Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (ФГБОУ ВО «АмГУ»)

ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА

сборник учебно-методических материалов

для направления подготовки 41.03.01 – Зарубежное регионоведение

Печатается по решению

редакционно-издательского совета

факультета математики и информатики

Амурского государственного

Университета

Составитель: Двоерядкина Н.Н..

Основы математического анализа: сборник учебно-методических материалов для направления подготовки 41.03.01 «Зарубежное регионоведение» – Благовещенск: Амурский гос. ун-т, 2017.

Рассмотрен на заседании кафедры общей математики и информатики 03.11.2017, протокол № 3.

[©] Амурский государственный университет, 2017

[©] Кафедра общей математики информатики, 2017

[©] Двоерядкина Н.Н., составление

ВВЕДЕНИЕ

Цель дисциплины: подготовка студента к восприятию математического аппарата специальных дисциплин, чтению специальной литературы; обучение основным математическим методам, необходимым для анализа и решения профессиональных задач, соответствующих его будущей специальности; формирование математического образования студента таким образом, чтобы в дальнейшем он мог творчески развивать известные методы применительно к задачам своей специальности; формирование логического мышления, способности к абстрагированию, и умению «работать» с «неосязаемыми» объектами.

Задачи дисциплины:

- на примерах математических понятий и методов продемонстрировать сущность научного подхода, специфику математики, ее роль в развитии других наук;
- научить студентов приемам исследования и решения, математически формализованных задач;
 - развитие логического и алгоритмического мышления у студентов;
 - выработка умений моделировать реальные экономические процессы;
- выработать умения анализировать полученные результаты, привить навыки самостоятельного изучения литературы по математике.

В результате освоения обучающийся должен демонстрировать следующие результаты образования:

- 1) Знать: основные понятия и методы математического анализа;
- 2) Уметь: использовать аппарат дифференциального и интегрального исчисления для решения профессиональных задач;
- 3) Владеть: навыками составления простых математических моделей и методами решения прикладных задач

1 КРАТКОЕ ИЗЛОЖЕНИЕ ЛЕКПИОННОГО МАТЕРИАЛА

Тема 1 Введение в математический анализ.

Ключевые вопросы

Последовательность. Предел числовой последовательности. Бесконечно малые последовательности, их свойства. Теоремы о пределе суммы, произведения и частного сходящихся последовательностей, о пределах последовательностей, связанных неравенствами. Бесконечно большие последовательности, их связь с бесконечно малыми.

Функция одной действительной переменной. Предел функции одной действительной переменной. Бесконечно большие функции. Односторонние пределы. Основные теоремы о пределах функции. Замечательные пределы. Эквивалентные бесконечно малые функции, их свойства. Непрерывность функций. Точки разрыва функции, их классификация. Непрерывность функции на интервале, отрезке. Формулировка свойств функций, непрерывных на отрезке

Основные определения и методы

Если каждому натуральному числу n поставлено в соответствие число x_n , то говорят, что задана последовательность: $x_1, x_2, ..., x_n = \{x_n\}$. Общий элемент последовательности является функцией от n: $x_n = f(n)$.

Число а называется пределом последовательности {x_n}, если для любого положительного $\varepsilon>0$ существует такой номер N, что для всех n>N выполняется условие: $|a-x_n|<\varepsilon$. Это записывается: $\lim x_n = a$.

Определение предела последовательности геометрически можно сформулировать так: число а предел последовательности {x_n}, если для любой ε-окрестности точки а найдётся натуральное число N, такое что все значения $\{x_n\}$ для которых n > N попадут в ϵ окрестности точки а.

Число A называется пределом функции f(x) при $x \rightarrow a$, если для любого $\epsilon > 0$ существует такое число $\Delta > 0$, что для всех х таких, что $0 < |x - a| < \Delta$ верно неравенство $|f(x) - A| < \epsilon$.

Если $f(x) \to A1$ при $x \to a$ только при x < a, то $\lim_{x \to a-0} f(x) = A_1$ - называется пределом функции f(x) в точке x = a слева, a если $f(x) \to A2$ при $x \to a$ только при x > a, то $\lim_{x \to a+0} f(x) = A_2$ называется пределом функции f(x) в точке x = a справа.

Теорема 1.
$$\lim_{x\to a} C = C$$
, где $C = \text{const.}$

Следующие теоремы справедливы при предположении, что функции f(x) и g(x) имеют конечные пределы при $x \rightarrow a$.

Teopeмa 2.
$$\lim_{x\to a} (f(x) \pm g(x)) = \lim_{x\to a} f(x) \pm \lim_{x\to a} g(x)$$

Теорема 3.
$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

Следствие.
$$\lim_{x \to a} C \cdot f(x) = C \cdot \lim_{x \to a} f(x)$$

Теорема 2.
$$\lim_{x \to a} (f(x) \pm g(x)) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$
Теорема 3. $\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$
Следствие. $\lim_{x \to a} C \cdot f(x) = C \cdot \lim_{x \to a} f(x)$
Теорема 4. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$ при $\lim_{x \to a} g(x) \neq 0$

Теорема 5. Если f(x)>0 вблизи точки x=a и $\lim_{x\to a} f(x)=A$, то A>0.

Теорема 6. Если $g(x) \le f(x) \le u(x)$ вблизи точки x = a и $\lim_{x \to a} g(x) = \lim_{x \to a} u(x) = A$, то и $\lim = A$.

Функция называется бесконечно большой при х→а, где а – число или одна из величин ∞ , $+\infty$ или $-\infty$, если $\lim_{x\to\infty} f(x) = A$, где A – одна из величин ∞ , $+\infty$ или $-\infty$.

Функция f(x) называется бесконечно малой при x -> a, где a может быть числом или одной из величин ∞ , $+\infty$ или $-\infty$, если $\lim f(x) = 0$.

Свойства бесконечно малых функций:

- 1. Сумма фиксированного числа бесконечно малых функций при х \rightarrow а тоже бесконечно малая функция при х \rightarrow а.
- 2. Произведение фиксированного числа бесконечно малых функций при $x \rightarrow a$ тоже бесконечно малая функция при $x \rightarrow a$.
- 3. Произведение бесконечно малой функции на функцию, ограниченную вблизи точки x = a является бесконечно малой функцией при $x \rightarrow a$.
- 4. Частное от деления бесконечно малой функции на функцию, предел которой не равен нулю, есть величина бесконечно малая.

Если $\lim_{x\to a}\frac{\alpha}{\beta}=0$, то функция α называется бесконечно малой более высокого порядка, чем функция β .

Если $\lim_{x\to a}\frac{\alpha}{\beta}=A,\quad A\neq 0,\quad A=const$, то α и β называются бесконечно малыми одного порядка.

Если $\lim_{x\to a}\frac{\alpha}{\beta}=1$, то функции α и β называются эквивалентными бесконечно малыми. Записывают $\alpha\sim\beta$.

Функция f(x), определенная в окрестности некоторой точки x_0 , называется непрерывной в точке x_0 , если предел функции и ее значение в этой точке равны, т.е. $\lim_{x\to x} f(x) = f(x_0)$.

Сумма, разность и произведение непрерывных в точке x_0 функций – есть функция, непрерывная в точке x_0 .

Частное двух непрерывных функций $\frac{f(x)}{g(x)}$ – есть непрерывная функция при условии, что g(x) не равна нулю в точке x_0 .

Суперпозиция непрерывных функций – есть непрерывная функция.

Это свойство может быть записано следующим образом:

Если u = f(x), v = g(x) – непрерывные функции в точке $x = x_0$, то функция v = g(f(x)) – тоже непрерывная функция в этой точке.

Точка x_0 называется точкой разрыва функции f(x), если f(x) не определена в точке x_0 или не является непрерывной в этой точке.

Точка x_0 называется точкой разрыва 1- го рода, если в этой точке функция f(x) имеет конечные, но не равные друг другу левый и правый пределы.

$$\lim_{x \to x_0 + 0} f(x) \neq \lim_{x \to x_0 - 0} f(x)$$

Для выполнения условий этого определения не требуется, чтобы функция была определена в точке $x = x_0$, достаточно того, что она определена слева и справа от нее.

Точка x_0 называется точкой разрыва 2 – го рода, если в этой точке функция f(x) не имеет хотя бы одного из односторонних пределов или хотя бы один из них бесконечен.

Тема 2 Дифференциальное исчисление функции одной переменной Ключевые вопросы

Производная функции. Геометрический, механический и экономический смысл производной. Касательная и нормаль к кривой. Дифференцируемость функций. Общие правила дифференцируемости. Производная сложной и обратной функции. Производные элементарных функций. Логарифмическое дифференцирование. Дифференцирование параметрические заданной функции. Теоремы о среднем Ферма, Ролля, Лагранжа, их геометрический смысл. Теорема Коши. Правила Лопиталя. Применение дифференциального исчисления к исследованию функций. Условия монотонности функции. Экстремум функции. Необходимое условие экстремума. Достаточные условия экстремума. Выпуклость (вогнутость) графика функции, точки перегиба. Необходимое и достаточное условия точки перегиба. Асимптоты графика функции. Применение дифференциального исчисления в экономике. Предельные величины. Эластичность.

Основные определения и методы

Производной функции f(x) в точке x = x0 называется предел отношения приращения функции в этой точке к приращению аргумента, если он существует.

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Уравнение касательной к кривой: $y - y_0 = f'(x_0)(x - x_0)$

$$y - y_0 = -\frac{1}{f'(x_0)}(x - x_0)$$

Уравнение нормали к кривой:

Обозначим f(x) = u, g(x) = v- функции, дифференцируемые в точке x.

1)
$$(u \pm v)' = u' \pm v'$$

$$2) (\mathbf{u} \cdot \mathbf{v})' = \mathbf{u} \cdot \mathbf{v}' + \mathbf{u}' \cdot \mathbf{v}$$

$$3) \left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}, \text{ если } v \neq 0.$$

Пусть
$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$$
 $t_0 \le t \le T$, $\frac{dy}{dx} = \frac{\psi'(t)}{\varphi'(t)}$ - производная функции, заданной парамет-

рически.

Пусть функция f(x)- дифференцируема на некотором интервале.

Тогда, дифференцируя ее, получаем первую производную

Если найти производную функции f'(x), получим вторую производную функции

$$f(x)$$
. $y'' = f''(x) = \frac{d^2 f(x)}{dx^2}$ т.е. $y'' = (y')'$ или $\frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)$.

Этот процесс можно продолжить и далее, находя производные степени п $d\left(d^{n-1}v\right)$

$$\frac{d^n y}{dx^n} = \frac{d}{dx} \left(\frac{d^{n-1} y}{dx^{n-1}} \right)$$

Дифференциалом функции f(x) в точке x называется главня линейная часть приращения функции. Обозначается dy или df(x).

Из определения следует, что $dy = f'(x)\Delta x$ или dy = f'(x)dx. Можно также записать:

$$f'(x) = \frac{dy}{dx}$$
.

Если u = f(x) и v = g(x)- функции, дифференцируемые в точке x, то непосредственно из определения дифференциала следуют следующие свойства:

$$d(u \pm v) = (u \pm v)'dx = u'dx \pm v'dx = du \pm dv;$$

$$d(uv) = (uv)'dx = (u'v + v'u)dx = vdu + udv;$$

$$d(Cu) = Cdu;$$

$$d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2}$$

Формула, для вычисления приближенных значений функции:

$$f(x + \Delta x) \approx f(x) + f'(x)\Delta x$$

Теорема Роля. Если функция f(x) непрерывна на отрезке [a, b], дифференцируема на интервале (a, b) и значения функции на концах отрезка равны f(a) = f(b), то на интервале (a, b) существует точка ε , $a < \varepsilon < b$, в которой производная функция f(x) равная нулю, $f'(\varepsilon) = 0$.

Теорема Лагранжа. Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на интервале (a, b), то на этом интервале найдется по крайней мере одна точка ε $a < \varepsilon <$

b, такая, что
$$\frac{f(b)-f(a)}{b-a}=f'(\varepsilon)$$

Теорема Коши. Если функции f(x) и g(x) непрерывны на отрезке [a, b] и дифференцируемы на интервале (a, b) и $g'(x) \neq 0$ на интервале (a, b), то существует по крайней мере одна точка ε , $a < \varepsilon < b$, такая, что

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\varepsilon)}{g'(\varepsilon)}$$

Теорема (правило Лопиталя). Если функции f(x) и g(x) дифференцируемы в вблизи точки а, непрерывны в точке а, g'(x) отлична от нуля вблизи а и f(a) = g(a) = 0, то предел отношения функций при $x \rightarrow a$ равен пределу отношения их производных, если этот предел (конечный или бесконечный) существует

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на промежутке (a, b), причем f'(x) > 0 для a < x < b, то эта функция возрастает на отрезке [a, b].

Если f'(x) < 0 в промежутке (a, b), то f(x) убывает на отрезке [a, b].

Функция f(x) имеет в точке x_1 максимум, если ее значение в этой точке больше значений во всех точках некоторого интервала, содержащего точку x_1 . Функция f(x) имеет в точке x_2 минимум, если $f(x_2 + \Delta x) > f(x_2)$ при любом Δx (Δx может быть и отрицательным).

Кривая обращена выпуклостью вверх на интервале (a, b), если все ее точки лежат ниже любой ее касательной на этом интервале. Кривая, обращенная выпуклостью вверх, называется выпуклой, а кривая, обращенная выпуклостью вниз — называется вогнутой.

Точка, отделяющая выпуклую часть кривой от вогнутой, называется точкой перегиба.

План нахождения наибольшего и наименьшего значения функции на отрезке:

- 1) Найти критические точки функции.
- 2) Найти значения функции в критических точках.
- 3) Найти значения функции на концах отрезка.
- 4) Выбрать среди полученных значений наибольшее и наименьшее.

Процесс исследования функции состоит из нескольких этапов. Для наиболее полного представления о поведении функции и характере ее графика необходимо отыскать:

1) Область существования функции.

Это понятие включает в себя и область значений и область определения функции.

- 2) Точки разрыва. (Если они имеются).
- 3) Интервалы возрастания и убывания.
- 4) Точки максимума и минимума.
- 5) Максимальное и минимальное значение функции на ее области определения.
- 6) Области выпуклости и вогнутости.
- 7) Точки перегиба. (Если они имеются).

лов, не выражающихся через элементарные функции.

- 8) Асимптоты. (Если они имеются).
- 9) Построение графика.

Тема 3 Интегральное исчисление функций одной переменной Ключевые вопросы

Первообразная. Неопределенный интеграл, его свойства. Методы интегрирования. Замена переменной и интегрирование по частям в неопределенном интеграле. Интегрирование рациональных, тригонометрических и иррациональных выражений. Примеры интегра-

Определённый интеграл. Условия существования. Свойства определённого интеграла. Интеграл с переменным верхним пределом, его дифференцируемость. Формула Ньютона-

Лейбница. Замена переменной и интегрирование по частям в определённом интеграле. Геометрические приложения определённого интеграла. Несобственные интегралы.

Основные определения и методы

Функция F(x) называется первообразной для функции f(x) на некотором промежутке X, если для всех значений x из этого промежутка выполняется равенство F'(x) = f(x) или dF(x) = f(x)dx.

Если функция F(x) — первообразная для функции f(x) на промежутке X, то множество функций F(x)+C, где C — произвольная постоянная, называется неопределенным интегралом от функции f(x) на этом промежутке и обозначается символом $\int f(x) dx = F(x) + C$.

Таблица неопределенных интегралов, где $u = \varphi(x)$

1.
$$\int du = u + C.$$
2.
$$\int u^{n} du = \frac{u^{n+1}}{n+1} + C.$$
3.
$$\int \frac{du}{u} = \ln |u| + C.$$
4.
$$\int a^{u} du = \frac{a^{u}}{\ln a} + C.$$
5.
$$\int e^{u} du = e^{u} + C.$$
6.
$$\int \sin u du = -\cos u + C.$$
7.
$$\int \cos u du = \sin u + C.$$
8.
$$\int \frac{du}{\cos^{2} u} = tgu + C.$$
10.
$$\int \frac{du}{a^{2} + u^{2}} = \frac{1}{a} \operatorname{arctg} \frac{u}{a} + C.$$
11.
$$\int \frac{du}{\sqrt{a^{2} - u^{2}}} = \arcsin \frac{u}{a} + C.$$
12.
$$\int \frac{du}{u^{2} - a^{2}} = \frac{1}{2a} \ln \left| \frac{u - a}{u + a} \right| + C.$$

Метод подстановки или метод замены переменной основан на формуле $\int f(x) dx = \begin{vmatrix} x = \varphi(t) \\ dx = \varphi'(t) dt \end{vmatrix} = \int f \big[\varphi(t) \big] \varphi'(t) dt \, .$ Данная формула называется формулой замены переменной в неопределенном интеграле.

Метод интегрирования по частям основан на использовании формулы $\int u dv = uv - \int v du$. Эта формула позволяет свести вычисление интеграла $\int u dv$ к вычислению интеграла $\int v du$, который может оказаться более простым.

Если существует конечный предел интегральной суммы при $\lambda \to 0$, то этот предел называется определенным интегралом от функции f(x) на отрезке [a,b]:

$$I = \int_{a}^{b} f(x)dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i.$$

Сама функция f(x) на отрезке [a,b] называется интегрируемой подынтегральной функцией, a — верхний предел интегрирования, b — нижний предел интегрирования, а x — переменная интегрирования.

Если функция f(x) непрерывна на отрезке [a,b] и функция F(x) является ее некоторой первообразной на этом отрезке, то имеет место формула Ньютона — Лейбница: $\int\limits_a^b f(x)dx = F(x)\Big|_a^b = F(b) - F(a).$

Пусть функция y = f(x) задана на луче $[a, \infty)$ и интегрируема на любом конечном отрезке [a,b], где $a < b < \infty$. Если существует предел $\lim_{b \to \infty} \int_a^b f(x) dx$, то он называется не-

собственным интегралом I рода от функции f(x) на промежутке $[a,\infty)$ и обозначается символом: $\int\limits_a^\infty f(x)dx = \lim\limits_{b \to \infty} \int\limits_a^b f(x)dx$. Если функция y = f(x) непрерывна при $a < x \le b$ и имеет

бесконечный разрыв в точке
$$x = a$$
, т.е. $\lim_{x \to a} f(x) = \infty$, то $\int_a^b f(x) dx = \lim_{\varepsilon \to 0} \int_{a+\varepsilon}^b f(x) dx$, $(\varepsilon > 0)$.

Пусть функция f(x) непрерывна и неотрицательна на отрезке [a,b]. В силу геометрического смысла определенного интеграла площадь криволинейной трапеции численно равна интегралу от данной функции по данному отрезку, т.е. $S = \int\limits_a^b f(x) dx$. Длина L дуги кривой, заданной уравнением y=f(x), a \leq x \leq b вычисляется по формуле: $L = \int\limits_a^b \sqrt{1+f'^2(x)} dx$. Объем тела вращения определяется формулой $V = \pi \int\limits_a^b f^2(x) dx$.

2. Пусть материальная точка перемещается по прямой с переменной скоростью v=v(t). Путь S, пройденный точкой за промежуток времени от t_1 до t_2 вычисляется по формуле: $S = \int\limits_{t_1}^{t_2} v(t) dt \; .$

2 МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ПРАКТИЧЕСКИМ ЗАНЯТИЯМ

Практические занятия сопровождают лекционный курс дисциплины. Теоретические знания, представления, образы должны быть прожиты. Афоризм одного из известных физиков М. Лауэ: «знание есть то, что остается, когда все выученное уже забыто», характеризует важную роль практики.

Практические занятия должны проводиться в логичном единстве с теоретическим курсом, подкрепляя и уточняя понятийный аппарат.

Каждый практическое занятие начинается с теоретического опроса необходимого материала и проверки домашнего задания. Далее на конкретных примерах рассматриваются пути и способы применения тех математических методов, которые не требуют использования электронных вычислительных машин. При этом необходимо активизировать самостоятельную работу студентов. Задания и методические указания к ним выдаются студентам, каждый из которых выбирает оптимальный для себя темп работы. Преподавателю отводится роль консультанта и помощника. Задания, вызвавшие трудности у большинства студентов, разбираются на доске.

В конце занятия выдается домашнее задание, состоящее из теоретических вопросов, уяснение которых необходимо для следующего занятия и практических заданий по пройденному материалу.

При выполнении домашнего задания решать задачи удобнее поэтапно, в той последовательности, в какой эти задания сформулированы. В этом случае при возникновении трудностей будет легче обратиться к анализу тех тем, которые изложены в лекции и задач, разобранных на практическом занятии.

После выполнения практической части задания следует найти ответы на теоретические вопросы, заданные преподавателем и таким образом подготовится к осознанному восприятию следующего материала.

Активная, регулярная самостоятельная работа над домашним заданием – путь к успешному усвоению дисциплины.

Тема 1 Введение в математический анализ Основные вопросы

Определение функции. Область определения и множество значений функции. Способы задания функции. Четность и нечетность функции. Ограниченность, периодичность. Обратная функция. Сложная функция. Основные элементарные функций и их графики. Преобразования графиков функций. Определение числовой последовательности. Предел числовой

последовательности. Предел функции при $x \to x_0$ и $x \to \pm \infty$. Виды и раскрытия неопределенностей при нахождении пределов. Непрерывность функции в точке. Точки разрыва функции и их классификация.

Типовые задания

1. Найти область определения функций:

1)
$$f(x) = \log_3(3x - 2) + \lg(3 - x)$$
; 2) $f(x) = \frac{\sqrt{x + 12 - x^2}}{x^2 - 9} + \lg(x - 3)$.

2. Выяснить четность(нечётность) функций:

1)
$$y = \frac{\cos 3x}{x^2}$$
; 2) $y = -\lg|2x| \cdot tgx$; 3) $y = 5^{x+1} - x^2$.

3. Построить графики функций:

1)
$$y=3^{|x|}$$
; 2) $y=\log_{\frac{1}{3}}(x+3)$; 3) $y=\frac{2x+1}{4x+5}$; 4) $y=3\cos(2x-1)$; 5) $y=3x^2+9x+11$.

4. Вычислить пределы функций:

$$\lim_{x \to 1} \frac{x^4 - 1}{x^2 - 1}; \quad \lim_{x \to 3} \left(\frac{1}{x - 3} - \frac{6}{x^2 - 9} \right); \quad \lim_{x \to \infty} \frac{2x^4 - 3x^3 + 5}{3x^4 - 5x^2 + 1}; \quad \lim_{x \to 0} \frac{\sin 3x}{\ln(1 + x)}; \quad \lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x};$$

$$\lim_{x \to \infty} \frac{3x^3 + x - 1}{x^4 + 2x}; \quad \lim_{x \to 0} \frac{tgx}{\sin 2x}, \quad \lim_{x \to -2} \frac{x^2 - 2x - 8}{2x^2 + 5x + 2}; \quad \lim_{x \to \infty} \frac{x^5 - 7x + 1}{3x^2 + x + 3}; \quad \lim_{x \to 0} \frac{tgx - \sin x}{x^3};$$

$$\lim_{n \to \infty} \frac{5n \cdot (n - 1)!}{n! + (n + 1)!}; \quad \lim_{x \to 0} \frac{\sin 3x}{x}; \quad \lim_{x \to \infty} \left(\frac{x + 3}{x + 1} \right)^{x + 1}; \quad \lim_{x \to 0} (1 - 2x)^{\frac{1}{x}}; \quad \lim_{x \to 0} \frac{1 - \cos 6x}{1 - \cos 2x};$$

$$\lim_{x \to 0} (2x + 1) [\ln(x + 3) - \ln(x)].$$

5. Исследовать функции на непрерывность и сделать чертёж.

1)
$$f(x) = \begin{cases} \cos x, & x \le 0; \\ x^2 + 1, & 0 < x < 1; \end{cases}$$
 2) $y = \frac{4x + 2}{x - 1}$.

6. Найти точки разрыва функций и определить их тип:

1)
$$y=5^{\frac{2x}{x-1}}$$
; 2) $y=\frac{4x^2-25}{2x-5}$.

Тема 2 Дифференциальное исчисление

Основные вопросы

Основные правила нахождения производных. Производные основных элементарных функций. Производные обратных функций. Производные сложных функций. Производные и дифференциалы высших порядков. Дифференциал функции. Применение дифференциала функций. Механический смысл производной. Касательная и нормаль к графику функции. Нахождение экстремума функции. Определение выпуклости, вогнутости графика функции. Нахождение наименьшего и наибольшего значений функции на отрезке.

Типовые задания

1. Вычислить производные: 1)
$$y = \frac{\cos x}{1 + 2\sin x}$$
; 2) $y = \ln \frac{x^2}{1 - x^2}$; 3) $y = \arcsin \sqrt{\sin x}$; 4) $y = \ln \left(x + \sqrt{x^2 + 5}\right)$; 5) $y = \frac{e^x + e^{-x}}{e^x - e^{-x}}$; 6) $y = tg(x) \cdot \sin^2(3x)$; 7) $y = \ln \left(\sqrt{x} - \sqrt{x - 1}\right)$; 8) $y = tg^3x - 3tgx + 3x$; 9) $y = arctg\frac{x + 3}{x - 3}$.

- 2. Вычислите у", если $y = \ln(x^2 + 1)$.
- 3. Найти производную n-го порядка: $y=2^{x}+2^{-x}$, $y^{(n)}=?$

$$y = \sqrt{x^2 - 1} + \arcsin \frac{1}{x}$$
. 4. Найти дифференциал функции

- 5. Вычислить приращение функции $y = 2x^4 3x^3 4x 43$, получаемое ею при переходе аргумента от значения x = 3 к значению x = 3,0012
- 6. Движение происходит прямолинейно по закону $S = t^3 6t^2 + 9t$, где S выражается в метрах, а время t - в секундах. Найти ускорение движения в моменты времени t=1 и
 - 7. Вычислить пределы используя правило Лопиталя:

a)
$$\lim_{x\to 0} \frac{x - \sin x}{x^3}$$
; 6) $\lim_{x\to \infty} \frac{\ln^3 x}{x^4}$; B) $\lim_{x\to 0} \left(\frac{1}{\arcsin x} - \frac{1}{\arctan x}\right)$; $\lim_{x\to 1} (1-x)tg\frac{\pi x}{2}$ e) $\lim_{x\to 0} (\sin x)^{\sin x}$ $y = \frac{\ln(x+1)}{x}$

8. Определить промежутки возрастания и убывания функции

- 9. Исследовать функцию на экстремум $y = 5x^3 15x^2 + 4$
- 10. Найти интервалы вогнутости и точки перегиба графиков функции $y = x^4 + 3x^3$.
- 11. Определить асимптоты кривой $y = \frac{x^2 + 3x + 1}{x + 1}$.
- 12. Провести полное исследование функций и построить их графики:

1)
$$y = 2x^3 - 12x^2 + 18x$$
; 2) $y = \frac{x}{x^2 - 16}$; 3) $y = e^{-\frac{x^2}{2}}$; 4) $y = x \sin x$.

Тема 3. Интегральное исчисление

Основные вопросы

Первообразная. Неопределенный интеграл. Таблица интегралов основных элементарных функций. Методы вычисления интегралов: метод подстановки и метод интегрирования по частям. Разложение правильной дроби на простейшие. Интегрирование рациональных функций. Методы интегрирования определенного интеграла. Вычисление несобственных интегралов. Вычисление площади криволинейной трапеции. Вычисление длины дуги. Вычисление объем тела вращения.

Типовые задания

1. Вычислить интеграл:

$$\int (4\sin x + 2\sqrt{x} - \frac{3}{x} + 5^{x}) dx. \qquad \int (\frac{3}{\sin^{2} x} + e^{x} + 3x^{3} - \frac{2}{\sqrt{1 - x^{2}}}) dx. \qquad \int \frac{\cos 2x}{\cos x - \sin x} dx.$$

$$\int (\frac{1}{1 + x^{2}} + 2^{3x} + \frac{1}{2x} + e^{x}) dx. \qquad \int \frac{\arcsin^{3} x}{\sqrt{1 - x^{2}}} dx. \qquad \int \frac{\operatorname{arctg}^{5} x}{1 + x^{2}} dx. \qquad \int \cos^{5} x \sin 2x dx. \qquad \int \frac{\cos x dx}{\sin^{2} x + 1}.$$

$$\int \frac{dx}{1 + 4x^{2}} \cdot \int \frac{x^{2} dx}{\sqrt{1 - x^{6}}} \cdot \int \frac{1 + x}{\sqrt{1 - x^{2}}} dx. \qquad \int \frac{1 + x}{x^{2} + 9} dx. \qquad \int \frac{e^{\frac{1}{x}}}{x^{2}} dx. \qquad \int \frac{1 + x}{\cos^{2} x} dx. \qquad \int \frac{dx}{x \sqrt{\ln x}} \cdot \int \frac{dx}{x^{2} + 2x - 10}.$$

$$\int \frac{dx}{\sqrt{1 - (2x + 3)^{2}}} \cdot \int \cos^{2} 4x dx. \qquad \int \frac{\sin(\operatorname{arctg} x)}{1 + x^{2}} dx. \qquad \int \sin^{3} x dx \qquad \int (x + 2) \sin x dx. \qquad \int x^{2} \ln x dx.$$

$$\int \operatorname{arcsin} 2x dx. \quad \int x^{2} \ell^{4x} dx. \qquad \int \sin(\ln x) dx. \qquad \int e^{3x} \sin x dx. \qquad \int \frac{dx}{(x + 1)(x - 2)} \int \frac{dx}{(x - 1)^{2} x} \cdot \int \frac{x dx}{(x - 3)(x^{2} + 25)}.$$

$$\int \frac{x^{5} - 2x^{3} + 4}{x^{3} - 4x} dx \qquad \int \frac{2x + 3}{x^{2} + 6x + 13} dx$$

2. Вычислить определенный интеграл:

1)
$$\int_{1}^{2} (x^2 + 1) dx$$
; 2) $\int_{0}^{3} e^{-\frac{x}{3}} dx$; 3) $\int_{0}^{3} \frac{x}{\sqrt{x+1}} dx$; 4) $\int_{1}^{e} \ln x dx$; 5) $\int_{1/2}^{1} x^2 \cdot (2x-1)^8 dx$

3. Вычислить несобственный интеграл или доказать его расходимость:

$$\int_{0}^{1} \frac{\ln(x)}{\sqrt{x}} dx; \qquad \int_{3}^{+\infty} \frac{x^2}{x^2 + 4} dx$$

3. Найти площадь фигуры, ограниченной заданными линиями.

a)
$$y = 2x - x^2$$
; $y = 0$; 6) $y = x^2$; $y = 1$; B) $y = \ell^x$; $y = \ell^{-x}$; $x = 1$; $y = \sin x$, $y = \cos x$, $x \in \left[0, \frac{\pi}{4}\right]$.

4. Найти объем тела, образованного при вращении вокруг оси ОХ фигуры, ограниченной данными кривыми.

a)
$$y = \sqrt{x}$$
; $y = 0$; $x = 4$. 6) $y = \sin 2x$; $y = 0$; $x \in \left[0, \frac{\pi}{2}\right]$.

3 МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНЫМ ЗАНЯТИЯМ

Лабораторные работы предназначены для получения практических навыков студентами при изучении дисциплины. К выполнению лабораторной работы следует приступать после ознакомления с теоретической частью соответствующего раздела. Результаты лабораторной работы необходимо представить в письменном виде.

Лабораторные работы по теме «Интегральное исчисление функций одной независимой переменной»

Вариант.	<u> No</u>	1
----------	------------	---

$\int \frac{\cos x}{1 + \sin^2 x} dx$	$\int \ell^{2x^2+3} x dx$	$\int \frac{dx}{x \ln^2 x}$	
$\int \frac{\sqrt[3]{\ln x + 5}}{x} dx$	$\int x \sin x^2 dx$	$\int \frac{4x^5 dx}{\sqrt{x^6} + 7}$	
$\int \frac{arctgx}{1+x^2} dx$	$\int \frac{\sin x}{\sqrt{1+\cos^2 x}} dx$	$\int \frac{x^3}{4+5x^4} dx$	
$\int \frac{dx}{\sqrt{1-x^2} \arcsin x}$	$\int \ell^{4x} \sin \ell^{4x} dx$	$\int \frac{dx}{\cos^2 x \sqrt{1 + tgx}}$	
$\int \frac{x^3}{x-4} dx$	$\int \frac{x-2}{x+1} dx$	$\int \frac{dx}{2x^2 + 4x + 6}$	
$\int \arcsin 2x dx$	$\int x \ln x dx$	$\int x \cos x dx$	
$\int (x^2 + 3)\ell^{3x} dx$	$\int arctgxdx$	$\int \frac{x}{\ell^{2x}} dx$	
$\int \frac{\sqrt{x+2}+1}{\sqrt{x+2}-1} dx$	$\int \frac{\sqrt{x}}{\sqrt[3]{x} - 9} dx$	$\int \frac{x-2}{\sqrt{x^2+2x}} dx$	
$\int \frac{dx}{(x+2)(x^2+4)}$	$\int \frac{x^2 - 1}{x^3 - 4x} dx$	$\int \frac{dx}{(x^2+x)(x-2)}$	
$\int \sin^2 x \cos^3 x dx$	$\int \sin^2(x + \frac{3}{4}\pi) dx$	$\int \cos 2x \cos 4x dx$	
$\int \frac{\sin^4 x}{\cos^4 x} dx$	$\int \frac{dx}{\sin x + \cos x}$	$\int \cos^4 x dx$	
Вариант № 2			
$\int \frac{\sin x}{1 + \cos^2 x} dx$	$\int \frac{\ell^{arctgx}}{1+x^2} dx$	$\int \frac{dx}{\sin^2(2-3x)}$	
$\int \sqrt[3]{4-3x} dx$	$\int \frac{dx}{\sqrt{1-x^2} \arcsin^2 x}$	$\int x \cdot 2^{x^2} dx$	
$\int dx$	$\int \sin 2x dx$	$\int_{0}^{\infty} \ell^{ctgx}$	

$\int \cos(4x-2)dx$	$\int x^4 dx$	$\int \cos^4 x \sin 2x dx$
	$\int \frac{x^4 dx}{\sqrt{3 - 5x^5}}$	•
$\int \frac{2x^2}{x^2 - 1} dx$	$\int \frac{x+4}{x-1} dx$	$\int \frac{dx}{x^2 + 6x + 10}$
$\int xarctg 2xdx$	$\int \sqrt{x} \ln x dx$	$\int x\ell^{-2x}dx$
$\int x^2 \sin 3x dx$	$\int x^2 \ell^x dx$	$\int \arcsin 4x dx$
$\int \frac{dx}{\sqrt[3]{x}(1-\sqrt[3]{x})}$	$\int \frac{\sqrt{x+1}-1}{\sqrt[3]{x+1}+1} dx$	$\int \frac{x+3}{5+2x-x^2} dx$
$\int \frac{x^2 - 1}{x^3 - 4x} dx$	$\int \frac{x^2+4}{(x^2+1)(x-1)} dx$	$\int \frac{x^2 - 2}{x(x+1)} dx$
$\int \sin^3 x \cos^3 x dx$	$\int \cos^2(\frac{x}{2} + \pi) dx$	$\int \frac{dx}{\sin^3 x \cos^3 x}$
$\int \frac{dx}{8 - 4\sin x + 7\cos x}$	$\int \cos^2 x dx$	$\int \cos 8x \cos x dx$
	Вариант № 3	1
$\int \frac{e^x dx}{\sqrt[3]{3 + e^x}}$	$\int \frac{4^{\frac{1}{x}}}{5x^2} dx$	$\int \frac{\sin x dx}{\sqrt{\cos^2 x - 25}}$
$\int \sqrt[3]{5 - 2x} dx$	$\int tg 2x dx$	$\int 3^{5x} dx$
$\int \frac{dx}{1 - 4x^2}$	$\int \frac{\cos(\arcsin 2x)}{\sqrt{1-4x^2}} dx$	$\int \frac{e^{4x}dx}{e^{4x} + 5}$
$\int (1 - 2\sin^2\frac{x}{2}) dx$	$\int \frac{x + (\arccos 3x)^2}{\sqrt{4 - 9x^2}} dx$	$\int e^{4-x^3}x^2dx$
$\int \frac{x^2 + 4}{x + 1} dx$	$\int \frac{5x^3 + 1}{x^2 + 1} dx$	$\int \frac{dx}{x^2 + 4x + 17}$
$\int arctg 5x dx$	$\int \frac{\ln x}{x^2} dx$	$\int (x+2)\cos x dx$
$\int x^2 \cos 4x dx$	$\int xe^{-5x}dx$	$\int \ln(x+1)dx$
$\int \frac{dx}{(5+x)\sqrt{1+x}}$	$\int \frac{\sqrt{4x+1}}{1+\sqrt[3]{4x+1}} dx$	$\int \frac{3x+2}{x^2+5x+7} dx$
$\int \frac{x+4}{(x+1)(x+2)} dx$	$\int \frac{2x-5}{(x^2-5x+4)x} dx$	$\int \frac{dx}{(x-1)(x^2+2)}$
$\int \cos^2 \frac{x}{2} dx$	$\int \frac{t g x d x}{\sqrt{\sin x \cos^3 x}}$	$\int \frac{dx}{2 + \cos x}$

$\int \frac{\cos^5 x}{\sin x} dx$	$\int \sin 4x \cos x dx$	$\int ctg^5 x dx$		
$SIII \lambda$	<u> </u> Вариант № 4			
$\int 2^x (1 + \frac{2^{-x}}{x^4}) dx$	$\int \sin(4z - \frac{\pi}{6})dz$	$\int \frac{dx}{x\sqrt[5]{\ln^3 x}}$		
$\int \frac{arctg^4x}{1+x^2} dx$	$\int x^3 e^{x^4} dx$	$\int \frac{dx}{\sin^2(4x-2)}$		
$\int \frac{x^2 dx}{\sqrt{1 - x^3}}$	$\int \sin^6 t \cos t dt$	$\int \frac{\ln^5 x}{x} dx$		
$\int \frac{\sin x dx}{\sqrt{1 - \cos^2 x}}$	$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$	$\int \frac{dx}{x \ln^2 x}$		
$\int \frac{x^3 dx}{x+4}$	$\int \frac{x^2 - 1}{x^2 + 4} dx$	$\int \frac{dx}{x^2 + 7x + 5}$		
$\int x \cdot 3^{2x} dx$	$\int \ln x dx$	$\int x \cos 5x dx$		
$\int (x^2 - 2)\cos 2x dx$	$\int arctg 4xdx$	$\int x^2 \ln x dx$		
$\int \frac{\sqrt{x}}{1 + \sqrt[4]{x}} dx$	$\int \frac{\sqrt{1+x}}{x} dx$	$\int \frac{dx}{x^2 + 3x + 2}$		
$\int \frac{dx}{x^3 + 3x^2 + 2x}$	$\int \frac{(x-4)dx}{x^3+2x}$	$\int \frac{x^3 dx}{(x-2)(x+4)}$		
$\int \sin^3 x \cos x dx$	$\int \cos^2 5x dx$	$\int \sin 4x \sin 6x dx$		
$\int \frac{\cos x dx}{1 + \cos x}$	$\int \frac{tgx}{1 - ctg^2 x} dx$	$\int \frac{dx}{tg^3 x}$		
Вариант № 5				
$\int \frac{dx}{3-2x}$	$\int \ell^{2x^2+3} x dx$	$\int \frac{dx}{x \ln^2 x}$		
$\int \frac{\sqrt[3]{\ln x + 5}}{x} dx$ $\int \frac{arctgx}{1 + x^2} dx$	$\int x \sin x^2 dx$	$\int \frac{4x^5 dx}{\sqrt{x^6 + 7}}$		
$\int \frac{arctgx}{1+x^2} dx$	$\int \frac{\sin 2x}{\sqrt{1-\sin^2 x}} dx$	$\int \frac{x^3}{4+5x^4} dx$		
$\int \frac{x^4 + 1}{x^2 + 3} dx$	$\int \frac{x+4}{x-1} dx$	$\int \frac{dx}{x^2 + 16x + 15}$		

$\int \frac{\sqrt{x+2}+1}{\sqrt{x+2}-1} dx$	$\int \frac{\sqrt{x}}{\sqrt[3]{x} + 3} dx$	$\int \frac{x-2}{\sqrt{x^2-2x}} dx$
$\int \frac{xdx}{\sqrt{3x+4}}$	$\int \frac{x+1}{\sqrt{x^2+2x+5}} dx$	$\int \frac{x}{4 + \sqrt{x}} dx$
$\int \arcsin 2x dx$	$\int x \ln x dx$	$\int x \cos x dx$
$\int x^2 \ell^{6x} dx$	$\int arctgxdx$	$\int \ln(5x+1)dx$
$\int \frac{dx}{(x+2)(x^2+4)}$	$\int \frac{x^2 - 1}{x^3 - 4x} dx$	$\int \frac{dx}{(x^2+x)(x+2)}$
$\int \sin^2 x \cos^3 x dx$	$\int \sin^2(x + \frac{3}{4}\pi) dx$	$\int \sin 2x \cos x dx$
$\int \frac{\sin^4 x}{\cos^4 x} dx$	$\int \frac{dx}{\sin x + \cos x}$	$\int \frac{dx}{ctg^4 x}$

Вариант № 6

$\int \ell^x (1 - \frac{\ell^{-x}}{\sin^2 x}) dx$	$\int \frac{ctg^3 x}{\sin^2 x} dx$	$\int \sqrt{4 - \cos x} \sin x dx$
$\int 2^{3x} dx$	$\int \sin(8t+5)dt$	$\int \frac{dx}{\cos^2 4x}$
$\int \sqrt[5]{3x-2} dx$	$\int \frac{xdx}{3-x^2}$	$\int \frac{xdx}{1+x^2}$
$\int \frac{\sin 2x dx}{\sin^2 x}$	$\int \frac{3^x}{4-9^x} dx$	$\int \frac{\ell^{4x} - 4}{\ell^{3x}} dx$
$\int \frac{x^4 + 2}{x^2 + 1} dx$	$\int \frac{xdx}{x+6}$	$\int \frac{dx}{x^2 + 3x + 5}$
$\int x^2 \ln 2x dx$	$\int x \cos 3x dx$	$\int \arcsin 3x dx$
$\int x^2 \ell^{-x} dx$	$\int (x+1)\sin 6x dx$	$\int \ln x dx$
$\int \frac{dx}{\sqrt{x} + \sqrt[3]{x}}$	$\int \frac{dx}{\sqrt{2x-1} - \sqrt[4]{2x-1}}$	$\int \frac{2x-8}{\sqrt{1-x-x^2}} dx$
$\int \frac{dx}{x(x^2+4)}$	$\int \frac{xdx}{(x-1)(x+2)}$	$\int \frac{x^3 dx}{x^2 - 3x + 2}$
$\int (1 + tgx) \frac{dx}{\cos^2 x}$	$\int \cos^2 \frac{x}{2} dx$	$\int \frac{\sin^3 x}{\sqrt{\cos x}} dx$
$\int tg^{5} 2x dx$	$\int \frac{dx}{\sin^3 x}$	$\int \sin^3 x \cos^3 x dx$

Вариант № 7

	Вариант № 7		
$\int \frac{1-\sin^4 x}{\sin^2 x} dx$	$\int \frac{dx}{\sin^2(2x - \frac{\pi}{6})}$	$\int \frac{xdx}{\sqrt{x^2 - 1}}$	
$\int \frac{\sqrt[3]{\arcsin x}}{\sqrt{1-x^2}} dx$	$\int \frac{dx}{\sqrt[5]{1+4x}}$	$\int \frac{3xdx}{\sqrt{x^2 - 4}}$	
$\int 4^{x^3} x^2 dx$	$\int \frac{\sin x dx}{\cos^3 x}$	$\int \frac{dx}{1-2x}$	
$\int \ell^x \sqrt[3]{4 - \ell^x} dx$	$\int \frac{\ell^x dx}{\sqrt{9-\ell^{2x}}}$	$\int \frac{1-2x}{\sqrt[3]{\ln x}} dx$	
$\int \frac{x^3 + 1}{x^2 + 4} dx$	$\int \frac{x+1}{x-5} dx$	$\int \frac{dx}{\sqrt{x^2 + 6x}}$	
$\int x \sin(2x-3) dx$	$\int xarctg 2xdx$	$\int x\ell^{2x}dx$	
$\int x^2 \cos 2x dx$	$\int x^3 \ln x dx$	$\int \arcsin 5x dx$	
$\int \frac{x+1}{\sqrt[3]{3x+1}} dx$	$\int \frac{\sqrt{x}dx}{\sqrt[4]{x^3} + 1}$	$\int \frac{x-2}{\sqrt{8-2x-x^2}} dx$	
$\int \frac{x^2 + 1}{x(x-1)} dx$	$\int \frac{(x+5)dx}{(x^2+2x+1)x}$	$\int \frac{dx}{x(x^2+3)}$	
$\int (tg^2x+1)\frac{dx}{\cos^2x}$	$\int \sin^2 \frac{x}{2} dx$	$\int \sin^4 x \cos^4 x dx$	
$\int \frac{dx}{1+tgx}$	$\int \frac{\sin x}{\sin x + \cos x} dx$	$\int \sin 2x \cos x dx$	
Вариант № 8			
$\int \frac{dx}{3x-2}$	$\int \frac{xdx}{3-x^2}$	$\int x \ell^{x^2-1} dx$	
$\int \cos^3 x \sin x dx$	$\int \frac{x^2 dx}{\cos^2(4 - 3x^2)}$	$\int \sqrt[3]{arctgx} \frac{dx}{1+x^2}$	
$\int \frac{x^3 dx}{\sqrt[3]{4 - 3x^4}} dx$	$\int \frac{\ln x + 1}{x} dx$	$\int \frac{\arcsin^3 x}{\sqrt{1-x^2}} dx$	
$\int \frac{\ell^{\sqrt{x}}}{\sqrt{x}} dx$	$\int ctg^2xdx$	$\int \frac{2^x dx}{9 - 4^x}$	
$\int \frac{x+1}{x-1} dx$	$\int \frac{x^2 - 1}{x^2 + 5} dx$	$\int \frac{dx}{2x^2 + 4x + 5}$	
$\int x \ln(1+x) dx$	$\int arctg 2xdx$	$\int x\ell^{2x}dx$	

$\int \frac{x}{\ell^{4x}} dx$	$\int \ln(x+3)dx$	$\int x^2 \sin 9x dx$
$\int \frac{\sqrt{x-1}}{x} dx$	$\int \frac{dx}{x(\sqrt{x} + \sqrt[3]{x})} dx$	$\int \frac{x+1}{\sqrt{x^2 - 2x + 3}} dx$
$\int \frac{x-5}{(x-1)(x+3)} dx$	$\int \frac{3x-1}{(x^2+1)(x-2)} dx$	$\int \frac{dx}{(1-x^2)x}$
$\int \frac{\sin^3 5}{\cos^4 x} dx$	$\int \sin^2 7x dx$	$\int \frac{dx}{ctg^4x}$
$\int \frac{dx}{2\sin x + 3\cos x - 5}$	$\int \sin 3x \cos 6x dx$	$\int \sin^2 x \cos^3 x dx$

Вариант № 9

	Вариант № 9	
$\int \frac{dx}{2-5x}$	$\int \frac{dx}{x \ln x}$	$\int \frac{x^2}{4 - 3x^2} dx$
$\int \frac{\ell^x}{5-\ell^x} dx$	$\int \frac{\sqrt{\ln x}}{x} dx$	$\int x \cos x^2 dx$
$\int \ell^{x^2-5} x dx$	$\int \frac{2^x dx}{9 - 4^x}$	$\int \frac{2x^3}{\sqrt{x^4 + 1}} dx$
$\int \frac{\arcsin^3 x}{\sqrt{1-x^2}} dx$	$\int \frac{\cos x dx}{\sqrt{1 - 3\sin^2 x}}$	$\int \frac{arctg^3x}{1+x^2}dx$
$\int \frac{x-4}{x-2} dx$	$\int \frac{x^3 + 1}{x^2 - 1} dx$	$\int \frac{dx}{x^2 + 5x + 1}$
$\int arctgxdx$	$\int (x-2)^2 \ell^{2x} dx$	$\int x \sin 3x dx$
$\int x \ln 4x dx$	$\int \arcsin 4x dx$	$\int \frac{x}{\ell^{5x}} dx$
$\int \frac{xdx}{(x^2+4x+3)(x+1)}$	$\int \frac{\sqrt{x} dx}{\sqrt{x} + \sqrt[3]{x}}$	$\int \frac{x+1}{\sqrt[3]{3x+1}} dx$
$\int \frac{2x-3}{\sqrt{1-x-x^2}} dx$	$\int \frac{(2-x^3)dx}{x(x^2+3)}$	$\int \frac{dx}{x^2(x-1)} dx$
$\int \frac{\cos^3 x}{\sin^2 x} dx$	$\int \sin^2 3x dx$	$\int \frac{dx}{4 + \sin x}$
$\int tg^3xdx$	$\int \cos 4x \sin 5x dx$	$\int \cos^2 x \sin^3 x dx$
	Donitoria No 10	

Вариант № 10

$ \mathbf{J} 3x^2 - 4 $ $ \mathbf{J} 3/1 2$			$\int \frac{\sin x dx}{1 + \cos^2 x}$	$\int \frac{xdx}{\sqrt[3]{1-x^2}}$
---	--	--	---------------------------------------	------------------------------------

	2 ,	_
$\int \frac{x}{1+x} dx$	$\int \frac{x^2 dx}{\sqrt[4]{1-x^3}}$	$\int \sin(2x + \frac{\pi}{4}) dx$
$\int \frac{xdx}{\sin^2 x^2}$	$\int \frac{2 - 3ctg^2 x}{\sin^x} dx$	$\int \ell^{\sin x} \cos x dx$
$\int \frac{dx}{x(2+\ln x)^2}$	$\int \frac{\ell^x dx}{\sqrt{4 - \ell^{2x}}}$	$\int x^3 \sqrt{1 + 4x^4} dx$
$\int \frac{x^2 - 1}{x + 3} dx$	$\int \frac{x}{x+5} dx$	$\int \frac{dx}{7x^2 + 14x + 1}$
$\int x \sin 2x dx$	$\int x \cos x dx$	$\int arctg3xdx$
$\int x^2 \ell^{5x} dx$	$\int x \ln(3+x) dx$	$\int x \ln x dx$
$\int \frac{dx}{\sqrt{3x+1} - \sqrt[4]{3x+1}}$	$\int \frac{\sqrt{x} dx}{\sqrt[4]{x^3 + 1}}$	$\int \frac{(x-2)dx}{\sqrt{8-2x-x^2}}$
$\int \frac{x^2 + x + 1}{x^2 - x - 12} dx$	$\int \frac{dx}{(4-x^2)x}$	$\int \frac{6x^3 - 4x}{x^3 - 4x} dx$
$\int \frac{\sin x}{\cos^3 x} dx$	$\int \cos^2 6x dx$	$\int \cos^2 x \sin^2 x dx$
$\int \cos^6 x dx$	$\int \frac{dx}{2\sin x + \cos x + 2}$	$\int \frac{dx}{tg^2x}$

4 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУ-ДЕНТОВ

Самостоятельная работа студентов предназначена для углубления сформированных знаний, умений, навыков. Самостоятельная работа развивает мышление, позволяет выявить причинно-следственные связи в изученном материале, решить теоретические и практические задачи. Самостоятельная работа студентов проводится с целью: систематизации и закрепления полученных теоретических знаний и практических умений студентов; углубления и расширения теоретических знаний; формирования умений использовать справочную документацию и специальную литературу; развития познавательных способностей и активности студентов: творческой инициативы, самостоятельности, ответственности и организованности; формированию самостоятельности мышления, способностей к саморазвитию, самосовершенствованию и самореализации; развития исследовательских умений. Роль самостоятельной работы возрастает, т.к. перед учебным заведением стоит задача в т. ч. и по формированию у студента потребности к самообразованию и самостоятельной познавательной деятельности

Студентами практикуется два вида самостоятельной работы: аудиторная; внеаудиторная.

Аудиторная самостоятельная работа по дисциплине выполняется на учебных занятиях под непосредственным руководством преподавателя и по его заданию. В этом случае студенты обеспечиваются преподавателем необходимой учебной литературой, дидактическим материалом, в т. ч. методическими пособиями и методическими разработками.

Внеаудиторная самостоятельная работа выполняется студентом по заданию преподавателя, но без его непосредственного участия. Видами заданий для внеаудиторной самостоятельной работы могут быть:

- для овладения знаниями: чтение текста (учебника, методической литературы); составления плана текста; графическое изображение структуры текста, графическое изображение последовательности выполнения графической работы, выполнение графических работ; конспектирование текста; выписки из текста; работа со словарями и справочниками; ознакомление с нормативными документами; учебно-исследовательская работа; использование компьютерной техники, интернета и др.;
- для закрепления систематизации знаний: работа с конспектом лекции (обработки текста); повторная работа над учебным материалом (учебника, первоисточника, дополнительной литературы); составление плана выполнения работы в соответствие с планом, предложенным преподавателем; изучение ГОСТов; ответы на контрольные вопросы; тестирование, выполнение упражнений и графических работ;
- для формирования умений: решение задач и упражнений по образцу; решение вариативных задач и упражнений; выполнение чертежей, схем.

Основное содержание самостоятельной работы составляет выполнение домашних заданий и подготовку к контрольным работам и экзамену.

Прежде чем приступать к выполнению домашней работы, необходимо ознакомиться с содержанием теоретических вопросов по представленному списку литературы и по лекциям.

Работа пишется на стандартных листах писчей бумаги. Все листы заполняются только с одной стороны. Домашняя работа начинается с титульного листа, который служит обложкой работы. Сверху на нем указывается принадлежность студента к учебному заведению, факультету, специализации или кафедре. В середине листа указывается название изучаемой темы или раздела и название учебного задания, номер варианта. Ниже и справа указывается фамилия и инициалы студента, номер академической группы, фамилия и инициалы преподавателя. Внизу титульного листа отмечают год выполнения работы.

Эта страница служит также для отметок преподавателя о выполнении учебного задания и замечаний по поводу подготовленной студентом работы.

При оформлении работы необходимо соблюдать нумерацию заданий. Задание переписывается полностью и ниже оформляется решение. Работа должна быть сдана на кафедру к назначенному преподавателем сроку.

Каждый учебный семестр заканчивается аттестационными испытаниями: зачетно - экзаменационной сессией.

Подготовка к экзаменационной сессии и сдача зачетов и экзаменов является ответственейшим периодом в работе студента. Серьезно подготовиться к сессии и успешно сдать все экзамены — долг каждого студента. Рекомендуется так организовать свою учебу, чтобы перед первым днем начала сессии были сданы и защищены все лабораторные работы, сданы все домашние задания, выполнены другие работы, предусмотренные графиком учебного процесса.

Основное в подготовке к сессии – это повторение всего материала, курса или предмета, по которому необходимо сдавать экзамен. Только тот успевает, кто хорошо усвоил учебный материал.

Если студент плохо работал в семестре, пропускал лекции, слушал их невнимательно, не конспектировал, не изучал рекомендованную литературу, то в процессе подготовки к сессии ему придется не повторять уже знакомое, а заново в короткий срок изучать весь материал. А это зачастую, оказывается, невозможно сделать из-за нехватки времени. Для такого студента подготовка к экзаменам будет трудным, а иногда и непосильным делом. В дни подготовки к экзаменам следует избегать чрезмерной перегрузки умственной работой, необходимо чередовать труд и отдых.

СОДЕРЖАНИЕ

	ВВЕДЕНИЕ	3
	1 КРАТКОЕ ИЗЛОЖЕНИЕ ЛЕКЦИОННОГО МАТЕРИАЛА	4
	2 МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ПРАКТИЧЕСКИМ ЗАНЯТИЯМ	. 10
	3 МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНЫМ ЗАНЯТИЯМ	. 13
	4 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ	
C	ТУДЕНТОВ	. 20

Наталья Николаевна Двоерядкина,

доц. каф. общей математики и информатики АмГУ, канд. пед. наук