on} \cdot \frac{T_{on}}{o - \epsilon_{on}} = 4.566 \times 10^{-5} \\ q_8 &:= q_{B_{K3}} + \alpha_{K3} \cdot \left(1 + a \cdot k_{anng}\right) \cdot \left(q_{B_{K3}} \cdot q_{B,\Pi 18}\right) + \alpha_{O\Pi} \cdot N_{on} \cdot \frac{T_{on}}{o - \epsilon_{on}} = 4.566 \times 10^{-5} \\ q_9 &:= q_{B_{K3}} + \alpha_{K3} \cdot \left(1 + a \cdot k_{anng}\right) \cdot \left(q_{B_{K3}} \cdot q_{B,\Pi 22}\right) + \alpha_{O\Pi} \cdot N_{on} \cdot \frac{T_{on}}{o - \epsilon_{on}} = 4.566 \times 10^{-5} \end{aligned}$$

$$q9 := q_{B_{K3}} + \alpha_{K3} \cdot \left(1 + a \cdot k_{amB}\right) \cdot \left(q_{BK3} \cdot q_{B,\Pi22}\right) + \alpha_{O\Pi} \cdot N_{on} \cdot \frac{T_{on}}{8760} = 4.566 \times 10^{-5}$$

$$q_r := 0.005$$
 $\omega_r := 0.00$

Определяем вероятность отказа и безотказной работы схемы, состоящей из последовательно и параллельно соединенных элементов:

$$q_{31} \coloneqq \left(q_1 + q_{B\Pi 2} + q_1\right) + 3 \cdot \left(q_1 + q_{TP} + q_1 + q_r\right) + \left(q_1 + q_{B\Pi 6} + q_1\right) + \left(q_1 + q_{B\Pi 10} + q_1\right) + \left(q_1 + q_{B\Pi 14} + q_1\right) + \left(q_1 + q_{B\Pi 18} + q_1\right) + \left(q_1 + q_{B\Pi 22} + q_1\right) + \left(q_1 + q_{B\Pi 4} + q_1\right) = 0.017$$

$$q_C := q_{31} = 0.017$$

$$\omega_{31} := \left(\omega_{B\kappa s} + \omega_{B\Pi} + \omega_{B\kappa s}\right) \cdot 7 + \left(\omega_{B\kappa s} + \omega_{r} + \omega_{B\kappa s} + \omega_{B\kappa s}\right) \cdot 3 = 0.202$$

$$\omega_{32} := \omega_{31}$$

$$\omega_{\text{C}} := \omega_{\text{31}} \cdot \omega_{\text{32}} = 0.041$$

Определим среднее времени восстановления каждой цепи:

$$t_B := \frac{q_{91}}{\omega_{91}} \cdot 8760 = 740.074$$
 \mathbf{q} $t_{mp1} := t$

Определяем параметр потока отказов системы из двух параллельных цепочек

$$\omega_{C'} := \omega_{\mathfrak{I}1} \cdot q_{\mathfrak{I}1} + \frac{2 \cdot t_B}{8760} = 0.172$$

Определение средней вероятности состояния отказа или коэффициен простоя системы:

$$K_{mp1} := 1 - e^{-t_B}$$

 $K_{mp1} = 0.078$

$$K_{mo2} = 0.078$$

$$K_{nc} \coloneqq q_{31} + K_{np1} \cdot \left(q_{BD2} \cdot q_{BD6} \cdot q_{BD10} \cdot q_{BD14} \cdot q_{BD18} \cdot q_{BD22} \cdot q_{BD41}\right) + K_{np2} \cdot \left(q_{BD2} \cdot q_{BD6} \cdot q_{BD10} \cdot q_{BD14} \cdot q_{BD18} \cdot q_{BD22} \cdot q_{BD41}\right) = 0.017$$

Среднее время б/о работы:

$$T_c := \frac{1}{\omega_{C'}} = 5.8$$
 лет

Расчетное время б/о работы:

$$\alpha := 0.105$$

$$T_p := 0.105 \cdot T_c = 0.609$$
 лет

Среднее время восстановления системы:

$$\mathbf{t}_{\text{BC}} := \frac{\mathbf{K}_{\text{пс}}}{\omega_{\text{C}'}} \, \cdot \, 8760 = 867.07 \,\, \text{часов}$$

Расчёт в программе Mathcad

Расчетное время б/о работы:

$$\alpha := 0.105$$

$$T_p := 0.105 \cdot T_c = 0.609 \, \text{net}$$

Среднее время восстановления системы:

$$\mathbf{t}_{\text{вс}} := \frac{\mathbf{K}_{\text{пс}}}{\omega_{C^*}} \cdot 8760 = 867.07$$
 часов

Мощность нагрузки, КВт

$$P_{mc} := 450 \cdot 10^3$$

Средняя величина удельного основного ущерба, у.е./КВт*ч

$$y_0 := 0.6$$

Удельная величина ущерба внезапности при полном отключении, у.е./КВт

$$y_{m} := 20$$

Продолжительность отключения, ч

$$t_{orp} := 1$$

$$T_{mo.1} := \omega_{31} = 0.202$$

$$T_{mp.2} := \omega_{32} = 0.202$$

$$\omega_{0.\pi p110} := 0.025 \qquad T_{\mathtt{B.\pi p110}} := 60 \qquad \qquad \omega_{\mathtt{TeK.\pi p110}} := 0.01 \qquad T_{\mathtt{B.TeK.\pi p110}} := 30$$

$$\omega_{\text{kan.tpl10}} := 0.0166$$
 $T_{\text{B.kan.tpl10}} := 250$

$$T_{\text{mp.rp.}110} \coloneqq \omega_{0.\text{rp}110} \cdot T_{\text{b.rp}110} + \omega_{\text{tek.rp}110} \cdot T_{\text{b.rek.rp}110} + \omega_{\text{kam.rp}110} \cdot T_{\text{b.kam.rp}110} = 5.95$$

$$T_{np.3} := T_{np.rp.110} = 5.95$$

Среднее время отключения потребителя, ч:

$$t_{mp,nc} := \frac{T_{np,1} + T_{np,2}}{2} + T_{np,3} = 6.152$$

Основная величина ущерба, у.е.

$$\mathbf{Y}_{\text{och}} \coloneqq \mathbf{Y}_{\text{o}} \cdot \mathbf{t}_{\text{mp.nc}} \cdot \mathbf{P}_{\text{nc}} \cdot \mathbf{q_{C}} \cdot 90 \cdot 8760 = 2.235 \times 10^{10}$$

кВТ

ущерба внезапности, у.е.

$$\mathbf{Y}_{\mathtt{BH}1} := \, \mathbf{Y}_{\mathtt{BH}} \cdot \, \mathbf{t}_{\mathtt{np},\mathtt{nc}} \cdot \, \mathbf{P}_{\mathtt{nc}} \cdot \, \mathbf{q}_{\mathtt{C}} \cdot \, 1000 = \, 9.449 \times \, 10^{9}$$

Величина ущерба, тыс. руб.

$$\textbf{y}_{\Pi C.} \coloneqq \textbf{y}_{\texttt{och}} + \textbf{y}_{\texttt{ehl}} = 3.18 \times 10^{10}$$

Расчёт в программе Mathcad

Средняя частота устойчивых отказов линии 220 кВ:

$$\omega_{B\Pi} := \frac{0.5}{100}$$

$$L_1 := 10$$
 km $L_4 := 4$ km

$$L_2 := 8 \hspace{1cm} \kappa_M \hspace{1cm} L_5 := 4 \hspace{1cm} \kappa_M$$

$$L_3 := 20$$
 km $L_6 := 5$ km $L_7 := 8$ km

Средняя время восстановления линии 220 кВ:

$$t_{BЛвосст} := 11$$
 ч

$$\omega 2 := \, \omega_{B,II} \cdot L_1 = 0.05 \qquad \qquad \omega 18 := \, \omega_{B,II} \cdot L_5 = 0.02 \label{eq:omega_scale}$$

$$\omega 6 := \, \omega_{B\Pi} \cdot L_2 = 0.04 \qquad \qquad \omega 22 := \, \omega_{B\Pi} \cdot L_6 = 0.025 \label{eq:omega_B}$$

$$\omega 10 := \omega_{B\Pi} \cdot L_3 = 0.1$$
 $\omega 41 := \omega_{B\Pi} \cdot L_7 = 0.04$

$$\omega 14 := \omega_{BJI} \cdot L_4 = 0.02$$

Средняя частота устойчивых отказов трансформаторов 220 кВ, мощностью 10-80 MBA:

$$\omega_{TD} := 0.035$$

Средняя время восстановления трансформаторов 220 кВ:

Частота и время текущих ремонтов для трансформаторов 220 кВ:

$$\omega_{TP_{TEK}} := 0.75 \hspace{1cm} t_{TP_{TEK}} := 28$$

Частота и время капитальных ремонтов для трансформаторов 220 кВ:

$$\omega_{TP_{KAII}} := 0.166$$
 $t_{TP_{KAII}} := 300$

Средняя частота устойчивых отказов выключателей 220 кВ:

$$\omega_{\text{Bks}} := 0.004 \qquad \qquad \omega_{\text{Bpasphib}} := 0.016$$

Средняя время восстановления выключателей 220 кВ:

Вероятность отказапри отключении на коммутационную опреацию и КЗ выключателей 220 кВ:

$$\alpha_{O\Pi} := 0.004$$
 $\alpha_{K3} := 0.006$

Частота и время текущих ремонтов для выключателей 220 кВ:

$$\omega_{\text{Btek}} \coloneqq 0.2 \qquad \qquad t_{\text{Btek}} \coloneqq 122$$

Частота и время капитальных ремонтов для выключателей 220 кВ:

$$\omega_{B\kappa an}:=0.8 \hspace{1cm} t_{B\kappa an}:=15$$

Вероятности отказа и безотказной работы элементов схемы:

$$q_{BJI2} := \frac{\omega 2 \cdot t_{BJIBOCCT}}{8760} = 6.279 \times 10^{-5} \qquad \qquad q_{BJI6} := \frac{\omega 6 \cdot t_{BJIBOCCT}}{8760} = 5.023 \times 10^{-5}$$

$$p_{B\Pi 2} := 1 - q_{B\Pi 2} = 0.99994$$
 $p_{B\Pi 6} := 1 - q_{B\Pi 6} = 0.99995$

$$q_{B\Pi10} := \frac{\omega 10 \, \cdot \, t_{B\Pi BOCCT}}{8760} = 1.256 \times 10^{-4} \qquad \qquad q_{B\Pi14} := \frac{\omega 14 \, \cdot \, t_{B\Pi BOCCT}}{8760} = 2.511 \times 10^{-5}$$

$$p_{B\Pi 10} := 1 - q_{B\Pi 10} = 0.99987$$
 $p_{B\Pi 14} := 1 - q_{B\Pi 14} = 0.99997$

Расчёт в программе Mathcad

$$q_{B,\Pi 18} \coloneqq \frac{\omega 18 \cdot t_{B,\Pi BOCCT}}{8760} = 2.511 \times 10^{-5} \qquad \qquad q_{B,\Pi 22} \coloneqq \frac{\omega 22 \cdot t_{B,\Pi BOCCT}}{8760} = 3.139 \times 10^{-5}$$

$$A_{B,\Pi 22} := \frac{\omega 22 \cdot t_{B,\Pi_{BOCCT}}}{8760} = 3.139 \times 10^{-1}$$

$$p_{B\Pi18} := 1 - q_{B\Pi18} = 0.99997$$

$$p_{B\Pi 22} := 1 - q_{B\Pi 22} = 0.99997$$

$$q_{B\Pi 41} := \frac{\omega 41 \cdot t_{B\Pi BOCCT}}{8760} = 5.023 \times 10^{-5}$$

$$p_{B\Pi41} := 1 - q_{B\Pi41} = 0.99995$$

$$q_{TP} := \frac{\omega_{TP} \cdot t_{TP_{BOCCT}}}{8760} = 2.397 \times 10^{-4}$$

$$p_{TP} := 1 - q_{TP} = 0.99976$$

$$q_{BKS} := \frac{\omega_{BKS} \cdot t_{BBOCCT}}{9760} = 2.511 \times 10^{-5}$$

$$\mathbf{q}_{\mathsf{BKS}} \coloneqq \frac{\omega_{\mathsf{BKS}} \cdot \mathbf{t}_{\mathsf{BBOCCT}}}{8760} = 2.511 \times 10^{-5} \\ \mathbf{q}_{\mathsf{Bpasphie}} \coloneqq \frac{\omega_{\mathsf{Bpasphie}} \cdot \mathbf{t}_{\mathsf{BBOCCT}}}{8760} = 1.005 \times 10^{-4}$$

$$p_{BKS} := 1 - q_{BKS} = 0.99997$$

$$p_{\text{Вразрыв}} := 1 - q_{\text{Вразрыв}} = 0.9999$$

Дополнительные параметры для выключателей:

$$N_{\text{on}} := 1 \hspace{1cm} T_{\text{on}} := 45 \hspace{1cm} a := 1 \hspace{1cm} k_{\text{ane}} := 0.8$$

$$q_1 \coloneqq q_{\text{BK3}} + \alpha_{\text{K3}} \cdot \left(1 + a \cdot k_{\text{ams}}\right) \cdot \left(q_{\text{BK3}} \cdot q_{\text{B,T2}}\right) + \alpha_{\text{OH}} \cdot N_{\text{off}} \cdot \frac{T_{\text{off}}}{8760} = 4.5662 \times 10^{-5}$$

$$q2 \coloneqq q_{\text{BKS}} + \alpha_{\text{KS}} \cdot \left(1 + a \cdot k_{\text{amB}}\right) \cdot \left(q_{\text{BKS}} \cdot q_{\text{BM6}}\right) + \alpha_{\text{OII}} \cdot N_{\text{on}} \cdot \frac{1_{\text{on}}}{2} = 4.566 \times 10^{-5}$$

$$\text{q5} := \text{q}_{\text{BKS}} + \alpha_{\text{K3}} \cdot \left(1 + \text{a} \cdot \text{k}_{\text{amb}}\right) \cdot \left(\text{q}_{\text{BKS}} \cdot \text{q}_{\text{B,TII0}}\right) + \alpha_{\text{OII}} \cdot \text{N}_{\text{on}} \cdot \frac{\text{T}_{\text{on}}}{\text{e}_{\text{TeV}}} = 4.566 \times 10^{-1}$$

$$q6 \coloneqq q_{B\kappa s} + \alpha_{K3} \cdot \left(1 + a \cdot k_{\text{ann}}\right) \cdot \left(q_{B\kappa s} \cdot q_{B\Pi 14}\right) + \alpha_{O\Pi} \cdot N_{\text{on}} \cdot \frac{1_{\text{on}}}{\sigma_{\text{TA}}} = 4.566 \times 10^{-1}$$

$$q8 \coloneqq q_{B_{K3}} + \alpha_{K3} \cdot \left(1 + a \cdot k_{\text{amg}}\right) \cdot \left(q_{B_{K3}} \cdot q_{B,\Pi18}\right) + \alpha_{\text{O}\Pi} \cdot N_{\text{o}\pi} \cdot \frac{T_{\text{o}\pi}}{\sigma_{\text{m}\pi}} = 4.566 \times 10^{-5}$$

$$\begin{aligned} q_2 &:= q_{B_{KS}} + \alpha_{K3} \cdot \left(1 + a \cdot k_{ans}\right) \cdot \left(q_{B_{KS}} \cdot q_{B,\Pi 6}\right) + \alpha_{O\Pi} \cdot N_{on} \cdot \frac{T_{on}}{\sigma \cdot c_{O}} = 4.566 \times 10^{-5} \\ q_5 &:= q_{B_{KS}} + \alpha_{K3} \cdot \left(1 + a \cdot k_{ans}\right) \cdot \left(q_{B_{KS}} \cdot q_{B,\Pi 0}\right) + \alpha_{O\Pi} \cdot N_{on} \cdot \frac{T_{on}}{\sigma \cdot c_{O}} = 4.566 \times 10^{-5} \\ q_6 &:= q_{B_{KS}} + \alpha_{K3} \cdot \left(1 + a \cdot k_{ans}\right) \cdot \left(q_{B_{KS}} \cdot q_{B,\Pi 14}\right) + \alpha_{O\Pi} \cdot N_{on} \cdot \frac{T_{on}}{\sigma \cdot c_{O}} = 4.566 \times 10^{-5} \\ q_8 &:= q_{B_{KS}} + \alpha_{K3} \cdot \left(1 + a \cdot k_{ans}\right) \cdot \left(q_{B_{KS}} \cdot q_{B,\Pi 18}\right) + \alpha_{O\Pi} \cdot N_{on} \cdot \frac{T_{on}}{\sigma \cdot c_{O}} = 4.566 \times 10^{-5} \\ q_9 &:= q_{B_{KS}} + \alpha_{K3} \cdot \left(1 + a \cdot k_{ans}\right) \cdot \left(q_{B_{KS}} \cdot q_{B,\Pi 18}\right) + \alpha_{O\Pi} \cdot N_{on} \cdot \frac{T_{on}}{\sigma \cdot c_{O}} = 4.566 \times 10^{-5} \end{aligned}$$

$$q_r := 0.005$$
 $\omega_r := 0.025$

Определяем вероятность отказа и безотказной работы схемы, состоящей из последовательно и параллельно соединенных элементов:

$$q_{\text{31}} \coloneqq \left(q_1 + q_{\text{B}72} + q_1\right) + 3 \cdot \left(q_1 + q_{\text{TP}} + q_1 + q_r\right) + \left(q_1 + q_{\text{B}76} + q_1\right) + \left(q_1 + q_{\text{B}710} + q_1\right) + \left(q_1 + q_{\text{B}714} + q_1\right) + \left(q_1 + q_{\text{B}718} + q_1\right) + \left(q_1 + q_{\text{B}722} + q_1\right) + \left(q_1 + q_{\text{B}741} + q_1\right) = 0.017$$

$$\omega_{\text{31}} \coloneqq \left(\omega_{\text{Bks}} + \omega_{\text{BH}} + \omega_{\text{Bks}}\right) \cdot 7 + \left(\omega_{\text{Bks}} + \omega_{\text{r}} + \omega_{\text{Bks}} + \omega_{\text{Bks}}\right) \cdot 3 = 0.202$$

$$\omega_{32} := \omega_{31}$$

$$\omega_C := \, \omega_{\mathfrak{I}1} \cdot \, \omega_{\mathfrak{I}2} = \, 0.041$$

Определим среднее времени восстановления каждой цепи:

$$t_B := \frac{q_{91}}{\omega_{91}} \cdot 8760 = 737.351 \quad \mathbf{q} \qquad \qquad t_{mp1} \coloneqq t_{TP_{BOCCT}}$$

$$t_{np1} := t_{TPBOO}$$

Pacчёт в программе Mathcad Определяем параметр потока отказов системы из двух параллельных цепочек

$$\omega_{C'} := \omega_{31} \cdot q_{31} + \frac{2 \cdot t_B}{8760} = 0.171$$

Определение средней вероятности состояния отказа или коэффициен простоя

$$K_{mp1} := 1 - e^{\frac{-t_{mp}}{t_B}}$$

 $K_{mp1} = 0.078$

$$\frac{-t_{np1}}{t_B}$$

$$K_{-2} = 1 - e$$

$$K_{mo2} = 0.078$$

 $K_{nc} := q_{91} + K_{np1} \cdot \left(q_{B,T2} \cdot q_{B,T6} \cdot q_{B,T10} \cdot q_{B,T14} \cdot q_{B,T18} \cdot q_{B,T22} \cdot q_{B,T41}\right) + K_{np2} \cdot \left(q_{B,T2} \cdot q_{B,T6} \cdot q_{B,T10} \cdot q_{B,T14} \cdot q_{B,T18} \cdot q_{B,T22} \cdot q_{B,T41}\right) = 0.017$

Среднее время б/о работы:

$$T_c := \frac{1}{\omega_{C'}} = 5.841$$
 лет

Расчетное время б/о работы:

 $\alpha := 0.105$

$$T_p := 0.105 \cdot T_c = 0.613 \,\text{ner}$$

Среднее время восстановления системы:

$$\mathbf{t_{BC}} := \frac{\mathbf{K_{BC}}}{\omega_{C^{c}}} \cdot 8760 = 867.07 \ \mathtt{часов}$$

Мощность нагрузки, КВт

$$P_{nc} := 450 \cdot 10^3$$

Средняя величина удельного основного ущерба, у.е./КВт*ч

$$y_0 := 0.6$$

Удельная величина ущерба внезапности при полном отключении, у.е./КВт

Продолжительность отключения, ч

 $t_{orp} := 1$

$$T_{mp.1} := \omega_{\Im 1} = 0.202$$

$$T_{mp.2} := \omega_{32} = 0.202$$

$$\omega_{0.\text{Tpl10}} := 0.025 \qquad T_{\text{B.Tpl10}} := 60 \qquad \qquad \omega_{\text{Tek.Tpl10}} := 0.01 \quad T_{\text{B.Tek.Tpl10}} := 30$$

$$\omega_{\text{Kall.Tpl10}} := 0.0166$$
 $T_{\text{B.Kall.Tpl10}} := 250$

$$T_{np.np.110} := \omega_{0.np110} \cdot T_{\text{B.np110}} + \omega_{\text{Tek.np110}} \cdot T_{\text{B.nek.np110}} + \omega_{\text{Kan.np110}} \cdot T_{\text{B.Kan.np110}} = 5.95$$

$$T_{np.3} := T_{np.\tau p.110} = 5.95$$

Среднее время отключения потребителя, ч:

$$t_{np,nc} := \frac{T_{np,1} + T_{np,2}}{2} + T_{np,3} = 6.152$$

Основная величина ущерба, у.е.

$$\mathbf{Y}_{\text{och}} := \mathbf{Y}_{\text{o}} \cdot \mathbf{t}_{\text{mp.nc}} \cdot \mathbf{P}_{\text{nc}} \cdot \mathbf{q}_{\text{C}} \cdot 90 \cdot 8760 = 2.219 \times 10^{10}$$

кВТ

ущерба внезапности, у.е.

$$\mathbf{Y}_{\mathtt{BH}1} := \mathbf{Y}_{\mathtt{BH}} \cdot \mathbf{t}_{\mathtt{np.nc}} \cdot \mathbf{P}_{\mathtt{nc}} \cdot \mathbf{q}_{\mathtt{C}} \cdot 1000 = 9.383 \times 10^9$$

Величина ущерба, тыс. руб.

$$y_{\Pi C.} := y_{\text{och}} + y_{\text{bhl}} = 3.158 \times 10^{10}$$

Вариант №1.

$$dP_1 := 5.96$$

Суммарные потери в ВЛ:

$$\Sigma W_{\text{ept}1} := dP_1 \cdot T = 3.278 \times 10^4$$

Вариант №2.

$$dP_2 := 6.01$$

Суммарные потери в ВЛ:

$$\Sigma W_{BD2} := dP_2 \cdot T = 3.305 \times 10^4$$

Потери электрической энергии в трансформаторах:

$$dP_{1\pi0} := 2.25$$

$$dP_{2\pi p} := 2.25$$

Суммарные потери в трансформаторах:

$$\Sigma W_{\text{Tol}} := dP_{1\text{To}} \cdot T = 1.238 \times 10^4$$

$$\Sigma W_{\tau p2} := dP_{2\tau p} \cdot T = 1.238 \times 10^4$$

Суммарные потери в сети:

Вариант №1.

$$\Sigma W_1 := (\Sigma W_{\text{BMl}} + \Sigma W_{\text{Tpl}}) = 4.516 \times 10^4$$

Вариант №2.

$$\Sigma W_2 := (\Sigma W_{\text{BR}2} + \Sigma W_{\text{TP}2}) = 4.543 \times 10^4$$

Стоимость потерь электроэнергии:

$$C_0 := 1.6$$
 $py6/кBт*ч$

Вариант №1.

$$M_{\Delta W1} := \frac{\Sigma W_1 \cdot C_0}{1000} = 72.248$$
 тыс.руб

Вариант №2.

$$\mathbb{H}_{\Delta W2} := \frac{\Sigma W_2 \cdot C_0}{1000} = 72.688$$
тыс.руб

Расчёт в программе Mathcad

Затраты на издержки:

Вариант №1.

$$И_1 := И_{s1} + И_{am1} + И_{\Delta W1} = 2.705 \times 10^5$$
 тыс.руб

Вариант №2.

$$H_2 := H_{a2} + H_{aw2} + H_{\Delta W2} = 1.978 \times 10^5$$
 тыс.руб

Приведённые затраты:

Вариант №1.

$$3_1 := E \cdot K_1 + H_1 = 781188.75$$
 тыс.руб

Вариант №2.

$$3_2 := E \cdot K_2 + U_2 = 566120.1928$$
 тыс.руб

Часть 3.

*Для выбранного варианта рассчитать ЧДД, индекс доходности, внутреннюю норму доходности.

Для расчёта ЧДД необходимо рассчитать годовую прибыль, годовой налог на прибыль.

Годовая прибыль:

$$O := W_{rog} \cdot T_3$$
 $T_3 := 2 \quad py6/кB\tau^* ч$

Переданная электроэнергия за год:

$$W_{\text{год}} := \mathbf{P} \cdot T_{\text{max}} = \mathbf{I}$$
 $T_{\text{max}} := 5500$ Ч $S_{\text{HOM}1} := 125000$ к B т $\mathbf{n} := 4$ $k_{1_{3\text{HOM}}} := 0.67$ $S_{\text{p1}} := \mathbf{n} \cdot S_{\text{HOM}1} \cdot k_{1_{3\text{HOM}}} = 3.35 \times 10^5$ к B А $\cos \varphi_1 := 0.9$ $P_{\text{p1}} := S_{\text{p1}} \cdot \cos \varphi_1 = 3.015 \times 10^5$ к B Т

Расчёт в программе Mathcad

Переданная электроэнергия за год:

$$W_{ron} := P_p \cdot T_{max} = 1.658 \times 10^9$$
 к B_T *ч

Годовая прибыль:

$$O := (W_{rog} \cdot T_3) \cdot 10^{-3} = 3.317 \times 10^6$$
 тыс.руб

Экономическая эффективность:

$$И := H_2 - H_{an/2} = 1.359 \times 10^4$$
 тыс.руб

$$\Pi_{ron} := O - H = 3.303 \times 10^6$$
 тыс.руб

Налог на прибыль:

$$H := \Pi_{ron} \cdot 0.24 = 7.927 \times 10^5$$
 тыс.руб

Чистый дисконтированный доход:

ЧДД :=
$$\Sigma \left[\frac{\Theta_t}{\left(1 + E_H\right)^t} \right]$$

Капиталовложения в первый год:

$$K_{t1} := 0.4 \cdot K_2 = 1.473 \times 10^6$$
 тыс.руб

Капиталовложения во второй год:

$$K_{c2} := 0.6 \cdot K_2 = 2.21 \times 10^6$$
 тыс.руб

Первый год:

$$E_{H} := 0.12$$

$$\Im_1 := -И - K_{t1} = -1.487 \times 10^6$$
 тыс.руб

ЧДД
$$_1 := \frac{\Im_1}{\left(1 + E_{_H}\right)^1} = -1.328 \times 10^6$$
 тыс.руб

Второй год:

$$\mathfrak{I}_2 := -\mathsf{H} - \mathsf{K}_{t2} = -2.224 \times 10^6$$
 тыс.руб

ЧДД₂ :=
$$\frac{\Im_2}{\left(1 + E_{_{\rm H}}\right)^2} = -1.773 \times 10^6$$
 тыс.руб

Расчёт в программе Mathcad

$$4ДД_2 := 4ДД_1 + 4ДД_2 = -3.1 \times 10^6$$
 тыс.руб

Третий год:

$$9_3 := 0 - H - H = 2.51 \times 10^6$$
 тыс.руб

 $4 \Pi \Pi_3 := \frac{9_3}{(1 + E_R)^3} = 1.787 \times 10^6$ тыс.руб

 $4 \Pi \Pi_3 := 4 \Pi \Pi_2 + 4 \Pi \Pi_3 = -1.314 \times 10^6$ тыс.руб

 $4 \Pi \Pi_4 := \frac{9}{(1 + E_R)^4} = 1.595 \times 10^6$ тыс.руб

 $4 \Pi \Pi_4 := \frac{9}{(1 + E_R)^5} = 1.424 \times 10^6$ тыс.руб

 $4 \Pi \Pi_5 := \frac{9}{(1 + E_R)^5} = 1.424 \times 10^6$ тыс.руб

 $4 \Pi \Pi_5 := \frac{9}{(1 + E_R)^5} = 1.272 \times 10^6$ тыс.руб

 $4 \Pi \Pi_5 := \frac{9}{(1 + E_R)^6} = 1.272 \times 10^6$ тыс.руб

 $4 \Pi \Pi_5 := \frac{9}{(1 + E_R)^7} = 1.135 \times 10^6$ тыс.руб

 $4 \Pi \Pi_7 := \frac{9}{(1 + E_R)^8} = 1.014 \times 10^6$ тыс.руб

 $4 \Pi \Pi_8 := \frac{9}{(1 + E_R)^8} = 1.014 \times 10^6$ тыс.руб

 $4 \Pi \Pi_8 := \frac{9}{(1 + E_R)^9} = 9.052 \times 10^5$ тыс.руб

 $4 \Pi \Pi_9 := \frac{9}{(1 + E_R)^9} = 9.052 \times 10^5$ тыс.руб

 $4 \Pi \Pi_9 := \frac{9}{(1 + E_R)^9} = 8.082 \times 10^5$ тыс.руб

 $4 \Pi \Pi_{10} := \frac{9}{(1 + E_R)^{10}} = 8.082 \times 10^5$ тыс.руб

 $4 \Pi \Pi_{10} := \frac{9}{(1 + E_R)^{10}} = 7.216 \times 10^5$ тыс.руб

 $4 \Pi \Pi_{11} := \frac{9}{(1 + E_R)^{11}} = 7.216 \times 10^5$ тыс.руб

 $4 \Pi \Pi_{11} := \frac{9}{(1 + E_R)^{11}} = 7.216 \times 10^5$ тыс.руб

 $4 \Pi \Pi_{11} := 4 \Pi \Pi_{11} = 7.562 \times 10^6$
 $4 \Pi \Pi_{12} := \frac{9}{(1 + E_R)^{12}} = 6.443 \times 10^5$ тыс.руб

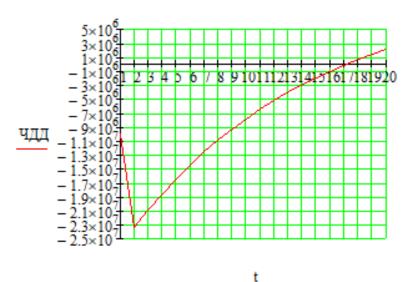
 $4 \Pi \Pi_{11} := 4 \Pi \Pi_{11} + 4 \Pi \Pi_{11} = 7.562 \times 10^6$
 $4 \Pi \Pi_{12} := \frac{9}{(1 + E_R)^{12}} = 6.443 \times 10^5$ тыс.руб

 $4 \Pi \Pi_{11} := 4 \Pi \Pi_{11} + 4 \Pi \Pi_{11} = 7.562 \times 10^6$

Расчёт в программе Mathcad

$$\begin{array}{lll} \text{ЧДД}_{12} \coloneqq \frac{9}{\left(1+E_{_{1\! R}}\right)^{12}} = 6.443 \times 10^5 & \text{тыс.ру6} \\ \text{ЧДД}_{13} \coloneqq \frac{9}{\left(1+E_{_{1\! R}}\right)^{13}} = 5.753 \times 10^5 & \text{тыс.ру6} \\ \text{ЧДД}_{13} \coloneqq \frac{9}{\left(1+E_{_{1\! R}}\right)^{14}} = 5.136 \times 10^5 & \text{тыс.ру6} \\ \text{ЧДД}_{14} \coloneqq \frac{9}{\left(1+E_{_{1\! R}}\right)^{14}} = 5.136 \times 10^5 & \text{тыс.ру6} \\ \text{ЧДД}_{14} \coloneqq \frac{9}{\left(1+E_{_{1\! R}}\right)^{15}} = 4.586 \times 10^5 & \text{тыс.ру6} \\ \text{ЧДД}_{15} \coloneqq \frac{9}{\left(1+E_{_{1\! R}}\right)^{15}} = 4.586 \times 10^5 & \text{тыс.ру6} \\ \text{ЧДД}_{15} \coloneqq \text{ЧДД}_{14} + \text{ЧДД}_{15} = 9.754 \times 10^6 \\ \end{array}$$

$$\begin{array}{lll} \text{ЧДД}_{16} \coloneqq \frac{9}{\left(1+E_{_{1\! R}}\right)^{16}} = 3.656 \times 10^5 & \text{тыс.ру6} \\ \text{ЧДД}_{16} \coloneqq \text{ЧДД}_{15} + \text{ЧДД}_{16} = 1.016 \times 10^7 \\ \end{array}$$


$$\begin{array}{lll} \text{ЧДД}_{17} \coloneqq \frac{9}{\left(1+E_{_{1\! R}}\right)^{16}} = 3.264 \times 10^5 & \text{тыс.ру6} \\ \text{ЧДД}_{17} \coloneqq \text{ЧДД}_{16} + \text{ЧДД}_{17} = 1.053 \times 10^7 \\ \end{array}$$

$$\begin{array}{lll} \text{ЧДД}_{18} \coloneqq \frac{9}{\left(1+E_{_{1\! R}}\right)^{18}} = 3.264 \times 10^5 & \text{тыс.ру6} \\ \text{ЧДД}_{18} \coloneqq \text{ЧДД}_{17} + \text{ЧДД}_{18} = 1.086 \times 10^7 \\ \end{array}$$

$$\begin{array}{lll} \text{ЧДД}_{19} \coloneqq \frac{9}{\left(1+E_{_{1\! R}}\right)^{19}} = 2.915 \times 10^5 & \text{тыс.ру6} \\ \text{ЧДД}_{19} \coloneqq \text{ЧДД}_{18} + \text{ЧДД}_{19} = 1.115 \times 10^7 \\ \end{array}$$

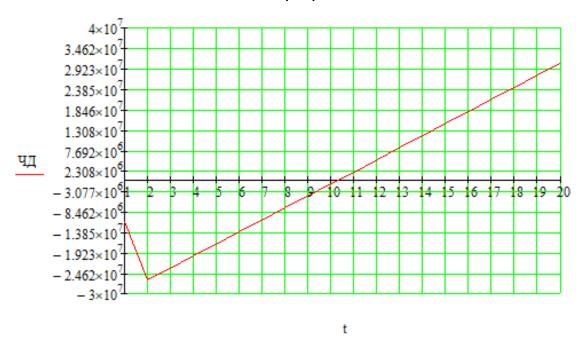
$$\begin{array}{lll} \text{ЧДД}_{20} \coloneqq \frac{9}{\left(1+E_{_{1\! R}}\right)^{20}} = 2.602 \times 10^5 & \text{тыс.ру6} \\ \text{ЧДД}_{20} \coloneqq \text{ЧДД}_{10} + \text{ЧДД}_{10} = 1.141 \times 10^7 \end{array}$$

Расчёт в программе Mathcad

Индекс доходности дисконтированных инвестиций:

ИДД :=
$$\frac{4ДД_{20.}}{K_2}$$
 + 1 = 4.097

ИДД>1, следовательно, проект экономически эффективен.


<u>Простой срок окупаемости</u> - продолжительность периода от начального момента до момента окупаемости, после которого текущий ЧД становится и в дальнейшем остаётся положительным.

Чистый доход:

Расчёт в программе Mathcad

ЧД $_7 := 9 = 2.51 \times 10^6$	THE DVG	$\Psi \Pi_{6.} := \Psi \Pi_{5.} + \Psi \Pi_{6} = 6.33 \times 10^{6}$	тыс.руб
		$\Psi \Pi_{7.} := \Psi \Pi_{6.} + \Psi \Pi_{7} = 8.84 \times 10^{6}$	тыс.руб
$ 4Д_8 := 9 = 2.51 \times 10^6 $	тыс.руб	$\Psi \Pi_{8.} := \Psi \Pi_{7.} + \Psi \Pi_{8} = 1.135 \times 10^{7}$	Thic pyb
$\Psi Д_0 := 9 = 2.51 \times 10^6$	тыс.руб	_	
ЧД ₁₀ := Э = 2.51 × 10 ⁶	тыс.руб	$ 4 \Pi_{9} := 4 \Pi_{8} + 4 \Pi_{9} = 1.386 \times 10^{7} $	тыс.руб
ЧД ₁₁ := Э = 2.51 × 10 ⁶		$ \mathbf{\Psi} \mathbf{\Pi}_{10.} := \mathbf{\Psi} \mathbf{\Pi}_{9.} + \mathbf{\Psi} \mathbf{\Pi}_{10} = 1.637 \times 10^{7} $	тыс.руб
чд ₁₁ := Э = 2.51 × 10	тыс.руо	$ \mathbf{\Psi} \mathbf{\Pi}_{11} := \mathbf{\Psi} \mathbf{\Pi}_{10} + \mathbf{\Psi} \mathbf{\Pi}_{11} = 1.888 \times 10^{7} $	тыс.руб
$\Psi \Pi_{12} := 9 = 2.51 \times 10^6$	тыс.руб	_	
ЧД $_{13} := 9 = 2.51 \times 10^6$	тыс.руб	$ 4\Pi_{12} := 4\Pi_{11} + 4\Pi_{12} = 2.139 \times 10^{7} $	тыс.руо
ЧД ₁₄ := Э = 2.51 × 10 ⁶	тыс.руб	$ \mathbf{\Psi} \mathbf{\Pi}_{13} := \mathbf{\Psi} \mathbf{\Pi}_{12} + \mathbf{\Psi} \mathbf{\Pi}_{13} = 2.39 \times 10^{7} $	тыс.руб
		$ \mathbf{\Psi} \mathbf{\Pi}_{14.} := \mathbf{\Psi} \mathbf{\Pi}_{13.} + \mathbf{\Psi} \mathbf{\Pi}_{14} = 2.641 \times 10^{7} $	тыс.руб
$\Psi \Pi_{15} := \Im = 2.51 \times 10^6$	тыс.руо	$ \mathbf{\Psi} \mathbf{\Pi}_{15.} := \mathbf{\Psi} \mathbf{\Pi}_{14.} + \mathbf{\Psi} \mathbf{\Pi}_{15} = 2.892 \times 10^{7} $	тыс.руб
$\Psi Д_{16} := Э = 2.51 \times 10^6$	тыс.руб		
$\Psi \Pi_{17} := 9 = 2.51 \times 10^6$	тыс.руб	$\Psi \Pi_{16.} := \Psi \Pi_{15.} + \Psi \Pi_{16} = 3.143 \times 10^7$	тыс.руб
ЧД ₁₈ := Э = 2.51 × 10 ⁶	тыс руб	$ \mathbf{\Psi} \mathbf{\Pi}_{17.} := \mathbf{\Psi} \mathbf{\Pi}_{16.} + \mathbf{\Psi} \mathbf{\Pi}_{17} = 3.394 \times 10^{7} $	тыс.руб
		$ \mathbf{\Psi} \mathbf{\Pi}_{18.} := \mathbf{\Psi} \mathbf{\Pi}_{17.} + \mathbf{\Psi} \mathbf{\Pi}_{18} = 3.645 \times 10^{7} $	тыс.руб
$ 4Д_{19} := Э = 2.51 \times 10^6 $	тыс.руб	$ \mathbf{\Psi} \mathbf{\Pi}_{19} := \mathbf{\Psi} \mathbf{\Pi}_{18} + \mathbf{\Psi} \mathbf{\Pi}_{19} = 3.896 \times 10^{7} $	тыс.руб
$\Psi Д_{20} := Э = 2.51 \times 10^6$	тыс.руб	_	
		$\Psi \Pi_{20} := \Psi \Pi_{19} + \Psi \Pi_{20} = 4.147 \times 10^{7}$	тыс.руб

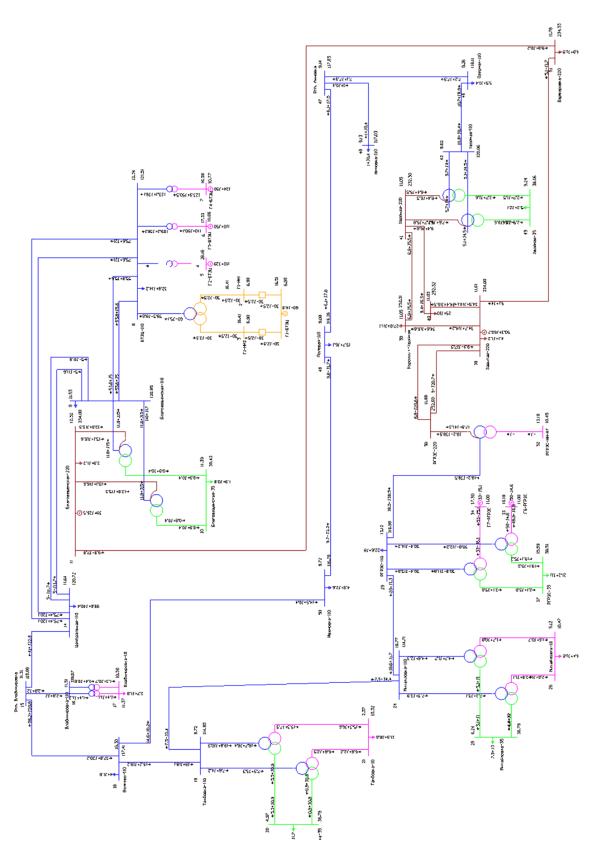
Расчёт в программе Mathcad

Простой срок окупаемости составит 3 года 5 месяцев.

<u>Дисконтированный срок окупаемости</u> - продолжительность периода от начального момента до момента окупаемости с учётом дисконтирования, после которого текущий ЧДД становится и в дальнейшем остаётся положительным.

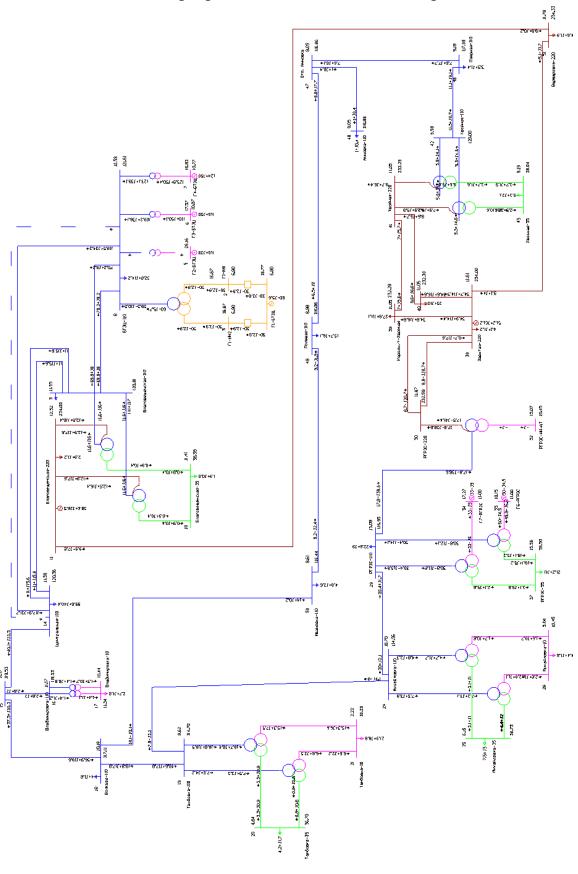
ВДН := 3 + (4 - 3)
$$\cdot \frac{\text{ЧДД}_{4.}}{\text{ЧДД}_{4.} - \text{ЧДД}_{3.}} = 3.177$$

*Рассчитать рентабельность предложенного варианта внешнего электроснабжения.


$$\begin{split} R_t &\coloneqq \frac{\vartheta_t}{K} \cdot 100 \\ R_1 &\coloneqq \frac{\vartheta_1}{K_2} \cdot 100 = -40.369 \\ R_2 &\coloneqq \frac{\vartheta_2}{K_2} \cdot 100 = -60.369 \\ R_3 &\coloneqq \frac{\vartheta_3}{K_2} \cdot 100 = 68.147 \\ \end{split}$$

Приложение В.

Тип	Номер Название		N cxh	■ Район	Рн			Рг		V зд	Q min	Q max В ш		V	dV	Delta
гин Ген	1 Г1-БТЭЦ	о_ном 6,3	N_CXH		Р_Н 1	0	Д_H О	60					0			16,51314
Нагр	2 F1-HH1	6.3	0		1	0	0	00	-4,54855				_	6.901004	,	-
Нагр	3 F1-HH2	6,3	0		1	0	0	0					0	.,	-,	16,41308
Нагр	4 F1-H	110	0		1	0	0	0	0				_	120,9959	,	-
Ген	5 Г2-БТЭЦ	10,5	0		1	0	0	110				-	0	120,3333		26,16302
Ген+	6 ГЗ-БТЭЦ	10,5	0		1	0	0	110	50				0		3,407793	
Ген+	7 Г4-БТЭЦ	10,5	0		1	0	0	124	50					10,76604		-
Нагр	8 БТЭЦ-110	115	0		1	32,8	14,2	0	0					121,5146	,	
Нагр	9 Благовещенская-110	115	0		1	141	17	0	0			-		120,9454	-	11,53378
Нагр	10 Благовещенская-35	38	0		1	1.9	0,76	0	0	-	-	-	0	-,	1,140962	
База	11 Благовещенская-220	230	0		1	2,9		39,04501		234			0	234		12,32341
Нагр	12 Благовещенская-Н1	230	0		1	0	1,10	0 0	20,31177			-	0	229.959		11,52595
Нагр	13 Благовещенская-Н2	230	0		1	0	0	0	0	_	_		0	229,959	-	11,52595
Нагр	14 Центральная-110	115	0		1	99,6	40,4	0	0		0	-		120,7245	,	
Нагр	15 Отп. Владимировка	115	0		1	99,0	40,4	0	0	-		-	0	-		11,30628
Нагр	16 Владимировка-110	115	0		1	0	0	0	0	-	-	-	_	119,8738		
Нагр	17 Владимировка-10	10,5	0		1	2,7	1,8	0	0	-	_	-	0	-		-
Нагр	18 Волково-110	115	0	_	1	4	1,8	0	0			-		117,4075		
Нагр	19 Тамбовка-110	115	0		1	0	0	0	0	-	_	-		114,9524		
Нагр	20 Тамбовка-110	38	0		1	4,23	1,69	0	0	-	-	-		36,79274	,	4,970726
Нагр	20 Тамбовка-33 21 Тамбовка-10	10,5	0		1	21.88	8.76	0	0		0	-		10,31534	-	-
Нагр	22 Тамбовка-10	10,5	0		1	0	0,70	0	0	-		-	0		,	4,952041
Нагр	23 Тамбовка-Н2	115	0		1	0	0	0	0	-	_	-	_	109,9731	-	4,964319
Нагр	24 Михайловка-110	115	0		1	0	0	0	0			-	0		,	10,76729
Нагр	25 Михайловка-110	38	0		1	7.47	2,988	0	0			-	0	36,7854	.,	6,236543
Нагр	26 Михайловка-33	10.5	0		1	4,41	1,764	0	0	-	-	-		10.47035	,	5,124254
Нагр	27 Михайловка-10	10,5	0		1	4,41	1,764	0	0					110,0084		6,189339
Нагр	28 Михайловка-Н2	115			1	0	0	0	0		0	-		110,0084		-
Нагр	29 РГРЭС-110	115	0		1	22,59	9,036	0	-	-		U		116,9753		
Нагр	30 РГРЭС-220	230	0		1	0	0,030	0						232,5957	-	
Нагр	31 PFP9C-H-AT	230	0		1	0	0	0					0	-	-	13,09672
Нагр	32 PFP9C-HH-AT	10,5	0		1	0	0	0	0	-	_	-	_	10,45031		13,09672
Ген	33 Г6-РГРЭС	10,5	0		1	0	0	50	-4,63167	11	_	-	0		4,761905	-
Ген	34 Г7-РГРЭС	10,5	0		1	0	0	33	-5,12376			-	0			17,29723
Нагр	35 H1-PFP9C	115	0		1	0	0	0	-5,12570	0			_	115,0518		
Нагр	36 H2-PFP9C	115	0		1	0	0	0	0	-	_	-		115,0078	-	
Нагр	37 PFP9C-35	38	0		1	21,2	11	0	0					38,50538		-
База	38 Завитая-220	230	0		1	4,1	1,2		60,73077	234	_	-	0	234	-	11,61086
Нагр	39 Короли/т-Хвойная	230	0		1	27,8	11,12	0	00,73077			-		232,3065		
Нагр	40 Белогорск/т-Хвойная	230	0		1	25	11,12	0	0			-		232,3183		
Нагр	41 Хвойная-220	230	0		1	0	0	0	0	_	_	-		232,3165		11,05134
Нагр	42 Хвойная-110	115	0		1	0	0	0	0		_	-		120,0607		
Нагр	42 ХВОЙНАЯ-110 43 ХВОЙНАЯ-35	38	0		1	5,2	2.1	0	-	_	_		0		0,162659	
Нагр	44 Хвойная-Н1	230	0		1	0	2,1	0	0					228,2972	,	
Нагр	45 Хвойная-Н2	230	0		1	0	0	0	0	-	_	-	0			9,615244
Нагр	46 Озерная-110	115	0		1	3.52	1.408	0	0	-	_	-		118,1108		
Нагр	46 Озерная-110 47 Отп. Анновка	115	0		1	3,52	1,408	0	0	-	_	-		117,0299		-
	48 Анновка-110	115	0		1	1,01	0,4	0	0	-	_	-		117,0299	-	
Нагр Нагр	48 Анновка-110 49 Полевая-110	115	0		1	15.7	6.1	0	0					116,2627		-
Нагр	50 Ивановка-110	115	0		1	4,8	2,6	0						116,2627	-	-
Нагр	51 Варваровка-220	230	0		1	4,78	1.91	0	0	-	-	-		234,3304	,	-
ı ıaı p	DI Dahaahnaka-750	230			1	4,/0	1,51					U	U	434,3304	1.004/98	11./03/0


Гип	N_нач	N_кон	N_n	ID Груп	пы Название	R)	(В	3 I	⟨τ/r	N_анц БД_анц		Р_нач	Q_нач Na	Ідоп_расч	l max	І загр.
ыкл			2	0	0 Г1-БТЭЦ - Г1-НН1		0	. 0	0	0	.,,		0		2,474176		2518,741	
ыкл		1	3	0	0 Г1-БТЭЦ - Г1-НН2		0	0	0	0	0	0	0		2,474176		2518,741	
o-p			2	0	0 Г1-H - Г1-HH1		0,3	0	0	0	0,057			29,98162			143,5694	
o-p			3	0	0 Γ1-H - Γ1-HH2		0,3	0	0	0	0,057			29,98162			143,5694	
o-b			8	0	0 Г1-н - БТЭЦ-110		1,2	17,4	36.29	23.44	0,037	0	0	-59.9631			287.1374	
			5	0	0 БТЭЦ-110 - Г2-БТЭЦ		0,37	12,3	46,95	27,32	0,086		0	-39,9031	0	0 0	- , -	
p-p		в В	6	0	0 6T9U-110 - ГЗ-6Т9U		0,37	12,3	46,95	27,32	0.086				38.10366		549.5832	
p-p				-														
p-p			7	0	0 БТЭЦ-110 - Г4-БТЭЦ		0,3	9,2	54,64	34,15	0,086		-	123,0538	,		613,5228	
p-p	1:		12	0	0 Благовещенская-220 - Благовещенская-Н1		0,55	59,2	11,81	5,76	1	-		-13,1142			52,17478	
р-р	1	1 1	L3	0	0 Благовещенская-220 - Благовещенская-Н2		0,55	59,2	11,8	5,8	1	0	0	-13,1164	-16,5883	0 0	52,17708	
р-р	13	2	9	0	0 Благовещенская-Н1 - Благовещенская-110		0,48	0	0	0	0,526	0	0	-11,8449	-15,0404	0 0	48,06569	9
р-р	1	3	9	0	0 Благовещенская-Н2 - Благовещенская-110		0,48	0	0	0	0,526	0	0	-11,8449	-15,0404	0 0	48,06569	9
р-р	1	2 1	LO	0	0 Благовещенская-Н1 - Благовещенская-35		3,2	131	0	0	0,1673	0	0	-0,94985	-0,38257	0 0	2,570934	4
р-р	1	3 1	LO	0	0 Благовещенская-Н2 - Благовещенская-35		3,2	131	0	0	0,1673	0	0	-0,94985	-0,38257	0 0	2,570934	1
р-р	10	5 1	L7	0	0 Владимировка-110 - Владимировка-10		7,95	139	5,29	4,53	0.0956			-1,40681			7.768927	
р-р	10	5 1	17	0	0 Владимировка-110 - Владимировка-10		7,95	139	5,3	4,5	0,096	0		-1,42535		0 0	9,022726	
p-p	15	9 3	22	0	0 Тамбовка-110 - Тамбовка-Н1		5	142,2	8,317	5,74	1			-7,61385			43,63017	
	19		23	0	0 Тамбовка-110 - Тамбовка-Н2		1,5	56,9	13,23	10,58	1	0		-18,8461		0 0		
р-р	2		20	0			5		13,23	10,38	0,3347						,	
p-p					0 Тамбовка-Н1 - Тамбовка-35			0					0				6,238449	
Гр-р	2.		20	0	0 Тамбовка-Н2 - Тамбовка-35	-	1,5	0	0	0	0,3347	0	0	-3,34286			18,17642	
р-р	2:		21	0	0 Тамбовка-Н1 - Тамбовка-10		5	82,7	0	0	0,0956		0	-6,6212	-2,494		37,14669	
Гр-р	2:		21	0	0 Тамбовка-Н2 - Тамбовка-10		1,5	35,7	0	0	0,096		0				89,42815	
р-р	24		27	0	0 Михайловка-110 - Михайловка-Н1		5	142,2	8,3	5,7	1	-	0	.,		0 0	,	
Гр-р	24		28	0	0 Михайловка-110 - Михайловка-Н2		14,7	220,4	3,811	3,327	1	0	0	-4,79168	-2,2578		26,66012	_
р-р	2	7 2	25	0	0 Михайловка-Н1 - Михайловка-35		5	0	0	0	0,335	0	0	-4,42822	-1,99043	0 0	25,48014	1
Гр-р	2	В 2	25	0	0 Михайловка-Н2 - Михайловка-35		14,7	0	0	0	0,335	0	0	-3,06394	-0,99739	0 0	16,87903	3
Гр-р	2	7 2	26	0	0 Михайловка-Н1 - Михайловка-10		5	82,7	0	0	0,096	0		-2,76398		0 0	15,63472	2
р-р	2		26	0	0 Михайловка-Н2 - Михайловка-10		14,7	139	0	0	0,096	0		-1.65342	-0,751	0 0		
р-р	31		31	0	0 PFP9C-220 - PFP9C-H-AT		0.55	59,2	11,8	5,8	1			17.90467	-41.2725		111.6715	
р-р	3		29	0	0 PFP9C-H-AT - PFP9C-110		0,48	0	0	0	0,526			18,23857	, .		110,5348	
	3		32	0	0 PFP9C-H-AT - PFP9C-HH-AT		3,2	131	0	0	0,320			3,34E-14			1.40E-13	
p-p	21																	
p-p			35	0	0 PFP9C-110 - H1-PFP9C		0,4	18,6	36,29	29,49	1	-		30,40482	-13,924		165,0557	
Гр-р	3		34	0	0 Н1-РГРЭС - Г7-РГРЭС		0,4	11,9	0	0	0,096			32,96602			168,2692	
р-р	3		37	0	0 Н1-РГРЭС - РГРЭС-35		0,4	0	0	0	0,3347			-2,12464	-5,75758	0 0	,	
Гр-р	25	9 3	36	0	0 РГРЭС-110 - Н2-РГРЭС		0,4	18,6	36,3	29,5	1	0	0	30,39793	-14,2011	0 0	165,599	9
Гр-р	3	5 3	33	0	0 Н2-РГРЭС - Г6-РГРЭС		0,4	11,9	0	0	0,096	0	0	49,92318	-6,91703	0 0	253,0132	2
Гр-р	31	5 3	37	0	0 Н2-РГРЭС - РГРЭС-35		0,4	0	0	0	0,335	0	0	-19,0883	-5,24242	0 0	99,3735	5
Гр-р	4:	1 4	14	0	0 Хвойная-220 - Хвойная-Н1		1,8	160	8,6	1,03	1	0	0	-8,41957	-6,29212	0 0	26,12304	1
Гр-р	4	1 4	15	0	0 Хвойная-220 - Хвойная-Н2		1.9	175	8.7	1.05	1	0	0	-7.70964	-5.80424	0 0	23.98397	7
Гр-р	4	4 4	12	0	0 Хвойная-Н1 - Хвойная-110		1,8	0	0	0	0.526	0	0	-5,69591	-3.95648	0 0	17,53875	5
Гр-р	4		12	0	0 Хвойная-Н2 - Хвойная-110		1,9	0	0	0	0.526		0	-5,1135	-4,4724		17,18029	
	4		13	0	0 Хвойная-Н1 - Хвойная-35		3,6	130	0	0	0,1674	-		-2,66465		-	7.811526	
Гр-р	4		13	0				135	0	0		0					,	
Гр-р					0 Хвойная-Н2 - Хвойная-35		3,8		U		0,167	-		-2,53644			6,579612	
пэп			9	0	0 БТЭЦ-110 - Благовещенская-110		,8987	3,93	-12,1	0	0			-53,7804			256,9804	
пэп			9	0	0 БТЭЦ-110 - Благовещенская-110		,8987	3,93	-12,1	0	0			-53,7804			256,9804	
тэп			L4	0	0 Благовещенская-110 - Центральная-110		,0838	2,763	-9,198	0	0			5,017446			60,82709	
эп			14	0	0 Благовещенская-110 - Центральная-110		,0838	2,763	-9,2	0	0	-		5,017446			60,82716	
19П		-	L4	0	0 БТЭЦ-110 - Центральная-110		,5782	2,5311	-7,78	0	0	-		-75,6463			373,1838	62,197
эп		В 1	L4	0	0 БТЭЦ-110 - Центральная-110	0	,5782	2,5311	-7,78	0	0	0	0	-75,6463	-21,0247	0 600	373,1838	62,197
эп	14	4 1	15	0	0 Центральная-110 - Отп. Владимировка	1	,0238	2,6102	-8,69	0	0	0	0	-41,1698	-23,1343	0 500	226,1398	45,2279
эп	15		16	0	0 Отп. Владимировка - Владимировка-110		0,04	0,063	-0,196	0	0		0				16,71358	
эп	1		18	0	0 Отп. Владимировка - Волково-110	3	,2449	8,2724	-27,54	0	0			-38,1818			210,4379	
1911	18		19	0	0 Волково-110 - Тамбовка-110		4,3	11,19	-37,26	0	0		0	-19.1891	-18.1891		131,7407	
1911	19		24	0	0 Тамбовка-110 - Михайловка-110		10,23	26,576	-88,48	0	0		0	7,49283	-,		44,09972	
1911	24		29	0	0 Михайловка-110 - РГРЭС-110		11.03	28.66	-95,425	0	0			19.63284				
										-		-					99,20188	
эп	31		88	0	0 РГРЭС-220 - Завитая-220		4,272	19,09	-58,74	0	0	-		-8,97168	20,6756		55,94447	-,
ЭП	31		38	0	0 РГРЭС-220 - Завитая-220		4,29	19,176	-59,004	0	0	-			20,59685		55,72669	
ЭП	31		51	0	0 Завитая-220 - Варваровка-220		7,6	33,976	-104,544	0	0				3,987969		15,99014	
эп	5		11	0	0 Варваровка-220 - Благовещенская-220		.0,752	48,04	-147,84	0	0			9,892311			31,16357	
эп	3	В 3	39	0	0 Завитая-220 - Короли/т-Хвойная		3,811	17,03	-52,404	0	0	0	0	-34,655	-14,232	0 600	95,30678	15,884
эп	31	9 4	11	0	0 Короли/т-Хвойная - Хвойная-220	0	,0148	0,06649	-0,2	0	0	0	0	-6,75435	-5,51087	0 600	21,68198	3,6136
эп	31		10	0	0 Завитая-220 - Белогорск/т-Хвойная		3,81	17,03	-52,4	0	0	0	0	-34,4755			94,77619	
эп	41		11	0	0 Белогорск/т-Хвойная - Хвойная-220	n	,0835	0,373	-1,148	0	0		0				28,46005	
эп	4		16	0	0 Хвойная-110 - Озерная-110		8,954	15,67	-48,81	0	0		0	-10,8065			68,01887	
ЭΠ 	4		17	0	0 Озерная-110 - Отп. Анновка		6,168	10,79	-33,62	0	0	-	0	-7,1665			52,39528	
											-	-	-					
эп	4		18	0	0 Отп. Анновка - Анновка-110		0,163	0,286	-0,89	0	0		0	,	-0,38784		5,359118	
ЭП	4		19	0	0 Отп. Анновка - Полевая-110		4,599	8,0486	-25,07	0	0		0	-6,10759	-7,49502		49,01757	
эп	4		50	0	0 Полевая-110 - Ивановка-110		8,052	14,091	-43,89	0	0	0	0	9,623142	-1,6793		49,08733	
эп	50	1	18	0	0 Ивановка-110 - Волково-110		5,53	9,692	-30,19	0	0	0	0	14,47949	0.426169	0 300	71,66732	23.889

Продолжение приложение В. Расчёт в программе RastWin 3 исходного режима

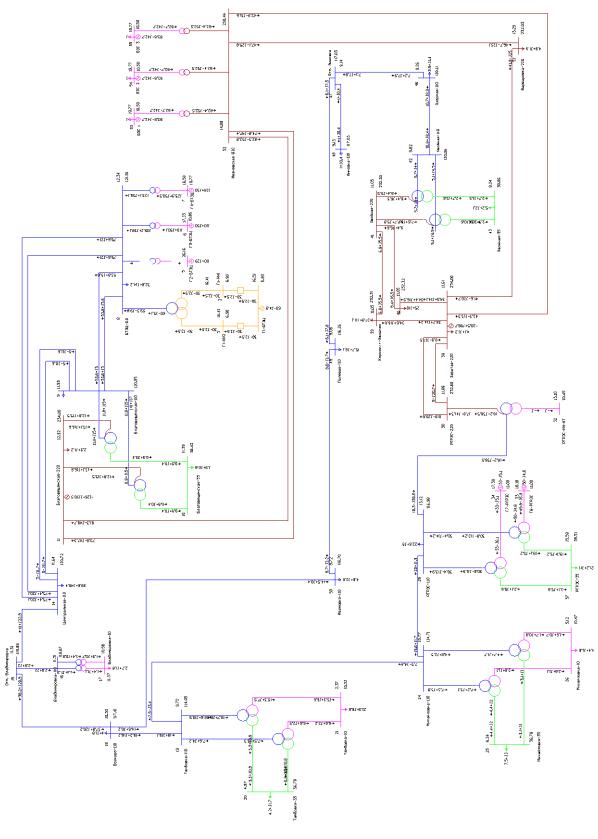
	Номер Название	U_ном	N_cxh	Район	P_1	- C)_H	Р_г	Q_r	V_3д	Q_min C	<u>l_max</u> В_ш		V	dV	Delta
Ген	1 Г1-БТЭЦ	6,3		0	0	0	0	60	-5,61308	6,9	-20	20	0	6,9	9,52381	16,76809
Нагр	2 Γ1-HH1	6,3		0	0	0	0	0	0	0	0	0	0	6,901138	9,541873	16,66802
Нагр	3 Γ1-HH2	6,3		0	0	0	0	0	0	0	0	0	0	6,901138	9,541873	16,66802
Нагр	4 Γ1-H	110		0	0	0	0	0	0	0	0	0	0	120,9983	9,998419	16,66467
Ген	5 Г2-БТЭЦ	10,5		0	0	0	0	110	28,96325	11	-50	50	0	0	0	26,16302
Ген+	6 ГЗ-БТЭЦ	10,5		0	0	0	0	110	50	11	-50	50	0	10,86593	3,485041	17,57329
Ген+	7 Г4-БТЭЦ	10,5		0	0	0	0	124	50	11	-50	50	0	10,7741	2,610434	16,82665
Нагр	8 БТЭЦ-110	115		0	0	32,8	14,2	0	0	0	0	0	0	121,6128	5,750223	12,59275
Нагр	9 Благовещенская-110	115		0	0	141	17	0	0	0	0	0	0	120,815	5,05651	11,54945
Нагр	10 Благовещенская-35	38		0	0	1,9	0,76	0	0	0	0	0	0	38,39196	1,031474	11,40719
База	11 Благовещенская-220	230		0	0	2,9	1,16	38,55549	28,47348	234	0	0	0	234	1,73913	12,32341
Нагр	12 Благовещенская-Н1	230	(0	0	0	0	0	0	0	0	0	0	229,7105	-0,12586	11,54111
Нагр	13 Благовещенская-Н2	230		0	0	0	0	0	0	0	0	0	0	229,7105	-0,12586	11,54111
Нагр	14 Центральная-110	115		0	0	99,6	40,4	0	0	0	0	0	0	120,3587	4,659735	11,49629
Нагр	15 Отп. Владимировка	115		0	0	0	0	0	0	0	0	0	0	119,5272	3,936735	11,16979
Нагр	16 Владимировка-110	115		0	0	0	0	0	0	0	0	0	0	119,5252	3,934993	11,1694
Нагр	17 Владимировка-10	10,5		0	0	2,7	1,8	0	0	0	0	0	0	11,33956	7,995814	10,43857
Нагр	18 Волково-110	115		0	0	4	1,8	0	0	0	0	0	0	117,1133	1,837641	10,17902
Нагр	19 Тамбовка-110	115		0	0	0	0	0	0	0	0	0	0	114,6952	-0,26508	9,615764
Нагр	20 Тамбовка-35	38		0	0	4,23	1,69	0	0	0	0	0	0	36,70101	-3,41839	4,840082
Нагр	21 Тамбовка-10	10,5		0	0	21,88	8,76	0	0	0	0	0	0	10,28842	-2,01504	2,223276
нагр	22 Тамбовка-Н1	115		0	0	0	0	0	0	0	0	0	0	109,694	-4,61395	4,821356
Нагр	23 Тамбовка-Н2	115		0	0	0	0	0	0	0	0	0	0	109,6992	-4,60942	4,833627
нагр	24 Михайловка-110	115		0	0	0	0	0	0	0	0	0	0	114,56	-0,38262	10,69688
Нагр	25 Михайловка-35	38		0	0	7,47	2,988	0	0	0	0	0	0	36,73207	-3,33665	6,153534
нагр	26 Михайловка-10	10,5		0	0	4,41	1,764	0	0	0	0	0	0	10,45496	-0,42898	5,037991
Нагр	27 Михайловка-Н1	115		0	0	0	0	0	0	0	0	0	0	109,8495	-4,47869	6,106192
нагр	28 Михайловка-Н2	115		0	0	0	0	0	0	0	0	0	0	110,0572	-4,29813	6,08392
нагр	29 РГРЭС-110	115		0	0	22,59	9,036	0	0	0	0	0	0	116,9487	1,694563	13,08679
нагр	30 PFP9C-220	230		0	0	0	0	0	0	0	0	0	0			11,87304
нагр	31 РГРЭС-Н-АТ	230		0	0	0	0	0	0	0	0	0	0	222,2975	-3,3489	13,06531
нагр	32 РГРЭС-НН-АТ	10,5		0	0	0	0	0	0	0	0	0	0	10,44798	-0,49539	13,06531
Ген	33 Г6-РГРЭС	10,5		0	0	0	0	50	-4,53169	11	-20	20	0	11	4,761905	18,14747
Ген	34 Г7-РГРЭС	10,5		0	0	0	0	33		11	-10	10	0		4,761905	
Нагр	35 H1-PГРЭC	115		0	0	0	0	0		0	0	0	0	115.0414	0.036041	15.55062
Нагр	36 Н2-РГРЭС	115		0	0	0	0	0	0	0	0	0	0	114,9974	-0,00223	15,5515
нагр	37 PFP9C-35	38		0	0	21,2	11	0	0	0	0	0	0	38,5019	1.32079	15,56059
База	38 Завитая-220	230		0	0	4,1	1,2	51,17319	61,15529	234	0	0	0	234		11,61086
Нагр	39 Короли/т-Хвойная	230		0	0	27.8	11.12	0	0	0	0	0	0		0.996709	-
Нагр	40 Белогорск/т-Хвойная	230		0	0	25	10	0	0		0	0		232,3045	.,	,
Нагр	41 Хвойная-220	230		0	0	0	0	0	0	0	0	0		232,2904		-
Нагр	42 Хвойная-110	115		0	0	0	0	0	0	0	0	0		120,0023	.,	,
Нагр	43 Хвойная-35	38		0	0	5,2	2,1	0	0		0	0	0	-	-	9,194682
Нагр	44 Хвойная-Н1	230		0	0	0	0	0	0		0	0	0	228,188		9,571192
Нагр	45 Хвойная-Н2	230		0	0	0	0	0	0		0	0		228,1856	-	9,569688
Нагр	46 Озерная-110	115		0	0	3.52	1.408	0	0	-	0	0	0		2,597079	
Нагр	47 Отп. Анновка	115		0	0	0	0	0	0	_	0	0	0	-	-	9,054409
Нагр	48 Анновка-110	115		0	0	1.01	0.4	0	0	-	0	0	0	-		9,053466
Нагр	49 Полевая-110	115		0	0	15.7	6,1	0	0	_	0	0	_	116,0607	-	8,984711
Нагр	50 Ивановка-110	115		0	0	4,8	2,6	0	0		0	0	0	.,	1.252159	
Нагр	51 Варваровка-220	230		0	0	4,78	1,91	0			-	0		234,3304	,	-,

Гип	N_нач N_к	он N_п	ID Гру	уппы Название					Kt/r	N_анц БД_анц			Q_нач Na	Ідоп_расч		І загр.
Выкл	1	2	0	0 Г1-БТЭЦ - Г1-НН1	0	0	0	0	0	0	0	-30	2,806541	0 0	2521,179	9
ыкл	1	3	0	0 Г1-БТЭЦ - Г1-НН2	0	0	0	0	0	0	0	-30	2,806541	0 0	2521,179	9
р-р	4	2	0	0 Г1-H - Г1-HH1	0,3	0	0	0	0,057	0	0 29,9	8157	-2,86029	0 0	143,7083	3
р-р	4	3	0	0 Γ1-H - Γ1-HH2	0,3	0	0	0	0,057	0	0 29,9	8157	-2,86029	0 0	143,7083	3
р-р	4	8	0	0 Г1-Н - БТЭЦ-110	1,2	17,4	36,29	23,44	1	. 0	0 -5	9,963	5,718802	0 0	287,4153	3
р-р	8	5	0	0 БТЭЦ-110 - Г2-БТЭЦ	0,37	12,3	46,95	27,32	0,086	0	0	0	0	0 0	C)
р-р	8	6	0	0 БТЭЦ-110 - ГЗ-БТЭЦ	0,37	12,3	47	27,3	0,086	0	0 109	,2183	38,10906	0 0	549,1658	3
р-р	8	7	0	0 БТЭЦ-110 - Г4-БТЭЦ	0,3	9,2	54,64	34,15	0,086	0	0 123	,0601	39,12207	0 0	613,0339	9
р-р	11	12	0	0 Благовещенская-220 - Благовещенская-Н1	0,55	59,2	11,81	5,76	1		0 -12	,8694	-17,5697	0 0	53,73505	
 Гр-р	11	13	0	0 Благовещенская-220 - Благовещенская-Н2	0,55	59,2	11,8	5,8	1	. 0		8716			53,73716	
Гр-р	12	9	0	0 Благовещенская-Н1 - Благовещенская-110	0,48	0	0	0	0,526	0	0 -11	,5998	-16	0 0	49,67076	5
Гр-р	13	9	0	0 Благовещенская-Н2 - Благовещенская-110	0,48	0	0	0	0,526	0	0 -11	,5998	-16	0 0	49,67076	5
Гр-р	12	10	0	0 Благовещенская-Н1 - Благовещенская-35	3,2	131	0	0	0,1673			4988			2,573772	
Гр-р	13	10	0	0 Благовещенская-Н2 - Благовещенская-35	3,2	131	0	0	0,1673	0	0 -0,9	4988	-0,38258	0 0	2,573772	2
Гр-р	16	17	0	0 Владимировка-110 - Владимировка-10	7,95	139	5,29	4,53	0,0956	0	0 -1,4	0655	-0,79014	0 0	7,792788	3
Гр-р	16	17	0	0 Владимировка-110 - Владимировка-10	7,95	139	5,3	4,5	0,096	0	0 -1,4	2495	-1,21415	0 0	9,042777	7
Гр-р	19	22	0	0 Тамбовка-110 - Тамбовка-Н1	5	142,2	8,317	5,74	1		0 -7,6				43,74119	
Гр-р	19	23	0	0 Тамбовка-110 - Тамбовка-Н2	1,5	56,9	13,23	10,58	1	. 0	0 -18				108,6509	
Гр-р	22	20	0	0 Тамбовка-Н1 - Тамбовка-35	5	0	0	0	0,3347	0	0 -0,8				6,245193	
Гр-р	23	20	0	0 Тамбовка-Н2 - Тамбовка-35	1,5		0	0	0,3347		0 -3,3				18,22665	
Гр-р	22	21	0	0 Тамбовка-Н1 - Тамбовка-10	5		0	0	0,0956			,6217			37,24936	
Гр-р	23	21	0	0 Тамбовка-Н2 - Тамбовка-10	1,5	35,7	0	0	0,096			,3119			89,65828	
Гр-р	24	27	0	0 Михайловка-110 - Михайловка-Н1	5		8,3	5,7	1			9237			41,75813	
Гр-р	24	28	0	0 Михайловка-110 - Михайловка-Н2	14,7	220,4	3,811	3,327	1			9174			26,69836	
Гр-р	27	25	0	0 Михайловка-Н1 - Михайловка-35	5	0	0	0,327	0,335		. ,	2826		0 0		
Гр-р	28	25	0	0 Михайловка-Н2 - Михайловка-35	14,7	0	0	0	0,335		,	6398		-	16,90359	
Гр-р	27	26	0	0 Михайловка-Н1 - Михайловка-33	5	82,7	0	0	0,096		,-	2,764		-	15,65782	
Гр-р	28	26	0	0 Михайловка-Н2 - Михайловка-10	14,7	139	0	0	0,096		0 -1,6		-,	-	9,526909	
Гр-р	30	31	0	0 РГРЭС-220 - РГРЭС-Н-АТ	0,55	59,2	11,8	5,8	0,030		0 17,4				111,5849	
Гр-р	31	29	0	0 PFP9C-H-AT - PFP9C-110	0,48	0	0	0	0,526		0 17,8				110,4349	
Гр-р	31	32	0	0 PCP9C-H-AT - PCP9C-HH-AT	3,2		0	0	0,047		0 7,6				2,52E-13	
Гр-р	29	35	0	0 PFP9C-110 - H1-PFP9C	0,4	18,6	36,29	29,49	0,047			,4051			164,8809	
Гр-р	35	34	0	0 Н1-РГРЭС - Г7-РГРЭС	0,4	11,9	0 0	25,45	0,096		0 32,9				168,1925	
Гр-р	35	37	0	0 H1-PFP9C - PFP9C-35	0,4	0	0	0	0,3347		0 -2,1			-	30,80048	
Гр-р	29	36	0	0 РГРЭС-110 - Н2-РГРЭС	0,4	18,6	36,3	29,5	0,3347		0 30,3				165,4204	
гр-р Гр-р	36	33	0	0 Н2-РГРЭС - Г6-РГРЭС	0,4	11,9	0	25,3	0,096		0 49,9				252,9673	
Гр-р	36	37	0	0 Н2-РГРЭС - РГРЭС-35	0,4	0	0	0	0,335		0 -19				99,38226	
	41	44	0	0 Хвойная-220 - Хвойная-Н1	1,8	160	8,6	1,03	0,333		0 -8,6				26,81115	
Гр-р	41	45	0	0 Хвойная-220 - Хвойная-Н2	1,9		8,7	1,05	1		0 -7,9				24,61293	
Гр-р	41	42	0	0 Хвойная-220 - хвойная-п2 0 Хвойная-Н1 - Хвойная-110	1,9	0	8,7	1,05	0,526	-	0 -7,5			-	18,22433	
Гр-р	45	42	0	0 Хвойная-п1 - хвойная-110		0	0	0	0,526							
Гр-р	44	43	0	0 Хвойная-н2 - хвойная-110 0 Хвойная-Н1 - Хвойная-35	1,9	130	0	0	0,1674		0 -5,3		.,	-	17,79414 7,814704	
Гр-р	44	43	0	0 Хвойная-н1 - хвойная-35 0 Хвойная-Н2 - Хвойная-35	3,6	130	0	0								
Гр-р	45 8		0		3,8			0	0,167		0 -2,5				6,583113	
пэп	-	9	0	0 БТЭЦ-110 - Благовещенская-110	0,8987	3,93	-12,1			-	0 -70				336,1506	
пэп	8		-	0 БТЭЦ-110 - Благовещенская-110	0,8987	3,93	-12,1	0	0	-	0 -70				336,1506	
пэп	9	14	0	0 Благовещенская-110 - Центральная-110	1,0838	2,763	-9,198	0	0	-	0 -11				91,65203	
пэп	9	14	0	0 Благовещенская-110 - Центральная-110	1,0838	2,763	-9,2	0	0			,0153			91,65209	
пэп	8	14	0	0 БТЭЦ-110 - Центральная-110	0,5782	2,5311	-7,78	0	0		0	0		0 600		
пэп	8	14	0	0 БТЭЦ-110 - Центральная-110	0,5782	2,5311	-7,78	0	0			8,484			585,5906	
пэп	14	15	0	0 Центральная-110 - Отп. Владимировка	1,0238	2,6102	-8,69	0	0			,2826			221,7781	
пэп	15	16	0	0 Отп. Владимировка - Владимировка-110	0,04	0,063	-0,196	0	0			3175			16,75801	.,
пэп	15	18	0	0 Отп. Владимировка - Волково-110	3,2449	8,2724	-27,54	0	0	-		,3012	.,		206,0293	
пэп	18	19	0	0 Волково-110 - Тамбовка-110	4,3	11,19	-37,26	0	0		0 -18			0 500	,	25,9185
тэп	19	24	0	0 Тамбовка-110 - Михайловка-110	10,23	26,576	-88,48	0	0		0 7,89			0 500	.,	
19П	24	29	0	0 Михайловка-110 - РГРЭС-110	11,03	28,66	-95,425	0	0		0 20,0			0 500		20,3080
19П	30	38	0	0 РГРЭС-220 - Завитая-220	4,272	19,09	-58,74	0	0		0 -8,7				55,90098	
эп	30	38	0	0 РГРЭС-220 - Завитая-220	4,29	19,176	-59,004	0	0		0 -8,7				55,68353	
эп	38	51	0	0 Завитая-220 - Варваровка-220	7,6		-104,544	0	0		0 5,10	8513			15,99014	2,66502
ЭП	51	11	0	0 Варваровка-220 - Благовещенская-220	10,752	48,04	-147,84	0	0		0 9,89				31,16357	
ЭП	38	39	0	0 Завитая-220 - Короли/т-Хвойная	3,811	17,03	-52,404	0	0			,8875			95,97688	
эп	39	41	0	0 Короли/т-Хвойная - Хвойная-220	0,0148	0,06649	-0,2	0	0	0	0 -6,9	8541	-5,64712	0 600	22,34247	3,72374
19П	38	40	0	0 Завитая-220 - Белогорск/т-Хвойная	3,81	17,03	-52,4	0	0	0	0 -3	4,704	-14,2501	0 600	95,43452	15,905
эп	40	41	0	0 Белогорск/т-Хвойная - Хвойная-220	0,0835	0,373	-1,148	0	0	0	0 -9,6	0302			29,11482	4,852
эп	42	46	0	0 Хвойная-110 - Озерная-110	8,954	15,67	-48,81	0	0	0	0 -1	1,264			70,46997	23,4899
эп	46	47	0	0 Озерная-110 - Отп. Анновка	6,168	10,79	-33,62	0	0	0	0 -7,6	1486	-7,72511	0 300	54,72429	18,241
эп	47	48	0	0 Отп. Анновка - Анновка-110	0,163	0,286	-0,89	0	0	0	0 -1,0				5,366891	
19П	47	49	0	0 Отп. Анновка - Полевая-110	4,599	8,0486	-25,07	0	0		0 -6,5				51,26814	
пэп	49	50	0	0 Полевая-110 - Ивановка-110	8,052	14,091	-43,89	0	0		0 9,18				47,29677	
	50	18	0	0 Ивановка-110 - Волково-110	5,53	9,692	-30,19	0	0				,			23,1995

Тип	Номер	Название	U_ном	N_схн	Район	Р_н	Q_н	Р_г	Q_r	V_зд	Q_min	Q_max	В_ш	V	dV	Delta
Ген-		1 Г1-БТЭЦ	6,3	_	0		0 0	_			_			0 6,939018	10,14314	17,81037
Нагр		2 Г1-HH1	6,3		0	1	0 0	0				()	0 6,943019	10,20665	17,71148
Нагр		3 Г1-HH2	6,3		0	1	0 0	0	0	0	0	()	0 6,943019	10,20665	17,71148
Нагр		4 Γ1-H	110		0	1	0 0	0	0	0	0	()	0 121,7335		
Ген		5 Г2-БТЭЦ	10.5		0	1	0 0	110	28,96325	11	-50	50)	0 0	. 0	26,16302
Ген		6 ГЗ-БТЭЦ	10,5		0	1	0 0		-	11	-50	50)	0 11	4,761905	
Ген		7 Г4-БТЭЦ	10,5		0	1	0 0	124	49.03701	11	-50	50	0	0 11	4,761905	17.73689
Нагр		8 БТЭЦ-110	115		0	1 32,	8 14,2	. 0	0	0	0	()		8,174752	
Нагр		9 Благовещенская-110	115			1 14	-		0	0	0	()		7,754525	-
Нагр		0 Благовещенская-35	38		0	1 1.			0	0	0	()		3,612495	-
База	1	1 Благовещенская-220	230		0	1 2.	9 1.16	-4.6142	16,37973	240	0	(0	0 240	4,347826	12.32341
Нагр		2 Благовещенская-Н1	230		0	1	0 (0		0	()		2,420526	
Нагр		3 Благовещенская-Н2	230		0	1	0 0	0	0	0	0	()		2,420526	
Нагр	1	4 Центральная-110	115		0	1 99.	6 40.4	0	0	0	0	()	0 123.864	7,707859	13.04885
Нагр		5 Отп. Владимировка	115		0	1	0 0	0	0	0	0	()	0 106,6462		4,278156
Нагр		6 Владимировка-110	115		0	1	0 0	0	0	0	0	()	0 106,644	-	4,277665
Нагр		7 Владимировка-10	10,5		0	1 2,	7 1,8	. 0	0	0	0	()	0 10,09156	-	3,357056
Нагр		8 Волково-110	115				4 1,8		0	0	0)	0 106.8736	-	4,365043
Нагр		9 Тамбовка-110	115		0	1	0 (0	0	0	()	0 106,0579		
Нагр		0 Тамбовка-35	38		0	1 4.2	3 1.69	0	0	0	0)	0 33.59399	-	
Нагр		1 Тамбовка-10	10,5		0	1 21,8	,		0	0	0	()	0 9,374005	,	,
Нагр		2 Тамбовка-Н1	115				0 0		0					0 100,4142		_
Нагр		3 Тамбовка-Н2	115				0 0		0					0 100,4206	-	-
Нагр		4 Михайловка-110	115		-		0 (0					0 110,5267		7,502013
Нагр	2	5 Михайловка-35	38		0	1 7.4	7 2.988	. 0	0	0	0	()	0 35.30213	-	2.601418
Нагр		6 Михайловка-10	10,5			1 4.4	,		0	0	0)	0 10,04208	,	1,393178
Нагр	2	7 Михайловка-Н1	115		0	1	0 (0	0	0	0	()	0 105.5892	-	2.550172
Нагр	2	8 Михайловка-Н2	115		0	1	0 0	0	0	0	0	()	0 105,8052	-7.99545	2,526058
Нагр		9 РГРЭС-110	115			1 22,5	9,036	0	0	0	0	()	0 118,3618	-	
Нагр	3	0 РГРЭС-220	230		0		0 0		0	0	0	()		5,346538	
Нагр		1 РГРЭС-Н-АТ	230		0	1	0 (0	0	0	0	()	0 225,0268		-
Нагр		2 РГРЭС-НН-АТ	10.5				0 0	0	0	0	0)		0,726268	
Ген	3	3 Г6-РГРЭС	10.5		0	1	0 0	50	-9.85855	11	-20	20)		4.761905	-
Ген	3	4 Г7-РГРЭС	10,5		0	1	0 0	33	-10,3577	11	-10	10)	0 11	4,761905	15.82359
Нагр	3	5 Н1-РГРЭС	115		0	1	0 0	0	0	0	0	()	0 115.5957	0,518015	14,1067
Нагр		6 Н2-РГРЭС	115		0	1	0 0	0	0	0	0	()	0 115,5509		
нагр	3	7 PFP9C-35	38		0	1 21.	2 11	. 0	0	0	0	()	0 38.68743	1,809018	14.11656
База	3	8 Завитая-220	230		0	1 4,	1 1,2	97,56894	122,2867	245	0	()		6,521739	
Нагр		9 Короли/т-Хвойная	230		0	1 27.		-	0	0	0	()	0 242,5625		-
Нагр		0 Белогорск/т-Хвойная	230		0	1 2	5 10	0	0	0	0	()	0 242,5883	5,473169	10.93788
Нагр		1 Хвойная-220	230		0		0 0		0	0	0	()	0 242,5574		-
Нагр		2 Хвойная-110	115				0 0		0					0 122,4246		
Нагр		3 Хвойная-35	38			1 5,			0)	0 38,83126		
Нагр		4 Хвойная-Н1	230			-,	0 0		0	-	_			0 232,8875		
Нагр		5 Хвойная-Н2	230		-		0 0	-	_	-	_				1,252934	
Нагр		6 Озерная-110	115		-	1 3.5			0	_	-			0 116,8946		
Нагр		7 Отп. Анновка	115			-,-	0 0		0					0 113,3854		-
Нагр		8 Анновка-110	115			1 1.0			0	0	0	()	0 113.383		5,387439
Нагр		9 Полевая-110	115		-	1 15,	,		_	_	_			0 110,8266	,	4,753421
Нагр		0 Ивановка-110	115			1 4,								0 108,2229		4,427164
Нагр		1 Варваровка-220	230		-	1 4.7)	0 243,2909		-

Тип	N нач	N кон	Nπ	ID	Группы Название	R	Х	В	G	KT/r	N анц Б.	Лани	Р_нач	Q_нач Na	Ідоп расчІ	l may	І загр.
Выкл		1	2	0	0 Г1-БТЭЦ - Г1-НН1) 0	0	0	,.	0			9,989048		2630,613	
Выкл		1	3	0	0 Г1-БТЭЦ - Г1-НН2		0 0	_	0	0	0			9,989048		2630,613	
p-p		4	2	0	0 F1-H - F1-HH1	0,		0	0	0,057	0		29,97889			149,9368	
р-р		4	3	0	0 Γ1-H - Γ1-HH2	0,		0	0	0,057	0		29,97889			149,9368	
р-р		4	8	0	0 Г1-н - БТЭЦ-110	1,		36,29	23,44	0,037	0		-59,9573	.,		299.9046	
p-p		8	5	0	0 БТЭЦ-110 - Г2-БТЭЦ	0,3		46,95	27,32	0,086	0				0 0	233,3040	
		8	6	0	0 БТЭЦ-110 - ГЗ-БТЭЦ	0,3		47	27,3	0.086	0			26,84352		522,2123	
p-p		8	7	0	0 БТЭЦ-110 - ГЗ-БТЭЦ	0,3		54,64	34.15	0,086	-			38,19267		598,3791	
p-p	1		12	0	0 Благовещенская-220 - Благовещенская-Н1	0,5		11,81	5,76	0,080	0		7,4378			48,53858	
Гр-р				0						1	0						
Гр-р	1		13		0 Благовещенская-220 - Благовещенская-Н2	0,5		11,8 0	5,8		0		7,435496			48,53525	
Гр-р	1		9	0	0 Благовещенская-Н1 - Благовещенская-110	0,4			0	0,526			8,72333			47,47487	
Гр-р	1		9	0	0 Благовещенская-Н2 - Благовещенская-110	0,4		0	0	0,526	0	(47,47487	
Гр-р	1		10	0	0 Благовещенская-Н1 - Благовещенская-35	3,		0	0	0,1673	0		,			2,510102	
Гр-р	1		10	0	0 Благовещенская-Н2 - Благовещенская-35	3,		_	0	0,1673	-		-0,95006			2,510102	
Гр-р	1	-	17	0	0 Владимировка-110 - Владимировка-10	7,9		5,29	4,53	0,0956	0		-1,39651		0 0	8,78168	
Гр-р	1	-	17	0	0 Владимировка-110 - Владимировка-10	7,9		5,3	4,5	0,096	0		-, -, -,	,		9,891353	
Гр-р	1	-	22	0	0 Тамбовка-110 - Тамбовка-Н1		142,2	8,317	5,74	1	0		-7,61103			47,86724	
Гр-р	1		23	0	0 Тамбовка-110 - Тамбовка-Н2	1,		13,23	10,58	1	0	(119,0104	
Гр-р	2		20	0	0 Тамбовка-Н1 - Тамбовка-35		5 0	0	0	0,3347	0		-0,87811			6,510561	
Гр-р	2		20	0	0 Тамбовка-Н2 - Тамбовка-35	1,		0	0	0,3347	0		-3,35434			20,08349	
Гр-р	2		21	0	0 Тамбовка-Н1 - Тамбовка-10		82,7	0	0	0,0956	0		-6,63479			41,05751	
Гр-р	2		21	0	0 Тамбовка-Н2 - Тамбовка-10	1,		0	0	0,096	0		-15,3139			98,21715	
Гр-р	2		27	0	0 Михайловка-110 - Михайловка-Н1			8,3	5,7	1	0		-7,29061			43,41766	
Гр-р	2		28	0	0 Михайловка-110 - Михайловка-Н2	14,		3,811	3,327	1	0		-4,79302			27,76426	
Гр-р	2		25	0	0 Михайловка-Н1 - Михайловка-35		5 0	0	0	0,335	0		-4,42915			26,55109	
Гр-р	2		25	0	0 Михайловка-Н2 - Михайловка-35	14,		0	0	0,335	0	(-3,06507			17,58886	
Тр-р	2	7	26	0	0 Михайловка-Н1 - Михайловка-10		82,7	0	0	0,096	0	(-2,76429	-1,1167	0 0	16,3016	i
Гр-р	2	8	26	0	0 Михайловка-Н2 - Михайловка-10	14,	7 139	0	0	0,096	0	(-1,65403	-0,75426	0 0	9,919744	ı
Гр-р	3	0	31	0	0 РГРЭС-220 - РГРЭС-Н-АТ	0,5	59,2	11,8	5,8	1	0	(-2,43152	-71,3591	0 0	170,1347	
Гр-р	3	1	29	0	0 РГРЭС-Н-АТ - РГРЭС-110	0,4	3 0	0	0	0,526	0	(-2,04419	-65,6264	0 0	168,459	1
Гр-р	3	1	32	0	0 РГРЭС-Н-АТ - РГРЭС-НН-АТ	3,	2 131	0	0	0,047	0	(-2,07E-14	4,59E-14	0 0	1,29E-13	
Гр-р	2	9	35	0	0 PFP9C-110 - H1-PFP9C	0,	18,6	36,29	29,49	1	0	(30,38887	-19,4353	0 0	175,9552	
Гр-р	3	5	34	0	0 Н1-РГРЭС - Г7-РГРЭС	0,	11,9	0	0	0,096	0	(32,96355	-11,4419	0 0	174,2748	
Гр-р	3	5	37	0	0 H1-PFP9C - PFP9C-35	0,	1 0	0	0	0,3347	0	(-2,12423	-5,74972	0 0	30,61454	
Гр-р	2	9	36	0	0 РГРЭС-110 - Н2-РГРЭС	0,	1 18,6	36,3	29,5	1	0	(30,38134	-19,7205	0 0	176,6777	
Тр-р	3	6	33	0	0 Н2-РГРЭС - Г6-РГРЭС	0,	1 11,9	0	0	0,096	0	(49,92087	-12,2126	0 0	256,7851	
Тр-р	3	6	37	0	0 Н2-РГРЭС - РГРЭС-35	0,	1 0	0	0	0,335	0		-19,0886	-5,25028	0 0	98,91826	
Тр-р	4		44	0	0 Хвойная-220 - Хвойная-Н1	1,		8,6	1,03	1	0		-20,9968			62,17877	
Тр-р	4		45	0	0 Хвойная-220 - Хвойная-Н2	1,		8,7	1,05	1	0		-19,2036			56,95398	
Гр-р	4		42	0	0 Хвойная-H1 - Хвойная-110	1,		0	0	0,526	0					53,67322	
Гр-р	4		42	0	0 Хвойная-Н2 - Хвойная-110	1,		0	0	0,526	0		-16,5867			50,11242	
Гр-р	4		43	0	0 Хвойная-Н1 - Хвойная-35	3,		0	0	0,1674	0		-2,66385			7,682799	
Гр-р	4		43	0	0 Хвойная-Н2 - Хвойная-35	3,		0	0	0.167	0					6,439618	
пэп		8	9	0	0 БТЭЦ-110 - Благовещенская-110	0,898		-12,1	0	0	0					278,8579	
пэп		8	9	0	0 БТЭЦ-110 - Благовещенская-110	0,898		-12,1	0	0	0		-60,0495	7		278,8579	
1911		-	14	0	0 Благовещенская-110 - Центральная-110	1,083		-9,198	0	0	0		19,3864			101,9123	
пэп		-	14	0	0 Благовещенская-110 - Центральная-110	1,083		-9,2	0	0	0		19,3864			101,9123	
пэп		-	14	0	0 БТЭЦ-110 - Центральная-110	0,578		-7,78	0	0	0		-69,4044			326,0991	
1911			14	0	0 БТЭЦ-110 - Центральная-110	0,578		-7,78	0	0	0	- (326,0991	
1911	1	-	15	0	0 Центральная-110 - Отп. Владимировка	1,023	7	-8,69	0	0	0		,		0 500	320,0331	
1911	1		16	0	0 Отп. Владимировка - Владимировка-110	0.0		-0,196	0	0	0		2,80655			18,61679	
1911	1		18	0	0 Отп. Владимировка - Владимировка-110	3,244		-0,196	0	0	0		2.806552	,		18,60982	
1911	1		19	0	0 Волково-110 - Тамбовка-110	3,244		-27,54	0	0	0		0 -0,57062			42,16633	
1911	1		24	0	0 Тамбовка-110 - Памоовка-110 0 Тамбовка-110 - Михайловка-110	10,2		-37,26	0	0	0		25,91209			147.2333	
																,	-, -
пэп	2		29	0	0 Михайловка-110 - PГРЭС-110	11,0			0	0			38,65421			216,0457	
19П	3		38	0	0 РГРЭС-220 - Завитая-220	4,27		-58,74	0	0			1,219533			85,23948	
19П	3		38	0	0 РГРЭС-220 - Завитая-220	4,2		-59,004	0	0	0		1,211986		0 600	84,8952	
эп	3		51	0	0 Завитая-220 - Варваровка-220	7,		-104,544	0	0	0		2,486456			38,16437	
эп	5		11	0	0 Варваровка-220 - Благовещенская-220	10,75		-147,84	0	0	0		7,288272	-,		56,47298	
эп	3		39	0	0 Завитая-220 - Короли/т-Хвойная	3,81	, , , ,	-52,404	0	0	0		-46,8749			126,7139	
эп	3		41	0	0 Короли/т-Хвойная - Хвойная-220	0,014		-0,2	0	0	0		-18,8962			56,63053	
эп	3		40	0	0 Завитая-220 - Белогорск/т-Хвойная	3,8		-52,4	0	0	0		-46,4807			125,5767	
19П	4		41	0	0 Белогорск/т-Хвойная - Хвойная-220	0,083		-1,148	0	0	0		-21,3054			62,51416	
эп	4		46	0	0 Хвойная-110 - Озерная-110	8,95		-48,81	0	0	0		-34,8088	-,		199,1285	,
эп	4		47	0	0 Озерная-110 - Отп. Анновка	6,16		-33,62	0	0	0		-30,2333			182,0637	
эп	4	7	48	0	0 Отп. Анновка - Анновка-110	0,16	0,286	-0,89	0	0	0	(-1,01001	-0,38858	0 300	5,531601	1,8438
пэп	4	7	49	0	0 Отп. Анновка - Полевая-110	4,59	8,0486	-25,07	0	0	0	(-28,614	-19,633	0 300	177,6148	59,2049
пэп	4	9	50	0	0 Полевая-110 - Ивановка-110	8,05	14,091	-43,89	0	0	0	(-12,481	-13,0902	0 300	96,24497	32,081
пэп	5	0	18	0	0 Ивановка-110 - Волково-110	5,5		-30,19	0	0	0	- (-7,46184			70,8428	

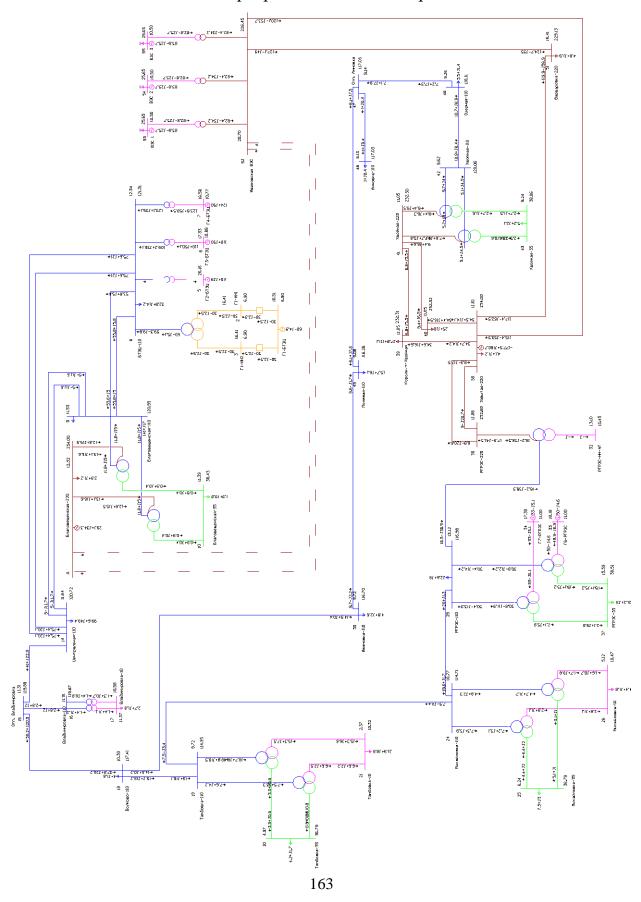
Продолжение приложение В. Расчёт в программе RastWin 3 исходного режима



Приложение Γ . Расчёт в программе RastWin 3 варианта 1

Тип	Номер	Название	U_ном	N_схн	Район	Рн	C	Дн	Р_г	Qг	V_зд	Q min	Q max	В_ш	V	dV	Delta	Территор
Ген		1 Г1-БТЭЦ	6,3			1	0	- 0	- 60		6,9				6,9	9,52381	16,51314	
Нагр		2 F1-HH1	6,3			1	0	0	0	0	0) (6,901004			
Нагр		3 F1-HH2	6,3			1	0	0	0	0	0	() (6,901004			
Нагр		4 Γ1-H	110			1	0	0	0	0) (120,9959			
Ген		5 Г2-БТЭЦ	10,5			1	0	0		28,96325	11				-	-	26,16302	
Ген+		6 ГЗ-БТЭЦ	10,5			1	0	0	110	50	11				10,85782			
Ген+		7 Г4-БТЭЦ	10,5			1	0	0	124	50	11				10,76604	-		
Нагр		8 БТЭЦ-110	115				32,8	14,2	0	0) (121,5146			
Нагр		9 Благовещенская-110	115				141	17,2	0	0	0) (120,9454		11,53378	
Нагр		0 Благовещенская-35	38				1,9	0.76	0	0	0) (38,43357	-		
База		1 Благовещенская-220	230				2.9	1.16	-	130.3439	234) (12,32341	
Нагр		2 Благовещенская-Н1	230			1	0	1,10	0	130,3433	0) (229,959		11,52595	
Нагр		3 Благовещенская-H2	230			1	0	0	0	0							11,52595	
Нагр		4 Центральная-110	115				99.6	40.4	0	0	0) (120,7245	-		
Нагр		5 Отп. Владимировка	115			1	0,00	40,4	0	0	0) (119,8758		,	
-		6 Владимировка-110	115			1	0	0	0	0	0) (119,8738			
Нагр			10,5				2,7	1,8	0	0	0) (119,8738	-		0
Нагр		7 Владимировка-10	10,5			1	4	1,8	0	0	-) (
Нагр		8 Волково-110 9 Тамбовка-110	115			1	0	1,8	0	0) (117,4075 114.9524			
Нагр							-			-					,			
Нагр		0 Тамбовка-35	38				1,23	1,69	0	0	0) (36,79274	-	4,970726	
Нагр		1 Тамбовка-10	10,5				1,88	8,76	0	0	0) (10,31534		2,367308	
Нагр		2 Тамбовка-Н1	115			1	0	0	0	0	0) (109,9679		4,952041	. 0
Нагр		3 Тамбовка-Н2	115			1	0	0	0	0) (109,9731		4,964319	
Нагр		4 Михайловка-110	115			1	0	0	0	0	0) (114,7108	-,	10,76729	
Нагр		5 Михайловка-35	38				7,47	2,988	0	0	0) (36,7854	-	6,236543	
Нагр		6 Михайловка-10	10,5				1,41	1,764	0	0	0) (10,47035	-, -	5,124254	. 0
Нагр		7 Михайловка-Н1	115			1	0	0	0	0	0) (110,0084	-	6,189339	
Нагр		8 Михайловка-Н2	115			1	0	0	0	0	0) (110,2157		6,167131	
Нагр		9 РГРЭС-110	115				2,59	9,036	0	0	-) (116,9753	-		. 0
Нагр	30	0 PFP9C-220	230			1	0	0	0	0	0) (232,5957			
Нагр		1 РГРЭС-Н-АТ	230			1	0	0	0	0	0) (222,3471			
Нагр		2 РГРЭС-НН-АТ	10,5			1	0	0	0	0	0) (10,45031	-		
Ген		3 Г6-РГРЭС	10,5			1	0	0	50	-4,63167	11						18,17811	
Ген	34	4 Г7-РГРЭС	10,5	0		1	0	0	33	-5,12376	11	-10) 10) (11	4,761905	17,29723	0
Нагр	3!	5 Н1-РГРЭС	115			1	0	0	0	0	0) () (115,0518	0,045087	15,58132	
Нагр	30	6 Н2-РГРЭС	115			1	0	0	0	0	0) () (115,0078	0,006807	15,5822	
Нагр	3	7 РГРЭС-35	38			1 2	21,2	11	0	0	0	() () (38,50538	1,329954	15,59129	
База	3	8 Завитая-220	230	0		1	4,1	1,2	-28,5262	98,73693	234	() ((234	1,73913	11,61086	0
Нагр	39	9 Короли/т-Хвойная	230	0		1 2	27,8	11,12	0	0	0	() () (232,3065	1,002813	11,05173	0
Нагр	40	0 Белогорск/т-Хвойная	230	0		1	25	10	0	0	0	() () (232,3183	1,007973	11,05447	0
Нагр	4:	1 Хвойная-220	230	0		1	0	0	0	0	0	() ((232,3045	1,00194	11,05134	0
Нагр	4:	2 Хвойная-110	115	0		1	0	0	0	0	0	() () (120,0607	4,400594	9,624587	0
Нагр	4	3 Хвойная-35	38	0		1	5,2	2,1	0	0	0	() () (38,06181	0,162659	9,240603	0
Нагр	4	4 Хвойная-Н1	230	0		1	0	0	0	0	0	() () (228,2972	-0,74037	9,616757	0
Нагр	4	5 Хвойная-Н2	230	0		1	0	0	0	0	0	() ((228,2948	-0,74139	9,615244	. 0
Нагр	4	6 Озерная-110	115	0		1 3	3,52	1,408	0	0	0	() () (118,1108	2,705086	9,258125	0
Нагр	4	7 Отп. Анновка	115	0		1	0	0	0	0	0	() () (117,0299	1,765123	9,135456	0
Нагр		8 Анновка-110	115				1,01	0,4	0	0	0	() (117,0275			
Нагр		9 Полевая-110	115				15,7	6,1	0	0	0) (116,2627	-	-	
Нагр		0 Ивановка-110	115				4,8	2,6	0	0	0) (116,6969			
Нагр		1 Варваровка-220	230				1,78	1,91	0	0	0) (232,0289			
Нагр		2 Ивановская ВЭС	220			1	0	0	0	0	0) (230,4367			
Ген		3 B9C 1	10,5			1	1	0	83.75		10.5				-		19,76616	
Ген		4 B9C 2	10,5			1	1	0	83,75	,	10,5						19,76616	
Ген		5 B9C 3	10,5			1	1	0		-42,7403	10,5				-7-		19,76616	

Гип	N_нач	N_кон	N_n	ID Групп	ы Название	R)	X	В	G I	Kτ/r	N_анц	БД_анц	P_1	чач	Q_нач	Na Iдо	n_pac	4 I max	І загр.
ыкл			2		0 Г1-БТЭЦ - Г1-НН1		0	0	0	0	0			0		2,474176	0		2518,741	L
ыкл		1	3	0	0 Г1-БТЭЦ - Г1-НН2		0	0	0	0	0		0	0	-30	2,474176	0	0	2518,741	L
о-р		4	2		0 Г1-H - Г1-HH1		0,3	0	0	0	0,057		0	0 29	,98162	-2,52789	0	0	143,5694	ţ
о-р		4	3	0	0 Г1-H - Г1-HH2		0,3	0	0	0	0,057		0	0 29	,98162	-2,52789	0	0	143,5694	ļ
о-р			8		0 Г1-н - БТЭЦ-110		1,2	17,4	36,29	23,44	1				9,9631	5,053869	0	0	287,1374	Į.
p-p			5		0 БТЭЦ-110 - Г2-БТЭЦ		0,37	12,3	46,95	27,32	0,086			0	0	0	0	0		
p-p			6		0 БТЭЦ-110 - ГЗ-БТЭЦ		0,37	12,3	47	27,3	0,086					38,10366	0		549,5832	
p-p		-	7		0 БТЭЦ-110 - Г4-БТЭЦ		0,3	9,2	54,64	34,15	0,086		-	-	3,0538	,	0		613,5228	
p-p	1		.2		0 Благовещенская-220 - Благовещенская-Н1		0,55	59,2	11,81	5,76	1				3,1142		0		52,17478	
р-р	1	-	.3		0 Благовещенская-220 - Благовещенская-Н2		0,55	59,2	11,8	5,8	1				3,1164	-16,5883	0		52,17708	
р-р	1		9		0 Благовещенская-Н1 - Благовещенская-110		0,48	0	0	0	0,526		0 (1,8449	-15,0404	0		48,06569	
р-р	1		9	0	0 Благовещенская-Н2 - Благовещенская-110		0,48	0	0	0	0,526		0	0 -1	1,8449	-15,0404	0	0	48,06569	1
р-р	1		.0		0 Благовещенская-Н1 - Благовещенская-35		3,2	131	0	0	0,1673				,94985	-0,38257	0		2,570934	
р-р	1		.0		0 Благовещенская-Н2 - Благовещенская-35		3,2	131	0	0	0,1673				,94985	-0,38257	0		2,570934	
р-р	1		.7		0 Владимировка-110 - Владимировка-10		7,95	139	5,29	4,53	0,0956				,40681	-0,78917	0		7,768927	
р-р	1		.7		0 Владимировка-110 - Владимировка-10		7,95	139	5,3	4,5	0,096				,42535	-1,21569	0		9,022726	
Гр-р	1	-	2	0	0 Тамбовка-110 - Тамбовка-Н1		5	142,2	8,317	5,74	1		0 (0 -7	,61385	-4,18231	0	0	43,63017	
р-р	1		13		0 Тамбовка-110 - Тамбовка-Н2		1,5	56,9	13,23	10,58	1				8,8461	-10,5071	0	0		
р-р	2		20		0 Тамбовка-Н1 - Тамбовка-35		5	0	0	0	0,3347				,88896	-0,78845	0		6,238449	
р-р	2		20		0 Тамбовка-Н2 - Тамбовка-35		1,5	0	0	0	0,3347				,34286	-0,90126	0		18,17642	
р-р	2		1		0 Тамбовка-Н1 - Тамбовка-10		5	82,7	0	0	0,0956				6,6212	-2,494	0		37,14669	
Гр-р	2		1		0 Тамбовка-Н2 - Тамбовка-10		1,5	35,7	0	0	0,096				5,3116	-7,46444	0		89,42815	
р-р	2		.7		0 Михайловка-110 - Михайловка-Н1		5	142,2	8,3	5,7	1				,29241	-3,93193	0	0	,	
Гр-р	2	-	18	-	0 Михайловка-110 - Михайловка-Н2		14,7	220,4	3,811	3,327	1		-		,79168	-2,2578	0	-	26,66012	
Гр-р	2		!5		0 Михайловка-Н1 - Михайловка-35		5	0	0	0	0,335		-		,42822	-1,99043	0		25,48014	
Гр-р	2		!5		0 Михайловка-Н2 - Михайловка-35		14,7	0	0	0	0,335				,06394	-0,99739	0		16,87903	
Гр-р	2		16		0 Михайловка-Н1 - Михайловка-10		5	82,7	0	0	0,096				,76398	-1,11136	0	0	15,63472	
Гр-р	2		16		0 Михайловка-Н2 - Михайловка-10		14,7	139	0	0	0,096				,65342	-0,751	0	0		
Гр-р	3		11		0 РГРЭС-220 - РГРЭС-Н-АТ		0,55	59,2	11,8	5,8	1				,90467	-41,2725	0		111,6715	
Гр-р	3		19		0 РГРЭС-Н-АТ - РГРЭС-110		0,48	0	0	0	0,526				,23857	-38,4637	0		110,5348	
Гр-р	3		12	0	0 РГРЭС-Н-АТ - РГРЭС-НН-АТ		3,2	131	0	0	0,047		0	0 -2,	16E-14	4,48E-14	0	0	1,29E-13	3
р-р	2	9 3	15	0	0 РГРЭС-110 - Н1-РГРЭС		0,4	18,6	36,29	29,49	1		0	0 30	,40482	-13,924	0	0	165,0557	7
р-р	3		14	0	0 Н1-РГРЭС - Г7-РГРЭС		0,4	11,9	0	0	0,096		0 (0 32	,96602	-6,13458	0	0	168,2692	2
Гр-р	3		17		0 H1-PFP9C - PFP9C-35		0,4	0	0	0	0,3347				,12464	-5,75758	0	0	30,79697	
Гр-р	2		16		0 РГРЭС-110 - Н2-РГРЭС		0,4	18,6	36,3	29,5	1				,39793	-14,2011	0	0		
Гр-р	3	6 3	13	0	0 Н2-РГРЭС - Г6-РГРЭС		0,4	11,9	0	0	0,096		0	0 49	,92318	-6,91703	0	0	253,0132	2
Гр-р	3		17		0 H2-PГРЭС - PГРЭС-35		0,4	0	0	0	0,335				9,0883	-5,24242	0	0		
Гр-р	4	1 4	14	0	0 Хвойная-220 - Хвойная-Н1		1,8	160	8,6	1,03	1		0 (0 -8	,41957	-6,29212	0	0	26,12304	1
Гр-р	4		15	0	0 Хвойная-220 - Хвойная-Н2		1,9	175	8,7	1,05	1		0		,70964	-5,80424	0	0	23,98397	
Гр-р	4		12	-	0 Хвойная-Н1 - Хвойная-110		1,8	0	0	0	0,526		-		,69591	-3,95648	0	-	17,53875	
Гр-р	4		12		0 Хвойная-Н2 - Хвойная-110		1,9	0	0	0	0,526		-		5,1135	-4,4724	0		17,18029	
Гр-р	4		13	0	0 Хвойная-Н1 - Хвойная-35		3,6	130	0	0	0,1674		0	0 -2	,66465	-1,56226	0		7,811526	
Гр-р	4	5 4	13	0	0 Хвойная-Н2 - Хвойная-35		3,8	135	0	0	0,167		0	0 -2	,53644	-0,57906	0	0	6,579612	2
пэп			9	0	0 БТЭЦ-110 - Благовещенская-110		,8987	3,93	-12,1	0	0		0 (3,7804	-5,57942	0		256,9804	
пэп		-	9		0 БТЭЦ-110 - Благовещенская-110		,8987	3,93	-12,1	0	0				3,7804	-5,57942	0		256,9804	
пэп		9 1	.4	0	0 Благовещенская-110 - Центральная-110	1	,0838	2,763	-9,198	0	0		0	0 5,	17446	-11,5785	0	500	60,82709	12,1654
пэп		9 1	.4		0 Благовещенская-110 - Центральная-110	1	,0838	2,763	-9,2	0	0		0	5,1	17446	-11,5785	0		60,82716	
пэп		8 1	.4	0	0 БТЭЦ-110 - Центральная-110	0	,5782	2,5311	-7,78	0	0		0	0 -7	5,6463	-21,0247	0	600	373,1838	62,197
пэп		-	.4		0 БТЭЦ-110 - Центральная-110		,5782	2,5311	-7,78	0	0				5,6463	-21,0247	0		373,1838	
эп	1		.5		0 Центральная-110 - Отп. Владимировка	1	,0238	2,6102	-8,69	0	0				1,1698	-23,1343	0		226,1398	
эп	1		.6		0 Отп. Владимировка - Владимировка-110		0,04	0,063	-0,196	0	0				,83244	-2,00217	0		16,71358	
пэп	1		.8		0 Отп. Владимировка - Волково-110	3	,2449	8,2724	-27,54	0	0				8,1818	-20,8575	0		210,4379	
эп	1		.9		0 Волково-110 - Тамбовка-110		4,3	11,19	-37,26	0	0				9,1891	-18,1891	0		131,7407	
эп	1	9 2	14	0	0 Тамбовка-110 - Михайловка-110		10,23	26,576	-88,48	0	0		0 (0 7	,49283	-3,42694	0	500	44,09972	8,81994
эп	2		19		0 Михайловка-110 - РГРЭС-110		11,03	28,66	-95,425	0	0				,63284	1,741463	0		99,20188	
эп	3		8	-	0 РГРЭС-220 - Завитая-220		4,272	19,09	-58,74	0	0		-	-	,97168	20,6756	0		55,94447	-,
эп	3		8		0 РГРЭС-220 - Завитая-220		4,29	19,176	-59,004	0	0					20,59685	0		55,72669	
пэп	3		1		0 Завитая-220 - Варваровка-220		7,6	33,976	-104,544	0	0				,63016	-20,7141	0		121,4707	
эп	5		1		0 Ивановская ВЭС - Благовещенская-220		6,75	28,04	-77,8	0	0				4,8209		0		221,9776	
эп	3		19		0 Завитая-220 - Короли/т-Хвойная		3,811	17,03	-52,404	0	0				34,655	-14,232	0		95,30678	
эп	3	-	1		0 Короли/т-Хвойная - Хвойная-220	0	,0148	0,06649	-0,2	0	0		-	D -6	,75435	-5,51087	0		21,68198	
эп	3	8 4	10	0	0 Завитая-220 - Белогорск/т-Хвойная		3,81	17,03	-52,4	0	0		0	0 -3	4,4755	-14,1097	0	600	94,77619	15,796
эп	4	0 4	1	0	0 Белогорск/т-Хвойная - Хвойная-220	0	,0835	0,373	-1,148	0	0		0	0 -9	,37601	-6,51359	0	600	28,46005	4,7433
эп	4	2 4	16	0	0 Хвойная-110 - Озерная-110		8,954	15,67	-48,81	0	0		0	0 -1	0,8065	-8,43102	0	300	68,01887	22,672
эп	4	6 4	17	0	0 Озерная-110 - Отп. Анновка		6,168	10,79	-33,62	0	0		0 (0 -	7,1665	-7,50429	0	300	52,39528	17,465
эп	4		18		0 Отп. Анновка - Анновка-110		0,163	0,286	-0,89	0	0		0		,00996	-0,38784	0		5,359118	
эп	4	7 4	19	0	0 Отп. Анновка - Полевая-110		4,599	8,0486	-25,07	0	0		0	0 -6	,10759	-7,49502	0	300	49,01757	16,339
эп	4	9 5	0	0	0 Полевая-110 - Ивановка-110		8,052	14,091	-43,89	0	0		0	9,	523142	-1,6793	0	300	49,08733	16,362
эп	5	0 1	.8	0	0 Ивановка-110 - Волково-110		5,53	9,692	-30,19	0	0		0 (0 14	,47949	0,426169	0	300	71,66732	23,889
р-р	5	2 5	i3	0	0 Ивановская ВЭС - ВЭС 1		1,4	51,5	10,7	2,31	0,0477		0 (0 82	,37671	-52,5278	0	0	244,7811	
p-p	5	2 5	4	0	0 Ивановская ВЭС - ВЭС 2		1,4	51,5	10,7	2,31	0,0477		0	0 82	,37671	-52,5278	0	C	244,7811	
p-p	5		55		0 Ивановская ВЭС - ВЭС 3		1,4	51,5	10,7	2,31	0,0477		-		,37671	-52,5278	0		244,7811	
ЭП	1		52		0 Благовещенская-220 - Ивановская ВЭС		5,88	25,74	-158,4	0	0,0477				,28964		0		245,0214	
1911	5		18		0 Ивановская ВЭС - Завитая-220		14,7	64,35	-390	0	0					31.55829	0		133,4882	
13H			1		0 Ивановская ВЭС - Завитая-220 0 Ивановская ВЭС - Варваровка-220		6,75	28,04	-77,8	0	0					25,75337	0		134,4537	

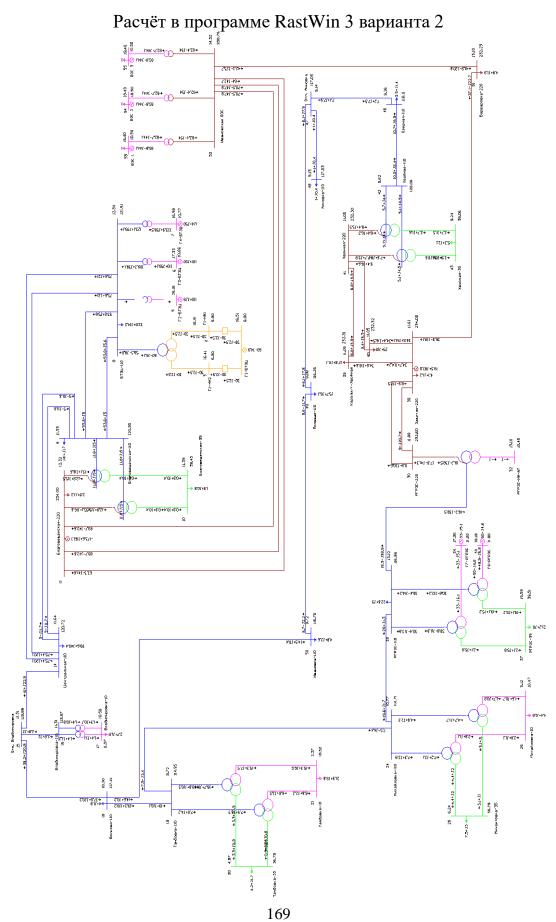

Продолжение приложение Γ .

Тип	Номер Название	U_ном	N_схн	Район	Р_н	Q_н	F	Р_г	Q_r	V_зд	Q_min Q_	тах В_ш		V	dV	Delta
Ген	1 Г1-БТЭЦ	6,3				0	0	- 60	-4,94835		-20	20	0	6,9	9,52381	16,51314
Нагр	2 F1-HH1	6,3	(0	0	0	0		0	0		6,901004	-	-
Нагр	3 Г1-НН2	6,3	()	1	0	0	0	0	0	0	0	0	6,901004	9,539754	16,41308
Нагр	4 Г1-Н	110	()	1	0	0	0	0	0	0	0	0	120,9959	9,996288	16,41011
Ген	5 Г2-БТЭЦ	10.5	()	1	0	0	110	28.96325	11	-50	50	0			26.16302
Ген+	6 ГЗ-БТЭЦ	10,5	()	1	0	0	110	50	11	-50	50	0	10,85782	3,407793	17,32603
Ген+	7 Г4-БТЭЦ	10,5	()	1	0	0	124	50	11	-50	50	0	10.76604	2.533732	16,57816
Нагр	8 БТЭЦ-110	115	(1 32	.8 14	1,2	0	0	0	0	0	0	121,5146	-	-
Нагр	9 Благовещенская-110	115	()	1 14		17	0	0	0	0	0		120,9454		11,53378
Нагр	10 Благовещенская-35	38	(1 1		76	0	0		0	0	0	-,	-,	11,39233
База	11 Благовещенская-220	230	()	1 2			29.13059	34.33713	234	0	0	0	234		12.32341
Нагр	12 Благовещенская-Н1	230	()	1	0	0	0	0	0	0	0	0	229,959	-0.01784	11,52595
Нагр	13 Благовещенская-Н2	230	()	1	0	0	0	0	0	0	0	0	229,959	-	11,52595
Нагр	14 Центральная-110	115			1 99		0,4	0	0		0	0	0			11,63771
Нагр	15 Отп. Владимировка	115	(_	0	0	0	0	0	0	0		119.8758		-
Нагр	16 Владимировка-110	115)	1	0	0	0	0	0	0	0	0	-,	,	11,30589
Нагр	17 Владимировка-10	10,5	()	1 2	7 1	1,8	0	0	0	0	0	0	11,37329	-	-
Нагр	18 Волково-110	115					1.8	0	0		0	0		117,4075	-	-
Нагр	19 Тамбовка-110	115				0	0	0	0	0	0	0		114,9524	-	-
Нагр	20 Тамбовка-35	38	Č		1 4,2		69	0	0		0	0	0		-	4,970726
Нагр	21 Тамбовка-10	10.5	(1 21.8		76	0	0		0	0		10.31534		2,367308
Нагр	22 Тамбовка-Н1	115	·			0	0	0	0	0	0	0	0	-,	,	4,952041
Нагр	23 Тамбовка-Н2	115				0	0	0	0	0	0	0	0	-	-	4,964319
Нагр	24 Михайловка-110	115	·			0	0	0	0		0	0		114,7108		10,76729
Нагр	25 Михайловка-35	38	·		1 7.4	-	-	0	0	-	0	0	0	36,7854	.,	6,236543
Нагр	26 Михайловка-10	10.5	·		1 4,4	,-		0	0	-	0	0	0	,	.,	5,124254
Нагр	27 Михайловка-Н1	115	(0	0	0	0		0	0		110,0084	-	6,189339
Нагр	28 Михайловка-Н2	115	·			0	0	0	0		0	0		110,2157		6,167131
Нагр	29 РГРЭС-110	115	·		1 22,5	-		0	0		0	0		116,9753	-	-
Нагр	30 РГРЭС-220	230	Č			0	0	0	0		0	0	0		-	11,87699
Нагр	31 PFP9C-H-AT	230				0	0	0	0		0	0		222.3471	-	13,09672
Нагр	32 РГРЭС-НН-АТ	10,5	(0	0	0	0	0	0	0	0	,-	-,-	13,09672
Ген	33 Гб-РГРЭС	10,5	()	1	0	0	50	-4,63167	11	-20	20	0			18,17811
Ген	34 Г7-РГРЭС	10,5	(0	0	33	-5,12376		-10	10	0			17.29723
Нагр	35 Н1-РГРЭС	115	()	1	0	0	0	0	0	0	0	0	115,0518	0.045087	15.58132
Нагр	36 Н2-РГРЭС	115	()	1	0	0	0	0	0	0	0	0		0,006807	
Нагр	37 РГРЭС-35	38	()	1 21	2	11	0	0	0	0	0	0	-	-	15,59129
База	38 Завитая-220	230	()	1 4	.1 1	1,2	-177,46	180,7081	234	0	0	0	234	1,73913	11,61086
Нагр	39 Короли/т-Хвойная	230	()	1 27			0	0	0	0	0	0	232,3065	-	
Нагр	40 Белогорск/т-Хвойная	230	()	1 2	5	10	0	0	0	0	0	0	232.3183	1.007973	11.05447
Нагр	41 Хвойная-220	230	()	1	0	0	0	0	0	0	0	0	232,3045	1,00194	11,05134
Нагр	42 Хвойная-110	115	()	1	0	0	0	0	0	0	0	0	120.0607	4.400594	9,624587
Нагр	43 Хвойная-35	38	()	1 5	2 2	2,1	0	0	0	0	0	0		-	9,240603
Нагр	44 Хвойная-Н1	230	(0	0	0	0	0	0	0	0	228,2972		
Нагр	45 Хвойная-Н2	230	()	1	0	0	0	0	0	0	0		228,2948		9,615244
Нагр	46 Озерная-110	115	()	1 3,5	2 1,4	08	0	0	0	0	0	0	-	-	9,258125
Нагр	47 Отп. Анновка	115	()		0	0	0	0	0	0	0	0	117,0299		
Нагр	48 Анновка-110	115	()	1 1,0	1 (0,4	0	0	0	0	0		117,0275		-
Нагр	49 Полевая-110	115	Č		1 15		5,1	0	0		0	0		116,2627	-	
Нагр	50 Ивановка-110	115			1 4		2.6	0	0		0	0	0			9.716772
Нагр	51 Варваровка-220	230	·		1 4.7		, -	0	0		0	0		229,1252	,	16,41056
Нагр	52 Ивановская ВЭС	220	Č			0	0	0	0		0	0		226,4528	-	-
Ген	53 B9C 1	10,5	(1	0	83,75	-25,6891	10,5	-67	67	0			25,64678
Ген	54 B9C 2	10,5	(1	0	83,75	-25,6891	10,5	-67	67	0	-,-		25,64678
Ген	55 B3C 3	10,5	(1	0	-	-25,6891		-67	67	0	-,-		25,64678

	N_нач N_к			руппы Название						N_анц БД_анц		Q_нач Na	Ідоп_расч		І загр.
Выкл	1	2	0	0 Г1-БТЭЦ - Г1-НН1	0	0	0	0	0	0	0 -	30 2,474176	0 0	2518,741	
ыкл	1	3	0	0 Г1-БТЭЦ - Г1-НН2	0	0	0	0	0			30 2,474176	0 0	2518,741	
p-p	4	2	0	0 Г1-H - Г1-HH1	0,3	0	0	0	0,057	-	0 29,981		0 0	143,5694	l .
о-р	4	3	0	0 Г1-H - Г1-HH2	0,3	0	0	0	0,057	0	0 29,981	52 -2,52789	0 0	143,5694	Į.
p-p	4	8	0	0 Г1-Н - БТЭЦ-110	1,2	17,4	36,29	23,44	1	0	0 -59,96	31 5,053869	0 0	287,1374	
p-p	8	5	0	0 БТЭЦ-110 - Г2-БТЭЦ	0,37	12,3	46,95	27,32	0,086	0	0	0 0	0 0	0)
р-р	8	6	0	0 БТЭЦ-110 - ГЗ-БТЭЦ	0,37	12,3	47	27,3	0,086	0	0 109.21	43 38,10366	0 0	549,5832	
p-p	8	7	0	0 БТЭЦ-110 - Г4-БТЭЦ	0,3	9,2	54,64	34,15	0,086			38 39,13774		613,5228	
p-p	11	12	0	0 Благовещенская-220 - Благовещенская-Н1	0.55	59.2	11.81	5,76	1		0 -13.11			52.17478	
р-р	11	13	0	0 Благовещенская-220 - Благовещенская-Н2	0,55	59.2	11.8	5.8	1		0 -13,11	.,		52,17708	
	12	9	0	0 Благовещенская-120 - Влаговещенская-12	0,33	0	0	0	0,526		0 -11,84			48,06569	
p-p	13	9	0			0	0								
p-p				0 Благовещенская-Н2 - Благовещенская-110	0,48			0	0,526					48,06569	
р-р	12	10	0	0 Благовещенская-Н1 - Благовещенская-35	3,2	131	0	0	0,1673		0 -0,949			2,570934	
p-p	13	10	0	0 Благовещенская-Н2 - Благовещенская-35	3,2	131	0	0	0,1673		0 -0,949			2,570934	
р-р	16	17	0	0 Владимировка-110 - Владимировка-10	7,95	139	5,29	4,53	0,0956		0 -1,406			7,768927	
р-р	16	17	0	0 Владимировка-110 - Владимировка-10	7,95	139	5,3	4,5	0,096		0 -1,425			9,022726	
p-p	19	22	0	0 Тамбовка-110 - Тамбовка-Н1	5	142,2	8,317	5,74	1	0	0 -7,613	85 -4,18231	0 0	43,63017	
р-р	19	23	0	0 Тамбовка-110 - Тамбовка-Н2	1,5	56,9	13,23	10,58	1	0	0 -18,84	61 -10,5071	0 0	108,372	
p-p	22	20	0	0 Тамбовка-Н1 - Тамбовка-35	5	0	0	0	0,3347	0	0 -0,888	96 -0,78845	0 0	6,238449	
р-р	23	20	0	0 Тамбовка-Н2 - Тамбовка-35	1,5	0	0	0	0,3347	0	0 -3,342	86 -0,90126	0 0	18,17642	
р-р	22	21	0	0 Тамбовка-Н1 - Тамбовка-10	5	82,7	0	0	0,0956		0 -6,62			37.14669	
Гр-р	23	21	0	0 Тамбовка-Н2 - Тамбовка-10	1,5	35.7	0	0	0,096		0 -15,31			89,42815	
Гр-р	24	27	0	0 Михайловка-110 - Михайловка-Н1	5	142,2	8.3	5.7	1		0 -7.292		0 0	,	
Гр-р	24	28	0	0 Михайловка-110 - Михайловка-Н2	14,7	220,4	3,811	3.327	1		0 -4,791			26,66012	
					14,7		3,811	3,327							
Гр-р	27	25	0	0 Михайловка-Н1 - Михайловка-35		0			0,335		0 -4,428			25,48014	
Гр-р	28	25	0	0 Михайловка-Н2 - Михайловка-35	14,7	0	0	0	0,335		0 -3,063			16,87903	
Гр-р	27	26	0	0 Михайловка-Н1 - Михайловка-10	5	82,7	0	0	0,096		0 -2,763			15,63472	
Гр-р	28	26	0	0 Михайловка-Н2 - Михайловка-10	14,7	139	0	0	0,096		0 -1,653		0 0	-,	
Гр-р	30	31	0	0 РГРЭС-220 - РГРЭС-Н-АТ	0,55	59,2	11,8	5,8	1		0 17,904			111,6715	
Гр-р	31	29	0	0 РГРЭС-H-AT - РГРЭС-110	0,48	0	0	0	0,526	0	0 18,238	57 -38,4637	0 0	110,5348	
р-р	31	32	0	0 РГРЭС-Н-АТ - РГРЭС-НН-АТ	3,2	131	0	0	0,047	0	0 -2,16E-	14 4,48E-14	0 0	1,29E-13	
р-р	29	35	0	0 РГРЭС-110 - Н1-РГРЭС	0,4	18,6	36,29	29,49	1	0	0 30,404	82 -13,924	0 0	165,0557	
р-р	35	34	0	0 Н1-РГРЭС - Г7-РГРЭС	0,4	11,9	0	0	0.096		0 32,966			168,2692	
р-р	35	37	0	0 H1-PFP9C - PFP9C-35	0.4	0	0	0	0,3347		0 -2.124			30.79697	
р-р	29	36	0	0 РГРЭС-110 - Н2-РГРЭС	0,4	18.6	36,3	29,5	1		0 30,397		0 0	,	
Гр-р	36	33	0	0 H2-PFP9C - F6-PFP9C	0,4	11,9	0	0	0.096		0 49.923			253.0132	
									.,		,			,	
Гр-р	36	37	0	0 Н2-РГРЭС - РГРЭС-35	0,4	0	0	0	0,335		0 -19,08		0 0		
Гр-р	41	44	0	0 Хвойная-220 - Хвойная-Н1	1,8	160	8,6	1,03	1		0 -8,419			26,12304	
Гр-р	41	45	0	0 Хвойная-220 - Хвойная-Н2	1,9	175	8,7	1,05	1		0 -7,709			23,98397	
Гр-р	44	42	0	0 Хвойная-Н1 - Хвойная-110	1,8	0	0	0	0,526		0 -5,695	91 -3,95648		17,53875	
Гр-р	45	42	0	0 Хвойная-Н2 - Хвойная-110	1,9	0	0	0	0,526	0	0 -5,11	35 -4,4724	0 0	17,18029	
Гр-р	44	43	0	0 Хвойная-Н1 - Хвойная-35	3,6	130	0	0	0,1674	0	0 -2,664	65 -1,56226	0 0	7,811526	
Гр-р	45	43	0	0 Хвойная-Н2 - Хвойная-35	3,8	135	0	0	0,167	0	0 -2,536	44 -0,57906	0 0	6,579612	
эп	8	9	0	0 БТЭЦ-110 - Благовещенская-110	0,8987	3,93	-12,1	0	0	0	0 -53,78	04 -5,57942	0 600	256,9804	42,8300
эп	8	9	0	0 БТЭЦ-110 - Благовещенская-110	0,8987	3,93	-12,1	0	0	0	0 -53.78			256.9804	
пэп	9	14	0	0 Благовещенская-110 - Центральная-110	1.0838	2,763	-9,198	0	0		0 5,0174			60.82709	,
1911	9	14	0	0 Благовещенская-110 - Центральная-110	1,0838	2,763	-9,2	0	0	-	0 5.0174			60.82716	,
1911	8	14	0	0 БТЭЦ-110 - Центральная-110	0,5782	2,5311	-7,78	0	0	-	0 -75,64	,		373,1838	
	-														
пэп	8	14	0	0 БТЭЦ-110 - Центральная-110	0,5782	2,5311	-7,78	0	0		0 -75,64			373,1838	
пэп	14	15	0	0 Центральная-110 - Отп. Владимировка	1,0238	2,6102	-8,69	0	0		0 -41,16			226,1398	
пэп	15	16	0	0 Отп. Владимировка - Владимировка-110	0,04	0,063	-0,196	0	0		0 -2,832			16,71358	
пэп	15	18	0	0 Отп. Владимировка - Волково-110	3,2449	8,2724	-27,54	0	0		0 -38,18			210,4379	
пэп	18	19	0	0 Волково-110 - Тамбовка-110	4,3	11,19	-37,26	0	0		0 -19,18			131,7407	
эп	19	24	0	0 Тамбовка-110 - Михайловка-110	10,23	26,576	-88,48	0	0	0	0 7,492	83 -3,42694	0 500	44,09972	8,8199
эп	24	29	0	0 Михайловка-110 - РГРЭС-110	11,03	28,66	-95,425	0	0	0	0 19,632	84 1,741463	0 500	99,20188	19,8403
эп	30	38	0	0 РГРЭС-220 - Завитая-220	4,272	19,09	-58,74	0	0		0 -8,971			55,94447	
эп	30	38	0	0 РГРЭС-220 - Завитая-220	4,29	19,176	-59,004	0	0			74 20,59685		55,72669	
1911	38	51	0	0 Завитая-220 - Варваровка-220	7,6	33,976		0	0		0 117,41			334.4799	
1911	52	11	0	0 Ивановская ВЭС - Благовещенская-220	6.75	28.04	-77.8	0	0		0 117,41	0 0	0 600		
1911	38	39	0	0 Завитая-220 - Короли/т-Хвойная	3,811	17,03	-52,404	0	0		0 -34,6			95,30678	
19П	39	41	0	0 Короли/т-Хвойная - Хвойная-220	0,0148	0,06649	-0,2	0	0		0 -6,754			21,68198	
эп	38	40	0	0 Завитая-220 - Белогорск/т-Хвойная	3,81	17,03	-52,4	0	0		0 -34,47				
ЭП	40	41	0	0 Белогорск/т-Хвойная - Хвойная-220	0,0835	0,373	-1,148	0	0		0 -9,376			28,46005	
ЭП	42	46	0	0 Хвойная-110 - Озерная-110	8,954	15,67	-48,81	0	0		0 -10,80			,	
эп	46	47	0	0 Озерная-110 - Отп. Анновка	6,168	10,79	-33,62	0	0	0	0 -7,16	65 -7,50429	0 300	52,39528	17,465
эп	47	48	0	0 Отп. Анновка - Анновка-110	0,163	0,286	-0,89	0	0	0	0 -1,009	96 -0,38784	0 300	5,359118	1,7863
эп	47	49	0	0 Отп. Анновка - Полевая-110	4,599	8,0486	-25,07	0	0	0	0 -6,107	59 -7,49502	0 300	49,01757	16,339
эп	49	50	0	0 Полевая-110 - Ивановка-110	8,052	14,091	-43,89	0	0		0 9,6231			49,08733	
эп	50	18	0	0 Ивановка-110 - Волково-110	5,53	9,692	-30,19	0	0		0 14,479			71,66732	
	52	53	0	0 Ивановская ВЭС - ВЭС 1	1,4	51,5	10,7	2,31	0,0477		0 82,414			227,5094	
p-p		54													
p-p	52		0	0 Ивановская ВЭС - ВЭС 2	1,4	51,5	10,7	2,31	0,0477		0 82,414			227,5094	
p-p	52	55	0	0 Ивановская ВЭС - ВЭС 3	1,4	51,5	10,7	2,31	0,0477		0 82,414			227,5094	
1911	11	52	0	0 Благовещенская-220 - Ивановская ВЭС	5,88	25,74	-158,4	0	0		0	0 0	0 690		_
эп	52	38	0	0 Ивановская ВЭС - Завитая-220	14,7	64,35	-390	0	0	0	0 -120,1	24 53,65803	0 690	335,4261	48,612
эп	52	51	0	0 Ивановская ВЭС - Варваровка-220	6,75	28,04	-77,8	0	0	0	0 -127,	12 48,99315	0 690	347,3349	50,3383

Продолжение приложение Γ .

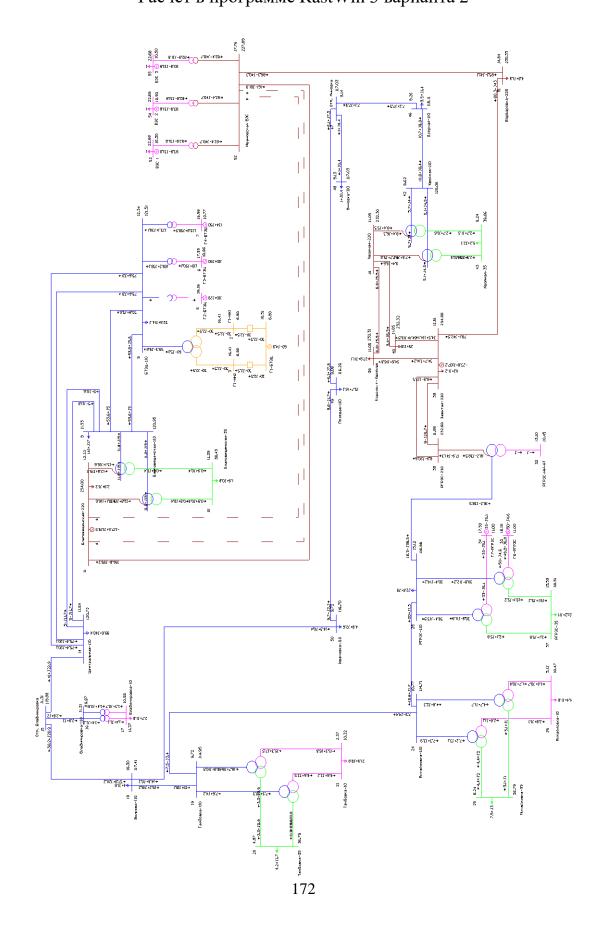
S	s0	Тип0	Номер	Название	Nº APM	U_ном
False	False	зак	1	Г1-БТЭЦ		6,3
False	False	зак	2	Г1-НН1		6,3
False	False	зак	3	Г1-НН2		6,3
False	False	У	4	Г1-Н		110
True	False	зак	5	Г2-БТЭЦ		10,5
False	False	зак	6	ГЗ-БТЭЦ		10,5
False	False	зак	7	Г4-БТЭЦ		10,5
False	False	у	8	БТЭЦ-110		115
False	False	У	9	Благовещенская-110		115
False	False	зак		Благовещенская-35		38
False	False	зак		Благовещенская-220		230
False	False	у		Благовещенская-Н1		230
False	False	y		Благовещенская-Н2		230
False	False	у		Центральная-110		115
False	False	У		Отп. Владимировка		115
False	False	У		Владимировка-110		115
False	False	зак		Владимировка-10		10,5
False	False			Волково-110		115
False	False	У		Тамбовка-110		
	False	У				115 38
False		зак		Тамбовка-35 Тамбовка-10		
False	False	зак				10,5
False	False	У		Тамбовка-Н1		115
False	False	У		Тамбовка-Н2		115
False	False	У		Михайловка-110		115
False	False	зак		Михайловка-35		38
False	False	зак		Михайловка-10		10,5
False	False	У		Михайловка-Н1		115
False	False	У	28	Михайловка-Н2		115
False	False	У	29	РГРЭС-110		115
False	False	У	30	РГРЭС-220		230
False	False	У	31	РГРЭС-Н-АТ		230
False	False	зак	32	РГРЭС-НН-АТ		10,5
False	False	зак	33	Г6-РГРЭС		10,5
False	False	зак	34	Г7-РГРЭС		10,5
False	False	У	35	Н1-РГРЭС		115
False	False	У	36	Н2-РГРЭС		115
False	False	зак	37	РГРЭС-35		38
False	False	зак	38	Завитая-220		230
False	False	У	39	Короли/т-Хвойная		230
False	False	у	40	Белогорск/т-Хвойная		230
False	False	у		Хвойная-220		230
False	False	y		Хвойная-110		115
False	False	зак		Хвойная-35		38
False	False	у		Хвойная-Н1		230
False	False	у		Хвойная-Н2		230
False	False	у		Озерная-110		115
False	False			Отп. Анновка		115
False	False	У		Анновка-110		115
False	False	У		Полевая-110		115
		У				
False	False	У		Ивановка-110		115
False	False	У		Варваровка-220		230
False	False	У		Ивановская ВЭС		220
False	False	зак		B9C 1		10,5
False	False	зак		BЭC 2		10,5
False	False	зак	55	BЭC 3		10,5


	Тип	s0	tip0	N_Ha4 N_I	кон N_г			K G			Д_анц N_анц				0 -	b0
0	Выкл	False	Выкл	1	2	0 Г1-БТЭЦ - Г1-НН1	0	0	0	0	0	0	0 0	0	0	(
0	Выкл	False	Выкл	1	3	0 Г1-БТЭЦ - Г1-НН2	0	0	0	0	0	0	0 0	0	0	(
0	Тр-р	False	Тр-р	4	2	0 Γ1-H - Γ1-HH1	0,3	0	0	0	0	0 0,05	7 0,3	0		(
0	Тр-р	False	Тр-р	4	3	0 Г1-Н - Г1-НН2	0,3	0	0	0	0	0 0,05	7 0,3	0	0	(
0	Тр-р	False	Тр-р	4	8	0 Г1-Н - БТЭЦ-110	1,2	17,4	23,44	36,29	0	0	1 1,2	17,4	23,44	36,29
1	Тр-р	False	Тр-р	8	5	0 БТЭЦ-110 - Г2-БТЭЦ	0,37	12,3	27,32	46,95	0	0 0,08	6 0,37	12,3	27,32	46,95
0	Тр-р	False	Тр-р	8	6	0 БТЭЦ-110 - ГЗ-БТЭЦ	0,37	12,3	27,3	47	0	0 0,08	6 0,37	12,3	27,3	47
0	Тр-р	False	Тр-р	8	7	0 БТЭЦ-110 - Г4-БТЭЦ	0,3	9,2	34,15	54,64	0	0 0,08	6 0,3	9,2	34,15	54,64
0	Тр-р	False	Тр-р	11	12	0 Благовещенская-220 - Благовещенская-Н1	0,55	59,2	5,76	11,81	0	0	1 0,55	59,2	5,76	11,81
0	Тр-р	False	Тр-р	11	13	0 Благовещенская-220 - Благовещенская-Н2	0,55	59,2	5,8	11,8	0	0	1 0,55	59,2	5,8	11,8
	Тр-р	False	Тр-р	12	9	0 Благовещенская-Н1 - Благовещенская-110	0,48	0	0	0	0	0 0,52	6 0,48	0	0	(
	Тр-р	False	Тр-р	13	9	0 Благовещенская-Н2 - Благовещенская-110	0,48	0	0	0	0	0 0,52		0	0	(
	Тр-р	False	Тр-р	12	10	0 Благовещенская-Н1 - Благовещенская-35	3,2	131	0	0	0	0 0,167	3 3,2	131	0	(
	Тр-р	False	Тр-р	13	10	0 Благовещенская-Н2 - Благовещенская-35	3,2	131	0	0	0	0 0,167		131	0	(
	Тр-р	False	Тр-р	16	17	0 Владимировка-110 - Владимировка-10	7,95	139	4,53	5,29	0	0 0,095		139		5,29
	Тр-р	False	Тр-р	16	17	0 Владимировка-110 - Владимировка-10	7,95	139	4,5	5,3	0	0 0,09		139	4,5	5,3
	Тр-р	False	Тр-р	19	22	0 Тамбовка-110 - Тамбовка-Н1	5	142,2	5,74	8,317	0		1 5	142,2	5,74	
	Тр-р	False	Тр-р	19	23	0 Тамбовка-110 - Тамбовка-Н2	1,5	56,9	10,58	13.23	0	0	1 1,5	56,9		13,23
	Тр-р	False	Тр-р	22	20	0 Тамбовка-Н1 - Тамбовка-35	5	0	0	0	0	0 0.334		0		15,20
	Тр-р	False	Тр-р	23	20	0 Тамбовка-Н2 - Тамбовка-35	1,5	0	0	0	0	0 0,334		0		
	Тр-р	False	Тр-р	22	21	0 Тамбовка-Н2 - Тамбовка-33	5	82,7	0	0	0	0 0,095		82,7		·
		False		23	21	0 Тамбовка-Н2 - Тамбовка-10		35,7	0	0	0	0 0,09		35,7	0	
	Tp-p	False	Tp-p	23	27	0 Памоовка-п2 - Тамоовка-10 0 Михайловка-110 - Михайловка-Н1	1,5 5	142,2	5,7	8.3	0		6 1,5 1 5	142,2		8,3
	Тр-р	False	Тр-р	24	28	0 Михайловка-110 - Михайловка-H1 0 Михайловка-110 - Михайловка-H2	-	220,4	3,327	3.811	0	-				
	Тр-р		Тр-р				14,7			3,811			1 14,7	220,4		3,81
	Тр-р	False	Тр-р	27	25	0 Михайловка-Н1 - Михайловка-35	5	0	0	-	0	0 0,33		0		
	Тр-р	False	Тр-р	28	25	0 Михайловка-Н2 - Михайловка-35	14,7	0	0	0	0	0 0,33		0		(
	Тр-р	False	Тр-р	27	26	0 Михайловка-H1 - Михайловка-10	5	82,7	0	0	0	0 0,09		82,7	0	(
	Тр-р	False	Тр-р	28	26	0 Михайловка-Н2 - Михайловка-10	14,7	139	0	0	0	0 0,09		139	0	
	Тр-р	False	Тр-р	30	31	0 РГРЭС-220 - РГРЭС-Н-АТ	0,55	59,2	5,8	11,8	0	-	1 0,55	59,2		11,8
	Тр-р	False	Тр-р	31	29	0 РГРЭС-Н-АТ - РГРЭС-110	0,48	0	0	0	0	0 0,52		0		(
	Тр-р	False	Тр-р	31	32	0 РГРЭС-Н-АТ - РГРЭС-НН-АТ	3,2	131	0	0	0	0 0,04		131		(
	Тр-р	False	Тр-р	29	35	0 РГРЭС-110 - Н1-РГРЭС	0,4	18,6	29,49	36,29	0		1 0,4	18,6	29,49	36,29
0	Тр-р	False	Тр-р	35	34	0 Н1-РГРЭС - Г7-РГРЭС	0,4	11,9	0	0	0	0 0,09	6 0,4	11,9	0	(
0	Тр-р	False	Тр-р	35	37	0 Н1-РГРЭС - РГРЭС-35	0,4	0	0	0	0	0 0,334	7 0,4	0	0	(
0	Тр-р	False	Тр-р	29	36	0 PFP9C-110 - H2-PFP9C	0,4	18,6	29,5	36,3	0	0	1 0,4	18,6	29,5	36,3
0	Тр-р	False	Тр-р	36	33	0 Н2-РГРЭС - Г6-РГРЭС	0,4	11,9	0	0	0	0 0,09	6 0,4	11,9	0	(
0	Тр-р	False	Тр-р	36	37	0 Н2-РГРЭС - РГРЭС-35	0,4	0	0	0	0	0 0,33	5 0,4	0	0	(
0	Тр-р	False	Тр-р	41	44	0 Хвойная-220 - Хвойная-Н1	1,8	160	1,03	8,6	0	0	1 1,8	160	1,03	8,6
	Тр-р	False	Тр-р	41	45	0 Хвойная-220 - Хвойная-Н2	1,9	175	1,05	8,7	0	0	1 1,9	175		8,7
	Тр-р	False	Тр-р	44	42	0 Хвойная-Н1 - Хвойная-110	1,8	0	0	0	0	0 0,52	6 1,8	0	0	(
	Тр-р	False	Тр-р	45	42	0 Хвойная-Н2 - Хвойная-110	1,9	0	0	0	0	0 0,52		0	0	(
	Тр-р	False	Тр-р	44	43	0 Хвойная-Н1 - Хвойная-35	3,6	130	0	0	0	0 0,167		130		(
	Тр-р	False	Тр-р	45	43	0 Хвойная-Н2 - Хвойная-35	3.8	135	0	0	0	0 0,16		135	0	(
	лэп	False	лэп	8	9	0 БТЭЦ-110 - Благовещенская-110	0,8987	3,93	0	-12,1	0		0 2,6961	11,79		-21,054
	лэп	False	лэп	8	9	0 БТЭЦ-110 - Благовещенская-110	0,8987	3,93	0	-12,1	0		0 2,6961	11,79	0	-21,054
	лэп	False	лэп	9	14	0 Благовещенская-110 - Центральная-110	1,0838	2,763	0	-9,198	0		0 3,2514	8,289	0	-16,0045
	лэп	False	лэп	9	14	0 Благовещенская-110 - Центральная-110	1,0838	2,763	0	-9.2	0		0 3,2514	8,289	0	-16,008
	лэп	False	лэп	8	14	0 БТЭЦ-110 - Центральная-110	0,5782	2,5311	0	-7,78	0		0 1,7346	7,5933	0	-13,5372
	лэп	False	лэп	8	14	0 БТЭЦ-110 - Центральная-110	0,5782	2,5311	0	-7.78	0	-	0 1,7346	7,5933	0	-13.5372
	лэп	False	лэп	14	15	0 Центральная-110 - Отп. Владимировка	1,0238	2,6102	0	-8,69	0		0 3,0714	7,8306		-,
	ЛЭП	False	лэп	15	16	0 Отп. Владимировка - Владимировка-	0,04	0,063	0	-0,196	0	-	0 3,0714	0.189	0	-0,34104
				15	18				0					-,		
	ЛЭП	False	ЛЭП	18		0 Отп. Владимировка - Волково-110	3,2449	8,2724		-27,54	0		0 9,7347	24,8172		-47,9196
	ЛЭП	False	ЛЭП	18	19 24	0 Волково-110 - Тамбовка-110	4,3	11,19	0	-37,26			0 12,9	33,57	0	-64,8324
	ЛЭП	False	ЛЭП			0 Тамбовка-110 - Михайловка-110	10,23	26,576	0	-88,48	0	-	0 30,69	79,728	0	-153,955
	ЛЭП	False	лэп	24	29	0 Михайловка-110 - РГРЭС-110	11,03	28,66	0	-95,425	0		0 33,09	85,98	0	-166,04
	ЛЭП	False	лэп	30	38	0 РГРЭС-220 - Завитая-220	4,272	19,09	0	-58,74	0		0 12,816	57,27	0	
	лэп	False	лэп	30	38	0 РГРЭС-220 - Завитая-220	4,29	19,176	0	-59,004	0		0 12,87	57,528	0	-102,667
	лэп	False	лэп	38	51	0 Завитая-220 - Варваровка-220	7,6	33,976	0	-104,544	0		0 22,8		0	
	лэп	False	лэп	52	11	0 Ивановская ВЭС - Благовещенская-220	6,75	28,04	0	-77,8	0		0 20,25	84,12	0	-135,372
	лэп	False	лэп	38	39	0 Завитая-220 - Короли/т-Хвойная	3,811	17,03	0	-52,404	0		0 11,433	51,09	0	-91,183
	лэп	False	лэп	39	41	0 Короли/т-Хвойная - Хвойная-220	0,0148	0,06649	0	-0,2	0		0,0444	0,19947	0	-0,348
	лэп	False	лэп	38	40	0 Завитая-220 - Белогорск/т-Хвойная	3,81	17,03	0	-52,4	0		0 11,43	51,09	0	-91,17
	лэп	False	лэп	40	41	0 Белогорск/т-Хвойная - Хвойная-220	0,0835	0,373	0	-1,148	0	0	0 0,2505	1,119	0	-1,9975
0	лэп	False	лэп	42	46	0 Хвойная-110 - Озерная-110	8,954	15,67	0	-48,81	0	0	0 26,862	47,01	0	-84,929
0	лэп	False	лэп	46	47	0 Озерная-110 - Отп. Анновка	6,168	10,79	0	-33,62	0	0	0 18,504	32,37	0	-58,498
	лэп	False	лэп	47	48	0 Отп. Анновка - Анновка-110	0,163	0,286	0	-0,89	0		0,489	0,858	0	-1,548
0	лэп	False	лэп	47	49	0 Отп. Анновка - Полевая-110	4,599	8,0486	0	-25,07	0	0	0 13,797	24,1458	0	-43,621
	лэп	False	лэп	49	50	0 Полевая-110 - Ивановка-110	8,052	14,091	0	-43,89	0		0 24,156	42,273	0	-76,368
	лэп	False	лэп	50	18	0 Ивановка-110 - Волково-110	5,53	9,692	0	-30,19	0		0 16,59	29,076	0	-52,530
	Тр-р	False	Тр-р	52	53	0 Ивановская ВЭС - ВЭС 1	1,4	51,5	2,31	10,7	0	0 0,047		51,5		10,
	Тр-р	False	Тр-р	52	54	0 Ивановская ВЭС - ВЭС 2	1,4	51,5	2,31	10,7	0	0 0,047		51,5		10,
	Тр-р	False	Тр-р	52	55	0 Ивановская ВЭС - ВЭС 3	1,4	51,5	2,31	10,7	0	0 0.047		51,5		10,
	лэп	False	лэп	11	52	0 Благовещенская-220 - Ивановская ВЭС	5,88	25.74	0	-158,4	0		0 17,64	77.22	0	-275,61
	лэп	False	лэп	52	38	0 Ивановская ВЭС - Завитая-220	14,7	64,35	0	-390	0		0 44,1	193,05		-678.6
	лэп	False	лэп	52	51	0 Ивановская ВЭС - Варваровка-220	6,75	28,04	0	-77,8	0		0 20,25	84,12		-135,372
0																

Nº	№ сост	Тип	П1	l 1	dI 1	I 2	dI 2	Ι 0	dI 0
1	1	3ф	52	9,445374	-85,0841	5,24E-16	0	-2,62E-16	0
1	1	2ф	52	4,722687	-85,0841	-4,72269	-85,0841	0	0
1	1	1ф1ф	52	6,58259	-84,9122	-2,86288	-85,4794	-3,71996	-84,4757
1	1	1ф	52	3,410478	-84,8052	3,410478	-84,8052	3,410478	-84,8052
1	1	3ф	53	70,85694	-88,5489	3,93E-15	0	-1,97E-15	0
1	1	2ф	53	35,42847	-88,5489	-35,4285	-88,5489	-3,20E-15	0
1	1	1ф1ф	53	70,85694	-88,5489	7,26E-06	0	-70,857	-88,5489
1	1	1ф	53	35,42847	-88,5489	35,42847	-88,5489	35,42847	-88,5489

Приложение Д.

_	I				_	ا ۾ '										15.4	n 1:
Тип		звание		N_cxh	Район							Q_min	Q_max B_ш		V	dV	Delta
Ген	1 Γ1-		6,3	0		1	0	0	60	,	-	-20		0	-,-		16,51314
Нагр	2 Г1-		6,3	0		1	0	0	0	0		0			6,901004		-
Нагр	3 Г1-		6,3	0		1	0	0	0	0	-	0			6,901004		
Нагр	4 Γ1-		110	0		1	0	0	0	0		0			120,9959		-
Ген	5 Γ2-		10,5	0		1	0	0	110	-,		-50		0	0		26,16302
Ген+	6 ГЗ-		10,5	0)	1	0	0	110	50		-50	50		10,85782		-
Ген+	7 Г4-	БТЭЦ	10,5	0		1	0	0	124	50		-50		0	10,76604	2,533732	16,57816
Нагр	8 bT:	ЭЦ-110	115	0	1	1	32,8	14,2	0	0	0	0	0	0	121,5146	5,664856	12,33793
Нагр	9 Бла	эговещенская-110	115	0		1	141	17	0	0	0	0	0	0	120,9454	5,16992	11,53378
Нагр	10 Бла	эговещенская-35	38	0		1	1,9	0,76	0	0	0	0	0	0	38,43357	1,140962	11,39233
База	11 Бла	эговещенская-220	230	0)	1	2,9	1,16	-173,569	161,0688	234	0	0	0	234	1,73913	12,32341
Нагр	12 Бла	эговещенская-Н1	230	0	1	1	0	0	0	0	0	0	0	0	229,959	-0,01784	11,52595
Нагр	13 Бла	эговещенская-Н2	230	0)	1	0	0	0	0	0	0	0	0	229,959	-0,01784	11,52595
Нагр		нтральная-110	115	0		1	99,6	40,4	0	0	0	0	0	0	120,7245		
Нагр		п. Владимировка	115	0		1	0	0	0	0	0	0	0	0	119,8758	-	-
Нагр		адимировка-110	115	0		1	0	0	0	0		0			119,8738		
Нагр		адимировка-10	10,5	0		1	2,7	1,8	0	0		0			11,37329	-	-
Нагр		лково-110	115	0	_	1	4	1.8	0	0		0	-		117,4075		
Нагр		ибовка-110	115	0		1	0	0	0	0	-	0	-		114,9524	-	-
Нагр		ибовка-110	38	0		1	4.23	1.69	0	0		0			36,79274		4,970726
			10,5	0		1	21,88	8,76	0	0	-	0	-		10,31534		
Нагр		ибовка-10				_			0			0			-		2,367308
Нагр		мбовка-Н1	115	0		1	0	0		0	-		0		109,9679		4,952041
Нагр		ибовка-Н2	115	0		1	0	0	0	0	-	0	-		109,9731	,	4,964319
Нагр		іхайловка-110	115	0		1	0	0	0	0		0			114,7108		10,76729
Нагр		хайловка-35	38	0		1	7,47	2,988	0	0		0	-	0	,		6,236543
Нагр		іхайловка-10	10,5	0		1	4,41	1,764	0	0	0	0	0		10,47035		5,124254
Нагр		іхайловка-Н1	115	0		1	0	0	0	0	-	0	-		110,0084		6,189339
Нагр	28 Mv	іхайловка-Н2	115	0		1	0	0	0	0		0		0	110,2157	-4,16024	6,167131
Нагр	29 PFF	9C-110	115	0		1	22,59	9,036	0	0	0	0	0	0	116,9753	1,717624	13,11811
Нагр	30 PFF	ЭC-220	230	O		1	0	0	0	0	0	0	0	0	232,5957	1,128583	11,87699
Нагр	31 PFF	POC-H-AT	230	0)	1	0	0	0	0	0	0	0	0	222,3471	-3,32737	13,09672
Нагр	32 PFF	ЭC-HH-AT	10,5	0	1	1	0	0	0	0	0	0	0	0	10,45031	-0,47322	13,09672
Ген	33 Г6-	РГРЭС	10,5	0	1	1	0	0	50	-4,63167	11	-20	20	0	11	4,761905	18,17811
Ген	34 Г7-	РГРЭС	10,5	0		1	0	0	33	-5,12376	11	-10	10	0	11	4,761905	17,29723
Нагр	35 H1	-РГРЭС	115	0		1	0	0	0	0	0	0	0	0	115,0518	0,045087	15,58132
Нагр	36 H2	-РГРЭС	115	0		1	0	0	0	0	0	0	0		115,0078		
Нагр	37 PFF	9C-35	38	0		1	21,2	11	0	0	0	0	0	0		1,329954	
База		витая-220	230	0		1	4,1	1.2	18,53738	82,8232	234	0	0	0	234		11,61086
Нагр		роли/т-Хвойная	230	0)	1	27,8	11.12	0	0	0	0	0	0	232,3065	,	-
Нагр		погорск/т-Хвойная	230	0		1	25	10	0	0	0	0	-		232,3183		-
Нагр		ойная-220	230	0		1	0	0	0	0	-	0	-		232,3045		11.05134
Нагр		ойная-110	115	0		1	0	0	0	0		0			120,0607	,	
		ойная-35	38	0		1	5,2	2,1	0	0		0			38,06181	-	-
Нагр			230				0	2,1	0	0		0					
Нагр		ойная-Н1				1	-	-			-		-		228,2972	,	9,616757
Нагр		ойная-Н2	230	0		1	0	0	0	0		0			228,2948		9,615244
Нагр		ерная-110	115	0		1	3,52	1,408	0	0	-	0			118,1108	,	-
Нагр		п. Анновка	115	0		1	0	0	0	0		0			117,0299		-
Нагр		новка-110	115	0		1	1,01	0,4	0	0	-	0	0		117,0275		
Нагр		левая-110	115	0		1	15,7	6,1	0	0		0			116,2627		
Нагр		ановка-110	115	0		1	4,8	2,6	0	0		0			116,6969	-	-
Нагр	51 Ba	оваровка-220	230	0		1	4,78	1,91	0	0	0	0	0	0	232,2312	0,97009	13,09942
Нагр	52 Ив	ановская ВЭС	220	0		1	0	0	0	0	0	0	0	0	230,7598	4,890809	14,52031
Ген	53 BЭ	C 1	10,5	0		1	1	0	83,75	-44,1232	10,5	-67	67	0	10,5	0	19,40281
Ген	54 BЭ	C 2	10,5	0)	1	1	0	83,75	-44,1232	10,5	-67	67	0	10,5	0	19,40281
Ген	55 BЭ	С3	10.5	0		1	1	0	83.75	-44,1232	10,5	-67	67	0	10,5	n	19,40281


Тип Выкл Выкл Тр-р Тр-р Тр-р Тр-р Тр-р	N_нач 1 1 4	N_кон N_п 2 3	0	руппы Название 0 Г1-БТЭЦ - Г1-НН1	0	X 0		G 0		нц БД_а 0	нц 0		Q_нач Na 2,474176	Iдоп_расч max
Выкл Тр-р Тр-р Тр-р Тр-р Тр-р	1 4													
Тр-р Тр-р Тр-р Тр-р Тр-р	4	3	0	0 Г1-БТЭЦ - Г1-НН2	0	0	0	0	0	0	0		2.474176	0 0 2518,741
Тр-р Тр-р Тр-р Тр-р		2	0	0 F1-H - F1-HH1	0,3	0	0	0	0,057	0	-		-2,52789	0 0 143,5694 (
Тр-р Тр-р Тр-р		3	0	0 Г1-H - Г1-HH2	0,3	0	0	0	0,057	0			-2,52789	0 0 143,5694
Тр-р Тр-р	4	8	0	0 Г1-н - БТЭЦ-110	1,2	17.4	36.29	23.44	1	0			5,053869	0 0 287.1374 0
Тр-р	8	5	0	0 БТЭЦ-110 - Г2-БТЭЦ	0,37	12,3	46,95	27,32		0	0	0	0	0 0 0
	8	6	0	0 БТЭЦ-110 - ГЗ-БТЭЦ	0,37	12,3	47	27,3	0,086	0	0	109,2143	38,10366	0 0 549,5832 0
	8	7	0	0 БТЭЦ-110 - Г4-БТЭЦ	0,3	9,2	54,64	34,15		0			39,13774	0 0 613,5228 0
Тр-р	11	12	0	0 Благовещенская-220 - Благовещенская-Н1	0,55	59,2	11,81	5,76	1	0		-13,1142		0 0 52,17478 0
Тр-р	11	13	0	0 Благовещенская-220 - Благовещенская-Н2	0,55	59,2	11,8	5,8	1	0		-13,1164	-16,5883	0 0 52,17708 0
Тр-р	12	9	0	0 Благовещенская-Н1 - Благовещенская-110	0,48	0	0	0	0,526	0	0	-11,8449	-15,0404	0 0 48,06569 0
Тр-р	13	9	0	0 Благовещенская-Н2 - Благовещенская-110	0,48	0	0	0	0,526	0	0	-11,8449	-15,0404	0 0 48,06569 0
Тр-р	12	10	0	0 Благовещенская-Н1 - Благовещенская-35	3,2	131	0	0	0,1673	0	0		-0,38257	0 0 2,570934 (
Тр-р	13	10	0	0 Благовещенская-Н2 - Благовещенская-35	3,2	131	0	0	0,1673	0	0	-0,94985	-0,38257	0 0 2,570934 (
Тр-р	16	17	0	0 Владимировка-110 - Владимировка-10	7,95	139	5,29	4,53	0,0956	0	0	-1,40681	-0,78917	0 0 7,768927 (
Тр-р	16	17	0	0 Владимировка-110 - Владимировка-10	7,95	139	5,3	4,5	0,096	0	0	-1,42535	-1,21569	0 0 9,022726 (
Тр-р	19	22	0	0 Тамбовка-110 - Тамбовка-Н1	5	142,2	8,317	5,74	1	0	0	-7,61385	-4,18231	0 0 43,63017 0
Тр-р	19	23	0	0 Тамбовка-110 - Тамбовка-Н2	1,5	56,9	13,23	10,58	1	0	0	-18,8461	-10,5071	0 0 108,372
Тр-р	22	20	0	0 Тамбовка-Н1 - Тамбовка-35	5	0	0	0	0,3347	0	0	-0,88896	-0,78845	0 0 6,238449
Тр-р	23	20	0	0 Тамбовка-Н2 - Тамбовка-35	1,5	0	0	0	0,3347	0	0	-3,34286	-0,90126	0 0 18,17642 0
Тр-р	22	21	0	0 Тамбовка-Н1 - Тамбовка-10	5	82,7	0	0	0,0956	0	0	-6,6212	-2,494	0 0 37,14669
Тр-р	23	21	0	0 Тамбовка-Н2 - Тамбовка-10	1,5	35,7	0	0	0,096	0	0		-7,46444	0 0 89,42815
Тр-р	24	27	0	0 Михайловка-110 - Михайловка-Н1	5	142,2	8,3	5,7	1	0	0	, .	-3,93193	0 0 41,6986 0
Тр-р	24	28	0	0 Михайловка-110 - Михайловка-Н2	14,7	220,4	3,811	3,327		0	0		-2,2578	0 0 26,66012 0
Тр-р	27	25	0	0 Михайловка-Н1 - Михайловка-35	5	0	0	0	0,335	0	0	-4,42822	-1,99043	0 0 25,48014 0
Тр-р	28	25	0	0 Михайловка-Н2 - Михайловка-35	14,7	0	0	0	0,335	0	0		-0,99739	0 0 16,87903 0
Тр-р	27	26	0	0 Михайловка-Н1 - Михайловка-10	5	82,7	0	0	0,096	0	0	-2,76398	-1,11136	0 0 15,63472 0
Тр-р	28	26	0	0 Михайловка-Н2 - Михайловка-10	14,7	139	0	0	0,096	0	0		-0,751	0 0 9,51282 (
Тр-р	30	31	0	0 РГРЭС-220 - РГРЭС-Н-АТ	0,55	59,2	11,8	5,8		0		17,90467	-41,2725	0 0 111,6715 0
Тр-р	31	29	0	0 РГРЭС-Н-АТ - РГРЭС-110	0,48	0	0	0	0,526	0		18,23857	-38,4637	0 0 110,5348 0
Тр-р	31	32	0	0 PFP9C-H-AT - PFP9C-HH-AT	3,2	131	0	0	0,047	0	0	-2,16E-14	4,48E-14	0 0 1,29E-13 (
Тр-р	29	35	0	0 PFP9C-110 - H1-PFP9C	0,4	18,6	36,29	29,49		0		30,40482	-13,924	0 0 165,0557 0
Тр-р	35	34	0	0 Н1-РГРЭС - Г7-РГРЭС	0,4	11,9	0	0	0,096	0		32,96602	-6,13458	0 0 168,2692 0
Тр-р	35	37	0	0 Н1-РГРЭС - РГРЭС-35	0,4	0	0	0	0,3347	0		-2,12464	-5,75758	0 0 30,79697 0
Тр-р	29	36	0	0 РГРЭС-110 - Н2-РГРЭС	0,4	18,6	36,3	29,5	1	0		30,39793	-14,2011	0 0 165,599 0
Тр-р	36	33	0	0 Н2-РГРЭС - Г6-РГРЭС	0,4	11,9	0	0	0,096	0		49,92318	-6,91703	0 0 253,0132 0
Тр-р	36	37	0	0 Н2-РГРЭС - РГРЭС-35	0,4	0	0	0	0,335	0	0	.,	-5,24242	0 0 99,3735 0
Тр-р	41	44	0	0 Хвойная-220 - Хвойная-Н1	1,8	160	8,6	1,03		0	0	.,	-6,29212	0 0 26,12304 (
Тр-р	41	45	0	0 Хвойная-220 - Хвойная-Н2	1,9	175	8,7	1,05		0	0	-7,70964	-5,80424	0 0 23,98397 0
Тр-р	44	42	0	0 Хвойная-Н1 - Хвойная-110	1,8	0	0	0	0,526	0	0		-3,95648	0 0 17,53875 0
Тр-р	45	42	0	0 Хвойная-Н2 - Хвойная-110	1,9	0	0	0	0,526	0	0	-5,1135	-4,4724	0 0 17,18029 (
Тр-р	44	43	0	0 Хвойная-Н1 - Хвойная-35	3,6	130	0	0	0,1674	0	0	,	-1,56226	0 0 7,811526
Тр-р	45	43	0	0 Хвойная-Н2 - Хвойная-35	3,8	135	0	0	0,167	0	0	-,	-0,57906	0 0 6,579612 0
лэп	8	9	0	0 БТЭЦ-110 - Благовещенская-110	0,8987	3,93	-12,1	0	0	0	0	,	-5,57942	0 600 256,9804 42,8300
лэп	8	9	0	0 БТЭЦ-110 - Благовещенская-110	0,8987	3,93	-12,1	0	0	0		-53,7804	-5,57942	0 600 256,9804 42,8300
лэп лэп	9	14	0	0 Благовещенская-110 - Центральная-110	1,0838	2,763	-9,198	0	0	0		5,017446	-11,5785	0 500 60,82709 12,16542 0 500 60,82716 12,16542
	-			0 Благовещенская-110 - Центральная-110	1,0838	2,763	-9,2		-	-		-,	-11,5785	
лэп	8	14 14	0	0 БТЭЦ-110 - Центральная-110	0,5782	2,5311	-7,78	0	0	0	0	-75,6463	-21,0247	0 600 373,1838 62,1973 0 600 373,1838 62,1973
лэп			0	0 БТЭЦ-110 - Центральная-110	0,5782	2,5311	-7,78	0		0			-21,0247	
лэп пэп	14	15	0	0 Центральная-110 - Отп. Владимировка	1,0238	2,6102	-8,69	0	0	0	0		-23,1343	0 500 226,1398 45,2279
лэп лэп	15 15	16 18	0	0 Отп. Владимировка - Владимировка-110 0 Отп. Владимировка - Волково-110	0,04 3,2449	0,063	-0,196 -27,54	0	0	0	0		-2,00217 -20,8575	0 300 16,71358 5,571193 0 500 210,4379 42,08759
лэп	18	19	0	0 Опп. владимировка - волково-110 0 Волково-110 - Тамбовка-110	4,3	8,2724 11,19	-37,26	0	0	0		-19,1891	-18,1891	0 500 210,4379 42,08759 0 500 131,7407 26,34814
лэп	19	24	0	0 Тамбовка-110 - Михайловка-110	10.23	26.576	-88.48	0	0	0		7.49283	-3.42694	0 500 131,7407 26,34814
лэп	24	29	0	0 Михайловка-110 - РГРЭС-110	11,03	28,66	-95,425	0	0	0		19,63284		0 500 99,20188 19,8403
лэп	30	38	0	0 РГРЭС-220 - Завитая-220	4,272	19,09	-58,74	0	0	0		-8,97168	20,6756	0 600 55,94447 9,324079
лэп	30	38	0	0 РГРЭС-220 - Завитая-220	4,272	19,176	-59,004	0	0	0			20,59685	0 600 55,72669 9,28778
лэп	38	51	0	0 Завитая-220 - Варваровка-220	7,6	33,976	-104,544	0	0	0		36,85886	-18,1045	0 600 108,1087 18,0181
лэп	52	11	0	0 Ивановская ВЭС - Благовещенская-220	6,75	28.04	-77.8	0	0	0		-64,0317	42,73611	0 600 192,6087 32,1014
лэп	38	39	0	0 Завитая-220 - Короли/т-Хвойная	3.811	17.03	-52,404	0	0	0	0	-34.655	-14.232	0 600 95,30678 15,88446
лэп	39	41	0	0 Короли/т-Хвойная - Хвойная-220	0,0148	0,06649	-0,2	0	0	0	0		-5,51087	0 600 21,68198 3,61366
лэп	38	40	0	0 Завитая-220 - Белогорск/т-Хвойная	3,81	17,03	-52,4	0	0	0	0	.,	-14,1097	0 600 94,77619 15,7960
лэп	40	41	0	0 Белогорск/т-Хвойная - Хвойная-220	0,0835	0,373	-1,148	0	0	0	0	-9,37601	-6,51359	0 600 28,46005 4,743342
лэп	42	46	0	0 Хвойная-110 - Озерная-110	8,954	15,67	-48,81	0	0	0	0		-8,43102	0 300 68,01887 22,6729
лэп	46	47	0	0 Озерная-110 - Отп. Анновка	6,168	10,79	-33,62	0	0	0	0	-7,1665	-7,50429	0 300 52,39528 17,46509
лэп	47	48	0	0 Отп. Анновка - Анновка-110	0,163	0,286	-0.89	0	0	0	0		-0.38784	0 300 5,359118 1,78637
лэп	47	49	0	0 Отп. Анновка - Полевая-110	4,599	8.0486	-25.07	0	0	0	0	,	-7.49502	0 300 49.01757 16.33919
лэп	49	50	0	0 Полевая-110 - Ивановка-110	8,052	14,091	-43,89	0	0	0		9.623142	-1,6793	0 300 49,01737 16,3391
лэп	50	18	0	0 Ивановка-110 - Волково-110	5,53	9,692	-30,19	0	0	0		14,47949		0 300 71,66732 23,8891
Тр-р	52	53	0	0 Ивановская ВЭС - ВЭС 1	1,4	51,5	10,7	2,31		0	0		-54,04	0 0 246,4851 (
Тр-р	52	54	0	0 Ивановская ВЭС - ВЭС 1	1,4	51,5	10,7	2,31	0,0477	0	0	. ,		0 0 246,4851 (
Тр-р	52	55	0	0 Ивановская ВЭС - ВЭС 2	1.4	51,5	10,7	2,31		0	0		-54.04	0 0 246,4851 0
лэп	11	52	0	0 Благовещенская-220 - Ивановская ВЭС	5,88	25,74	-158,4	0	0,0477	0		69.69869	-42.5836	0 690 213,0458 30,8762
лэп	11	52	0	0 Благовещенская-220 - Ивановская ВЭС	5,88	25,74	-158,4	0	0	0		69.69869	-42,5836	0 690 213,0458 30,8762
лэп	52	51	0	0 Ивановская ВЭС - Варваровка-220	6,75	28,04	-77,8	0		0		,	23,74543	0 690 121,0916 17,549

					_	pam										
Тип	Номер	Название		N_схн	Район	Р_н		Р_г	Q_r			Q_max B_ш		V	dV	Delta
Ген		Г1-БТЭЦ	6,3	(1 0	0	60		6,9	-20	20	0	6,9		16,51314
Нагр		Г1-HH1	6,3	(1 0	0	0	_	-	0	0			-	16,41308
Нагр		Γ1-HH2	6,3	(1 0	0	0	-	-	0	0				16,41308
Нагр	4	Г1-Н	110	(1 0	0	0			0	0	0	120,9959		16,41011
Ген	5	г2-БТЭЦ	10,5	()	1 0	0	110	28,96325	11	-50	50	0	0		26,16302
Ген+		гз-БТЭЦ	10,5	(1 0	0	110	50		-50	50			-	17,32603
Ген+	7	7 Г4-БТЭЦ	10,5	()	1 0	0	124	50	11	-50	50	0	10,76604	2,533732	16,57816
Нагр	8	БТЭЦ-110	115	(1 32,8	14,2	0	_	-	0	0	0	121,5146	5,664856	12,33793
Нагр	9	Благовещенская-110	115	()	1 141	17	0	0	0	0	0	0	120,9454	5,16992	11,53378
Нагр	10	Благовещенская-35	38	()	1 1,9	0,76	0	0	0	0	0	0	38,43357	1,140962	11,39233
База	11	Благовещенская-220	230	()	1 2,9	1,16	-127,642	129,5078	234	0	0	0	234	1,73913	12,32341
Нагр	12	? Благовещенская-H1	230	()	1 0	0	0	0	0	0	0	0	229,959	-0,01784	11,52595
Нагр	13	Благовещенская-Н2	230	()	1 0	0	0	0	0	0	0	0	229,959	-0,01784	11,52595
Нагр	14	Центральная-110	115	()	1 99,6	40,4	0	0	0	0	0	0	120,7245	4,977844	11,63771
Нагр	15	Отп. Владимировка	115	()	1 0	0	0	0	0	0	0	0	119,8758	4,239851	11,30628
Нагр	16	Владимировка-110	115	()	1 0	0	0	0	0	0	0	0	119,8738	4,238113	11,30589
Нагр	17	Владимировка-10	10,5	()	1 2,7	1,8	0	0	0	0	0	0	11,37329	8,317051	10,57937
Нагр	18	В Волково-110	115	()	1 4	1,8	0	0	0	0	0	0	117,4075	2,093441	10,29854
Нагр	19	Тамбовка-110	115	()	1 0	0	0	0	0	0	0	0	114,9524	-0,04141	9,72368
Нагр	20	Тамбовка-35	38	()	1 4,23	1,69	0	0	0	0	0	0	36,79274	-3,177	4,970726
Нагр	21	Тамбовка-10	10,5	()	1 21,88	8,76	0	0	0	0	0	0	10,31534	-1,75864	2,367308
Нагр	22	Р Тамбовка-Н1	115	()	1 0	0	0	0	0	0	0	0	109,9679	-4,37571	4,952041
Нагр	23	Тамбовка-Н2	115	()	1 0	0	0	0	0	0	0	0	109,9731	-4,37121	4,964319
Нагр	24	Михайловка-110	115	()	1 0	0	0	0	0	0	0	0	114,7108	-0,25148	10,76729
Нагр	25	Михайловка-35	38	()	1 7,47	2,988	0	0	0	0	0	0	36,7854	-3,19633	6,236543
Нагр	26	Михайловка-10	10,5	()	1 4,41	1,764	0	0	0	0	0	0	10,47035	-0,2824	5,124254
Нагр	27	Иихайловка-Н1	115	()	1 0	0	0	0	0	0	0	0	110,0084	-4,34054	6,189339
Нагр	28	В Михайловка-Н2	115	()	1 0	0	0	0	0	0	0	0	110,2157	-4,16024	6,167131
Нагр	29	PFP9C-110	115	()	1 22,59	9,036	0	0	0	0	0	0	116,9753	1,717624	13,11811
Нагр	30	PFP9C-220	230	()	1 0	. 0	0	0	0	0	0	0	232.5957	1.128583	11,87699
Нагр	31	РГРЭС-Н-АТ	230	()	1 0	0	0	0	0	0	0	0	222,3471	-3,32737	13,09672
Нагр	32	РГРЭС-НН-АТ	10,5	()	1 0	0	0	0	0	0	0	0	10,45031	-0,47322	13,09672
Ген	33	Г6-РГРЭС	10,5	()	1 0	0	50	-4,63167	11	-20	20	0	11	4,761905	18,17811
Ген	34	Г7-РГРЭС	10,5	()	1 0	0	33	-5,12376	11	-10	10	0	11	4,761905	17,29723
Нагр	35	Н1-РГРЭС	115	()	1 0	0	0	0	0	0	0	0	115,0518	0,045087	15,58132
Нагр	36	Н2-РГРЭС	115	()	1 0	0	0	0	0	0	0	0	115,0078	0,006807	15,5822
Нагр	37	РГРЭС-35	38	()	1 21,2	11	0	0	0	0	0	0	38,50538	1,329954	15,59129
База	38	Завитая-220	230	()	1 4,1	1,2	-23,75	107,2231	234	0	0	0	234	1,73913	11,61086
Нагр	39	Короли/т-Хвойная	230	()	1 27,8	11,12	0	0	0	0	0	0	232,3065	1,002813	11,05173
Нагр	40	Белогорск/т-Хвойная	230	()	1 25	10	0	0	0	0	0	0	232,3183	1,007973	11,05447
Нагр	41	Хвойная-220	230	()	1 0	0	0	0	0	0	0	0	232,3045	1,00194	11,05134
Нагр	42	У Хвойная-110	115	()	1 0	0	0	0	0	0	0	0	120,0607	4,400594	9,624587
Нагр	43	Хвойная-35	38	()	1 5,2	2,1	0	0	0	0	0	0	38,06181	0,162659	9,240603
Нагр	44	Хвойная-Н1	230	()	1 0	0	0	0	0	0	0	0	228,2972	-0,74037	9,616757
Нагр	45	Хвойная-Н2	230	()	1 0	0	0	0	0	0	0	0	228,2948	-0,74139	9,615244
Нагр	46	Озерная-110	115	()	1 3,52	1,408	0	0	0	0	0	0	118.1108	,	9,258125
Нагр		7 Отп. Анновка	115	()	1 0	0	0	0	0	0	0				9,135456
Нагр		В Анновка-110	115	(1 1,01	0,4	0			0	0				9,134516
Нагр		Полевая-110	115			1 15,7	6,1	0		-	0	0				9,076929
Нагр		Ивановка-110	115	·		1 4,8	2,6	0			0	0			-	9,716772
Нагр		Варваровка-220	230			1 4,78	1,91	0		-	0	0			-	14,83747
Нагр		2 Ивановская ВЭС	220	·		1 0	0	0			0	0			-	17,76042
Ген		B B 3 C 1	10.5	·		1 1	0	83,75			-67	67	0	10.5		22,68487
Ген		B3C 2	10,5			1 1	0	83,75	-31,8324		-67	67	0	10,5		22,68487
Ген		B9C 3	10,5			1 1	0		-31,8324	-	-67	67	0	10,5		22,68487

Гип	N_нач N_н			руппы Название						N_анц БД_ан			Q_нач Na	Ідоп_расч		І загр.
ыкл	1	2	0	0 Г1-БТЭЦ - Г1-НН1	0	0			C		0		2,474176		2518,741	
ыкл	1	3	0	0 Г1-БТЭЦ - Г1-НН2	0	0	0	0	0	0	0	-30	2,474176	0 0	2518,741	
o-p	4	2	0	0 Г1-H - Г1-HH1	0,3	0	0	0	0,057	0			-2,52789	0 0	143,5694	
о-р	4	3	0	0 Γ1-H - Γ1-HH2	0,3	0	0	0	0,057	0		29,98162			143,5694	
о-р	4	8	0	0 Г1-Н - БТЭЦ-110	1,2	17,4	36,29	23,44	1	0	0	-59,9631	5,053869	-	287,1374	
p-p	8	5	0	0 БТЭЦ-110 - Г2-БТЭЦ	0,37	12,3	46,95	27,32	0,086		0	0	0	0 0		
p-p	8	6	0	0 БТЭЦ-110 - ГЗ-БТЭЦ	0,37	12,3	47	27,3	0,086	0			38,10366		549,5832	
p-p	8	7	0	0 БТЭЦ-110 - Г4-БТЭЦ	0,3	9,2	54,64	34,15	0,086	0	0	123,0538	39,13774	0 0	613,5228	
р-р	11	12	0	0 Благовещенская-220 - Благовещенская-Н1	0,55	59,2	11,81	5,76	1		0	-13,1142			52,17478	
р-р	11	13	0	0 Благовещенская-220 - Благовещенская-Н2	0,55	59,2	11,8	5,8	1	0	0	-13,1164	-16,5883	0 0	52,17708	
Гр-р	12	9	0	0 Благовещенская-Н1 - Благовещенская-110	0,48	0	0	0	0,526		0				48,06569	
Гр-р	13	9	0	0 Благовещенская-Н2 - Благовещенская-110	0,48	0	0	0	0,526		0				48,06569	
Гр-р	12	10	0	0 Благовещенская-Н1 - Благовещенская-35	3,2	131	0	0	0,1673	0	0	-0,94985	-0,38257	0 0	2,570934	ŀ
Гр-р	13	10	0	0 Благовещенская-Н2 - Благовещенская-35	3,2	131	0	0	0,1673	0	0	-0,94985	-0,38257	0 0	2,570934	Į.
Гр-р	16	17	0	0 Владимировка-110 - Владимировка-10	7,95	139	5,29	4,53	0,0956	0	0	-1,40681	-0,78917	0 0	7,768927	'
Гр-р	16	17	0	0 Владимировка-110 - Владимировка-10	7,95	139	5,3	4,5	0,096	0	0	-1,42535	-1,21569	0 0	9,022726	
Гр-р	19	22	0	0 Тамбовка-110 - Тамбовка-Н1	5	142,2	8,317	5,74	1		0		-4,18231		43,63017	
Гр-р	19	23	0	0 Тамбовка-110 - Тамбовка-Н2	1,5	56,9	13,23	10,58	1	0	0	-18,8461	-10,5071	0 0	108,372	!
Гр-р	22	20	0	0 Тамбовка-Н1 - Тамбовка-35	5	0	0	0	0,3347	0	0	-0,88896	-0,78845	0 0	6,238449)
Гр-р	23	20	0	0 Тамбовка-Н2 - Тамбовка-35	1,5	0	0	0	0,3347	0	0	-3,34286	-0,90126	0 0	18,17642	!
Гр-р	22	21	0	0 Тамбовка-Н1 - Тамбовка-10	5	82,7	0	0	0,0956	0	0	-6,6212	-2,494	0 0	37,14669	
Гр-р	23	21	0	0 Тамбовка-Н2 - Тамбовка-10	1,5	35,7	0	0	0,096		0		-7,46444		89,42815	
Гр-р	24	27	0	0 Михайловка-110 - Михайловка-Н1	5	142,2	8,3	5,7	1	0	0	-7,29241	-3,93193	0 0	41,6986	
Гр-р	24	28	0	0 Михайловка-110 - Михайловка-Н2	14,7	220,4	3,811	3,327	1	0	0	-4,79168	-2,2578	0 0	26,66012	
Гр-р	27	25	0	0 Михайловка-Н1 - Михайловка-35	5	0	0	0	0,335	0	0	-4,42822	-1,99043	0 0	25,48014	
Гр-р	28	25	0	0 Михайловка-Н2 - Михайловка-35	14,7	0	0	0	0,335	0	0	-3,06394	-0,99739	0 0	16,87903	l .
Гр-р	27	26	0	0 Михайловка-Н1 - Михайловка-10	5	82,7	0	0	0,096	0	0	-2,76398	-1,11136	0 0	15,63472	
Гр-р	28	26	0	0 Михайловка-Н2 - Михайловка-10	14,7	139	0	0	0,096	0	0		-0,751	0 0		
Гр-р	30	31	0	0 РГРЭС-220 - РГРЭС-Н-АТ	0,55	59,2	11,8	5,8	1	0	0	17,90467	-41,2725	0 0	111,6715	
Гр-р	31	29	0	0 PFP9C-H-AT - PFP9C-110	0,48	0	0	0	0,526	0	0	18,23857	-38,4637	0 0	110,5348	1
Гр-р	31	32	0	0 PFP9C-H-AT - PFP9C-HH-AT	3,2	131	0	0	0,047	0	0	-2,16E-14	4,48E-14	0 0	1,29E-13	
Гр-р	29	35	0	0 РГРЭС-110 - Н1-РГРЭС	0,4	18,6	36,29	29,49	1	0	0	30,40482	-13,924	0 0	165,0557	
Гр-р	35	34	0	0 Н1-РГРЭС - Г7-РГРЭС	0,4	11,9	0	0	0,096	0	0	32,96602	-6,13458	0 0	168,2692	
Гр-р	35	37	0	0 H1-PFP9C - PFP9C-35	0,4	0	0	0	0,3347	0	0	-2,12464	-5,75758	0 0	30,79697	
Гр-р	29	36	0	0 PFP9C-110 - H2-PFP9C	0,4	18,6	36,3	29,5	1	0	0	30,39793	-14,2011	0 0	165,599	
Гр-р	36	33	0	0 Н2-РГРЭС - Г6-РГРЭС	0,4	11,9	0	0	0,096	0	0	49,92318	-6,91703	0 0	253,0132	
Гр-р	36	37	0	0 Н2-РГРЭС - РГРЭС-35	0,4	0	0	0	0,335	0	0	-19,0883	-5,24242	0 0	99,3735	
Гр-р	41	44	0	0 Хвойная-220 - Хвойная-Н1	1,8	160	8,6	1,03	1	0	0	-8,41957	-6,29212	0 0	26,12304	
Гр-р	41	45	0	0 Хвойная-220 - Хвойная-Н2	1,9	175	8,7	1,05	1	0	0	-7,70964	-5,80424	0 0	23,98397	
Гр-р	44	42	0	0 Хвойная-Н1 - Хвойная-110	1,8	0	0	0	0,526	0	0		-3,95648		17.53875	
Гр-р	45	42	0	0 Хвойная-Н2 - Хвойная-110	1,9	0	0	0	0,526		0	-5,1135	-4,4724		17,18029	
Гр-р	44	43	0	0 Хвойная-Н1 - Хвойная-35	3,6	130	0	0	0,1674		0	-2,66465	-1,56226	0 0	7,811526	
Гр-р	45	43	0	0 Хвойная-Н2 - Хвойная-35	3,8	135	0	0	0,167	0	0	-2,53644	-0,57906	0 0	6,579612	
пэп	8	9	0	0 БТЭЦ-110 - Благовещенская-110	0,8987	3,93	-12,1	0			0		-5,57942		256,9804	
пэп	8	9	0	0 БТЭЦ-110 - Благовещенская-110	0,8987	3,93	-12,1	0	C	0	0	-53,7804	-5,57942		256,9804	
пэп	9	14	0	0 Благовещенская-110 - Центральная-110	1,0838	2,763	-9,198	0	0	0		5.017446			60,82709	
пэп	9	14	0	0 Благовещенская-110 - Центральная-110	1,0838	2,763	-9,2	0	0	0	0	5.017446			60,82716	
пэп	8	14	0	0 БТЭЦ-110 - Центральная-110	0,5782	2.5311	-7,78	0	0	0	0	-75,6463	-21.0247		373.1838	
пэп	8	14	0	0 БТЭЦ-110 - Центральная-110	0,5782	2,5311	-7,78	0	0		_	-75,6463			373,1838	
пэп	14	15	0	0 Центральная-110 - Отп. Владимировка	1,0238	2,6102	-8,69	0	C		0		-23,1343		226,1398	
пэп	15	16	0	0 Отп. Владимировка - Владимировка-110	0,04	0,063	-0,196	0	0		0				16,71358	
пэп	15	18	0	0 Отп. Владимировка - Волково-110	3,2449	8,2724	-27,54	0	0		0				210,4379	
пэп	18	19	0	0 Волково-110 - Тамбовка-110	4,3	11,19	-37,26	0	0			-19,1891	-18,1891		131,7407	
эп	19	24	0	0 Тамбовка-110 - Михайловка-110	10,23	26,576	-88,48	0	0			7,49283			44,09972	
1911	24	29	0	0 Михайловка-110 - РГРЭС-110	11,03	28,66	-95,425	0	0			19,63284			99,20188	
пэп	30	38	0	0 РГРЭС-220 - Завитая-220	4,272	19,09	-58,74	0	0			-8,97168			55,94447	
пэп	30	38	0	0 РГРЭС-220 - Завитая-220	4,29	19,176	-59,004	0				-8,93274			55,72669	
пэп	38	51	0	0 Завитая-220 - Варваровка-220	7,6	33,976		0				79,14628			228,2806	
пэп	52	11	0	0 Ивановская ВЭС - Благовещенская-220	6,75	28.04	-77.8	0			0		81,88672		457,5492	
пэп	38	39	0	0 Завитая-220 - Короли/т-Хвойная	3.811	17.03	-52,404	0		-	0	-34.655	-14.232		95.30678	
1911	39	41	0	0 Короли/т-Хвойная - Хвойная-220	0,0148	0,06649	-0,2	0			0				21,68198	
1911	38	40	0	0 Завитая-220 - Белогорск/т-Хвойная	3,81	17,03	-52,4	0	0		0	.,			94,77619	
1911	40	41	0	0 Белогорск/т-Хвойная - Хвойная-220	0,0835	0,373	-1,148	0			0	-9,37601	-6,51359	0 600		
1911	40	46	0	0 Хвойная-110 - Озерная-110	8,954	15,67	-1,148	0			0		-8,43102		68,01887	
1311	46	47	0	0 Озерная-110 - Отп. Анновка	6,168	10,79	-33,62	0			0	-7,1665	-7,50429		52,39528	
1911	46	48	0	0 Отп. Анновка - Анновка-110	0.163	0,286	-33,62	0			0		-7,50429		5.359118	
19N	47	48	0	0 Отп. Анновка - Анновка-110	4,599	8.0486	-25.07	0				-6.10759	-7.49502		49.01757	,
1911 1911	47	50	0	0 Полевая-110 - Ивановка-110				0				9.623142			49,01757	
		50 18			8,052	14,091	-43,89						-1,6793			
эп	50		0	0 Ивановка-110 - Волково-110	5,53	9,692	-30,19	0				14,47949			71,66732	
p-p	52	53	0	0 Ивановская ВЭС - ВЭС 1	1,4	51,5	10,7	2,31	0,0477			82,40291			232,8905	
p-p	52	54	0	0 Ивановская ВЭС - ВЭС 2	1,4	51,5	10,7	2,31	0,0477	0		82,40291	-40,7429		232,8905	
p-p	52	55	0	0 Ивановская ВЭС - ВЭС 3	1,4	51,5	10,7	2,31	0,0477			82,40291	-, -		232,8905	
1911	11	52	0	0 Благовещенская-220 - Ивановская ВЭС	5,88	25,74	-158,4	0	0		0	0	0	0 690		
тэп	11	52	0	0 Благовещенская-220 - Ивановская ВЭС	5,88	25,74	-158,4	0		0	0	0		0 690		
ηэπ	52	51	0	0 Ивановская ВЭС - Варваровка-220	6,75	28,04	-77,8	0	0	0	0	-86,2389	40,34206	0 690	241,2086	34,9577

Продолжение приложение Д. Расчёт в программе RastWin 3 варианта 2

