



Ba

Si (111)

,

•

 $800^\circ$  ,  $850^\circ$  ,  $900^\circ$  .

•

,

,15

 $800~^\circ$  .

•

.

|     |          | 5  |
|-----|----------|----|
| 1   |          | 7  |
| 2   |          | 8  |
| 3   |          | 15 |
| 3.1 |          | 15 |
| 3.2 |          | 16 |
| 3.3 |          | 17 |
| 3.4 | Si (111) | 18 |
| 3.5 |          | 20 |
| 36  |          | 23 |
| 3.7 |          | 25 |
|     |          | 28 |



,

,

[9].

•

\_

12%.

.

,

20%.

,

,

|    | , |   |  | : |   |  |
|----|---|---|--|---|---|--|
| 1) |   |   |  |   |   |  |
|    |   |   |  |   |   |  |
|    | ; |   |  |   |   |  |
| 2) |   |   |  |   | ; |  |
| 3) |   |   |  |   |   |  |
|    | , |   |  | • |   |  |
| 4) |   | - |  |   |   |  |

•

|              |                   |          | [9],               |   | ,       |                  | (] | BaSi <sub>2</sub> ).<br>[10-13] |
|--------------|-------------------|----------|--------------------|---|---------|------------------|----|---------------------------------|
| 1,3<br>BaSia | BaSi <sub>2</sub> | ,<br>250 |                    |   | [9, 11, | 12, 13].         |    | [10]                            |
|              |                   | ,        | 5·10 <sup>15</sup> | 3 | 820     | <sup>2</sup> / . |    |                                 |
| 1,5 .        | 1.2               | 900      | )                  |   | [11]    | 1 7              |    | [17]                            |
|              | 1,3               | ,        |                    |   |         | 1,7              | •  | [15]                            |

•



4) .

2

\_

;

. ,

•

\_

- \_

.

[16].

\_

,

\_





,

,

,

,

-

[15].

,

(



,

•

1 –

( 2).



; 3–

;7–

(

,

3).



,

; 4–

; 8–

,

2 –

,

; 5–

; 2–

;6–

1–

,

800–13000° [15].

;





(

, 4).









[15].

) (

(

:

,



. (

PLD — pulsedlaserdeposition) —

,

6).

,







$$\frac{I_{S}}{I_{S_{e}}} = (1 - x) + xe^{-t/\lambda}, 0 \le x \le 1,$$

50%

$$\frac{I_s}{I_{s_0}} = (1-x)e^{-t}\lambda + xe^{-2t}\lambda, \quad 0 \le x \le 1.$$

•

|   | ,   | * | 2 | ≫.    | - |
|---|-----|---|---|-------|---|
|   |     |   | , |       | - |
|   | 0,5 |   |   |       | • |
| - |     |   |   |       | - |
|   | ,   |   |   | [15]. |   |

-

3.1



77,4 .











)

,

1,33• 10-7

300°,

3.2

•

Si(111),

,



45 •

.

|     | ( | 1)      |     |     | ,    |   |
|-----|---|---------|-----|-----|------|---|
|     |   |         | ,   |     | 600° | ( |
| 6-8 | ) | 1250° ( | 3-5 | 1-2 | ).   |   |

Si(111)

•

|   | ( )   | ( )  | ( )  |
|---|-------|------|------|
| 1 | 15,40 | 5,50 |      |
| 2 | 15,00 | 5,37 | 0,35 |
| 3 | 14,70 | 5,25 |      |

(Ba)

99,99% (

,

).

3.3

,

,

«Sycon» ( 9).



2) . 3) . . USB ,

:

0,1 / .

20

1)

3.4 Si(111)

PHI-590 ( 10).



10 – PHI-590

$$T_{Si} = 800^{\circ}, 850^{\circ}, 900^{\circ}C -$$

$$P = 1,33 \cdot 10^{-7} .$$

$$(,,),,$$

$$(,,-),,,$$

$$(,,-),,,$$

$$(,-),,,$$

$$Ba$$

$$20 \quad Si (111) \qquad (-2).$$

|   | ( ) | -<br>(°C) |
|---|-----|-----------|
| 1 |     | 900       |
| 2 | 20  | 850       |
| 3 |     | 800       |

3.5

Vertex 80

(80v) ( 11).



11 –

Vertex 80v

,

Vertex 80v

· · ·

·

, , *R* – ,

, A<sub>100%</sub> -

, *R* –

1.

(100%).

,

,

MicrosoftExcel.

12,13).



(

12 –



[8, 9],

,

3.6

,

[6].

(

,

-

,

.

,

( ):

$$\frac{\Delta R}{R_{\rm exp}} = \frac{R_a - R_s}{R_s}$$

$$R_s \quad R_a -$$

,

. . .

[7].

,

(

)



14 -

,

|     | 14 |     |         |   |           |         | -  |
|-----|----|-----|---------|---|-----------|---------|----|
|     |    |     |         |   |           | ( R/R)  | -  |
|     | ,  |     |         |   |           | [8],    | -  |
|     |    | 3,3 | 4,2     |   |           | ,       | -  |
| 3.7 |    |     |         |   |           | •       |    |
|     |    |     |         |   | Solver 47 |         | -  |
|     |    |     |         | ( | 15).      |         | -  |
|     |    |     |         |   |           |         | -  |
|     |    |     |         |   |           |         | •  |
|     | -  |     |         |   | , ,       |         | 3, |
|     |    |     | 800 °C, |   |           | ,       | -  |
|     |    |     | 1,      |   |           | 900 °C. | -  |

24

800 °C.



«FemtoScanOnline».

.

«FemtoScanOnline»

 $\mathbf{R}_{\mathrm{a}}$ 

,

,

$$R\alpha \approx \sum_{i=1}^{n} |Yi|$$

:

•

$$Rz \approx \frac{1}{n(\sum_{i=0}^{n} h_{imax} - \sum_{i=0}^{n} h_{imin})}.$$

Rz

$$R_q \approx \sqrt{\left(\frac{1}{L}\int_0^L r^2\right)(x)}$$

,

,

•

$$R_q$$

$$S = \frac{1}{n} \sum_{i=1}^{n} S_i$$

n -

,

(

,

•

 $l_0$  -

-

,

, . .

).

$$S_n = \frac{1}{n} \sum_{i=1}^n S_m,$$

R<sub>max</sub> -

$$R_{sk} = \frac{1}{LR_q^s} \int_0^L r^s(x) dx$$

R<sub>sk</sub>

.> 1.5

•

,

,

•

R<sub>q</sub> R<sub>a</sub>.

«FemtoScanOnline»

3

,

•

•

«FemtoScanOnline».

•

| 2 |   |
|---|---|
| 3 | _ |

|   | , (°C) | R <sub>a</sub> , | R <sub>max</sub> , | R <sub>q</sub> , | R <sub>sk</sub> , |
|---|--------|------------------|--------------------|------------------|-------------------|
| 3 | 800    | 11,5             | 63,86              | 14,28            | 0,00324           |
| 2 | 850    | 16,06            | 92,88              | 19,34            | 0,3699            |
| 1 | 900    | 34,28            | 169,1              | 41,98            | 0,7942            |

800 0

-

-

-

(BaSi<sub>2</sub>).

BaSi<sub>2</sub> Si(111) 20

800 °C, 850 °C, 900

,

°C.

,  $R_a = 11.5$ 

800°C.

1. / . , 2006. -490 .: 2. , 2003. -704 . 3. // . 1999. 10. . 100 – 107. 4 , . / . . // , . . 2013. -4. - .14-25 5 , / //

-2009. - 17. - . 45-48

6 Chiaradia, P., Differential-reflectance spectroscopy and reflectanceanisotropy spectroscopy on semiconductor surfaces / P. Chiaradia, R. Del Sole //Surface Review and Letters.– 1999. - 6. – . 127-146

7 McIntyre, J.E. Differential reflection spectroscopy of very thin surface films/ J.E. McIntyre, D.E. Aspnes // Surface Science. – 1971. - 24 – P. 417

8 Dotsenko, S.A., In situ differential reflectance spectroscopy study of solid phase epitaxy in Si(111)-Fe and Si(111)-Cr systems/ S.A. Dotsenko, N.G. Galkin, L.V. Koval, V.O. Polyarnyi // Nanotech. – 2006. - 4.– P. 319-329

9 Migas, D.B., Isostructural BaSi<sub>2</sub>, BaGe<sub>2</sub> and SrGe<sub>2</sub>: electronic and optical properties / D.B. Migas, V.L. Shaposhnicov, V.E. Borisenko// Phis. Stat. sol. – 2007.- 7. – P. 2611-2618

10 Nakamura, ., Investigation of the energy band structure of orthorhombic  $BaSi_2by$  optical and electrical measurements and theoretical calculations / . Nakamura, T. Suemasu, K. Takakura, F. Hasegawa, A. Wakahara, M. Imai // Applied physics letters. – 2002. - 6. – P. 1032-1034

Morita, K., Optical and electrical properties of semiconducting BaSi<sub>2</sub>
thin films on Si substrates grown by molecular beam epitaxy / . Morita, Y. Inomata,
Suemasu // Thin Solid Films. – 2006. – Vol. 508. – P. 363-366

12 Matsumoto, Y.,Photoresponse Properties of Semiconducting  $BaSi_2$  Epitaxial Films Grown on Si(111) Substrates by Molecular Beam Epitaxy / Y. Matsumoto, D. Tsukada, R. Sasaki, M. Takeishi, T. Suemasu// Applied Physics Express. – 2009. – 2. – P. 021101-1 – 021101-3

13 Ajmal Khan, M., In-situ heavily p-type doping of over 1020cm<sup>-3</sup> in semiconducting BSi<sub>2</sub>thinfilms for solar cells applications / M. Ajmal Khan, K.O. Hara, W. Du, M. Baba, K. Nakamura, M. Suzuno, K. Toko, N. Usami, T. Suemasu// Applied physics letters. – 2013. – 102. – P. 112107-1

14 Takabe, R., Fabrication and characterization of  $BaSi_2$  epitaxial films over 1 µm in thickness on Si(111) / R. Takabe, K. Nakamura, M. Baba, W. Du, K. Toko, M. Sasase, O. Hara, N. Usami, T. Suemasu. // Japanese Journal of Applied Physics. – 2014. – 53. – P. 04ER04-1- 04er04-4

, . .,

15

/ . . , . . , . . , . . . - 2011. - 11. – . 59-61

//