Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Амурский государственный университет»

		УТВЕРЖДАЮ
	Зав. к	сафедрой энергетики
		Ю.В. Мясоедов
(_	>>	2012 г.

ЭЛЕКТРОЭНЕРГЕТИЧЕСКИЕ СИСТЕМЫ И СЕТИ

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ПО ДИСЦИПЛИНЕ

для специальностей 140203.65 – «Релейная защита и автоматизация электроэнергетических систем», 140204.65 – «Электрические станции», 140205.65 – «Электроэнергетические системы и сети»

Составитель: Н.В. Савина

Благовещенск

Печатается по решению редакционно-издательского совета энергетического факультета Амурского государственного университета

Н.В. Савина

Учебно-методический комплекс по дисциплине «Электроэнергетические системы и сети» для студентов очной и заочной форм обучения специальностей 140204.65 – «Электрические станции»; 140205.65 – «Электроэнергетические системы и сети»; 140203.65 – «Релейная защита и автоматизация электроэнергетических систем». – Благовещенск: Амурский гос. ун-т, 2012. – 184 с.

Учебно-методический комплекс ориентирован на оказание помощи профессорско-преподавательскому составу и студентам очной и заочной форм обучения по дисциплине «Электроэнергетические системы и сети» специальностей 140204.65 — «Электрические станции»; 140205.65 — «Электроэнергетические системы и сети»; 140203.65 — «Релейная защита и автоматизация электроэнергетических систем» в формировании специальных знаний в области проектирования электроэнергетических систем, расчета и анализа установившихся режимов сложных электроэнергетических систем, регулирования напряжения и компенсации реактивной мощности, методов снижения потерь мощности и энергии в распределительных и питающих сетях.

[©] Амурский государственный университет, 2012

[©] Н.В. Савина

СОДЕРЖАНИЕ

1. Рабочая		программа
дисциплины	Ошибка!	Закладка не
определена.		
2. Краткий конспект лекций		43
3. Практические занятия		66
4. Лабораторные занятия		77
5. Курсовое проектирование		
6. Самостоятельная		работа
студентов	Ошибка! Зак	кладка не
определена.		
7. Перечень программных продуктов, используемых с	гудентами при изуч	чении данной
дисциплины		176
8. Методические указания по применению с	современных инф	ормационных
технологий		176
9. Контроль качества образования		177
10. Карта обеспеченности дисциплины кадрами п		
состава		
11. Список использованных источников		

1. РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

1.1. Рабочая программа дисциплины «Электроэнергетические системы и сети» для специальности 140203.65 — «Релейная защита и автоматизация электроэнергетических систем»

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целями освоения дисциплины «Электроэнергетические системы и сети» являются формирование систематизированных знаний в области электроэнергетических систем и сетей, энергосбережения, приобретение студентами навыков их проектирования, развитие культуры экономически целесообразного выбора проектируемого варианта схемы сети, расчета режимов сложных систем, регулирования частоты и напряжения.

Эти знания позволят выпускникам успешно решать задачи в профессиональной деятельности, связанной с проектированием и функционированием электроэнергетических систем и сетей.

Задачи дисциплины:

- Изучение научных основ построения электроэнергетических систем, технологий анализа и синтеза схем электрических сетей, принципов и методов разработки и реализации оптимальных технических решений при проектировании электроэнергетических систем и сетей.
- Получение знаний в области энергосбережения, регулирования частоты и напряжения в электроэнергетических системах.
- Изучение методов и алгоритмов расчетов установившихся режимов сложных электроэнергетических систем, в том числе и с помощью промышленных программновычислительных комплексов.
- Овладение методами и алгоритмами проектирования электроэнергетических систем и сетей, основами расчета установившихся режимов сложных электроэнергетических систем, методами, способами и средствами регулирования напряжения и частоты.
- Формирование профессиональных навыков по проектированию и эксплуатации электроэнергетических систем и сетей, по применению энергосберегающих технологий.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВПО

Дисциплина «Электроэнергетические системы и сети» входит в цикл Дисциплины специализации (ДС.01) и относится к дисциплинам, формирующим специальные профессиональные знания и навыки, необходимые при изучении дисциплины «Изоляция и перенапряжения» (8 семестр), входящей в цикл ОПД, дисциплин «Электрическая часть станций и подстанций», «Надежность в электроэнергетике», «Качество электрической энергии», входящих в цикл ДС и читаемых в 7-9 семестрах, «Релейная защита электроэнергетических систем», «Автоматика энергосистем», «Технические средства диспетчерского и технологического управления», входящих в цикл СД и читаемых в 7-9 семестрах, а также при выполнении дипломного проекта.

Дисциплина базируется на курсах цикла общих математических и общенаучных дисциплин (ЕН) «Математика», «Физика», «Математические задачи энергетики», читаемых в 1-5 семестрах, курсах «Электроэнергетика», «Теоретические основы электротехники», «Электромеханика», входящих в цикл общепрофессиональных дисциплин (ОПД) и читаемых в 3-5 семестрах.

Студенты, обучающиеся по данной дисциплине, должны знать и владеть следующими материалами:

Математика – алгебра, решение систем алгебраических уравнений, дифференциальные и интегральные исчисления, графы, теория функций комплексного переменного, вероятность и статистика;

Физика — электричество и магнетизм, явления сверхпроводимости, полупроводники, принципы неопределенности;

Математические задачи энергетики – методы решения систем линейных и нелинейных уравнений в электроэнергетических задачах, применение теории вероятностей и математической статистики к решению электроэнергетических задач, методы оптимизации:

Теоретические основы электротехники — уравнения электромагнитного поля, законы электрических цепей; трехфазные цепи; теория электромагнитного поля, поверхностный эффект и эффект близости; электромагнитное экранирование;

Электромеханика – типы электрических машин, трансформаторы, автотрансформаторы, их режимы работы, конструкции;

Электроэнергетика – основные сведения об электрических сетях, схемах станций и подстанций, общие сведения об электроэнергетике.

3. ТРЕБОВАНИЯ К УРОВНЮ ОСВОЕНИЯ СОДЕРЖАНИЯ ДИСЦИПЛИНЫ

В результате освоения дисциплины обучающийся должен демонстрировать следующие результаты образования:

1) Знать:

современное состояние электроэнергетической системы;

цели, задачи, принципы и общий алгоритм проектирования электроэнергетической системы;

технико-экономические основы проектирования электроэнергетических систем и сетей;

критерии выбора оптимального варианта электрической сети;

методы и алгоритмы проектирования электрических сетей;

порядок выбора схем построения электрической сети;

методы расчета режимов сложных электроэнергетических систем;

мероприятия по снижению потерь мощности и энергии в электрических сетях;

методы и способы регулирования частоты и напряжения в электроэнергетической системе:

особые режимы электрических сетей.

2) Уметь:

составлять и анализировать конкурентоспособные варианты конфигурации электрической сети с учетом фактора надежности;

выбирать номинальное напряжение сети;

проводить компенсацию реактивной мощности;

выбирать сечения проводов и кабелей, силовые трансформаторы в сетях различных назначений и номинальных напряжений;

рассчитывать технико-экономические показатели вариантов электрической сети и выбирать оптимальный вариант;

рассчитывать установившиеся режимы сложных электрических сетей;

регулировать напряжение в электрической сети;

определять потери электроэнергии и выбирать мероприятия по их оптимальному снижению.

3) Владеть навыками:

проектирования на вариантной основе районных электрических сетей и пользования справочной литературой;

выбора оптимальных для рассматриваемой схемы электрической сети параметров;

расчетов режимов сложных систем и анализа результатов расчетов; применения энергосберегающих технологий в электроэнергетических системах; регулирования напряжения в электрических сетях.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ «ЭЛЕКТРОЭНЕРГЕТИЧЕ-СКИЕ СИСТЕМЫ И СЕТИ»

Общая трудоемкость дисциплины составляет 122 часа.

	Общая трудоемкость дисциплины составляет 122 часа.										
$N_{\underline{0}}$)a		-	ной раб	Формы текущего контроля				
п/п	Раздел дисциплины Раздел Дисциплины Раздел Дисциплины Трудоемкость (в часах) ЛК ПЗ КП СРС						успеваемости (по неделям				
	Раздел	Семестр	эме	ную работу студентов и				семестра)			
	дисциплины	же	S K			сть (в ч		Форма промежуточной ат-			
	7	ರ	Ţejī	ЛК	ПЗ	КΠ	CPC	тестации (по семестрам)			
			Нед								
1	Проектирование электроэнергетических систем и сетей	6	1-8	16	8	20	8	1,3,5,7 недели — блиц- опрос на лекции; 2,4,6,8 недели — опрос на практике, защита инди- видуального домашнего			
								задания, контроль хода выполнения КП			
2	Расчет установившихся режимов сложных электроэнергетических систем	6	9-12	8	4	20	9	9, 11 недели - блиц- опрос на лекции; 10, 12 недели - опрос на практике, защита инди- видуального домашнего задания, контроль хода выполнения КП			
3	Повышение энергоэффективности и надежности электроэнергетических систем	6	13- 18	12	6		11	12, 14, 16, 18 недели - опрос на практике, защита индивидуального домашнего задания; 12, 14, 16 недели - контроль хода выполнения КП; 14 неделя – контрольная работа 13, 15,17 недели – блицопрос на лекции			
4	Промежуточная аттестация	6		•			1	Экзамен, КП			

Примечания:

 Π К – лекции, Π 3 – практические занятия, CPC – самостоятельная работа студентов, $K\Pi$ – курсовой проект.

5. СОДЕРЖАНИЕ РАЗДЕЛОВ И ТЕМ ДИСЦИПЛИНЫ

Лекции

Раздел 1. Проектирование электроэнергетических систем и сетей

Тема 1. Введение. Характеристика и структура электроэнергетической системы - 2 часа

Современное состояние электроэнергетических систем и тенденции их развития. Топливно-энергетический комплекс. Перспективы развития электроэнергетических систем (ЭЭС) по России в целом и на Дальнем Востоке. Неопределенность как фундаментальное свойство ЭЭС.

Tема 2. Исходные данные для проектирования электрических сетей, электроэнергетических систем - 4 часа.

Характеристика района проектирования. Электрические нагрузки и их представление при проектировании и эксплуатации электроэнергетических систем. Графики электрических нагрузок (ГЭН) и их анализ при проектировании электрических сетей. Построение ГЭН подстанций из типовых графиков при различных способах задания информации. Долгосрочное прогнозирование ГЭН. Практическое применение формулы сложных процентов при проектировании электрических нагрузок. Переход от реальных ГЭН к ГЭН в относительных единицах и построение прогнозируемого ГЭН.

Тема 3. Технико-экономические основы проектирования электрических сетей и систем - 10 часов.

Задачи и методы проектирования электроэнергетических систем и электрических сетей. Общие требования к схемам электрических сетей. Принципы формирования вариантов конфигурации электрической сети. Выбор вариантов схем построения электрической сети. Критерии выбора оптимального варианта электрической сети. Основные экономические показатели систем передачи и распределения электроэнергии: капитальные вложения (инвестиции); эксплуатационные издержки; чистый дисконтированный доход; эквивалентные годовые расходы (годовые приведенные затраты) и срок окупаемости капитальных затрат. Определение потерь электроэнергии в электрической сети при ее проектировании. Технико-экономическое сравнение вариантов электрической сети. Выбор рационального напряжения сети. Выбор числа и мощности силовых трансформаторов на подстанциях. Определение сечения проводов воздушных и кабельных линий различными методами. Особенности выбора и проверки сечений линий в замкнутых сетях. Проверка сечений проводов по нагреву длительно допустимым током. Проектирование схем электрических сетей.

Раздел 2. Расчет установившихся режимов сложных электроэнергетических систем Тема 4. Основы расчета установившихся режимов сложных электроэнергетических систем - 6 часов.

Специфика расчетов сложных систем. Преобразования сети при расчете режимов электроэнергетических систем большой сложности. Разделение системы на подсистемы. Эквивалентирование схем сложных электроэнергетических систем. Представление системы уравнений узловых напряжений для расчета с помощью программно-вычислительных комплексов (ПВК) на персональном компьютере. Методы решения уравнений узловых напряжений. Способы задания параметров элементов схемы, нагрузочных и генераторных узлов. Балансирующий узел. Определение параметров режимов. Расчет режимов с помощью промышленных программно-вычислительных комплексов СДО – 6, RastrWin. Анализ полученных результатов.

Тема 5. Особые режимы электроэнергетических систем – 2 часа.

Источники, вызывающие особые режимы в электрической сети. Неполнофазные режимы. Условия допустимости неполнофазных режимов. Расчет несимметричных режимов.

Раздел 3. Повышение энергоэффективности и надежности электроэнергетических систем

Тема 6. Компенсация реактивной мощности и регулирование напряжения в электроэнергетических системах - 6 часов.

Современное состояние проблемы компенсации реактивной мощности. Источники и потребители реактивной мощности. Три задачи компенсации реактивной мощности: балансовая задача, регулирование напряжения в сети, экономическая задача. Методы регулирование напряжения в сети, экономическая задача.

лирования напряжения. Технические средства компенсации реактивной мощности и регулирования напряжения: синхронные генераторы; синхронные компенсаторы; статические источники реактивной мощности; батареи конденсаторов; CTATKOM; FACTS - технологии; устройства РПН, их регулировочные характеристики.

Тема 7. Методы расчета и анализа потерь мощности и электрической энергии в электрических сетях, мероприятия по снижению потерь. - 4 часов.

Общая характеристика проблемы потерь электроэнергии. Методы расчета потерь. Структурный анализ потерь. Мероприятия по снижению технических потерь. Мероприятия по снижению метрологических и коммерческих потерь.

Тема 8. Методы регулирования частоты - 2 часа.

Первичное, вторичное и третичное регулирования частоты. Противоаварийные мероприятия при снижении частоты в электроэнергетических системах.

5.2. Практические занятия

Практические занятия проводятся с целью закрепления знаний, полученных при изучении теоретического курса. Тематика практических занятий приведена в табл.

No	Наименование	Кол-во
П.П.	темы	часов
1.	Расчет вероятностных характеристик графиков нагрузки подстанций и ре-	2
	жимных характеристик сети.	
2.	Разработка и технический анализ вариантов конфигурации электрической	2
	сети. Определение рационального напряжения сети.	
3.	Выбор числа и мощности силовых трансформаторов на ПС. Выбор и про-	2
	верка сечений воздушных и кабельных линий	
4.	Расчет экономических показателей электрических сетей. Выбор оптималь-	4
	ного варианта схемы электрической сети.	
5.	Регулирование напряжения в электрической сети.	4
6.	Преобразование и эквивалентирование схем электрических сетей сложной	2
	конфигурации	
7.	Определение потерь электроэнергии в электрической сети	2

При проведении практических занятий решаемые задания подбираются в соответствии со спецификой специальности. На практических занятиях каждому студенту выдаются индивидуальные домашние задания.

6. САМОСТОЯТЕЛЬНАЯ РАБОТА

№ π/π	№ раздела дисциплины	Форма (вид) самостоятельной работы	Трудоём- кость в часах
1	1	подготовка к блиц-опросу на лекции;	4
		выполнение индивидуальных домашних заданий и	4
		подготовка к практическому занятию	
2	2	подготовка к блиц-опросу на лекции;	3
		выполнение индивидуальных домашних заданий и	4
		подготовка к практическому занятию;	
		проработка материала, вынесенного на самостоя-	2
		тельное изучение	
3	3	подготовка к блиц-опросу на лекции;	3
		выполнение индивидуальных домашних заданий и	3
		подготовка к практическому занятию;	
		подготовка к контрольной работе;	1
		проработка материала, вынесенного на самостоя-	4
		тельное изучение	

Курсовой проект

Отдельным видом самостоятельной работы студентов является курсовой проект, на выполнение которого отводится учебным планом 40часов.

Для закрепления теоретических знаний, полученных при изучении дисциплины, приобретения навыков пользования справочной литературой, практических навыков по проектированию районных или распределительных сетей электроэнергетических систем предусмотрен курсовой проект на темы: «Проектирование районной электрической сети Дальнего Востока», «Проектирование распределительной электрической сети Дальнего Востока», «Проектирование схемы выдачи мощности от электростанций Дальнего Востока».

Ниже приведен пример типового бланка задания на курсовой проект, содержание которого заполняется индивидуально для каждого студента.

	3A ,	ĮΑΗ	ИЕ №							
на курсовой	проект по дисциплин	не «	Электроэнерге	тич	ески	іе сі	истє	емы	и се	ти»
Студент	группа		Дата выдачи	зада	ния	. « _	>>>			20_
Задание выдал			Задание	при	нял	(a) _				
ФИО ру	уководителя проекта, под	дпись	•			Под	пись	cmy	денп	па
Тема проекта: « I	Проектирование рай	онн	ой электриче	скої	й се	ти Д	Цал	ьне	го В	осток
	ектрическую сеть дл сположение источни		-	теле	ей пу	ункт	гов	«A»	· - «3	Ж»
				сазы	вает	пся	эне	ргор	райс	ЭН
Данные о потребит	гелях электроэнергии	1								
•	Исходные данные					Ι	Іун	кт		
				A	Б	В	Γ	Д	E	Ж
Суммарная	установленная мош	цнос	ть, МВт							
Коэффициент р	еактивной мощност	ги на	агрузки, tgф							
Состав по	отребителей	-	1 категория							
по категориям	м надежности, %		2 категория							
			3 категория							
Желаемое н	напряжение вторичн	юй (сети, кВ							
Поличеновомие изг	TOWNS THE THEORY									
Наименование ист			T	T						TT
наибольших нагру	инах источника при			J _{HOM}						$U_{\text{ном}}$
	их нагрузках, кВ		I	U _{ном} U _{ном}				U _{ном}		
_	вариях в сети, кВ			J _{HOM}					U_{Hom}	
				3.14		1				
Для всех пунктов:) '	ہے		т						
	гь использования наи			1 _{make}	c					час
	ности, задаваемый эн									
коэффициент попа	адания в максимум на	пруз	вки системы							
Задание для углубл	пенной проработки _									

Схема сети										

Суема сети

Масштаб в	1	СМ	К	Μ

В процессе проектирования для одного из энергорайонов Дальнего Востока студенты разрабатывают следующие вопросы:

- Характеристика энергорайона: источники питания; электрические сети; потребители; климатическая и географическая характеристика.
 - Расчет и прогнозирование электрических нагрузок.
- Разработка конкурентоспособных вариантов электрической сети: разработка и анализ 8 вариантов конфигурации электрической сети; выбор 4 вариантов конфигурации сети для дальнейшего анализа; расчет упрощенного потокораспределения активной мощности и выбор номинального напряжения в каждом из 4 вариантов; выбор типов схем РУ подстанций; выбор двух конкурентоспособных вариантов конфигурации электрической сети; компенсация реактивной мощности; выбор сечений проводников в каждом из двух вариантов; выбор числа и мощности силовых трансформаторов; конструктивное исполнение электрической сети.
- Выбор оптимального варианта электрической сети: расчет капитальных вложений в электрическую сеть; расчет потерь электрической энергии; расчет эксплуатационных издержек; выбор оптимального варианта сети.
- Расчет и анализ установившихся режимов: выбор ПВК для расчета режимов и его характеристика; расчет максимального режима; расчет минимального режима; расчет послеаварийного режима; анализ режимов; регулирование напряжения в сети.
- Технико-экономические показатели проекта. Оценка инвестиционной привлекательности проекта.
 - Вопрос для углубленной проработки (выдается в бланке задания индивидуально).

Графическая часть проекта включает в себя: варианты конфигурации и схемы построения электрической сети; подробную однолинейную электрическую схему оптимального варианта сети; схему замещения сети и результаты расчета и анализа установившихся режимов.

7.ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При реализации дисциплины «Электроэнергетические системы и сети» используются традиционные и современные образовательные технологии. Из современных образовательных технологий применяются информационные и компьютерные технологии с привлечением к преподаванию мультимедийной техники и интерактивной доски, технологии активного обучения, проблемного обучения. Применяются следующие активные и интерактивные формы проведения занятий: проблемные ситуации, компьютерные симуляции,

деловые игры, разбор конкретных ситуаций по проектированию электрических сетей на примере электроэнергетической системы Дальнего Востока. В рамках дисциплины предусмотрены встречи с представителями энергетических компаний Дальнего Востока.

Самостоятельная работа студентов подразумевает работу под руководством преподавателя: консультации и помощь при выполнении курсового проекта, индивидуального домашнего задания, консультации по разъяснению материала, вынесенного на самостоятельную проработку, индивидуальную работу студента в компьютерном классе ЭФ или в библиотеке

8. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Система оценочных средств и технологий для проведения текущего контроля успеваемости по дисциплине включает вопросы для блиц-опроса на лекциях, индивидуальные домашние задания, задания для курсового проекта и контрольных работ.

Тематика вопросов блиц-опроса на лекциях совпадает с тематикой лекций.

Темы индивидуальных домашних заданий:

построение графика электрической нагрузки подстанции и определение его вероятностных характеристик;

разработка вариантов конфигурации электрической сети, их технический анализ;

выбор номинального напряжения сети, числа и мощности силовых трансформаторов на подстанциях, сечений линий электропередачи;

технико-экономическое сравнение вариантов схем электрических сетей;

регулирование напряжения в сети;

расчет режимов сложных схем электрической сети;

расчет и анализ потерь электроэнергии в сети.

Тема контрольной работы — методы расчета и анализа установившихся режимов электроэнергетических систем большой сложности.

Промежуточная аттестация осуществляется в виде защиты курсового проекта и сдачи экзамена. Система оценочных средств и технологий для проведения промежуточной аттестации включает вопросы к защите курсового проекта, контрольные вопросы и задания к экзамену.

Вопросы к защите курсового проекта

- 1. Классификация электрических сетей.
- 2. Стандартный ряд номинальных напряжений и наибольшие рабочие значения напряжений.
- 3. Какие бывают опоры? Их назначение.
- 4. Классификация линейных изоляторов, их конструктивное исполнение.
- 5. Виды линейной арматуры, её назначение.
- 6. Задание нагрузки при расчётах режимов.
- 7. Представление генераторов при расчётах установившихся режимов.
- 8. Схемы замещения ВЛЭП и их параметры.
- 9. Схема замещения двухобмоточного трансформатора и её параметры.
- 10. Схема замещения трансформатора с расщепленной обмоткой и её параметры.
- 11. Схема замещения трёхобмоточного трансформатора, её параметры.
- 12. Схема замещения автотрансформатора, её параметры.
- 13. Определение потерь мощности в двухобмоточном трансформаторе.
- 14. Определение потерь мощности в трёхобмоточном трансформаторе и автотрансформаторе.
- 15. Приведенная и расчётная нагрузка узла.

- 16. Схемы электрических сетей.
- 17. Расчёт режимов разомкнутых сетей по данным «начала».
- 18. Расчёт кольцевых сетей.
- 19. Особенности расчёта режимов в однородных электрических сетях.
- 20. Расчёт режимов сетей с двухсторонним питанием.
- 21. Определение наибольшей потери напряжения.
- 22. Определение напряжения на стороне низшего напряжения подстанции с двухобмоточными трансформаторами.
- 23. Определение напряжения на сторонах среднего и низшего напряжений подстанции с трёхобмоточными трансформаторами и автотрансформаторами.
- 24. Расчёт сетей с различными номинальными напряжениями.
- 25. Регулирование напряжения с помощью РПН трансформаторов и линейных регуляторов.
- 26. Выбор ответвлений РПН в двухобмоточных трансформаторах.
- 27. Выбор ответвлений РПН в трехобмоточных трансформаторах.
- 28. Выбор ответвлений РПН в автотрансформаторах.
- 29. Способы присоединения подстанций к электрической сети.
- 30. Схемы электрических соединений подстанций.
- 31. В чем заключается характеристика района проектирования?
- 32. Какие климатические характеристики нужно знать при проектировании и для чего?
- 33. Расчет электрических нагрузок с помощью вероятностных характеристик.
- 34. Выбор номинального напряжения сети.
- 35. Принципы составления вариантов конфигурации электрической сети.
- 36. Выбор сечений проводов ВЛ методом экономических токовых интервалов.
- 37. Выбор сечений проводников по нагреву длительно-допустимым током.
- 38. Выбор сечений проводников по допустимой потере напряжения.
- 39. Технических анализ вариантов конфигурации сети.
- 40. Чистый дисконтированный доход. Среднегодовые эквивалентные затраты.
- 41. Капитальные вложения.
- 42. Эксплуатационные издержки.
- 43. Расчет потерь электроэнергии.
- 44. Три задачи компенсации реактивной мощности.
- 45. Балансовый расчет компенсации реактивной мощности.
- 46. Выбор компенсирующих устройств методом поперечной компенсации.
- 47. Выбор числа и мощности силовых трансформаторов.
- 48. Схемы распределительных устройств подстанций.
- 49. Подготовка исходной информации для расчета режимов с помощью ПВК СДО-6.
- 50. Подготовка исходной информации для расчета режимов с помощью ПВК RastrWin.
- 51. Характеристика ПВК, используемых для расчета режимов.
- 52. Проверка правильности расчетов режимов с помощью ПВК.
- 53. В чем заключается анализ режимов, и с какой целью его проводят.
- 54. Встречное регулирование напряжения.

Защита курсового проекта может проходить в виде доклада студента и ответов на поставленные вопросы членами комиссии по приему курсового проекта, либо в виде деловой игры.

Контрольные вопросы и задания к экзамену

Вопросы к экзамену:

- 1. Тенденции и перспективы развития электроэнергетических систем.
- 2. Цели и задачи проектирования электроэнергетических систем
- 3. Проект развития электрических сетей
- 4. Методы проектирования энергосистем

- 5. Исходные данные для проектирования электрических сетей, электроэнергетических систем, их достоверность и полнота
- 6. Графики электрических нагрузок (ГЭН) и их анализ при проектировании электрических сетей
- 7. Построение ГЭН подстанций из типовых графиков при различных способах задания информации
- 8. Долгосрочное прогнозирование ГЭН
- 9. Практическое применение формулы сложных процентов при прогнозировании электрических нагрузок
- 10. Переход от реальных ГЭН к ГЭН в относительных единицах и построение прогнозируемого ГЭН
- 11. Влияние режимов работы потребителей на формирование ГЭН подстанций
- 12. Понятие "Число часов использования наибольшей нагрузки" и его определение
- 13. Характеристика района проектирования электрической сети
- 14. Общие требования к схемам электрических сетей. Принципы формирования вариантов конфигурации электрической сети
- 15. Принципы технического отбора конкурентоспособных вариантов сетей при проектировании
- 16. Критерии выбора оптимального варианта электрической сети
- 17. Капитальные вложения
- 18. Эксплуатационные издержки
- 19. Чистый дисконтированный доход, эквивалентные годовые расходы (годовые приведенные затраты) и срок окупаемости капитальных затрат.
- 20. Технико-экономическое сравнение вариантов электрической сети. Выбор оптимального варианта схемы электрической сети при проектировании
- 21. Определение потерь электрической энергии при проектировании электрической сети
- 22. Выбор рационального напряжения сети
- 23. Выбор числа и мощности силовых трансформаторов на ПС
- 24. Определение сечения проводов и кабелей по экономической плотности тока
- 25. Определение сечения проводов по экономическим токовым интервалам
- 26. Определение сечений линий в распределительных сетях по допустимой потере напряжения
- 27. Выбор сечения линии из условия его равенства на всех участках
- 28. Выбор сечения линии из условия минимума потерь мощности
- 29. Выбор сечения линии из условия минимума расхода проводникового материала на сооружение линии
- 30. Особенности выбора и проверки сечений в замкнутых сетях
- 31. Проверка сечений линий по нагреву длительно допустимым током
- 32. Проектирование схем электрических сетей
- 33. Представление системы уравнений узловых напряжений (УУН) для ее решения на ПЭВМ. Раздельное решение уравнений узловых напряжений
- 34. Сходимость решения уравнений установившегося режима
- 35. Существование решения системы УУН
- 36. Единственность решения нелинейных УУН
- 37. Чувствительность решения нелинейных УУН
- 38. Преобразование сети при расчете режимов электроэнергетических систем большой сложности
- 39. Исключение узлов при расчете режимов электроэнергетических систем большой сложности
- 40. Метод расщепления сети
- 41. Расчет системы УУН при перспективном проектировании схем энергосистем
- 42. Учет слабой заполненности матрицы узловых проводимостей

- 43. Эквивалентирование при расчетах УУН систем большой сложности
- 44. Разделение электроэнергетических систем на подсистемы при расчете режимов
- 45. Методы решения уравнений узловых напряжений.
- 46. Матричные и топологические методы расчета режимов электроэнергетических систем
- 47. Способы задания параметров элементов схемы, нагрузочных и генераторных узлов. Балансирующий узел
- 48. Расчет режимов с помощью промышленных программно-вычислительных комплексов СДО 6, RastrWin
- 49. Анализ установившихся режимов
- 50. Особые режимы в ЭЭС и их анализ
- 51. Источники, вызывающие особые режимы в электрической сети
- 52. Уравнения несимметричных режимов в фазных координатах и переход в систему симметричных координат
- 53. Уравнения несимметричных режимов в системе симметричных координат и переход в систему фазных координат
- 54. УУН в сложнонесимметричных режимах
- 55. Симметрирование режима
- 56. Порядок расчета неполнофазного режима
- 57. Условия допустимости работы с длительно неполнофазным режимом
- Применение метода симметричных составляющих при расчете несимметричных режимов
- 59. Представление системы УУН для анализа несинусоидальных режимов
- 60. Источники и потребители реактивной мощности
- 61. Балансовая задача компенсации реактивной мощности
- 62. Экономическая задача компенсации реактивной мощности
- 63. Регулирование напряжения в сети продольной компенсацией реактивной мощности
- 64. Регулирование напряжения в сети поперечной компенсацией реактивной мощности
- 65. Технические средства компенсации реактивной мощности и регулирования напряжения
- 66. Методы расчета потерь электроэнергии в электрических сетях
- 67. Структурный анализ потерь
- 68. Мероприятия по снижению технических потерь
- 69. Мероприятия по снижению метрологических потерь
- 70. Мероприятия по снижению коммерческих потерь
- 71. Первичное, вторичное и третичное регулирования частоты
- 72. Противоаварийные мероприятия при снижении частоты в электроэнергетических системах

Задания для экзамена сформированы в виде инженерных задач, включающих в себя проектирование электрических сетей, регулирование напряжения с помощью компенсирующих устройств, преобразование сложнозамкнутых электрических сетей для расчета режимов, использование практических приемов для ускорения расчетов режимов на ПЭВМ, представление схем электрической сети и ее параметров для расчета на ПЭВМ, анализ особых режимов.

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИС-ЦИПЛИНЫ «ЭЛЕКТРОЭНЕРГЕТИЧЕСКИЕ СИСТЕМЫ И СЕТИ»

- а) основная литература:
- 1. Герасименко А.А. Передача и распределение электрической энергии : учеб. пособие: рек. Мин. обр. РФ/ А. А. Герасименко , В. Т. Федин. -Ростов н/Д: Феникс; Красноярск: Издат. проекты, 2008. -719 с.

- 2. Основы современной энергетики в 2т. : Учеб. : рек. Мин. обр. РФ : Т2. Современная электроэнергетика / под ред. Е.В. Аметистова. М.: Издат. дом МЭИ, 2010. 632 с.
- 3. Электроэнергетические системы и сети : учеб.-метод. комплекс для спец. 140203, 140204, 140205/ АмГУ, Эн.ф.; сост. Н. В. Савина. -Благовещенск: Изд-во Амур. гос. ун-та, 2012. -242 с.
 - б) дополнительная литература:
- 1. Лыкин А.В. Электрические системы и сети : учеб.пособие / А.В.Лыкин . Новосибирск : Изд-во НГТУ, 2002. 247 с.
- 2. Идельчик В.И. Электрические системы и сети [Текст] : учеб./ В. И. Идельчик. -М.: Энергоатомиздат, 1989. 592 с.
- 3. Электрические системы. Электрические сети. : Учеб. для электроэнерг. спец. вузов/ ред. В. А. Веников. -2-е изд., прераб. и доп.. -М.: Высш. шк., 1998. -512 с.
- 4. Кужеков С.Л. Практическое пособие по электрическим сетям и электрооборудованию/ С. Л. Кужеков, С. В. Гончаров. -3-е изд.. -Ростов н/Д: Феникс, 2009. -493 с.
- 5. Пособие к курсовому и дипломному проектированию для электроэнергетических специальностей вузов [Текст] : учеб. пособие / В.М. Блок, Г.К. Обушев, Л.В. Паперно; Ред. В.М. Блок. 2-е изд., перераб. и доп. М. : Высш. шк., 1990. 384 с.
- 6. Электротехнический справочник : В 4 т./ Под общ. ред. В.Г. Герасимов, Под общ. ред. А.Ф. Дьяков, Под общ. ред. Н.Ф. Ильинский, Гл. ред. А.И. Попов Т. 3 : Производство, передача и распределение электрической энергии : справочное издание. -2002. -964 с.
- 7. Справочник по проектированию электрических сетей [Текст] / под ред. Д. Л. Файбисовича. -3-е изд., перераб. и доп. -М.: ЭНАС, 2009. -391 с.
- 8. Поспелов Г.Е. Электрические системы и сети: проектирование [Текст] : учеб. пособие / Г. Е. Поспелов, В. Т. Федин. 2-е изд., испр. и доп. Минск : Высш. шк., 1988. 308 с.
- 9. Шелухина Т.И. Расчеты нормальных и предельных по мощности установившихся режимов сложных энергосистем : учеб. пособие/ Т. И. Шелухина. -М.: Изд-во Моск. энергет. ин-та, 2005. 52 с.
- 10. Тарасов В.И. Теоретические основы анализа установившихся режимов электроэнергетических систем [Текст] : моногр. / В. И. Тарасов; Отв. ред. Л.Ю. Анапольский. Новосибирск : Наука, 2002. 344 с.
- 11. Савина Н.В. Системный анализ потерь электроэнергии в электрических распределительных сетях [Текст] : моногр. / Н.В. Савина; Отв. ред. Н.И. Воропай. Новосибирск : Наука, 2008. 228 с.
- 12. Кочкин В.И. Применение статических компенсаторов реактивной мощности в электрических сетях энергосистем и предприятий [Текст] : УЧЛ К изучению дисциплины / Кочкин В.И., Нечаев О.П. М. : Изд-во НЦ ЭНАС, 2000. 248с.
 - в) периодические издания (журналы):
- 1. Электричество;
- 2. Известия РАН. Энергетика;
- 3. Электрические станции;
- 4. Энергетик;
- 5. Электрика;
- 6. Вестник МЭИ:
- 7. Промышленная энергетика;
- 8. Энергетика. Сводный том;
- 9. Вестник ИГЭУ;
- 10. IEEE Transaction on Power Systems;
- 11. International Journal of Electrical Power & Energy Systems.

г) программное обеспечение и Интернет-ресурсы

No	Наименование ресурса	Краткая характеристика
1	http://www.iqlib.ru	Интернет-библиотека образовательных
		изданий, в которой собраны электронные
		учебники, справочные и учебные
		пособия. Удобный поиск по ключевым
		словам, отдельным темам и отраслям
		знания
2	Консультант +	Справочно-правовая система. Содержит
		законодательную базу, нормативно-
		правовое обеспечение, статьи.

На практических занятиях и в самостоятельной работе студентов используется система компьютерной математики Mathcad и графический редактор VISIO.

При работе над курсовым проектом используются следующие виды программновычислительных комплексов и пакетов прикладных программ: CURS. PM, KRNET, СДО-6, RastrWin, Mathcad, VISIO.

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

В качестве материально-технического обеспечения дисциплины используются мультимедийные средства, интерактивная доска. Материал лекций представлен в виде презентаций в Power Point. Для проведения практических занятий, при выполнении курсового проекта и в самостоятельной работе студентов используются электрические схемы энергетических компаний Дальнего Востока, однолинейные электрические схемы электрических станций и подстанций, расположенных на Дальнем Востоке.

11. РЕЙТИНГОВАЯ ОЦЕНКА ЗНАНИЙ СТУДЕНТОВ ПО ДИСЦИПЛИНЕ

Рейтинговая оценка деятельности студентов осуществляется в соответствии с технологической картой дисциплины о рейтинговой системе обучения, принятой на заседании кафедры энергетики.

Текущий контроль качества освоения отдельных тем и разделов дисциплины осуществляется на основе рейтинговой системы. Этот контроль проводится ежемесячно в течение семестра и качество усвоения материала (выполнения задания) оценивается в баллах, в соответствии с рейтинг планом дисциплины.

Экзамен проводится в конце семестра и оценивается по 5-ти балльной системе. Допуск к экзамену осуществляется по итоговому рейтингу текущего контроля, который определяется суммированием баллов по всем видам текущего контроля. Максимальный балл составляет 100, в том числе: индивидуальные домашние задания — 70, другие виды текущего контроля — 10 баллов. Допуск к экзамену соответствует 56...100 баллам.

1.2. Рабочая программа дисциплины «Электроэнергетические системы и сети» для специальности 140204.65 – «Электрические станции»

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целями освоения дисциплины «Электроэнергетические системы и сети» являются формирование систематизированных знаний в области электроэнергетических систем и сетей, энергосбережения, приобретение студентами навыков их проектирования, развитие культуры экономически целесообразного выбора проектируемого варианта схемы сети, расчета режимов сложных систем, регулирования частоты и напряжения.

Эти знания позволят выпускникам успешно решать задачи в профессиональной деятельности, связанной с проектированием и функционированием электроэнергетических систем и сетей.

Задачи дисциплины:

- Изучение научных основ построения электроэнергетических систем, технологий анализа и синтеза схем электрических сетей, принципов и методов разработки и реализации оптимальных технических решений при проектировании электроэнергетических систем и сетей.
- Получение знаний в области энергосбережения, регулирования частоты и напряжения в электроэнергетических системах.
- Изучение методов и алгоритмов расчетов установившихся режимов сложных электроэнергетических систем, в том числе и с помощью промышленных программновычислительных комплексов.
- Овладение методами и алгоритмами проектирования электроэнергетических систем и сетей, основами расчета установившихся режимов сложных электроэнергетических систем, методами, способами и средствами регулирования напряжения и частоты.
- Формирование профессиональных навыков по проектированию и эксплуатации электроэнергетических систем и сетей, по применению энергосберегающих технологий.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВПО

Дисциплина «Электроэнергетические системы и сети» входит в цикл Дисциплины специализации (ДС.01) и относится к дисциплинам, формирующим специальные профессиональные знания и навыки, необходимые при изучении дисциплины «Изоляция и перенапряжения» (8 семестр), входящей в цикл ОПД, дисциплин «Электрическая часть электростанций и подстанций», «Режимы работы электрооборудования станций и подстанций», «Основы эксплуатации электрооборудования станций и подстанций», входящих в цикл СД и читаемых в 7-9 семестрах, «Автоматизированные системы управления и оптимизация в электроэнергетических системах», «Надежность в электроэнергетике», «Качество электроэнергии», входящих в цикл ДС и читаемых в 9 семестре, а также при выполнении дипломного проекта.

Дисциплина базируется на курсах цикла общих математических и общенаучных дисциплин (ЕН) «Математика», «Физика», «Математические задачи энергетики», читаемых в 1-5 семестрах, курсах «Электроэнергетика», «Теоретические основы электротехники», «Электромеханика», входящих в цикл общепрофессиональных дисциплин (ОПД) и читаемых в 3-5 семестрах.

Студенты, обучающиеся по данной дисциплине, должны знать и владеть следующими материалами:

Математика – алгебра, решение систем алгебраических уравнений, дифференциальные и интегральные исчисления, графы, теория функций комплексного переменного, вероятность и статистика;

Физика — электричество и магнетизм, явления сверхпроводимости, полупроводники, принципы неопределенности;

Математические задачи энергетики – методы решения систем линейных и нелинейных уравнений в электроэнергетических задачах, применение теории вероятностей и математической статистики к решению электроэнергетических задач, методы оптимизации:

Теоретические основы электротехники – уравнения электромагнитного поля, законы электрических цепей; трехфазные цепи; теория электромагнитного поля, поверхностный эффект и эффект близости; электромагнитное экранирование;

Электромеханика – типы электрических машин, трансформаторы, автотрансформаторы, их режимы работы, конструкции;

Электроэнергетика – основные сведения об электрических сетях, схемах станций и подстанций, общие сведения об электроэнергетике.

3. ТРЕБОВАНИЯ К УРОВНЮ ОСВОЕНИЯ СОДЕРЖАНИЯ ДИСЦИПЛИНЫ

В результате освоения дисциплины обучающийся должен демонстрировать следующие результаты образования:

1) Знать:

современное состояние электроэнергетической системы;

цели, задачи, принципы и общий алгоритм проектирования электроэнергетической системы;

технико-экономические основы проектирования электроэнергетических систем и сетей;

критерии выбора оптимального варианта электрической сети;

методы и алгоритмы проектирования электрических сетей;

порядок выбора схем построения электрической сети;

методы расчета режимов сложных электроэнергетических систем;

мероприятия по снижению потерь мощности и энергии в электрических сетях;

методы и способы регулирования частоты и напряжения в электроэнергетической системе:

особые режимы электрических сетей.

2) Уметь:

составлять и анализировать конкурентоспособные варианты конфигурации электрической сети с учетом фактора надежности;

выбирать номинальное напряжение сети;

проводить компенсацию реактивной мощности;

выбирать сечения проводов и кабелей, силовые трансформаторы в сетях различных назначений и номинальных напряжений;

рассчитывать технико-экономические показатели вариантов электрической сети и выбирать оптимальный вариант;

рассчитывать установившиеся режимы сложных электрических сетей;

регулировать напряжение в электрической сети;

определять потери электроэнергии и выбирать мероприятия по их оптимальному снижению.

3) Владеть навыками:

проектирования на вариантной основе районных электрических сетей и пользования справочной литературой;

выбора оптимальных для рассматриваемой схемы электрической сети параметров; расчетов режимов сложных систем и анализа результатов расчетов;

применения энергосберегающих технологий в электроэнергетических системах; регулирования напряжения в электрических сетях.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ «ЭЛЕКТРОЭНЕРГЕТИЧЕ-СКИЕ СИСТЕМЫ И СЕТИ»

Общая трудоемкость дисциплины составляет 112 часов.

3.0	Тощий трудоемкоетт		· ·				_	Ŧ
№ п/п			pa			бной ра амостоя		Формы текущего контроля успеваемости (по неделям
11/11		d	Неделя семестра			амостоя у студе		семестра)
	Раздел	ест	зем	-	•	ость (в ч		Форма промежуточной ат-
	дисциплины	Семестр) КП	ЛК	ПЗ	КΠ	CPC	тестации (по семестрам)
			эде					
			H					
1	Проектирование	6	1-8	16	8	20	6	1,3,5,7 недели – блиц-
	электроэнергети-							опрос на лекции;
	ческих систем и							2,4,6,8 недели – опрос на
	сетей							практике, защита инди-
								видуального домашнего
								задания, контроль хода
			0.10		4	2.0		выполнения КП
2	Расчет устано-	6	9-12	8	4	20	6	9, 11 недели - блиц-
	вившихся режи-							опрос на лекции;
	мов сложных							10, 12 недели - опрос на
	электроэнергети- ческих систем							практике, защита инди-
	ческих систем							видуального домашнего задания, контроль хода
								выполнения КП
3	Повышение энер-	6	13-18	12	6		6	12, 14, 16, 18 недели -
	гоэффективности	U	13 10	12	0			опрос на практике, защи-
	и надежности							та индивидуального до-
	электроэнергети-							машнего задания;
	ческих систем							12, 14, 16 недели -
								контроль хода выполне-
								ния КП;
								14 неделя – контрольная
								работа
								13, 15,17 недели – блиц-
								опрос на лекции
4	Промежуточная	6						Экзамен, КП
	аттестация							

Примечания:

ЛК – лекции, ПЗ – практические занятия, СРС – самостоятельная работа студентов, КП – курсовой проект.

5. СОДЕРЖАНИЕ РАЗДЕЛОВ И ТЕМ ДИСЦИПЛИНЫ

5.1. Лекции

Раздел 1. Проектирование электроэнергетических систем и сетей

Тема 1. Введение. Характеристика и структура электроэнергетической системы - 2 часа

Современное состояние электроэнергетических систем и тенденции их развития. Топливно-энергетический комплекс. Перспективы развития электроэнергетических систем (ЭЭС) по России в целом и на Дальнем Востоке. Неопределенность как фундаментальное свойство ЭЭС.

Tема 2. Исходные данные для проектирования электрических сетей, электроэнергетических систем - 4 часа.

Характеристика района проектирования. Электрические нагрузки и их представление при проектировании и эксплуатации электроэнергетических систем. Графики электрических нагрузок (ГЭН) и их анализ при проектировании электрических сетей. Построение ГЭН подстанций из типовых графиков при различных способах задания информации. Долгосрочное прогнозирование ГЭН. Практическое применение формулы сложных процентов при проектировании электрических нагрузок. Переход от реальных ГЭН к ГЭН в относительных единицах и построение прогнозируемого ГЭН.

Тема 3. Технико-экономические основы проектирования электрических сетей и систем - 10 часов.

Задачи и методы проектирования электроэнергетических систем и электрических сетей. Общие требования к схемам электрических сетей. Принципы формирования вариантов конфигурации электрической сети. Выбор вариантов схем построения электрической сети. Критерии выбора оптимального варианта электрической сети. Основные экономические показатели систем передачи и распределения электроэнергии: капитальные вложения (инвестиции); эксплуатационные издержки; чистый дисконтированный доход; эквивалентные годовые расходы (годовые приведенные затраты) и срок окупаемости капитальных затрат. Определение потерь электроэнергии в электрической сети при ее проектировании. Технико-экономическое сравнение вариантов электрической сети. Выбор рационального напряжения сети. Выбор числа и мощности силовых трансформаторов на подстанциях. Определение сечения проводов воздушных и кабельных линий различными методами. Особенности выбора и проверки сечений линий в замкнутых сетях. Проверка сечений проводов по нагреву длительно допустимым током. Проектирование схем электрических сетей.

Раздел 2. Расчет установившихся режимов сложных электроэнергетических систем Тема 4. Основы расчета установившихся режимов сложных электроэнергетических систем - 6 часов.

Специфика расчетов сложных систем. Преобразования сети при расчете режимов электроэнергетических систем большой сложности. Разделение системы на подсистемы. Эквивалентирование схем сложных электроэнергетических систем. Представление системы уравнений узловых напряжений для расчета с помощью программно-вычислительных комплексов (ПВК) на персональном компьютере. Методы решения уравнений узловых напряжений. Способы задания параметров элементов схемы, нагрузочных и генераторных узлов. Балансирующий узел. Определение параметров режимов. Расчет режимов с помощью промышленных программно-вычислительных комплексов СДО – 6, RastrWin. Анализ полученных результатов.

Тема 5. Особые режимы электроэнергетических систем – 2 часа.

Источники, вызывающие особые режимы в электрической сети. Неполнофазные режимы. Условия допустимости неполнофазных режимов. Расчет несимметричных режимов.

Раздел 3. Повышение энергоэффективности и надежности электроэнергетических систем

Тема 6. Компенсация реактивной мощности и регулирование напряжения в электроэнергетических системах - 6 часов.

Современное состояние проблемы компенсации реактивной мощности. Источники и потребители реактивной мощности. Три задачи компенсации реактивной мощности: балансовая задача, регулирование напряжения в сети, экономическая задача. Методы регулирования напряжения. Технические средства компенсации реактивной мощности и регулирования напряжения: синхронные генераторы; синхронные компенсаторы; статические источники реактивной мощности; батареи конденсаторов; СТАТКОМ; FACTS - технологии; устройства РПН, их регулировочные характеристики.

Тема 7. Методы расчета и анализа потерь мощности и электрической энергии в электрических сетях, мероприятия по снижению потерь. - 4 часов.

Общая характеристика проблемы потерь электроэнергии. Методы расчета потерь. Структурный анализ потерь. Мероприятия по снижению технических потерь. Мероприятия по снижению метрологических и коммерческих потерь.

Тема 8. Методы регулирования частоты - 2 часа.

Первичное, вторичное и третичное регулирования частоты. Противоаварийные мероприятия при снижении частоты в электроэнергетических системах.

5.2. Практические занятия

Практические занятия проводятся с целью закрепления знаний, полученных при изучении теоретического курса. Тематика практических занятий приведена в табл.

$N_{\underline{0}}$	Наименование	Кол-во
П.П.	темы	часов
1.	Расчет вероятностных характеристик графиков нагрузки подстанций и ре-	2
	жимных характеристик сети.	
2.	Разработка и технический анализ вариантов конфигурации электрической	2
	сети. Определение рационального напряжения сети.	
3.	Выбор числа и мощности силовых трансформаторов на ПС. Выбор и про-	2
	верка сечений воздушных и кабельных линий	
4.	Расчет экономических показателей электрических сетей. Выбор оптималь-	4
	ного варианта схемы электрической сети.	
5.	Регулирование напряжения в электрической сети.	4
6.	Преобразование и эквивалентирование схем электрических сетей сложной	2
	конфигурации	
7.	Определение потерь электроэнергии в электрической сети	2

При проведении практических занятий решаемые задания подбираются в соответствии со спецификой специальности. На практических занятиях каждому студенту выдаются индивидуальные домашние задания.

6. САМОСТОЯТЕЛЬНАЯ РАБОТА

$N_{\underline{0}}$	№ раздела	Форма (вид)	Трудоём-
Π/Π	дисциплины	самостоятельной работы	кость в часах
1	1	подготовка к блиц-опросу на лекции;	4
		выполнение индивидуальных домашних заданий и	2
		подготовка к практическому занятию	
2	2	подготовка к блиц-опросу на лекции;	3
		выполнение индивидуальных домашних заданий и	2
		подготовка к практическому занятию;	
		проработка материала, вынесенного на самостоя-	1
		тельное изучение	
3	3	подготовка к блиц-опросу на лекции;	2
		выполнение индивидуальных домашних заданий и	2
		подготовка к практическому занятию;	
		подготовка к контрольной работе;	1
		проработка материала, вынесенного на самостоя-	1
		тельное изучение	

Курсовой проект

Отдельным видом самостоятельной работы студентов является курсовой проект, на выполнение которого отводится учебным планом 40часов.

Для закрепления теоретических знаний, полученных при изучении дисциплины, приобретения навыков пользования справочной литературой, практических навыков по проектированию районных или распределительных сетей электроэнергетических систем предусмотрен курсовой проект на темы: «Проектирование районной электрической сети Дальнего Востока», «Проектирование распределительной электрической сети Дальнего Востока», «Проектирование схемы выдачи мощности от электростанций Дальнего Востока».

Ниже приведен пример типового бланка задания на курсовой проект, содержание которого заполняется индивидуально для каждого студента.

на курсовой проект по дисциплине «Электроэнерге гудент Группа Дата выдачи дание выдал Задание ФИО руководителя проекта, подпись	зада	ния (П	: « <u> </u>	>>>	·		20
здание выдал Задание		нял((a)				
адание выдал Задание ФИО руководителя проекта, подпись	при						
ФИО руководителя проекта, подпись			1100	пись			
					ь сту	оенп	na
Тема проекта: « Проектирование районной электриче	скоі	й се	ти Д	Цал	ьне	го В	Восто
проектировать электрическую сеть для питания потреби еографическое расположение источников и нагрузок –	теле	ей пу	ункт	гов	«A»	· - ‹‹.	Ж»
	азы	вает	пся	эне	ргор	райс	—— ЭН
·							
анные о потребителях электроэнергии Исходные данные				Іун	I/T		
исходные данные	A	Б	В	Г	Л	E	Ж
Суммарная установленная мощность, МВт							
Коэффициент реактивной мощности нагрузки, tgф							
Состав потребителей 1 категория							
по категориям надежности, % 2 категория							
3 категория							
Желаемое напряжение вторичной сети, кВ							
Наименование источника питания							
	J _{ном}						U _{ном}
наибольших нагрузках, кВ							
при наименьших нагрузках, кВ	J _{HOM}						U_{hom}
при тяжелых авариях в сети, кВ	J _{HOM}						U_{HOM}

	Схема сети										
ľ											
ľ											

Суема сети

Масштаб в	1	СМ	KI	١

В процессе проектирования для одного из энергорайонов Дальнего Востока студенты разрабатывают следующие вопросы:

- Характеристика энергорайона: источники питания; электрические сети; потребители; климатическая и географическая характеристика.
 - Расчет и прогнозирование электрических нагрузок.
- Разработка конкурентоспособных вариантов электрической сети: разработка и анализ 8 вариантов конфигурации электрической сети; выбор 4 вариантов конфигурации сети для дальнейшего анализа; расчет упрощенного потокораспределения активной мощности и выбор номинального напряжения в каждом из 4 вариантов; выбор типов схем РУ подстанций; выбор двух конкурентоспособных вариантов конфигурации электрической сети; компенсация реактивной мощности; выбор сечений проводников в каждом из двух вариантов; выбор числа и мощности силовых трансформаторов; конструктивное исполнение электрической сети.
- Выбор оптимального варианта электрической сети: расчет капитальных вложений в электрическую сеть; расчет потерь электрической энергии; расчет эксплуатационных издержек; выбор оптимального варианта сети.
- Расчет и анализ установившихся режимов: выбор ПВК для расчета режимов и его характеристика; расчет максимального режима; расчет минимального режима; расчет послеаварийного режима; анализ режимов; регулирование напряжения в сети.
- Технико-экономические показатели проекта. Оценка инвестиционной привлекательности проекта.
 - Вопрос для углубленной проработки (выдается в бланке задания индивидуально).

Графическая часть проекта включает в себя: варианты конфигурации и схемы построения электрической сети; подробную однолинейную электрическую схему оптимального варианта сети; схему замещения сети и результаты расчета и анализа установившихся режимов.

7.ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При реализации дисциплины «Электроэнергетические системы и сети» используются традиционные и современные образовательные технологии. Из современных образовательных технологий применяются информационные и компьютерные технологии с привлечением к преподаванию мультимедийной техники и интерактивной доски, технологии активного обучения, проблемного обучения. Применяются следующие активные и интерактивные формы проведения занятий: проблемные ситуации, компьютерные симуляции,

деловые игры, разбор конкретных ситуаций по проектированию электрических сетей на примере электроэнергетической системы Дальнего Востока. В рамках дисциплины предусмотрены встречи с представителями энергетических компаний Дальнего Востока.

Самостоятельная работа студентов подразумевает работу под руководством преподавателя: консультации и помощь при выполнении курсового проекта, индивидуального домашнего задания, консультации по разъяснению материала, вынесенного на самостоятельную проработку, индивидуальную работу студента в компьютерном классе ЭФ или в библиотеке

8. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Система оценочных средств и технологий для проведения текущего контроля успеваемости по дисциплине включает вопросы для блиц-опроса на лекциях, индивидуальные домашние задания, задания для курсового проекта и контрольных работ.

Тематика вопросов блиц-опроса на лекциях совпадает с тематикой лекций.

Темы индивидуальных домашних заданий:

построение графика электрической нагрузки подстанции и определение его вероятностных характеристик;

разработка вариантов конфигурации электрической сети, их технический анализ;

выбор номинального напряжения сети, числа и мощности силовых трансформаторов на подстанциях, сечений линий электропередачи;

технико-экономическое сравнение вариантов схем электрических сетей;

регулирование напряжения в сети;

расчет режимов сложных схем электрической сети;

расчет и анализ потерь электроэнергии в сети.

Тема контрольной работы — методы расчета и анализа установившихся режимов электроэнергетических систем большой сложности.

Промежуточная аттестация осуществляется в виде защиты курсового проекта и сдачи экзамена. Система оценочных средств и технологий для проведения промежуточной аттестации включает вопросы к защите курсового проекта, контрольные вопросы и задания к экзамену.

Вопросы к защите курсового проекта

- 1. Классификация электрических сетей.
- 2. Стандартный ряд номинальных напряжений и наибольшие рабочие значения напряжений.
- 3. Какие бывают опоры? Их назначение.
- 4. Классификация линейных изоляторов, их конструктивное исполнение.
- 5. Виды линейной арматуры, её назначение.
- 6. Задание нагрузки при расчётах режимов.
- 7. Представление генераторов при расчётах установившихся режимов.
- 8. Схемы замещения ВЛЭП и их параметры.
- 9. Схема замещения двухобмоточного трансформатора и её параметры.
- 10. Схема замещения трансформатора с расщепленной обмоткой и её параметры.
- 11. Схема замещения трёхобмоточного трансформатора, её параметры.
- 12. Схема замещения автотрансформатора, её параметры.
- 13. Определение потерь мощности в двухобмоточном трансформаторе.
- 14. Определение потерь мощности в трёхобмоточном трансформаторе и автотрансформаторе.

- 15. Приведенная и расчётная нагрузка узла.
- 16. Схемы электрических сетей.
- 17. Расчёт режимов разомкнутых сетей по данным «начала».
- 18. Расчёт кольцевых сетей.
- 19. Особенности расчёта режимов в однородных электрических сетях.
- 20. Расчёт режимов сетей с двухсторонним питанием.
- 21. Определение наибольшей потери напряжения.
- 22. Определение напряжения на стороне низшего напряжения подстанции с двухобмоточными трансформаторами.
- 23. Определение напряжения на сторонах среднего и низшего напряжений подстанции с трёхобмоточными трансформаторами и автотрансформаторами.
- 24. Расчёт сетей с различными номинальными напряжениями.
- 25. Регулирование напряжения с помощью РПН трансформаторов и линейных регуляторов.
- 26. Выбор ответвлений РПН в двухобмоточных трансформаторах.
- 27. Выбор ответвлений РПН в трехобмоточных трансформаторах.
- 28. Выбор ответвлений РПН в автотрансформаторах.
- 29. Способы присоединения подстанций к электрической сети.
- 30. Схемы электрических соединений подстанций.
- 31. В чем заключается характеристика района проектирования?
- 32. Какие климатические характеристики нужно знать при проектировании и для чего?
- 33. Расчет электрических нагрузок с помощью вероятностных характеристик.
- 34. Выбор номинального напряжения сети.
- 35. Принципы составления вариантов конфигурации электрической сети.
- 36. Выбор сечений проводов ВЛ методом экономических токовых интервалов.
- 37. Выбор сечений проводников по нагреву длительно-допустимым током.
- 38. Выбор сечений проводников по допустимой потере напряжения.
- 39. Технических анализ вариантов конфигурации сети.
- 40. Чистый дисконтированный доход. Среднегодовые эквивалентные затраты.
- 41. Капитальные вложения.
- 42. Эксплуатационные издержки.
- 43. Расчет потерь электроэнергии.
- 44. Три задачи компенсации реактивной мощности.
- 45. Балансовый расчет компенсации реактивной мощности.
- 46. Выбор компенсирующих устройств методом поперечной компенсации.
- 47. Выбор числа и мощности силовых трансформаторов.
- 48. Схемы распределительных устройств подстанций.
- 49. Подготовка исходной информации для расчета режимов с помощью ПВК СДО-6.
- 50. Подготовка исходной информации для расчета режимов с помощью ПВК RastrWin.
- 51. Характеристика ПВК, используемых для расчета режимов.
- 52. Проверка правильности расчетов режимов с помощью ПВК.
- 53. В чем заключается анализ режимов, и с какой целью его проводят.
- 54. Встречное регулирование напряжения.

Защита курсового проекта может проходить в виде доклада студента и ответов на поставленные вопросы членами комиссии по приему курсового проекта, либо в виде деловой игры.

Контрольные вопросы и задания к экзамену

Вопросы к экзамену:

- 1. Тенденции и перспективы развития электроэнергетических систем.
- 2. Цели и задачи проектирования электроэнергетических систем
- 3. Проект развития электрических сетей

- 4. Методы проектирования энергосистем
- 5. Исходные данные для проектирования электрических сетей, электроэнергетических систем, их достоверность и полнота
- 6. Графики электрических нагрузок (ГЭН) и их анализ при проектировании электрических сетей
- 7. Построение ГЭН подстанций из типовых графиков при различных способах задания информации
- 8. Долгосрочное прогнозирование ГЭН
- 9. Практическое применение формулы сложных процентов при прогнозировании электрических нагрузок
- 10. Переход от реальных ГЭН к ГЭН в относительных единицах и построение прогнозируемого ГЭН
- 11. Влияние режимов работы потребителей на формирование ГЭН подстанций
- 12. Понятие "Число часов использования наибольшей нагрузки" и его определение
- 13. Характеристика района проектирования электрической сети
- 14. Общие требования к схемам электрических сетей. Принципы формирования вариантов конфигурации электрической сети
- 15. Принципы технического отбора конкурентоспособных вариантов сетей при проектировании
- 16. Критерии выбора оптимального варианта электрической сети
- 17. Капитальные вложения
- 18. Эксплуатационные издержки
- 19. Чистый дисконтированный доход, эквивалентные годовые расходы (годовые приведенные затраты) и срок окупаемости капитальных затрат.
- 20. Технико-экономическое сравнение вариантов электрической сети. Выбор оптимального варианта схемы электрической сети при проектировании
- 21. Определение потерь электрической энергии при проектировании электрической сети
- 22. Выбор рационального напряжения сети
- 23. Выбор числа и мощности силовых трансформаторов на ПС
- 24. Определение сечения проводов и кабелей по экономической плотности тока
- 25. Определение сечения проводов по экономическим токовым интервалам
- 26. Определение сечений линий в распределительных сетях по допустимой потере напряжения
- 27. Выбор сечения линии из условия его равенства на всех участках
- 28. Выбор сечения линии из условия минимума потерь мощности
- 29. Выбор сечения линии из условия минимума расхода проводникового материала на сооружение линии
- 30. Особенности выбора и проверки сечений в замкнутых сетях
- 31. Проверка сечений линий по нагреву длительно допустимым током
- 32. Проектирование схем электрических сетей
- 33. Представление системы уравнений узловых напряжений (УУН) для ее решения на ПЭВМ. Раздельное решение уравнений узловых напряжений
- 34. Сходимость решения уравнений установившегося режима
- 35. Существование решения системы УУН
- 36. Единственность решения нелинейных УУН
- 37. Чувствительность решения нелинейных УУН
- 38. Преобразование сети при расчете режимов электроэнергетических систем большой сложности
- 39. Исключение узлов при расчете режимов электроэнергетических систем большой сложности
- 40. Метод расщепления сети

- 41. Расчет системы УУН при перспективном проектировании схем энергосистем
- 42. Учет слабой заполненности матрицы узловых проводимостей
- 43. Эквивалентирование при расчетах УУН систем большой сложности
- 44. Разделение электроэнергетических систем на подсистемы при расчете режимов
- 45. Методы решения уравнений узловых напряжений.
- 46. Матричные и топологические методы расчета режимов электроэнергетических систем
- 47. Способы задания параметров элементов схемы, нагрузочных и генераторных узлов. Балансирующий узел
- 48. Расчет режимов с помощью промышленных программно-вычислительных комплексов СДО 6, RastrWin
- 49. Анализ установившихся режимов
- 50. Особые режимы в ЭЭС и их анализ
- 51. Источники, вызывающие особые режимы в электрической сети
- 52. Уравнения несимметричных режимов в фазных координатах и переход в систему симметричных координат
- 53. Уравнения несимметричных режимов в системе симметричных координат и переход в систему фазных координат
- 54. УУН в сложнонесимметричных режимах
- 55. Симметрирование режима
- 56. Порядок расчета неполнофазного режима
- 57. Условия допустимости работы с длительно неполнофазным режимом
- 58. Применение метода симметричных составляющих при расчете несимметричных режимов
- 59. Представление системы УУН для анализа несинусоидальных режимов
- 60. Источники и потребители реактивной мощности
- 61. Балансовая задача компенсации реактивной мощности
- 62. Экономическая задача компенсации реактивной мощности
- 63. Регулирование напряжения в сети продольной компенсацией реактивной мощности
- 64. Регулирование напряжения в сети поперечной компенсацией реактивной мощности
- 65. Технические средства компенсации реактивной мощности и регулирования напряжения
- 66. Методы расчета потерь электроэнергии в электрических сетях
- 67. Структурный анализ потерь
- 68. Мероприятия по снижению технических потерь
- 69. Мероприятия по снижению метрологических потерь
- 70. Мероприятия по снижению коммерческих потерь
- 71. Первичное, вторичное и третичное регулирования частоты
- 72. Противоаварийные мероприятия при снижении частоты в электроэнергетических системах

Задания для экзамена сформированы в виде инженерных задач, включающих в себя проектирование электрических сетей, регулирование напряжения с помощью компенсирующих устройств, преобразование сложнозамкнутых электрических сетей для расчета режимов, использование практических приемов для ускорения расчетов режимов на ПЭВМ, представление схем электрической сети и ее параметров для расчета на ПЭВМ, анализ особых режимов.

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИС-ЦИПЛИНЫ «ЭЛЕКТРОЭНЕРГЕТИЧЕСКИЕ СИСТЕМЫ И СЕТИ»

- а) основная литература:
- 1. Герасименко А.А. Передача и распределение электрической энергии : учеб. пособие: рек. Мин. обр. РФ/ А. А. Герасименко , В. Т. Федин. -Ростов н/Д: Феникс; Красноярск: Издат. проекты, 2008. -719 с.
- 2. Основы современной энергетики в 2т. : Учеб. : рек. Мин. обр. РФ : Т2. Современная электроэнергетика / под ред. Е.В. Аметистова. М.: Издат. дом МЭИ, 2010. 632 с.
- 3. Электроэнергетические системы и сети : учеб.-метод. комплекс для спец. 140203, 140204, 140205/ АмГУ, Эн.ф.; сост. Н. В. Савина. -Благовещенск: Изд-во Амур. гос. ун-та, 2012. -242 с.
 - б) дополнительная литература:
- 1. Лыкин А.В. Электрические системы и сети : учеб.пособие / А.В.Лыкин . Новосибирск : Изд-во НГТУ, 2002. 247 с.
- 2. Идельчик В.И. Электрические системы и сети [Текст] : учеб./ В. И. Идельчик. -М.: Энергоатомиздат, 1989. 592 с.
- 3. Электрические системы. Электрические сети. : Учеб. для электроэнерг. спец. вузов/ред. В. А. Веников. -2-е изд., прераб. и доп.. -М.: Высш. шк., 1998. -512 с.
- 4. Кужеков С.Л. Практическое пособие по электрическим сетям и электрооборудованию/ С. Л. Кужеков, С. В. Гончаров. -3-е изд.. -Ростов н/Д: Феникс, 2009. -493 с.
- 5. Пособие к курсовому и дипломному проектированию для электроэнергетических специальностей вузов [Текст] : учеб. пособие / В.М. Блок, Г.К. Обушев, Л.В. Паперно; Ред. В.М. Блок. 2-е изд., перераб. и доп. М. : Высш. шк., 1990. 384 с.
- 6. Электротехнический справочник: В 4 т./ Под общ. ред. В.Г. Герасимов, Под общ. ред. А.Ф. Дьяков, Под общ. ред. Н.Ф. Ильинский, Гл. ред. А.И. Попов Т. 3: Производство, передача и распределение электрической энергии: справочное издание. 2002. -964 с.
- 7. Справочник по проектированию электрических сетей [Текст] / под ред. Д. Л. Файбисовича. -3-е изд., перераб. и доп. -М.: ЭНАС, 2009. -391 с.
- 8. Поспелов Г.Е. Электрические системы и сети: проектирование [Текст] : учеб. пособие / Г. Е. Поспелов, В. Т. Федин. 2-е изд., испр. и доп. Минск : Высш. шк., 1988. 308 с.
- 9. Шелухина Т.И. Расчеты нормальных и предельных по мощности установившихся режимов сложных энергосистем: учеб. пособие/ Т. И. Шелухина. -М.: Изд-во Моск. энергет. ин-та, 2005. 52 с.
- 10. Тарасов В.И. Теоретические основы анализа установившихся режимов электроэнергетических систем [Текст] : моногр. / В. И. Тарасов; Отв. ред. Л.Ю. Анапольский. Новосибирск : Наука, 2002. 344 с.
- 11. Савина Н.В. Системный анализ потерь электроэнергии в электрических распределительных сетях [Текст]: моногр. / Н.В. Савина; Отв. ред. Н.И. Воропай. Новосибирск: Наука, 2008. 228 с.
- 12. Кочкин В.И. Применение статических компенсаторов реактивной мощности в электрических сетях энергосистем и предприятий [Текст]: УЧЛ К изучению дисциплины / Кочкин В.И., Нечаев О.П. М.: Изд-во НЦ ЭНАС, 2000. 248с.
- в) периодические издания (журналы):
- 1. Электричество;
- 2. Известия РАН. Энергетика;
- 3. Электрические станции;
- 4. Энергетик;
- 5. Электрика;
- 6. Вестник МЭИ;

- 7. Промышленная энергетика;
- 8. Энергетика. Сводный том;
- 9. Вестник ИГЭУ;
- 10. IEEE Transaction on Power Systems;
- 11. International Journal of Electrical Power & Energy Systems.
 - г) программное обеспечение и Интернет-ресурсы

№	Наименование ресурса	Краткая характеристика
1	http://www.iqlib.ru	Интернет-библиотека образовательных изданий, в
		которой собраны электронные учебники,
		справочные и учебные пособия. Удобный поиск
		по ключевым словам, отдельным темам и
		отраслям знания
2	Консультант +	Справочно-правовая система. Содержит
		законодательную базу, нормативно-правовое
		обеспечение, статьи.

На практических занятиях и в самостоятельной работе студентов используется система компьютерной математики Mathcad и графический редактор VISIO.

При работе над курсовым проектом используются следующие виды программновычислительных комплексов и пакетов прикладных программ: CURS. PM, KRNET, СДО-6, RastrWin, Mathcad, VISIO.

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

В качестве материально-технического обеспечения дисциплины используются мультимедийные средства, интерактивная доска. Материал лекций представлен в виде презентаций в Power Point. Для проведения практических занятий, при выполнении курсового проекта и в самостоятельной работе студентов используются электрические схемы энергетических компаний Дальнего Востока, однолинейные электрические схемы электрических станций и подстанций, расположенных на Дальнем Востоке.

11. РЕЙТИНГОВАЯ ОЦЕНКА ЗНАНИЙ СТУДЕНТОВ ПО ДИСЦИПЛИНЕ

Рейтинговая оценка деятельности студентов осуществляется в соответствии с технологической картой дисциплины о рейтинговой системе обучения, принятой на заседании кафедры энергетики.

Текущий контроль качества освоения отдельных тем и разделов дисциплины осуществляется на основе рейтинговой системы. Этот контроль проводится ежемесячно в течение семестра и качество усвоения материала (выполнения задания) оценивается в баллах, в соответствии с рейтинг планом дисциплины.

Экзамен проводится в конце семестра и оценивается по 5-ти балльной системе. Допуск к экзамену осуществляется по итоговому рейтингу текущего контроля, который определяется суммированием баллов по всем видам текущего контроля. Максимальный балл составляет 100, в том числе: индивидуальные домашние задания — 70, другие виды текущего контроля — 30 баллов. Допуск к экзамену соответствует 56…100 баллам.

1.3. Рабочая программа дисциплины «Электроэнергетические системы и сети» для специальности 140205.65 – «Электроэнергетические системы и сети»

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целями освоения дисциплины «Электроэнергетические системы и сети» являются формирование систематизированных знаний в области электроэнергетических систем и сетей, энергосбережения, приобретение студентами навыков их проектирования, развитие культуры экономически целесообразного выбора проектируемого варианта схемы сети, расчета режимов сложных систем, регулирования частоты и напряжения.

Эти знания позволят выпускникам успешно решать задачи в профессиональной деятельности, связанной с проектированием и функционированием электроэнергетических систем и сетей.

Задачи дисциплины:

- Изучение научных основ построения электроэнергетических систем, технологий анализа и синтеза схем электрических сетей, принципов и методов разработки и реализации оптимальных технических решений при проектировании электроэнергетических систем и сетей.
- Получение знаний в области энергосбережения, регулирования частоты и напряжения в электроэнергетических системах.
- Изучение методов и алгоритмов расчетов установившихся режимов сложных электроэнергетических систем, в том числе и с помощью промышленных программновычислительных комплексов.
- Овладение методами и алгоритмами проектирования электроэнергетических систем и сетей, основами расчета установившихся режимов сложных электроэнергетических систем, методами, способами и средствами регулирования напряжения и частоты.
- Формирование профессиональных навыков по проектированию и эксплуатации электроэнергетических систем и сетей, по применению энергосберегающих технологий.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВПО

Дисциплина «Электроэнергетические системы и сети» входит в цикл Специальные дисциплины (СД.03) и относится к дисциплинам, формирующим специальные профессиональные знания и навыки, необходимые при изучении дисциплин «Изоляция и перенапряжения» (8 семестр), входящей в цикл ОПД, дисциплин «Электрическая часть станций и подстанций», «Специальный курс электроэнергетических систем», «Эксплуатация электроэнергетических систем», «Надежность в электроэнергетике», «Качество электроэнергии», входящих в цикл ДС и читаемых в 7-9 семестрах, «Оптимизация в электроэнергетических системах», «Применение ЭВМ в энергетике», «Дальние электропередачи сверхвысокого напряжения», входящих в цикл СД и читаемых в 7-9 семестрах, а также при выполнении дипломного проекта.

Требования к обязательному минимуму содержания ООП по направлению подготовки дипломированного специалиста «Электроэнергетика». Федеральный компонент СД.03. Электроэнергетические системы и сети: технико-экономические основы проектирования электрических сетей; выбор схем построения сети, критерии выбора оптимального варианта, алгоритм выбора; выбор сечения проводов и кабелей в сетях различных назначений и номинальных напряжений; учет фактора надежности при проектировании электрических сетей; основы расчета нормальных режимов сложных электрических сетей; преобразование сети и исключение узлов; расчеты однородных сетей; учет слабой заполненности матриц; методы эквивалентирования сети; мероприятия по снижению потерь мощности и электроэнергии в электрических сетях; особые режимы электрических сетей.

Дисциплина базируется на курсах цикла общих математических и общенаучных дисциплин (ЕН) «Математика», «Физика», «Математические задачи энергетики», читаемых в 1-5 семестрах, курсах «Электроэнергетика», «Теоретические основы электротехники», «Электромеханика», входящих в цикл общепрофессиональных дисциплин (ОПД) и читаемых в 3-5 семестрах.

Студенты, обучающиеся по данной дисциплине, должны знать и владеть следующими материалами:

Математика – алгебра, решение систем алгебраических уравнений, дифференциальные и интегральные исчисления, графы, теория функций комплексного переменного, вероятность и статистика;

Физика — электричество и магнетизм, явления сверхпроводимости, полупроводники, принципы неопределенности;

Математические задачи энергетики – методы решения систем линейных и нелинейных уравнений в электроэнергетических задачах, применение теории вероятностей и математической статистики к решению электроэнергетических задач, методы оптимизации;

Теоретические основы электротехники – уравнения электромагнитного поля, законы электрических цепей; трехфазные цепи; теория электромагнитного поля, поверхностный эффект и эффект близости; электромагнитное экранирование;

Электромеханика – типы электрических машин, трансформаторы, автотрансформаторы, их режимы работы, конструкции;

Электроэнергетика – основные сведения об электрических сетях, схемах станций и подстанций, общие сведения об электроэнергетике.

3. ТРЕБОВАНИЯ К УРОВНЮ ОСВОЕНИЯ СОДЕРЖАНИЯ ДИСЦИПЛИНЫ

В результате освоения дисциплины обучающийся должен демонстрировать следующие результаты образования:

а) Знать:

современное состояние электроэнергетической системы;

цели, задачи, принципы и общий алгоритм проектирования электроэнергетической системы;

технико-экономические основы проектирования электроэнергетических систем и сетей;

критерии выбора оптимального варианта электрической сети;

методы и алгоритмы проектирования электрических сетей;

порядок выбора схем построения электрической сети;

методы преобразования и эквивалентирования сети;

методы расчета режимов сложных электроэнергетических систем;

мероприятия по снижению потерь мощности и энергии в электрических сетях;

методы и способы регулирования частоты и напряжения в электроэнергетической системе:

особые режимы электрических сетей.

б) Уметь:

составлять и анализировать конкурентоспособные варианты конфигурации электрической сети с учетом фактора надежности;

выбирать номинальное напряжение сети;

проводить компенсацию реактивной мощности;

выбирать сечения проводов и кабелей, силовые трансформаторы в сетях различных назначений и номинальных напряжений;

рассчитывать технико-экономические показатели вариантов электрической сети и выбирать оптимальный вариант;

рассчитывать установившиеся режимы сложных электрических сетей;

регулировать напряжение в электрической сети; определять потери электроэнергии и выбирать мероприятия по их оптимальному снижению.

в) Владеть навыками:

проектирования на вариантной основе районных электрических сетей и пользования справочной литературой;

выбора оптимальных для рассматриваемой схемы электрической сети параметров; расчетов режимов сложных систем и анализа результатов расчетов;

применения энергосберегающих технологий в электроэнергетических системах; регулирования напряжения в электрических сетях.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ «ЭЛЕКТРОЭНЕРГЕТИЧЕ-СКИЕ СИСТЕМЫ И СЕТИ»

Общая трудоемкость дисциплины составляет 164 часа.

№ п/п	Раздел дисциплины Проектирова- ние электро-	Семестр	Неделя семестра	вклю		остояте	льную рудоем-	Формы текущего контроля успеваемости (по неделям семестра) Форма промежуточной аттестации (по семестрам) 1,3,5,7 недели — блицопрос на лекции;
	энергетических систем и сетей							2,4,6,8 недели – опрос на практике, защита индивидуального домашнего задания, защита отчета по лабораторной работе
2	Расчет установившихся режимов сложных электроэнергетических систем	6	9-12	8	4	14	18	9, 11 недели - блиц- опрос на лекции; 10, 12 недели - опрос на практике, защита инди- видуального домашнего задания, защита отчета по лабораторной работе; 9 неделя – коллоквиум
3	Повышение энергоэффективности и надежности электроэнергетических систем	6	13- 18	12	6	2	22	12, 14, 16, 18 недели - опрос на практике, защита индивидуального домашнего задания, защита отчета по лабораторной работе; 14 неделя — контрольная работа; 13, 15, 17 недели — блицопрос на лекции
4	Курсовой проект	7	1- 15				40	Контроль хода выполнения проекта раз в две недели
5	Промежуточ- ная аттестация	6 7						Экзамен КП

Примечания:

 Π К – лекции, Π З – практические занятия, Π Р – лабораторные работы, CPC – самостоятельная работа студентов, KП – курсовой проект.

5. СОДЕРЖАНИЕ РАЗДЕЛОВ И ТЕМ ДИСЦИПЛИНЫ

5.1. Лекции

Раздел 1. Проектирование электроэнергетических систем и сетей

Тема 1. Введение. Характеристика и структура электроэнергетической системы - 2 часа

Современное состояние электроэнергетических систем и тенденции их развития. Топливно-энергетический комплекс. Перспективы развития электроэнергетических систем (ЭЭС) по России в целом и на Дальнем Востоке. Неопределенность как фундаментальное свойство ЭЭС.

Тема 2. Исходные данные для проектирования электрических сетей, электроэнергетических систем - 4 часа.

Характеристика района проектирования. Электрические нагрузки и их представление при проектировании и эксплуатации электроэнергетических систем. Графики электрических нагрузок (ГЭН) и их анализ при проектировании электрических сетей. Построение ГЭН подстанций из типовых графиков при различных способах задания информации. Долгосрочное прогнозирование ГЭН. Практическое применение формулы сложных процентов при проектировании электрических нагрузок. Переход от реальных ГЭН к ГЭН в относительных единицах и построение прогнозируемого ГЭН.

Тема 3. Технико-экономические основы проектирования электрических сетей - 10 часов.

Задачи и методы проектирования электроэнергетических систем и электрических сетей. Общие требования к схемам электрических сетей. Принципы формирования вариантов конфигурации электрической сети. Выбор схем построения сети. Критерии выбора оптимального варианта, алгоритм выбора. Основные экономические показатели систем передачи и распределения электроэнергии: капитальные вложения (инвестиции); эксплуатационные издержки; чистый дисконтированный доход; эквивалентные годовые расходы (годовые приведенные затраты) и срок окупаемости капитальных затрат. Определение потерь электроэнергии в электрической сети при ее проектировании. Технико-экономическое сравнение вариантов электрической сети. Выбор рационального напряжения сети. Выбор числа и мощности силовых трансформаторов на подстанциях. Выбор сечения проводов и кабелей в сетях различных назначений и номинальных напряжений. Определение сечения проводов воздушных и кабельных линий различными методами. Особенности выбора и проверки сечений линий в замкнутых сетях. Проверка сечений проводов по нагреву длительно допустимым током. Проектирование схем электрических сетей. Учет фактора надежности при проектировании электрических сетей.

Раздел 2. Расчет установившихся режимов сложных электроэнергетических систем Тема 4. Основы расчета установившихся режимов сложных электроэнергетических систем - 6 часов.

Основы расчета нормальных режимов сложных электрических сетей. Специфика расчетов сложных систем. Преобразование сети и исключение узлов. Расчеты однородных сетей. Учет слабой заполненности матриц. Преобразования сети при расчете режимов электроэнергетических систем большой сложности. Разделение системы на подсистемы. Методы эквивалентирования сети. Представление системы уравнений узловых напряжений для расчета с помощью программно-вычислительных комплексов (ПВК) на персональном компьютере. Методы решения уравнений узловых напряжений. Способы задания параметров элементов схемы, нагрузочных и генераторных узлов. Балансирующий узел. Определение параметров режимов. Расчет режимов с помощью промышленных про-

граммно-вычислительных комплексов СДО – 6, RastrWin. Анализ полученных результатов.

Тема 5. Особые режимы электроэнергетических систем – 2 часа.

Особые режимы электрических сетей. Источники, вызывающие особые режимы в электрической сети. Неполнофазные режимы. Условия допустимости неполнофазных режимов. Расчет несимметричных режимов.

Раздел 3. Повышение энергоэффективности и надежности электроэнергетических систем

Тема 6. Компенсация реактивной мощности и регулирование напряжения в электроэнергетических системах - 6 часов.

Современное состояние проблемы компенсации реактивной мощности. Источники и потребители реактивной мощности. Три задачи компенсации реактивной мощности: балансовая задача, регулирование напряжения в сети, экономическая задача. Методы регулирования напряжения. Технические средства компенсации реактивной мощности и регулирования напряжения: синхронные генераторы; синхронные компенсаторы; статические источники реактивной мощности; батареи конденсаторов; СТАТКОМ; FACTS - технологии; устройства РПН, их регулировочные характеристики.

Тема 7. Методы расчета и анализа потерь мощности и электрической энергии в электрических сетях, мероприятия по снижению потерь. - 4 часов.

Общая характеристика проблемы потерь электроэнергии. Методы расчета потерь. Структурный анализ потерь. Мероприятия по снижению потерь мощности и электроэнергии в электрических сетях. Мероприятия по снижению технических потерь. Мероприятия по снижению метрологических и коммерческих потерь.

Тема 8. Методы регулирования частоты - 2 часа.

Первичное, вторичное и третичное регулирования частоты. Противоаварийные мероприятия при снижении частоты в электроэнергетических системах.

5.2. Практические занятия

Практические занятия проводятся с целью закрепления знаний, полученных при изучении теоретического курса. Тематика практических занятий приведена в табл.

No	Наименование	Кол-во
П.П.	темы	часов
1.	Расчет вероятностных характеристик графиков нагрузки подстанций и ре-	2
	жимных характеристик сети.	
2.	Разработка и технический анализ вариантов конфигурации электрической	2
	сети. Определение рационального напряжения сети.	
3.	Выбор числа и мощности силовых трансформаторов на ПС. Выбор и про-	2
	верка сечений воздушных и кабельных линий	
4.	Расчет экономических показателей электрических сетей. Выбор оптималь-	4
	ного варианта схемы электрической сети.	
5.	Регулирование напряжения в электрической сети.	4
6.	Преобразование и эквивалентирование схем электрических сетей сложной	2
	конфигурации	
7.	Определение потерь электроэнергии в электрической сети	2

При проведении практических занятий решаемые задания подбираются в соответствии со спецификой специальности. На практических занятиях каждому студенту выдаются индивидуальные домашние задания.

5.3. Лабораторные занятия

Лабораторные занятия предусмотрены с целью приобретения студентами навыков расчета и исследования установившихся режимов.

№	Наименование лабораторных работ	Кол-во
Π/Π		часов
1.	Построение и анализ графиков электрической нагрузки подстанций	2
2.	Исследование симметричного установившегося режима работы разомкнутой	4
	электрической сети	
3.	Исследование симметричного установившегося режима работы замкнутой	4
	сети с двумя источниками питания	
4.	Расчет установившегося режима с помощью промышленных ПВК: СДО – 6	4
	и RastrWin	
5.	Исследование несимметричного установившегося режима работы электриче-	2
	ской сети	
6.	Регулирование напряжения и активной мощности генератора, работающего в	2
	параллель с электрической системой	

6. САМОСТОЯТЕЛЬНАЯ РАБОТА

№	№ раздела	Форма (вид)	Трудоём-
п/п	дисциплины	самостоятельной работы	кость в часах
1	1	подготовка к блиц-опросу на лекции;	4
		выполнение индивидуальных домашних заданий и	7
		подготовка к практическому занятию;	
		подготовка к лабораторной работе	1
2	2	подготовка к блиц-опросу на лекции;	3
		выполнение индивидуальных домашних заданий и	4
		подготовка к практическому занятию;	
		подготовка к коллоквиуму;	4
		подготовка к лабораторной работе	7
3	3	подготовка к блиц-опросу на лекции;	3
		выполнение индивидуальных домашних заданий и	6
		подготовка к практическому занятию;	
		подготовка к контрольной работе;	1
		проработка материала, вынесенного на самостоя-	11
		тельное изучение;	
		подготовка к лабораторной работе	1

Курсовой проект

Отдельным видом самостоятельной работы студентов является курсовой проект, на выполнение которого отводится учебным планом 40 часов.

Для закрепления теоретических знаний, полученных при изучении дисциплины, приобретения навыков пользования справочной литературой, практических навыков по проектированию районных или распределительных сетей электроэнергетических систем предусмотрен курсовой проект на темы: «Проектирование районной электрической сети Дальнего Востока», «Проектирование распределительной электрической сети Дальнего Востока»,

Ниже приведен прием типового бланка задания на курсовой проект, содержание которого заполняется индивидуально для каждого студента.

3	A	Л	A	H	И	\mathbf{E}	N	ſο		
---	---	---	---	---	---	--------------	---	----	--	--

на курсово	-			циплиі	ie «		троэі	-							
]	груп	па		Дат									
Задание выдал	руководі						Зада	ание	при	ПЯН	(a) _				
ФИО	руководі	ителя	проег	кта, пос	пись								cmy		
Тема проекта: •	«Проек	тиро	ован	ие рай	онн	ой эл	тект]	рич	еско	й се	ти Д	Цал	ьне	го Е	востока
Спроектировать													«A»	· - ‹‹	Ж»
Географическое р	располо	жені	ие ис	точни	ков і	и нагр	узок								
								y	казы	вает	пся	эне	ргор	райс	\mathcal{H}
Данные о потребл	итепях	эпек	TDO3	нергии	ſ										
				нные							Т	Iун	кт		
	Hear	одпр	ic gu						A	Б	В	Γ	Л	E	Ж
Суммарна	я устаі	новл	енна	я мош	нос	ть, И	Вт								
Коэффициент								gφ							
Состав				·		кат									
по категория	_			%		2 кат									
					3	3 кат	егорі	ия							
Желаемое	е напря	жені	ие вт	горичн	юй (ети,	кВ								
Наименование и	отонни	160 111	ITOIII	10											
Напряжение на								1	U _{ном}						U _{HOM}
наибольших наг			тпик	а при					С ном						С ном
при наименьц			ах кТ	3				1	U _{ном}						U _{HOM}
при тяжелых а									U_{Hom}						U _{HOM}
1	1								110.11		ı				. 110.11
Для всех пункто	<i>6</i> :														
Продолжительно	сть исп	ольз	ован	ия наи	боль	шей і	нагру	узки	Тмак	c			_		час
Коэффициент мо	щности	і, зад	аваеі	мый эн	ерго	сист	емой	, tg¢)				_		
Коэффициент по	падания	я в ма	аксиі	мум на	груз	ки си	істем	Ы					_		
	_		_												
Задание для углу	бленно	ù np	opao	отки _											
					Cxe	иа се	ти								
					_										
					+										
					1				i 1						

Масштаб в 1 см ____ км

В процессе проектирования для одного из энергорайонов Дальнего Востока студенты разрабатывают следующие вопросы:

- Характеристика энергорайона: источники питания; электрические сети; потребители; климатическая и географическая характеристика.
 - Расчет и прогнозирование электрических нагрузок.
- Разработка конкурентоспособных вариантов электрической сети: разработка и анализ 8 вариантов конфигурации электрической сети; выбор 4 вариантов конфигурации сети для дальнейшего анализа; расчет упрощенного потокораспределения активной мощности и выбор номинального напряжения в каждом из 4 вариантов; выбор типов схем РУ подстанций; выбор двух конкурентоспособных вариантов конфигурации электрической сети; компенсация реактивной мощности; выбор сечений проводников в каждом из двух вариантов; выбор числа и мощности силовых трансформаторов; конструктивное исполнение электрической сети.
- Выбор оптимального варианта электрической сети: расчет капитальных вложений в электрическую сеть; расчет потерь электрической энергии; расчет эксплуатационных издержек; выбор оптимального варианта сети.
- Расчет и анализ установившихся режимов: выбор ПВК для расчета режимов и его характеристика; расчет максимального режима; расчет минимального режима; расчет послеаварийного режима; анализ режимов; регулирование напряжения в сети.
- Технико-экономические показатели проекта. Оценка инвестиционной привлекательности проекта.
- Вопрос для углубленной проработки (выдается в бланке задания индивидуально). Графическая часть проекта включает в себя: варианты конфигурации и схемы построения электрической сети; подробную однолинейную электрическую схему оптимального варианта сети; схему замещения сети и результаты расчета и анализа установившихся режимов.

7.ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При реализации дисциплины «Электроэнергетические системы и сети» используются традиционные и современные образовательные технологии. Из современных образовательных технологий применяются информационные и компьютерные технологии с привлечением к преподаванию мультимедийной техники и интерактивной доски, технологии активного обучения, проблемного обучения. Применяются следующие активные и интерактивные формы проведения занятий: проблемные ситуации, компьютерные симуляции, деловые игры, разбор конкретных ситуаций по проектированию электрических сетей на примере электроэнергетической системы Дальнего Востока. В рамках дисциплины предусмотрены встречи с представителями энергетических компаний Дальнего Востока.

Самостоятельная работа студентов подразумевает работу под руководством преподавателя: консультации и помощь при выполнении курсового проекта, индивидуального домашнего задания, консультации по разъяснению материала, вынесенного на самостоятельную проработку, индивидуальную работу студента в компьютерном классе ЭФ или в библиотеке.

8. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Система оценочных средств и технологий для проведения текущего контроля успеваемости по дисциплине включает вопросы для блиц-опроса на лекциях, индивидуальные

домашние задания, задания для курсового проекта и контрольных работ, вопросы для коллоквиума.

Тематика вопросов блиц-опроса на лекциях совпадает с тематикой лекций.

Темы индивидуальных домашних заданий:

построение графика электрической нагрузки подстанции и определение его вероятностных характеристик;

разработка вариантов конфигурации электрической сети, их технический анализ;

выбор номинального напряжения сети, числа и мощности силовых трансформаторов на подстанциях, сечений линий электропередачи;

технико-экономическое сравнение вариантов схем электрических сетей;

регулирование напряжения в сети;

расчет режимов сложных схем электрической сети;

расчет и анализ потерь электроэнергии в сети.

Тема контрольной работы — методы расчета и анализа установившихся режимов электроэнергетических систем большой сложности.

Коллоквиум проводится по первому разделу дисциплины на тему: «Проектирование электроэнергетической системы и электрических сетей». Вопросы к коллоквиуму соответствуют вопросам к экзамену N
m 1 - 34.

Промежуточная аттестация осуществляется в виде защиты курсового проекта и сдачи экзамена. Система оценочных средств и технологий для проведения промежуточной аттестации включает вопросы к защите курсового проекта, контрольные вопросы и задания к экзамену.

Вопросы к защите курсового проекта

- 1. Классификация электрических сетей.
- 2. Стандартный ряд номинальных напряжений и наибольшие рабочие значения напряжений.
- 3. Какие бывают опоры? Их назначение.
- 4. Классификация линейных изоляторов, их конструктивное исполнение.
- 5. Виды линейной арматуры, её назначение.
- 6. Задание нагрузки при расчётах режимов.
- 7. Представление генераторов при расчётах установившихся режимов.
- 8. Схемы замещения ВЛЭП и их параметры.
- 9. Схема замещения двухобмоточного трансформатора и её параметры.
- 10. Схема замещения трансформатора с расщепленной обмоткой и её параметры.
- 11. Схема замещения трёхобмоточного трансформатора, её параметры.
- 12. Схема замещения автотрансформатора, её параметры.
- 13. Определение потерь мощности в двухобмоточном трансформаторе.
- 14. Определение потерь мощности в трёхобмоточном трансформаторе и автотрансформаторе.
- 15. Приведенная и расчётная нагрузка узла.
- 16. Схемы электрических сетей.
- 17. Расчёт режимов разомкнутых сетей по данным «начала».
- 18. Расчёт кольцевых сетей.
- 19. Особенности расчёта режимов в однородных электрических сетях.
- 20. Расчёт режимов сетей с двухсторонним питанием.
- 21. Определение наибольшей потери напряжения.
- 22. Определение напряжения на стороне низшего напряжения подстанции с двухобмоточными трансформаторами.
- 23. Определение напряжения на сторонах среднего и низшего напряжений подстанции с трёхобмоточными трансформаторами и автотрансформаторами.
- 24. Расчёт сетей с различными номинальными напряжениями.

- 25. Регулирование напряжения с помощью РПН трансформаторов и линейных регуляторов.
- 26. Выбор ответвлений РПН в двухобмоточных трансформаторах.
- 27. Выбор ответвлений РПН в трехобмоточных трансформаторах.
- 28. Выбор ответвлений РПН в автотрансформаторах.
- 29. Способы присоединения подстанций к электрической сети.
- 30. Схемы электрических соединений подстанций.
- 31. В чем заключается характеристика района проектирования?
- 32. Какие климатические характеристики нужно знать при проектировании и для чего?
- 33. Расчет электрических нагрузок с помощью вероятностных характеристик.
- 34. Выбор номинального напряжения сети.
- 35. Принципы составления вариантов конфигурации электрической сети.
- 36. Выбор сечений проводов ВЛ методом экономических токовых интервалов.
- 37. Выбор сечений проводников по нагреву длительно-допустимым током.
- 38. Выбор сечений проводников по допустимой потере напряжения.
- 39. Технических анализ вариантов конфигурации сети.
- 40. Чистый дисконтированный доход. Среднегодовые эквивалентные затраты.
- 41. Капитальные вложения.
- 42. Эксплуатационные издержки.
- 43. Расчет потерь электроэнергии.
- 44. Три задачи компенсации реактивной мощности.
- 45. Балансовый расчет компенсации реактивной мощности.
- 46. Выбор компенсирующих устройств методом поперечной компенсации.
- 47. Выбор числа и мощности силовых трансформаторов.
- 48. Схемы распределительных устройств подстанций.
- 49. Подготовка исходной информации для расчета режимов с помощью ПВК СДО-6.
- 50. Подготовка исходной информации для расчета режимов с помощью ПВК RastrWin.
- 51. Характеристика ПВК, используемых для расчета режимов.
- 52. Проверка правильности расчетов режимов с помощью ПВК.
- 53. В чем заключается анализ режимов, и с какой целью его проводят.
- 54. Встречное регулирование напряжения.

Защита курсового проекта может проходить в виде доклада студента и ответов на поставленные вопросы членами комиссии по приему курсового проекта, либо в виде деловой игры.

Контрольные вопросы и задания к экзамену

Вопросы к экзамену:

- 1. Тенденции и перспективы развития электроэнергетических систем.
- 2. Цели и задачи проектирования электроэнергетических систем
- 3. Проект развития электрических сетей
- 4. Методы проектирования энергосистем
- 5. Исходные данные для проектирования электрических сетей, электроэнергетических систем, их достоверность и полнота
- 6. Графики электрических нагрузок (ГЭН) и их анализ при проектировании электрических сетей
- 7. Построение ГЭН подстанций из типовых графиков при различных способах задания информации
- 8. Долгосрочное прогнозирование ГЭН
- 9. Практическое применение формулы сложных процентов при прогнозировании электрических нагрузок
- 10. Переход от реальных ГЭН к ГЭН в относительных единицах и построение прогнозируемого ГЭН
- 11. Влияние режимов работы потребителей на формирование ГЭН подстанций

- 12. Понятие "Число часов использования наибольшей нагрузки" и его определение
- 13. Технико-экономические основы проектирования электрических сетей
- 14. Характеристика района проектирования электрической сети
- 15. Общие требования к схемам электрических сетей. Принципы формирования вариантов конфигурации электрической сети
- 16. Выбор схем построения сети. Принципы технического отбора конкурентоспособных вариантов сетей при проектировании
- 17. Учет фактора надежности при проектировании электрических сетей
- 18. Критерии выбора оптимального варианта, алгоритм выбора
- 19. Капитальные вложения
- 20. Эксплуатационные издержки
- 21. Чистый дисконтированный доход, эквивалентные годовые расходы (годовые приведенные затраты) и срок окупаемости капитальных затрат.
- 22. Технико-экономическое сравнение вариантов электрической сети. Выбор оптимального варианта схемы электрической сети при проектировании
- 23. Определение потерь электрической энергии при проектировании электрической сети
- 24. Выбор рационального напряжения сети
- 25. Выбор числа и мощности силовых трансформаторов на ПС
- 26. Определение сечения проводов и кабелей по экономической плотности тока
- 27. Определение сечения проводов по экономическим токовым интервалам
- 28. Определение сечений линий в распределительных сетях по допустимой потере напряжения
- 29. Выбор сечения линии из условия его равенства на всех участках
- 30. Выбор сечения линии из условия минимума потерь мощности
- 31. Выбор сечения линии из условия минимума расхода проводникового материала на сооружение линии
- 32. Особенности выбора и проверки сечений в замкнутых сетях
- 33. Проверка сечений линий по нагреву длительно допустимым током
- 34. Проектирование схем электрических сетей
- 35. Основы расчета нормальных режимов сложных электрических сетей
- 36. Представление системы уравнений узловых напряжений (УУН) для ее решения на ПЭВМ. Раздельное решение уравнений узловых напряжений
- 37. Сходимость решения уравнений установившегося режима
- 38. Существование решения системы УУН
- 39. Единственность решения нелинейных УУН
- 40. Чувствительность решения нелинейных УУН
- 41. Преобразование сети при расчете режимов электроэнергетических систем большой сложности
- 42. Исключение узлов при расчете режимов электроэнергетических систем большой сложности
- 43. Метод расщепления сети. Расчеты однородных сетей
- 44. Расчет системы УУН при перспективном проектировании схем энергосистем
- 45. Учет слабой заполненности матрицы узловых проводимостей
- 46. Методы эквивалентирования сети
- 47. Эквивалентирование при расчетах УУН систем большой сложности
- 48. Разделение электроэнергетических систем на подсистемы при расчете режимов
- 49. Методы решения уравнений узловых напряжений.
- 50. Матричные и топологические методы расчета режимов электроэнергетических систем
- 51. Способы задания параметров элементов схемы, нагрузочных и генераторных узлов. Балансирующий узел

- 52. Расчет режимов с помощью промышленных программно-вычислительных комплексов СДО 6, RastrWin
- 53. Анализ установившихся режимов
- 54. Особые режимы электрических сетей и их анализ
- 55. Источники, вызывающие особые режимы в электрической сети
- 56. Уравнения несимметричных режимов в фазных координатах и переход в систему симметричных координат
- 57. Уравнения несимметричных режимов в системе симметричных координат и переход в систему фазных координат
- 58. УУН в сложнонесимметричных режимах
- 59. Симметрирование режима
- 60. Порядок расчета неполнофазного режима
- 61. Условия допустимости работы с длительно неполнофазным режимом
- 62. Применение метода симметричных составляющих при расчете несимметричных режимов
- 63. Представление системы УУН для анализа несинусоидальных режимов
- 64. Источники и потребители реактивной мощности
- 65. Балансовая задача компенсации реактивной мощности
- 66. Экономическая задача компенсации реактивной мощности
- 67. Регулирование напряжения в сети продольной компенсацией реактивной мощности
- 68. Регулирование напряжения в сети поперечной компенсацией реактивной мощности
- 69. Технические средства компенсации реактивной мощности и регулирования напряжения
- 70. Методы расчета потерь электроэнергии в электрических сетях
- 71. Структурный анализ потерь
- 72. Мероприятия по снижению технических потерь
- 73. Мероприятия по снижению метрологических потерь
- 74. Мероприятия по снижению коммерческих потерь
- 75. Первичное, вторичное и третичное регулирования частоты
- 76. Противоаварийные мероприятия при снижении частоты в электроэнергетических системах

Задания для экзамена сформированы в виде инженерных задач, включающих в себя проектирование электрических сетей, регулирование напряжения с помощью компенсирующих устройств, преобразование сложнозамкнутых электрических сетей для расчета режимов, использование практических приемов для ускорения расчетов режимов на ПЭВМ, представление схем электрической сети и ее параметров для расчета на ПЭВМ, анализ особых режимов.

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИС-ЦИПЛИНЫ «ЭЛЕКТРОЭНЕРГЕТИЧЕСКИЕ СИСТЕМЫ И СЕТИ»

- а) основная литература:
- 1. Герасименко А.А. Передача и распределение электрической энергии : учеб. пособие: рек. Мин. обр. РФ/ А. А. Герасименко , В. Т. Федин. -Ростов н/Д: Феникс; Красноярск: Издат. проекты, 2008. -719 с.
- 2. Основы современной энергетики в 2т. : Учеб. : рек. Мин. обр. РФ : Т2. Современная электроэнергетика / под ред. Е.В. Аметистова. М.: Издат. дом МЭИ, 2010. 632 с.
- 3. Электроэнергетические системы и сети : учеб.-метод. комплекс для спец. 140203, 140204, 140205/ АмГУ, Эн.ф.; сост. Н. В. Савина. -Благовещенск: Изд-во Амур. гос. ун-та, 2012. -242 с.
 - б) дополнительная литература:

- 1. Лыкин А.В. Электрические системы и сети : учеб.пособие / А.В.Лыкин . Новосибирск : Изд-во НГТУ, 2002. 247 с.
- 2. Идельчик В.И. Электрические системы и сети [Текст] : учеб./ В. И. Идельчик. -М.: Энергоатомиздат, 1989. 592 с.
- 3. Электрические системы. Электрические сети. : Учеб. для электроэнерг. спец. вузов/ ред. В. А. Веников. -2-е изд., прераб. и доп.. -М.: Высш. шк., 1998. -512 с.
- 4. Кужеков С.Л. Практическое пособие по электрическим сетям и электрооборудованию/ С. Л. Кужеков, С. В. Гончаров. -3-е изд.. -Ростов н/Д: Феникс, 2009. -493 с.
- 5. Пособие к курсовому и дипломному проектированию для электроэнергетических специальностей вузов [Текст]: учеб. пособие / В.М. Блок, Г.К. Обушев, Л.В. Паперно; Ред. В.М. Блок. 2-е изд., перераб. и доп. М.: Высш. шк., 1990. 384 с.
- 6. Электротехнический справочник : В 4 т./ Под общ. ред. В.Г. Герасимов, Под общ. ред. А.Ф. Дьяков, Под общ. ред. Н.Ф. Ильинский, Гл. ред. А.И. Попов Т. 3 : Производство, передача и распределение электрической энергии : справочное издание. 2002. -964 с.
- 7. Справочник по проектированию электрических сетей [Текст] / под ред. Д. Л. Файбисовича. -3-е изд., перераб. и доп. -М. : ЭНАС, 2009. -391 с.
- 8. Поспелов Г.Е. Электрические системы и сети: проектирование [Текст] : учеб. пособие / Г. Е. Поспелов, В. Т. Федин. 2-е изд., испр. и доп. Минск : Высш. шк., 1988. 308 с.
- 9. Шелухина Т.И. Расчеты нормальных и предельных по мощности установившихся режимов сложных энергосистем: учеб. пособие/ Т. И. Шелухина. -М.: Изд-во Моск. энергет. ин-та, 2005. 52 с.
- 10. Тарасов В.И. Теоретические основы анализа установившихся режимов электроэнергетических систем [Текст] : моногр. / В. И. Тарасов; Отв. ред. Л.Ю. Анапольский. Новосибирск : Наука, 2002. 344 с.
- 11. Савина Н.В. Системный анализ потерь электроэнергии в электрических распределительных сетях [Текст] : моногр. / Н.В. Савина; Отв. ред. Н.И. Воропай. Новосибирск : Наука, 2008. 228 с.
- 12. Кочкин В.И. Применение статических компенсаторов реактивной мощности в электрических сетях энергосистем и предприятий [Текст]: УЧЛ К изучению дисциплины / Кочкин В.И., Нечаев О.П. М.: Изд-во НЦ ЭНАС, 2000. 248с.
- в) периодические издания (журналы):
- 1. Электричество;
- 2. Известия РАН. Энергетика;
- 3. Электрические станции;
- 4. Энергетик;
- 5. Электрика;
- 6. Вестник МЭИ;
- 7. Промышленная энергетика;
- 8. Энергетика. Сводный том;
- 9. Вестник ИГЭУ:
- 10. IEEE Transaction on Power Systems;
- 11. International Journal of Electrical Power & Energy Systems.

г) программное обеспечение и Интернет-ресурсы

№	Наименование ресурса	Краткая характеристика					
1	http://www.iqlib.ru	Интернет-библиотека образовательных изданий, в					
		которой собраны электронные учебники, справочные и учебные пособия. Удобный поиск по ключевым словам, отдельным темам и отраслям знания					
2	Консультант +	Справочно-правовая система. Содержит законодательную базу, нормативно-правовое обеспечение, статьи.					

На практических занятиях и в самостоятельной работе студентов используется система компьютерной математики Mathcad и графический редактор VISIO.

При работе над курсовым проектом используются следующие виды программновычислительных комплексов и пакетов прикладных программ: CURS. PM, KRNET, СДО-6, RastrWin, Mathcad, VISIO.

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

В качестве материально-технического обеспечения дисциплины используются мультимедийные средства, интерактивная доска. Материал лекций представлен в виде презентаций в Power Point. Для проведения практических занятий, при выполнении курсового проекта и в самостоятельной работе студентов используются электрические схемы энергетических компаний Дальнего Востока, однолинейные электрические схемы электрических станций и подстанций, расположенных на Дальнем Востоке. Лабораторные работы проводятся на лабораторном комплексе «Модель одномашинной электрической системы с узлом комплексной нагрузки и релейной защитой» и в компьютерном классе ЭФ с помощью промышленных ПВК.

11. РЕЙТИНГОВАЯ ОЦЕНКА ЗНАНИЙ СТУДЕНТОВ ПО ДИСЦИПЛИНЕ

Рейтинговая оценка деятельности студентов осуществляется в соответствии с технологической картой дисциплины о рейтинговой системе обучения, принятой на заседании кафедры энергетики.

Текущий контроль качества освоения отдельных тем и разделов дисциплины осуществляется на основе рейтинговой системы. Этот контроль проводится ежемесячно в течение семестра и качество усвоения материала (выполнения задания) оценивается в баллах, в соответствии с рейтинг планом дисциплины.

Экзамен проводится в конце семестра и оценивается по 5-ти балльной системе. Допуск к экзамену осуществляется по итоговому рейтингу текущего контроля, который определяется суммированием баллов по всем видам текущего контроля. Максимальный балл составляет 100, в том числе: индивидуальные домашние задания — 35, коллоквиум — 20, выполненные и защищенные лабораторные работы — 35, другие виды текущего контроля — 10 баллов. Допуск к экзамену соответствует 56...100 баллам.

2. КРАТКИЙ КОНСПЕКТ ЛЕКЦИЙ

2.1. Методические указания по проведению лекций

Лекционный курс по дисциплине «Электроэнергетические системы и сети» - направлен на формирование у студентов специальных знаний в области электроэнергетических систем, их проектирования, расчета и анализа установившихся режимов, особых режимов в сложнозамкнутых схемах, компенсации реактивной мощности, исследования потерь электроэнергии.

Целью данного раздела является оказание методической помощи в оптимальном распределении теоретического материала между лекциями, а также между аудиторными занятиями и самостоятельной работой по изучению дисциплины. Кроме того будет осуществлена систематизация излагаемого материала.

Лекцию нужно строить таким образом, чтобы осуществлять сквозную подготовку студентов, активизировать работу аудитории, поддерживать интерес к излагаемому материалу, развивать инженерное мышление у студентов. Методически лекция должна быть направлена на усвоение студентами излагаемого материала и меть эмоциональную окраску. Материал целесообразно излагать в доступной форме, приводя примеры из реальной

жизни как в части эксплуатации, так и проектирования или развития систем, выделяя при этом наиболее насущные проблемы по рассматриваемой тематике общероссийской и региона.

Поставив задачи, которые будут решаться на лекции, преподаватель должен методически подвести аудиторию к их решению, играя при этом роль лидера. Тем самым у студентов развиваются способности логически мыслить и генерировать идеи. Для максимального усвоения материала целесообразно задействовать зрительную, слуховую и моторную память студентов. Для каждой лекции должна быть подготовлена презентация, включающая название лекции, цель и задачи, решаемые на лекции, план лекции, основные теоретические материалы, содержащие математические выкладки, рисунки, схемы, выводы. Презентацию не нужно загромождать текстом, справочным материалом.

В ходе лекции необходимо, опираясь на физическую сущность рассматриваемой задачи или процесса, показать основные теоретические выкладки и довести теоретический материал до инженерных решений и их технической реализации, показать область их применения.

Целесообразно, в процессе лекции использовать передовые образовательные технологии, например, методы активизации обучения, информационные технологии. Технические средства, используемые на лекции: медиапроектор, экран, ноутбук, проектоскоп.

Предлагается следующая структура построения лекции:

- тема;
- цель и задачи;
- план;
- фронтальный блиц-опрос (3-5 минут);
- вступление;
- изложение основного материала;
- закрепление;
- -разделы, выносимые на самостоятельную проработку;
- выводы.

Блиц-опрос должен периодически чередоваться с самостоятельной работой (10-15 минут), проводимой в конце лекции.

При выдаче задания на самостоятельную проработку необходимо назвать учебники предложить найти дополнительные источники, в т.ч. и электронные, помимо указанных в рабочей программе.

Выводы должны быть краткими, но емкими и содержать основную мысль, которую лектор хотел донести до аудитории.

2.2. Краткий конспект лекций

Лекния 1.

Характеристика и структура энергетической системы.

Цель лекции: раскрыть современное состояние ЭЭС, проблемы и показать тенденции и направления их развития.

Основой централизованного электроснабжения России является Единая электроэнергетическая система (ЕЭС), которая представляет собой объединение электростанций
и подстанций электрическими сетями различных напряжений. ЕЭС РФ является технологически единым объектом, функционирование которого подчиняется соответствующим
физическим законам. В то же время ЕЭС – это крупное энергообъединение, структура которого в настоящее время изменилась. Организационно-производственная структура электроэнергетики представлена генерирующими компаниями, например ОАО «РусГидро»,
ОАО «ДГК» (Дальневосточная генерирующая компания), сетевыми компаниями: ОАО
«ФСК ЕЭС» (Федеральная сетевая компания ЕЭС), сетевыми распределительными компаниями (ОАО «ДРСК» - Дальневосточная распределительная сетевая компания, ОАО

«МРСК», ТСО), энергосбытовыми компаниями, например ОАО «ДЭК» (Дальневосточная энергетическая компания), оптовыми и розничными рынками энергии и мощности. Технологическое и диспетчерское управление осуществляется СО-ЦДУ ЕЭС РФ (системный оператор – центрального диспетчерского управления ЕЭС РФ) через СО-ОДУ и СО-РДУ. Дается характеристика современного состояния электроэнергетики России и развитых стран, Дальнего Востока. Показывается, что единая электроэнергетическая система России является подсистемой топливно-энергетического комплекса. Раскрываются свойства электроэнергетической системы (ЭЭС), и объясняется, почему неопределенность является фундаментальным свойством ЭЭС.

Тенденции и направления развития электроэнергетики РФ:

- рост генерирующих мощностей и изменение технологической структуры генерирующих мощностей;
 - внедрение распределительной генерации;
 - развитие системообразующих сетей и усиление межсистемных связей;
 - интеграция энергообъединений;
 - либеризация;
 - ориентация на высокоэффективные технологии;
 - обеспечение надежного энергоснабжения потребителей;
 - развитие рыночных принципов функционирования;
- повышение эффективности производства, передачи и потребления электроэнергии;
 - создание условий для привлечения инвестиций в электроэнергетику;
 - развитие системы диспетчерского управления ЕЭС в иных условиях;
 - глобализация ЭЭС;
 - диверсификация энергоустановок;
 - децентрализация электроснабжения;
 - модернизация электроустановок.

Цели и задачи курса. Краткая характеристика основных разделов и их связь с другими дисциплинами.

Лекция 2.

Задачи проектирования энергетических систем и сетей.

Цель лекции: рассмотреть основные цели и задачи проектирования энергосистем и электрических сетей, показать их общность и различие.

Цель проектирования электронергосистем — обеспечение балансов электроэнергии и мощности, надежного электроснабжения потребителей.

Задачи проектирования ЭЭС: прогнозирование энергопотребления; развитие генерирующих мощностей; развитие системообразующих сетей и межсистемных связей; развитие питающих сетей, развитие распределительных сетей, проектирование систем диспетчерского управления, противоаварийного управления, релейной защиты, телемеханики.

Распределительные электрические сети - подсистема ЭЭС.

Основные задачи проектирования распределительных электрических сетей;

энерго-экономическая характеристика района проектирования;

прогнозирование электрической нагрузки на основе вероятностного анализа;

балансы активной и реактивной мощности;

разработка конкурентно-способных вариантов электрической сети;

расчет и анализ установившихся режимов;

регулирование напряжения и реактивной мощности. Инвестиционная привлекательность проекта.

В характеристику района проектирования электрических сетей входит географическая и климатическая характеристики, характеристика и анализ возможных источников питания и основных потребителей района.

Лекция 3.

Исходные данные для проектирования электрических сетей и их анализ.

Цель лекции: показать как в условиях неопределенности правильно выбирать исходные данные для проектирования электрических сетей.

Электрические нагрузки и их представление для проектирования электрических сетей. В качестве электрических нагрузок выбираются вероятностные характеристики активной и реактивной мощности, которые можно получить путем ретроспективного анализа результатов контрольных замеров; электропотребления; путем использования типовых графиков нагрузок. Дается характеристика и область применения каждого их этих способов.

Рассматриваются графики электрических нагрузок (ГЭН). Дается их классификация. Показывается как определить основные показатели ГЭН: коэффициент заполнения графика, коэффициент формы графика, число часов максимальной нагрузки и т.д. Приводится область применения вероятностных характеристик и показывается как их определить.

Средняя мощность нужна для расчета электропотребления и выбора силовых трансформаторов, среднеквадратичная или эффективная — для расчета потерь мощности и энергии, максимальная — для выбора элементов электрической сети, расчета и анализа установившихся режимов.

Приводится методика построения реальных графиков из типовых на основе ретроспективных данных об электропотреблении, либо на основе установленных мощностей проектируемых потребителей электроэнергии.

Дается характеристика методов долгосрочного прогнозирования и их сравнительный анализ. Подробно рассматривается практическое применение формулы сложных процентов. Приводится методика построения прогнозируемых графиков нагрузки.

Лекция 4

Технико-экономическое сопоставление вариантов электрической сети.

Цель лекции: привести современные методы определения технико-экономических параметров используемых при сравнении вариантов сети и выбора оптимального.

Исходя из задач проектирования, раскрываются методы проектирования электроэнергетических систем и электрических сетей.

В условиях рыночных отношений между производителями и потребителями электроэнергии выбор варианта развития электрической сети должен учитывать множество факторов как технических, так и экономических. Отсюда критерием выбора оптимального варианта является максимум прибыли, которую может получить энергокомпания от проектируемой сети.

Показатели оценки эффективности инвестиционных проектов делятся на статические и динамические. К статическим относится простая норма прибыли, простой срок окупаемости. К динамическим показателям относятся: удельные дисконтированные затраты; частый дисконтированный доход (ЧДД); дисконтированные (интегральные) затраты; внутренняя норма доходности; дисконтированный срок окупаемости; эквивалентные годовые расходы.

Кратко рассматривается каждый из них, показывается его область применения.

Для расчета ЧДД и эквивалентных годовых расходов нужно знать технико-экономические показатели: капитальные вложения и эксплуатационные издержки.

Капитальные вложения – это расходы, необходимые для сооружения энергетических объектов. Для электрических сетей к ним относятся капитальные вложения на со-

оружение линий и капитальные вложения на сооружения подстанций. Они определяются по укрупненным показателям.

К эксплуатационным издержкам относятся расходы, необходимые для эксплуатации электрических сетей в течение одного года. Они делятся на амортизационные отчисления, отчисления на обслуживания и ремонты, возмещение затрат на передачу электроэнергии (т.е. стоимость потерь электроэнергии).

Потери электроэнергии определяются в следующих элементах сети: линиях, трансформаторах, компенсирующих устройствах. Потери делятся на нагрузочные и условно-постоянные. Рассматриваются методы определения таких потерь при проектировании электрической сети.

Себестоимость передачи электроэнергии – это отношение эксплуатационных издержек в сети к электроэнергии, полученной потребителями в течение года.

Приводятся общие требования к схемам электрических сетей и принципы формирования вариантов конфигурации электрической сети.

Лекция 5.

Выбор рационального напряжения сети. Выбор числа и мощности силовых трансформаторов.

Цель лекции: показать как номинальное напряжение сети влияет на ее техникоэкономическое показатели, привести методы определения рационального напряжения и область их применения, показать как выбрать число и мощность силовых трансформаторов сетевых подстанций.

Номинальное напряжение электрической сети существенно влияет на ее технические характеристики и технико-экономические показатели. Так, при повышении номинального напряжения снижаются потери электроэнергии, уменьшаются сечения линий, растут предельные передаваемые мощности, снижаются эксплуатационные расходы, но увеличиваются капитальные вложения на сооружение сети.

Экономически целесообразное номинальное напряжение зависит от многих факторов. Ориентировочно его можно определить по значениям передаваемой мощности и расстоянию, на которое она передается.

Номинальное напряжение приближенно можно определить одним из следующих способов: по эмпирическим выражениям, по номограмме, по пропускной способности и дальности электропередачи.

К эмпирическим выражениям, позволяющим определить рациональные напряжения сети, относятся формула Стилла, формула Илларионова, формула Залесского.

Номограммы – это обобщающие зависимости, построенные в результате сравнения приведенных затрат для многочисленных вариантов сети с разными активными мощностями, длиной и номинальным напряжением. Показывается как ими пользоваться.

В справочной литературе приводятся таблицы, характеризующие пропускную способность и дальность передачи линий 110-1150 кВ. Показывается как пользоваться ими при выборе номинального напряжения.

Варианты проектируемой электрической сети или ее отдельные участки могут иметь разные номинальные напряжения. Вначале определяют напряжения готовых участков. В кольцевой сети участки необходимо выполнять на одно номинальное напряжение.

На сетевых подстанциях число трансформаторов определяется категорийностью подключенных потребителей. Даются рекомендации для выбора числа трансформаторов при различных соотношениях потребителей I, II, III категорий.

Мощность силовых трансформаторов выбирается по средней активной нагрузке и нескомпенсированной реактивной мощности, протекающих через него. Она зависит от числа трансформаторов и их загрузки. Приводятся оптимальные коэффициенты загрузки силовых трансформаторов при питании от них потребителей разных категорий по надежности.

Показывается как проверить правильность выбора силового трансформатора в послеаварийном режиме.

Лекция 6 Определение сечений ЛЭП

Цель лекции: изучить метод экономических токовых интервалов, используемый при выборе сечений ВЛ.

Сечения ВЛ выбирают по экономической плотности тока, по экономическим токовым интервалам, по допустимой потере напряжения по нагреву длительно-допустимым током.

Рассматривается выбор оптимального сечения провода линии по минимуму приведенных затрат. При этом используются зависимости удельных капитальных вложений от сечения, и соответственно эксплуатационных издержек от сечения. Из условия минимума функции затрат определяется экономическое сечение и экономическая плотность тока.

Практически для выбора сечения по экономической плотности тока вначале определяют максимальный ток, протекающий по линии, затем из таблиц определяют экономическую плотность тока и по ней рассчитывают экономически целесообразное сечение, округляя его до ближайшего стандартного.

Недостатки метода выбора сечения по экономической плотности тока:

- предположение линейной зависимости капитальных вложений в линию от ее длины – сейчас это не так ввиду использования унифицированных опор;
- допущение о непрерывности сечения в выражении приведенных затрат. В действительности сечения меняются дискретно и определять минимум затрат так как предложено в данном методе раздела:
- предположение о том, что наибольший ток постоянен, на самом деле он переменная величина. Следовательно, экономическое сечение должно определяться из условия равенства нулю производной затрат по наибольшему току.

Метод экономических токовых интервалов не содержит указанных недостатков. Экономические интервалы токовых нагрузок для выбора сечений проводов определяются следующим образом. Для различных стандартных сечений строят зависимости приведенных затрат на линию наибольшего тока. Точка пересечения двух кривых $F(I_{HE})$ определяет значение наибольшего тока I_{HEI} , при котором приведенные затраты двух вариантов сечений равны. Если ток меньше I_{HEI} , то экономически целесообразно выбрать сечение меньшее, если больше — то большее.

Значение тока от нуля до $I_{H\!B\!I}$ - экономический интервал для первого сечения и т.д.

Порядок применения метода экономических токовых интервалов:

- определяют максимальный ток, протекающий по линии;
- находят расчетный ток через коэффициенты α_i, α_T ;
- в зависимости от напряжения, расчетной токовой нагрузки, района по гололеду, материала опор, числа цепей в ВЛ по таблице находят экономически целесообразные сечения.

Если расчетный ток больше верхней границы интервала использования максимального сечения для данного напряжения, то предусматривают варианты деления сети.

Сечения, выбранные по экономическим токовым интервалам, не проверяют по допустимой потере напряжения и по условиям возникновения короны.

Сечения ВЛ, выбранные данным методом, проверяют по нагреву в послеаварийном режиме.

Лекция 7

Определение сечений линий по допустимой потере напряжения.

Цель лекции: На основе особенностей распределительных сетей и понятия допустимой потери напряжения показать как выбираются сечения линий.

Допустимые потери напряжения в распределительной сети — это такие потери напряжения, при которых в результате регулирования напряжения отключения напряжения на зажимах электроприемника не выходят за нормируемые ГОСТ значения.

Допустимая потеря напряжения в сети должна быть больше или равна наибольшей потере напряжения.

Для сетей с несколькими участками для однозначного выбора сечения кроме допустимой потери напряжения должны быть дополнительные условия.

Выбор сечения из условия его равенства на всех участках сети.

Область применения – городские электрические сети. Представляя допустимую потерю напряжения в линии в виде допустимой потери напряжения в активном и реактивном сопротивлениях в линии, записывают выражение для них через мощности. Как известно реактивные удельные сопротивления мало меняются при изменении сечения, поэтому выбор сечения ведется в следующем порядке:

- а) задается X_0 в зависимости от класса номинального напряжения;
- б) определяем допустимую реактивную потерю напряжения;
- в) находим допустимую активную потерю напряжения;
- г) из полученного выражения в предыдущем пункте определяем сечение, которое округляется до ближайшего стандартного.

Выбор сечения их условия минимум потерь мощности.

Если плотность тока на всех участках линии одинакова, то будет обеспечен минимум потерь мощности. Это дополнительное условие используется при выборе сечений линий в промышленных сетях. Порядок выбора аналогичен предыдущему случаю:

- а) принимаем значение X_0 ;
- б) находим допустимую реактивную, затем активную потери напряжения;
- в) находим плотность тока по допустимой потере напряжения;
- г) определяем расчетное сечение и округляем до ближайшего стандартного.

Выбор сечения из условия минимального расхода проводникового материала на сооружение линии.

Область применения – сельские сети.

Порядок выбора сечений следующий:

- а) определяется сечение последнего участка сети;
- б) из условия равенства отношения квадрата сечения к активной мощности на всех участках определяется сечение остальных участков и округляется до ближайших стандартных.

Лекция 8.

Особенности выбора и проверки сечений линий в замкнутых сетях. Проверка сечений проводников по нагреву длительно допустимым током.

Цель лекции: показать как проверяются сечения линий при проектировании электрический сетей.

Для выбора и проверки сечений в замкнутых сетях их представляют в виде двух разомкнутых. Для этого определяют приближенные потоки мощности на головных участках по длинам линий, затем на остальных участках сети по первому закону Кирхгофа и определяют точку потокораздела, в которой сеть разрезают на две разомкнутые. Далее сечения выбираются рассмотренными ранее методами.

В нормальном и послеаварийных режимах выбранные сечения проверяются по нагреву длительно допустимым током.

Допустимая температура — это наибольшая температура, при которой провод или кабель сохраняет свои электрические или механические свойства. Для обеспечения нормальных условий работы линии под нагрузкой при нагреве проводников током нагрузки температура не должна превышать допустимых значений. Допустимые значения устанавливаются в зависимости от марки проводов и кабелей и материала изоляции.

Затем рассматриваются процессы нагрева и охлаждения проводников и выводится выражение для допустимого тока, т.е. такого тока, при длительном протекании которого проводник нагревается до допустимой температуры.

В практических расчетах пользуются значениями допустимого тока, приведенными в справочных таблица. К этой величине вводят поправку на условия прокладки, температуру окружающей среды.

Условия проверки сечений подогревом.

Допустимый ток должен быть больше или равен наибольшему из средних получасовых токов. Рассматриваются возможности допустимой перегрузки линий в послеаварийных режимах.

Второе условие выбора сечений необходимо для правильной работы аппаратов, защищающих сеть от перегрева.

Лекция 9

Регулирование напряжения в электроэнергетических системах

Цель лекции: рассмотреть методы и принципы регулирования напряжения, технические средства, используемые для регулирования напряжения.

ГОСТ 13109-97 определяет нормальные и предельно допустимые отклонения напряжения у электроприемников. ГОСТ 29322—92 устанавливает наибольшие рабочие напряжения для оборудования ЭЭС.

Нижний уровень напряжения определяется условиями регулирования напряжения в распределительных сетях и устойчивостью работы ЭЭС. Указанные требования обусловливают необходимость регулирования напряжения во всех видах электрических сетей. Различают централизованное и местное регулирование напряжения.

При централизованном регулировании напряжение изменяют в центре питания. Местное регулирование используют в питающих и распределительных сетях для отдельных групп потребителей.

К методам регулирования относят регулирование напряжения на электростанциях, с помощью регулирующих устройств (РПН и ПБВ) силовых трансформаторов, с помощью изменения падений напряжения в сети.

Принципы регулирования напряжения:

- стабилизация напряжения;
- стабилизация по заданному графику напряжения;
- встречное регулирование.

К средствам регулирования относятся регуляторы напряжения на электростанциях, регулирующие устройства на понижающих трансформаторах, специальные регулирующие трансформаторы и КУ.

Рассматриваются характеристики технических средств регулирования напряжения.

Лекция 10

Компенсация реактивной мощности.

Цель лекции: раскрыть сущность компенсации реактивной мощности, показать как определяются мощности компенсирующих устройств при разных видах компенсации реактивной мощности.

Показывается актуальность проблемы компенсации реактивной мощности (KPM) и ее современное состояние. Отсутствие компенсации реактивной мощности приводит к увеличению потоков реактивной мощности, к увеличению потерь электроэнергии, к сни-

жению управляемости режимами работы сети, к снижению устойчивости, надежности электроснабжения и ухудшению качества электроэнергии.

Приводятся источники и потребители реактивной мощности.

Рассматриваются три задачи КРМ:

балансовая задача КРМ;

поддержание желаемого уровня напряжения в узлах сети;

экономическая задача КРМ.

Нормативные, правовые, организационно-распорядительные, методические и информационные документы по вопросам реактивной мощности и напряжения, снижения потерь электроэнергии

- 1. «Правила технологического присоединения энергопринимающих устройств (энергетических установок) юридических и физических лиц к электрическим сетям», утвержденные постановлением Правительства Российской Федерации от 27 декабря 2004 года № 861.
- 2. «Правила недискриминационного доступа к услугам по передаче электрической энергии и оказания этих услуг», утвержденные постановлением Правительства Российской Федерации от 27.12.2004 года № 861(в редакции Постановления Правительства РФ от 31.08.2006 года № 530).
- 3. «Методические указания по проектированию развития энергосистем», утвержденные приказом Минпромэнерго России от 30.06.2003 года № 281.
- 4. «Инструкция по проектированию городских электрических сетей». РД 34.20.185-94 (СО 153-34.20.185-94, приказ ОАО РАО «ЕЭС России» от 14.08.2003 №4 22).
- 5. Руководящие материалы по проектированию электроснабжения сельского хозяйства. Указания по выбору средств регулирования напряжения и компенсации реактивной мощности при проектировании сельскохозяйственных объектов и электрических сетей сельскохозяйственного назначения. (СО 153-34.20.112 (РД 34.20.112), приказ ОАО РАО «ЕЭС России» от 14.08.2003 № 4 22).
- 6. Правила технической эксплуатации электрических станций и сетей Российской Федерации, утвержденные приказом Минэнерго России от 19 июня 2003 № 229, зарегистрированные в Минюсте (регистрационный № 4799 от 20 июня 2003 года).
- 7. ГОСТ 13109-97 (Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах энергоснабжения общего назначения).
- 8. ГОСТ 721-77 (Системы электроснабжения, сети, источники, преобразователи и приемники электрической энергии. Номинальное напряжение свыше 1000 вольт).
- 9. ГОСТ 21128-83 (Системы электроснабжения, сети, источники, преобразователи и приемники электрической энергии. Номинальное напряжение до 1000 вольт).
- 10. Приказ ОАО РАО «ЕЭС России» от 25.10.2005 № 703 «О лицензировании деятельности по продаже электрической энергии и обязательной сертификации электрической энергии в сетях общего назначения» (и дополнение к нему от 31.07.2006 № 527).
- 11. Информационное письмо ОАО РАО «ЕЭС России» от 7.07.2006 № ВП-170 «О рекомендациях к разработке программ «Реактивная мощность» и «Повышение надежности распределительных электрических сетей».

Баланс реактивной мощности

$$Q_{\Pi_{HE}} = k_{\theta} \sum_{i=1}^{n} Q_{HE_i} + \Delta Q_{T_{\Sigma}} + \sum_{j=1}^{m} (\Delta Q_j - Q_{C,j})$$

где k_0 – коэффициент одновременности наибольших реактивных нагрузок, $k_0 \approx 0.98$

 $Q_{{\scriptscriptstyle H}{\scriptscriptstyle E_i}}$ – максимальная реактивная нагрузка i – го узла

 $\Delta Q_{T_{v}}$ – суммарные потери реактивной мощности в CT , $\Delta Q_{T_{v}} pprox 0$, $1 \cdot S_{max}$

 ΔQ_{i} – потери реактивной мощности в j – ой линии

 $Q_{C,i}$ – зарядная мощность, генерируемая j – ой линией

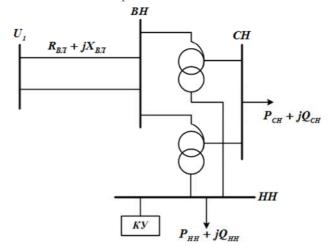
сеть 110 кВ сеть 35 кВ сеть 220 кВ $x_0 = 0.42 \frac{Om}{\kappa m}$ $q_C = 0.14 \frac{Meap}{\kappa m}$

 $Q_{\Pi_{HE}}=Q_{\Gamma_{\Sigma}}$ - баланс Если $Q_{\Pi_{HE}}>Q_{\Gamma_{\Sigma}}$, то $Q_{KV_{\Sigma}}=Q_{\Pi_{HE}}-Q_{\Gamma_{\Sigma}}$

Принципы размещения КУ

- 1. КУ нужно распределять так, чтобы потери мощности в сети были минимальными.
- 2. В электрических сетях двух уровней напряжения следует в первую очередь устанавливать КУ на шинах НН ПС с более низким номинальным напряжением высокой стороны.
- 3. В сети с одним уровнем напряжения целесообразно компенсировать реактивную мощность в первую очередь у наиболее электрически удаленных потребителей.
- 4. При незначительной разнице в электрической удаленности ПС от ИП в сети одного номинального напряжения расстановку КУ следует производить по условию равенства tgф на шинах НН, исходя из баланса реактивной мощности:

$$tg\varphi_{E} = \frac{\sum_{i=1}^{n} Q_{HE_{i}} - Q_{KY_{E}}}{\sum_{i=1}^{n} P_{HE_{i}}}$$


Мощность КУ в каждом узле

$$Q_{KY_i} = P_{max_i} \left(tg \varphi_i - tg \varphi_E \right)$$

 $Q_{\scriptscriptstyle KY_{\scriptscriptstyle dossm}} = 1, 1 \cdot Q_{\scriptscriptstyle KY_i}$ - для резервирования

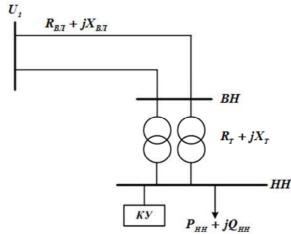
Регулирование напряжения в сети с помощью КРМ

Поперечная КРМ

Условие выбора – поддержание желаемого напряжения на сторонах СН и НН

$$\Delta U = \frac{PR + QX}{U}$$

Суммарные потери напряжения в сети
$$\Delta U_{\Sigma} = \frac{\left(P_{CH} + P_{HH}\right)\left(R_{BJ} + R_{TB}\right) + P_{CH}R_{TC} + P_{HH}R_{TH} + \left(Q_{CH} + Q_{HH} - Q_{KY}\right)\left(X_{BJ} + X_{TB}\right) + Q_{CH}X_{TC} + \left(Q_{HH} - Q_{KY}\right)X_{TH}}{U_{I}}$$

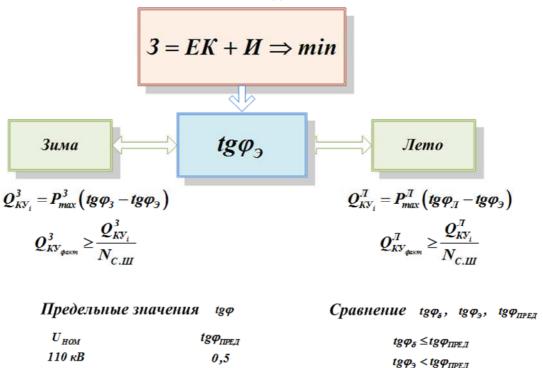

$$Q_{KY} = \frac{P_{CH}\left(R_{BJ} + R_{TB} + R_{TC}\right) + P_{HH}\left(R_{BJ} + R_{TB} + R_{TH}\right) + Q_{CH}\left(X_{BJ} + X_{TB} + X_{TC}\right) + Q_{HH}\left(X_{BJ} + X_{TB} + X_{TH}\right) - \Delta U_{\Sigma}U_{I}}{X_{BJ} + X_{TB} + X_{TH}}$$

$$\Delta U_{CH} = U_1 - U_{CH}^{BH} = U_1 - U_{CH}^{Men} \frac{U_1}{U_{CH,max}}$$

$$\Delta U_{HH} = U_I - U_{HH}^{BH} = U_I - U_{HH}^{Men} \frac{U_I}{U_{HH}}$$

$$\Delta U_{\Sigma} = \Delta U_{CH} + \Delta U_{HH}$$

$$\Delta U_{\scriptscriptstyle \Sigma} = 2U_{\scriptscriptstyle I} - \Delta U_{\scriptscriptstyle CH}^{\scriptscriptstyle BH} - \Delta U_{\scriptscriptstyle HH}^{\scriptscriptstyle BH} = 2U_{\scriptscriptstyle I} - U_{\scriptscriptstyle CH}^{\scriptscriptstyle MCET} \frac{U_{\scriptscriptstyle I}}{U_{\scriptscriptstyle CH_{\scriptscriptstyle HOM}}} - U_{\scriptscriptstyle HH}^{\scriptscriptstyle MCET} \frac{U_{\scriptscriptstyle I}}{U_{\scriptscriptstyle HH_{\scriptscriptstyle HOM}}}$$



$$Q_{KV} = Q_{HH} - \frac{\Delta U_{\Sigma} U_{I} - P_{HH} \left(R_{BJ} + R_{T} \right)}{X_{BJ} + X_{T}}$$

Продольная КРМ

- 1. Потери напряжения в ВЛ без КРМ $\Delta U = \frac{PR_{J} + QX_{J}}{r_{J}}$
- 2. Допустимые потери напряжения, кВ $\Delta U_{доп} = \frac{\Delta U_{доп} U_{Hom}}{100}$
- $\Delta U_{DOH} = \frac{PR_{II} + Q(X_{II} X_{KY})}{U_{HOM}}$ 3. Сопротивление КУ из условия снижения ΔU до $\Delta U_{ЛОЛ}$
- откуда $X_{KY} = \frac{PR_{_{I\!I}} + QX_{_{I\!I}} \Delta U_{_{I\!I}O\Pi}U_{_{I\!I}OM}}{O}$ 4. Ток в линии $I_{II} = \frac{\sqrt{P^2 + Q^2}}{\sqrt{3}II}$
- 5. Выбор серийно выпускаемого однофазного конденсатора для снижения потерь напряжения
- 6. Номинальный ток конденсатора $I_{K_{HOM}} = \frac{Q_{K_{HOM}}}{U_{K_{....}}}$
- 7. Число конденсаторов, включенных параллельно в одну фазу (обеспечение расчетного тока линии)
- $m = \frac{I_{J}}{I_{K_{HOM}}}$ $X_{K_{HOM}} = \frac{U_{K_{HOM}}}{I_{K_{HOM}}}$ 8. Сопротивление конденсатора
- 9. Число конденсаторов, включенных последовательно в одну фазу (обеспечение ΔU_{men}) $n = \frac{mX_{KY}}{X_{KY}}$
- $n_{\Sigma} = 3 \cdot n \cdot m$ 10. Общее число конденсаторов в УПК
- $Q_{KY}^{YCT} = n_{\Sigma} Q_{K_{HOM}}$ 11. Установленная мощность УПК
- 12. Номинальное напряжение КУ (УПК) $U_{KY_{HOM}} = nU_{K_{HOM}}$
- $I_{KY_{HOM}} = mI_{K_{HOM}}$ 13. Номинальный ток УПК
- $X_{KY_{\phi a \kappa m}} = \frac{n X_{K_{HOM}}}{m}$ 14. Фактическое сопротивление КУ
- 15. Фактические потери напряжения после КРМ $\Delta U_{\phi a \kappa m} = \frac{PR_{J} + Q(X_{J} X_{KY_{\phi a \kappa m}})}{U_{max}}$
- $\Delta U_{dakm} \leq \Delta U_{JOH}$ 16. Сравнение $\Delta U_{\phi a\kappa m}$ с $\Delta U_{\mathcal{I} O \Pi}$

Оптимальное размещение КУ в распределительной сети

1. Исключение узлов, в которых установка КУ невозможна или нежелательна.

0,4

0,4

0,35

2. Определение граничного значения уменьшения потерь мощности в сети, при котором установка КУ еще выгодна

$$\delta P_{TP} = \frac{3_{KY}}{C_{AW}T} = \frac{\left(E + \alpha_{\Sigma}\right)K_{KY}}{C_{AW}T}$$

3. Вычисление значений снижения потерь мощности после установки КУ

$$\delta P_{K} = \Delta P_{\theta} - \Delta P_{KY}$$

4. Определение целесообразности установки КУ в узле

35 κB

 $6 \div 20 \kappa B$

0,4 κΒ

Если
$$\delta P_{K} \geq \delta P_{FP}$$
, то установка KY оправдана

5. Определение узла сети, при установке КУ в котором будет наибольшее снижение потерь мощности

$$\delta P_{K} = max \left\{ \delta P_{i} \right\}$$

Приводится характеристика технических средств компенсации реактивной мощности и регулирования напряжения: синхронных генераторов; синхронных компенсаторов; статических источников реактивной мощности; батарей конденсаторов; СТАТКОМ; FACTS - технологий; устройств РПН, их регулировочных характеристик.

Выводы

- 1. КРМ позволяет снизить потери активной мощности и потери напряжения в сети, обеспечить желаемые уровни напряжения в узлах, повысить пропускную способность элементов и устойчивость электроэнергетической системы, ее надежность
- 2. В условиях рынка экономически целесообразные коэффициенты мощности в часы больших и малых нагрузок энергосистемы определяются путем оптимизационных расчетов и по согласованию с потребителями указываются в Договорах на энергоснабжение
- 3. Мощность КУ и место их установки в сети выбираются на основе системного подхода к КРМ, при этом полученные в результате КРМ коэффициенты мощности не должны превышать предельных значений в часы больших и малых нагрузок энергосистемы
- 4. Системный подход предусматривает решение следующих трех задач КРМ:
 - балансовая задача КРМ;
 - поддержание требуемого уровня напряжения в узлах сети;
 - экономическая задача КРМ.

Лекция 11.

Упрощающие преобразования схем замещения электрических сетей.

Цель лекции: рассмотреть как постепенным преобразованием сложнозамкнутая сеть приводится к магистрали с двухсторонним питанием.

Приводятся основы расчета нормальных режимов сложных электрических сетей и демонстрируется специфика расчетов сложных систем.

Показывается назначение упрощающих методов и подходов.

Замена линий одной эквивалентной.

Данное преобразование рассматривается на примере замены трех линий одной, выводится выражение для напряжения эквивалентного узла, эквивалентной проводимости сети.

Порядок расчета:

- по известным проводимостям схемы находят эквивалентную проводимость сети;
- определяют эквивалентное напряжение;
- находят эквивалентный ток;
- определяют напряжения в узле, к которому находят три исходные ветви;
- находят токи ветвей.

Перенос нагрузки или исключение узлов.

Эквивалентность преобразования сохраняется только при переносе заданных токов нагрузки. Следовательно, можно рассматривать перенос мощности в случае, когда заданы постоянные мощности или токи в узлах.

Выводится выражение для эквивалентных нагрузок узлов, в которые разносится нагрузка исключаемого узла. Она равна сумме исходной нагрузки узла и произведения нагрузки исключенного узла на дробь, в числителе которой находится сопряженное сопротивление противоположной линии относительно узла, в который переносится нагрузка, в знаменателе — сумма сопряженных сопротивлений линий, подключенных к исключаемому узлу.

Студентам предлагается вспомнить преобразования звезды в треугольник и обратно и показывается как в этом случае определяются потоки мощности.

Порядок преобразования сложной сети:

- осуществляется последовательное исключение узлов и перенос нагрузки;
- преобразуется звезда в треугольник (если есть такие части схемы);
- в схеме с треугольником можно разрезать сеть по узлам питания и преобразовать две параллельные линии в одну;
- упрощающие преобразования осуществлять до тех пор, пока не получится сеть с двухсторонним питанием.

Рассматривается как осуществить обратный переход при преобразовании сети.

Лекция 12.

Расчет режимов системы большой сложности. Расщепление сети и разделение переменных. Перспективное проектирование схемы сети.

Цель лекции: показать приемы, которыми можно пользоваться при расчете режимов на ЭВМ в системах большой сложности.

Дается общая характеристика методов преобразования сети при расчете режимов электроэнергетических систем большой сложности.

Расщепление сети.

Данный метод применим в однородных сетях, где распределение активной, реактивной мощности не зависит друг от друга. Для однородной сети доказано, что система линейных уравнений контурных комплексных мощностей эквивалентна двум системам уравнений: одна из которых содержит только активную мощность P в контурах и индуктивное сопротивление X, другая – только реактивную мощность Q, и активное сопротивление R. При расщеплении сети составляются две схемы: одна с P и X, другая с Q и R. В каждой из них находится распределение мощностей, накладывается друг на друга и находится распределение полных мощностей.

Разделение переменных.

При расчете режимов систем большой сложности система уравнений узловых напряжений (УУН) приводится к системе действительных уравнений порядка 2 п, где п — число независимых узлов. Для этого матрицы и векторы-столбцы с комплексными элементами представляются в виде сумм матриц и вектор-столбцов с действительными элементами путем отдельной записи действительных и мнимых слагаемых в УУН. В итоге получается система действительных уравнений:

$$\begin{bmatrix} -G_y & B_y \\ -B_y & G_y \end{bmatrix} \begin{bmatrix} U' \\ U'' \end{bmatrix} = \sqrt{3} \begin{bmatrix} I' \\ I'' \end{bmatrix} - \begin{bmatrix} -\partial_{\delta} & U_{\delta} \\ -\theta_{\delta} & U_{\delta} \end{bmatrix}$$

при решении на ЭВМ нелинейных УУН для сетей напряжением 110 кВ и выше при разделении уравнений получаются 2 системы уравнений, которые решаются раздельно. Одна из них связывает Р в узлах и фазы узловых напряжений (U), другая – Q в узлах и модули узловых U. Такое разделение более эффективно, т.к. учитывает особенности их решения методом Ньютона.

Перспективное проектирование схемы сети.

В этом случае активное потокораспределение определяется по реактивным проводимостям путем решения системы УУН вида

$$[B_y][\delta]U^2_{hom} = [P].$$

Лекция 13.

Методы эквивалентирования систем большой сложности.

Цель лекции: на основе свойств матрицы узловых проводимостей рассмотреть методы эквивалентирования систем большой сложности.

Свойства матрицы узловых проводимостей:

- симметрична;
- обладает слабой заполняемостью, т.е. содержит большое количество нулевых элементов;
- сумма элементов любой ее строки или столбца равна нулю.

Для экономии оперативной памяти ЭВМ и исключения ошибки при работе с промышленными программами используют следующие приемы:

- а) учет слабой заполняемости матрицы;
- б) эквивалентирования;

- в) разделение системы на подсистемы;
- г) разложение на треугольные матрицы.

Фактически задача учета слабой заполняемости матрицы Y_y сводится к правильной нумерации узлов. Одним из эффективных способов является приведение матрицы Y_y к ленточной форме. Матрицей в ленточной форме называется такая матрица, у которой ненулевые элементы расположены в виде «ленты» вдоль главной диагонали матрицы. Такая форма записи эффективна для графов сетей с цепочной или близкой к ней структурой.

Порядок нумерации узлов в ленточной матрице. Первый номер присваивается узлу с минимальной степенью. Если таких узлов много, то выбирается любой из них. Далее в порядке возрастания номеров уже пронумерованных узлов нумеруем смежные с ними непронумерованные узлы. Причем нумерация ведется в порядке возрастания их степени. Степень узла — это число ветвей, присоединенных к узлу.

Эквивалентирование при расчетах установившихся режимов.

 $1\ \mathrm{cnocof}$ – исключение узлов. Замена системы из $\mathrm{n}+1$ узла на эквивалентную из \mathbf{n}_H узлов, содержащую только те узлы, которые надо проанализировать. Схема считается эквивалентной, если в результате ее режима определяются те же значения напряжения оставшихся в ней узлов, что и при расчете исходной схемы. Остальные узлы исключаются из рассмотрения и напряжения в них не могут быть определены в результате расчета эквивалентной схемы.

2 способ – единый алгоритм расчета. Схема делится на две части, между которыми находится ветвь и узел примыкания. Слева от узла примыкания схема, которую нежно преобразовать, справа – обобщенная сеть произвольной конфигурации с произвольным числом источников питания. Цель преобразования – замена преобразованного участка эквивалентной схемой замещения, в которой включается поочередно один из двух эквивалентных источников питания, а преобразуемая часть схемы представляется П-образной схемой замещения.

Подробно рассматриваются оба способа и область их применения.

Лекция 14. Метод диакоптики.

Цель лекции: изучить метод диакоптики – разделения системы на подсистемы.

Основное отличие разделения на подсистемы от эквивалентирования сети:

при эквивалентировании рассчитывается только часть схемы, при разделении на подсистемы – вся схема.

При разделении на подсистемы раздельно рассчитываются режимы в каждой подсистеме и определяются граничные переменные, т.е. параметры режима граничных линий или узлов, которые принадлежат двум или более подсистемам. При разделении на подсистемы напряжения в каждой из них определяется пассивными и активными элементами своей подсистемы и влиянием пассивных и активных элементов другой подсистемы. Возможны разные способы расчета установившегося режима при разделении системы на части: рассматриваются эти способы.

Матрица присоединения сети приводится к блочно-диагональной форме. Матрицей в блочно-диагональной форме называется такая матрица, которая состоит из матрицклеток (блоков), расположенных по диагонали. Показывается как делается система по узлу и составляется матрица присоединения подсистем, затем — деления по ветви, при котором составляются УУН пограничных ветвей, а система уравнений называется граничной и получается после исключения всех переменных клеточных подсистем из уравнений этих узлов.

Показывается, как представлять системы уравнений узловых напряжений для расчета с помощью программно-вычислительных комплексов (ПВК) на персональном компьютере. Характеризуются методы решения уравнений узловых напряжений и способы задания параметров элементов схемы, нагрузочных и генераторных узлов. Вводится понятие

балансирующего узла и на конкретных примерах энергосистемы Амурской области показываются возможные балансирующие узлы для разных случаев и схем.

Рассматриваются промышленные программно-вычислительные комплексы СДО -6, RastrWin, приводится их сравнительный анализ и порядок работы с ними. Показывается, что включает анализ полученных результатов при расчете режимов и его назначение.

Лекция 15. Особые режимы ЭЭС.

Цель лекции: рассмотреть причины возникновения особых режимов, дать их характеристику и оценить возможность работы системы при таких режимах.

Режимы, в которых существенно нарушена симметрия параметров режима или присутствует несинусоидальность токов и напряжений называется особыми режимами, т.е. это несимметричные и несинусоидальные режимы.

Несимметричные режимы являются следствием различия сопротивлений фаз, либо неравенством нагрузки по фазам. Первый случай характерен для ВЛ без транспозиции, либо с удлиненным циклом транспозиций, а также при неполнофазных режимах, связанных с обрывом одной или двух фаз.

Причины несимметричных режимов второго случая – подключение к сети однофазных нагрузок, либо трехфазных, но с существенным отличием загрузки фаз.

Несинусоидальные режимы вызываются нагрузкой (выпрямители, сварка...). Особые режимы отрицательно сказываются на технико-экономических показателях эксплуатации систем, поэтому для них производят оценку допустимости таких режимов.

Рассматривается уравнение несимметричных режимов в фазных и симметричных координатах, показывается переход от одних координат к другим и обратно с помощью матрицы перехода.

Преимущества метода симметричных составляющих: проще определяются коэффициенты несимметрии напряжения на обратной и нулевой последовательности; расчет составляющих обратной последовательности выполняется с большой точностью, чем в фазных координатах; понижение размерности решаемой системы уравнений при расчете установившихся режимов.

Рассматривается система УУН при несимметричных коротких замыканиях и в сложнонесимметричных режимах и методы ее решения на ЭВМ.

Приводятся условия допустимости неполнофазных режимов.

Показывается как формируется система УУН при высших гармониках тока и напряжения.

Лекция 16.

Характеристика методов определения потерь электроэнергии в сетях энергосистем.

Цель лекции: привести структуру потерь электроэнергии и показать каким образом можно определять составляющие потерь электроэнергии.

Рассматриваются основные термины и определения, используемые при расчете и анализе потерь электроэнергии.

Потери электроэнергии делятся на условно-постоянные и нагрузочные.

Поэлементная структура потерь следующая: потери в линиях, трансформаторах, компенсирующих устройствах, двигателях, оборудовании подстанций.

Выделяются потери электроэнергии от низкого качества электроэнергии.

Различают технические и коммерческие потери электроэнергии, метрологические потери.

Далее рассматриваются методы расчета потерь электроэнергии отдельно для нагрузочных и условно-постоянных потерь. Нагрузочные потери в зависимости от объема информации могут быть рассчитаны одним из следующих методов:

- оперативных расчетов;

- расчетных суток;
- средних нагрузок;
- числа часов наибольших потерь;
- по обобщенной информации о схемах и нагрузках сети.

Рассматривается концепция определения потерь электроэнергии в условиях неопределенности.

Подробно материал, необходимый для данной лекции приведен в учебной литературе.

Лекция 17.

Методы снижения технических потерь мощности и энергии в электрических сетях.

Цель лекции: привести комплексную программу снижения потерь мощности и энергии, показать методы снижения потерь и дать рекомендации по их снижению.

Комплексная программа снижения потерь электроэнергии включает в себя следующие подпрограммы:

повышение точности учета электропотребления и совершенствование энергосбытовой деятельности в сфере учета;

снижение технических потерь электроэнергии; снижение коммерческих потерь электроэнергии.

Программа повышения точности учета электропотребления

- 1. Определение оптимальных мест установки средств учета электроэнергии.
- 2. Определение пригодности измерительных трансформаторов к учету.
- 3. Определение пригодности к учету счетчиков электроэнергии.
- 4. Снижение погрешности измерения электроэнергии.
- 5. Замена индукционных счетчиков электроэнергии на электронные на подстанциях и электростанциях, с которых начинается коррекция результатов учета электропотребления до достоверных значений.
- 6. Снижение систематической составляющей погрешности учета электропотребления.
- 7. Разработка программы коррекции (достоверизации) результатов учета электропотребления существующими системами учета.

Программа снижения технических потерь электроэнергии

- 1. Оптимизация уровней напряжения в распределительных сетях.
- 2. Компенсация реактивной мощности и управление потоками реактивной мощности.
 - 3. Повышение качества электроэнергии.
 - 4. Оптимизация режимов в распределительных сетях
 - 5. Оптимизация схемы электрических сетей и мест размыкания.
 - 6. Комплексная автоматизация и телемеханизация электрических сетей.
- 7. Сокращение длительности неоптимальных ремонтных и послеаварийных режимов.
- 8. Упорядочение мощностей трансформаторов на подстанциях и обеспечение их экономически целесообразного режима.
 - 9. Перевод протяженных сетей на более высокий уровень напряжения.

Программа снижения коммерческих потерь электроэнергии

- 1. Совершенствование учета электроэнергии.
- 2. Определение и снижение методической погрешности расчета технических потерь.
 - 3. Борьба с хищениями электроэнергии.
 - 4. Разработка системы поощрений за снижение потерь электроэнергии.
 - 5. Совершенствование работы метрологических служб энергосистемы.

- 6. Снижение потерь при выставлении счетов.
- 7. Расчет коммерческих потерь как финансовых убытков энергосистемы.

Основной эффект в снижении технических потерь электроэнергии может быть получен за счет технического перевооружения, реконструкции, повышения надежности работы и пропускной способности электрических сетей, сбалансированности их режимов, т.е. за счет внедрения капиталоемких мероприятий.

Мероприятия по снижению технических потерь электроэнергии делят на организационные и технические.

К организационным относятся мероприятия по совершенствованию эксплуатационного обслуживания электросетей и оптимизация рабочих схем сетей, оптимизация режимов работы сетей, т.е. оптимизация мест размыкания линий с двусторонним питанием, снижение неоднородности сети (оптимизация мест размыкания контуров электросетей с различными номинальными напряжениями), оптимизация установившихся режимов электрических сетей по реактивной мощности, перевод генераторов электростанций в режим синхронных компенсаторов, определение оптимальной мощности компенсирующих устройств, оптимизация распределения нагрузки между подстанциями основной сети 110 кВ и выше переключениями в ее схеме, оптимизация рабочих напряжений в центрах питания разомкнутых электрических сетей, отключение трансформаторов в режимах малых нагрузок на трансформаторных подстанциях с двумя и более трансформаторами, отключение трансформаторов на подстанциях с сезонной нагрузкой, выравнивание электрических нагрузок по фазам, снижение расхода электроэнергии на собственные нужды подстанций.

К техническим мероприятиям относятся мероприятия по реконструкции, модернизации сетей, замене или установке дополнительного оборудования — такого как регулируемые компенсирующие устройства для оптимизации потоков реактивной мощности и снижения недопустимых или опасных уровней напряжения в узлах сетей, — управляемые шунтирующие реакторы, статические компенсаторы реактивной мощности, замена перегруженных проводов и трансформаторов, замена недогруженных трансформаторов, установка линейных регуляторов напряжения, установка и ввод в работу на трансформаторах с РПН устройств автоматического регулирования коэффициента трансформации, установка автоматически регулируемых конденсаторных установок, установка вольтодобавочных трансформаторов с поперечным регулированием, перевод сетей на более высокий уровень напряжения, оптимизация загрузки электрических сетей за счет строительства линий и подстанций, установка многофункциональных устройств повышения качества электроэнергии.

Все перечисленные мероприятия по снижению технических потерь достаточно хорошо известны. Ниже рассмотрены те из них, которые целесообразно реализовать в первую очередь в распределительных электрических сетях.

Рекомендации по оптимизации уровней напряжения в распределительных сетях

В разомкнутых сетях 35-110 кВ необходимо регулировать напряжение в центрах питания, где должны быть установлены трансформаторы с РПН. Регулировать напряжение нужно, исходя из минимума потерь электроэнергии в них при техническом ограничении по качеству электроэнергии.

В сетях 6-10 кВ следует применять встречное регулирование напряжения, т.е. напряжение должно быть наиболее высоким в период больших нагрузок и наиболее низким – в период малых нагрузок. Если в сетях 6-10 кВ в центре питания (ЦП) стоят трансформаторы с ПБВ, то функции обеспечения регулирования напряжения в этих ЦП переносятся на трансформатор с РПН в ЦП сети более высокого напряжения.

Расчет законов регулирования напряжения трансформаторов с РПН должен производиться на основании вероятностно-статистического анализа отклонения напряжения на

шинах 6-10 кВ всех ЦП в режиме наибольших и наименьших нагрузок с одновременной регистрацией соответствующих им ответвлений трансформаторов.

Оптимизация напряжений начинается снизу-вверх, т.е. с сети 6-10 кВ до 220 кВ включительно. После выбора законов регулирования напряжения в сети 6-10 кВ осуществляется переход к его оптимизации в ЦП сетей 35 кВ.

Поднять напряжение на шинах 35 кВ трансформатора 110-220/35 кВ, не изменяя его в сетях 6-10 кВ, можно лишь при изменении у всех трансформаторов 35/6-10 кВ коэффициентов трансформации на такую же величину, но в обратном направлении. Поэтому для всех ЦП сетей 6-10 кВ нужно определить оставшийся после оптимизации диапазон изменения коэффициентов трансформации в сторону снижения напряжения на шинах 6-10 кВ. Трансформатор, для которого эта величина окажется минимальной, определит предельно возможное повышение напряжения в сети 35 кВ. Аналогично поступают с регулированием напряжения в сети 110 кВ.

Относительное изменение нагрузочных потерь энергии, ΔW , в сторону снижения при регулировании напряжения рекомендуется определять по формуле

$$\delta W = 1.5 \frac{\delta U}{100} \Delta W ,$$

где δU – относительное изменение напряжения, %;

 ΔW – потери электроэнергии до оптимизации уровней напряжения.

При регулировании напряжения снижение потерь электроэнергии целесообразно определять способом сведения всех режимов к двум расчетным. В этом случае распределение потерь ΔW между режимами наибольших и наименьших нагрузок выражается соотношениями

$$\Delta W_1 = \frac{t_1}{t_1 + k_{\Pi}t_2} \Delta W; \quad \Delta W_2 = \frac{k_{\Pi}t_2}{t_1 + k_{\Pi}t_2} \Delta W,$$

где t_1, t_2 — соответственно эквивалентная продолжительность наибольших и наименьших нагрузок.

$$t_1 = \frac{k_3 - k_{min}}{1 - k_{min}}T; \quad t_2 = (1 - t_1)T; \quad k_{II} = \frac{\Delta P_2}{\Delta P_1},$$

где k_3 — коэффициент заполнения графика нагрузки; k_{min} — отношение минимальной нагрузки к максимальной; T — годовое число часов, равное 8760 ч.; ΔP_1 , ΔP_2 — соответственно потери мощности в режимах наибольших и наименьших нагрузок; ΔW — суммарные потери электроэнергии в сети.

Снижение потерь электроэнергии при изменении напряжений в режимах наибольших и наименьших нагрузок на $\delta U'$ и $\delta U''$ соответственно составят

$$\delta W = 0.015 \frac{\Delta W}{t_1 + k_H t_2} \left(t_1 \cdot \delta U' + k_H \cdot t_2 \cdot \delta U'' \right).$$

Оптимизацию напряжений в ЦП целесообразно проводить два раза в -год -для режима зимнего и летнего графиков нагрузки.

В сетях 110-220 кВ наиболее выгодным является наибольший допустимый уровень напряжения по условиям работы изоляции и условиям регулирования напряжения в распределительных сетях. Однако в этом случае увеличиваются потери холостого хода трансформаторов. Их нужно снижать, регулируя ответвления РПН (т.е. коэффициент трансформации) трансформаторов.

Это можно выполнить только при достаточном количестве регулирующих устройств и при обеспечении положительного баланса реактивной мощности в основных узлах сети. Второе условие может быть обеспечено при установке управляемых шунтирующих реакторов поперечной компенсации.

Компенсация реактивной мощности

Такое мероприятие — важнейшее для уменьшения потерь в распределительных сетях, так как самое эффективное. Выбор мощности и места установки компенсирующих устройств необходимо производить из условия максимальной прибыли с помощью методов математического программирования.

В распределительных сетях целесообразно применять как поперечную, так и продольную компенсацию реактивной мощности. Так как установка компенсирующих устройств при их автоматическом регулировании — мероприятие капиталоемкое, то пока целесообразно экономически стимулировать потребителей к установке компенсирующих устройств путем гибкой системы скидок и надбавок к тарифу на электроэнергию.

С этой целью рекомендуется определить оптимальное значение экономических коэффициентов мощности для сетей всех уровней напряжения. Кроме того, следует учитывать, что при вводе комплектных конденсаторных установок $0.4~\mathrm{kB}$ в сельских сетях удельное снижение потерь электроэнергии в среднем составляет 450, а в промышленных и городских сетях $-300~\mathrm{kBm}\cdot\mathrm{u}/\mathrm{keap}$.

Оптимизация режимов в энергетических сетях

К этой группе мероприятий относятся: экономическое распределение электрических нагрузок между электростанциями с учетом финансовых потоков, определение и задание оптимальных режимов потребления реактивной мощности промышленными предприятиями и другими типами нагрузок, оптимизация режимов работы компенсирующих устройств и трансформаторов, оптимизация коэффициентов трансформации силовых трансформаторов; экономическое распределение потоков мощности в неоднородных замкнутых сетях путем выбора неуравновешенных коэффициентов трансформации мощности на трансформаторах связи сетей разных номинальных напряжений, выбора и установки специальных трансформаторов продольно-поперечного регулирования, размыкания распределительных сетей в оптимальных точках, а также выравнивание графиков электрических нагрузок на подстанциях.

Оптимизация схем электрических сетей и мест размыкания

Эта группа мероприятий включает оптимизацию мест размыкания контуров электросетей с различными номинальными напряжениями, а также мест размыкания линий 6-35 кВ с двусторонним питанием.

Оба указанных метода должны обеспечивать минимум потерь активной энергии с учетом вероятностного характера изменения параметров режима и качества информационных потоков.

Отключение трансформаторов в режимах малых нагрузок

Отключение одного из параллельно работающих трансформаторов целесообразно, когда происходящее при этом снижение потерь холостого хода оказывается большим, чем увеличение нагрузочных потерь из-за перераспределения суммарной нагрузки между меньшим числом трансформаторов.

Данное мероприятие широко применяется в энергосистемах. В литературе приводятся условия, когда отключение малозагруженных трансформаторов приводит к снижению потерь электроэнергии. Однако его реализация должна проводиться с учетом требований по надежности электроснабжения.

Перевод протяженных электрических сетей на более высокий уровень напряжения

Это мероприятие эффективно, так как дает снижение потерь энергии в квадрате, но не относится к малозатратным и не всегда технически осуществимо.

Из структуры коммерческих потерь электроэнергии следует, что их можно представить в виде суммы двух составляющих: потерь, обусловленных погрешностями, недостоверным или неполным учетом и хищениями электроэнергии и потерь при выставлении счетов. Отсюда основные пункты программы снижения коммерческих потерь можно объединить в следующих рекомендациях.

Совершенствование учета отпущенной в электрическую сеть и полезно потребленной электроэнергии

Главными мероприятий по совершенствованию и повышению точности учета электроэнергии являются:

замена старых, отработавших свой ресурс индукционных счетчиков класса точности 2,5 на новые; это позволит повысить учитываемый полезный отпуск электроэнергии в среднем на 10-12%;

поверка и метрологическая аттестация ТТ и ТН в рабочих условиях эксплуатации, внедрение соответствующих поверочных средств для измерительных трансформаторов всех ступеней напряжения;

установка дополнительных счетчиков, ТТ и ТН, обеспечивающих учет отпуска и потерь электроэнергии по ступеням напряжения;

разработка программы расчета и ее аттестация по приведенному в монографии методу и алгоритмам уточненного расчета технических потерь;

активизация внедрения автоматизированных информационных измерительных систем контроля и учета электроэнергии (АИИСКУЭ) на электростанциях, подстанциях, у крупных потребителей с постепенным переходом к внедрению АИИСКУЭ бытового потребления;

информационная и функциональная увязка АИИСКУЭ и автоматизированных систем диспетчерского управления (АСДУ) ПЭС;

создание автоматизированных баз данных по потребителям электроэнергии (юридическим и физическим лицам) с их привязкой к электрическим сетям для контроля за динамикой объема потребления электроэнергии по месяцам и годам и ее соответствием динамике объема выпускаемой продукции (например, расчет и анализ фактических и допустимых небалансов электроэнергии по электрическим сетям);

широкое внедрение счетчиков прямого включения с предоплатой.

Практическая реализация перечисленных мероприятий требует значительных капиталовложений и времени, но и позволит уменьшить коммерческие потери электроэнергии (максимум на 50%).

В условиях общего спада нагрузки и отсутствия средств на развитие, реконструкцию и техперевооружение электросетей становится все более очевидным, что каждый вложенный рубль в совершенствование системы учета окупается значительно быстрее, чем затраты на повышение пропускной способности сетей и даже на компенсацию реактивной мощности.

Определение и снижение методической погрешности расчета технических потерь электроэнергии

Для выполнения этой рекомендации и был разработан метод уточненного расчета потерь электроэнергии в условиях неполноты и некорректности исходной информации. Его внедрение позволит снизить методическую погрешность расчета до 1%, а, следовательно, и соответствующую составляющую коммерческих потерь.

Борьба с хищениями электроэнергии

Хищения электроэнергии составляют от 30 до 50% коммерческих потерь. Борьба с хищениями должна вестись планомерно, постоянно и по всем направлениям, начиная с оснащения контролеров приборами по выявлению скрытых проводок, образцовыми однофазными счетчиками, токоизмерительными клещами на телескопических изолирующих штангах для измерения токов на вводах и т.п. до замены голых проводов на вводах в частные владения на изолированные кабели; выноса, приборов учета за границу частных владении; применения счетчиков электроэнергии, защищенных от хищений электроэнергии, в том числе установки счетчиков совместно с УЗО и т.п.

В выявлении и ликвидации хищений электроэнергии очень важен учет «человеческого фактора»:

обучение и повышение квалификации персонала;

осознание персоналом важности для предприятия в целом и его работников лично эффективного решения поставленной задачи;

мотивация персонала, моральное и материальное стимулирование;

связь с общественностью, широкое оповещение о целях и задачах снижения коммерческих потерь, ожидаемых и получаемых результатах;

ужесточение мер уголовной, административной и материальной ответственности за хищения электроэнергии.

Чтобы требовать от персонала Энергосбыта, предприятий и работников электросетей выполнения нормативных требований по поддержанию системы учета электроэнергии на должном уровне, достоверному расчету технических потерь и выполнению мероприятий по снижению потерь, персонал должен знать эти нормативные требования и уметь их выполнять.

Кроме того, в энергосистемах и на предприятиях должна быть разработана, утверждена и эффективно действовать система поощрения за снижение потерь электроэнергии в сетях, выявление хищений электроэнергии с обязательным оставлением части полученной прибыли от снижения потерь (до 50%) в распоряжении персонала, получившего эту прибыль.

Очень важен контроль руководителей энергосистемы, предприятий электросетей и Энергосбыта за эффективностью работы контролеров, мастеров и монтеров РЭС, чтобы предотвратить получение ими личного дохода с виновников хищений, «помощи» потребителям по несанкционированному подключению к сетям и т.п.

В конечном счете в энергосистеме должен быть создан такой экономический механизм, который бы ставил в прямую зависимость рост зарплаты персонала от его квалификации, активности и эффективности действий в сфере снижения потерь.

Снижение потерь при выставлении счетов

В связи с ростом дебиторской задолженности по уже выставленным счетам (потерь при востребовании оплаты, $\Delta W_{\kappa g}$) все более актуальным становится максимально возможное уменьшение этой задолженности. Международные эксперты предлагают включать $\Delta W_{\kappa g}$ в состав коммерческих потерь, т.к. потери при востребовании оплаты, не увеличивая абсолютной величины коммерческих потерь, могут наносить экономике энергосистемы не меньший ущерб, чем коммерческие потери, умноженные на среднеотпускной тариф. Такой подход имеет принципиальное значение, так как в этом случае задача снижения потерь приобретает законченный смысл и становится общей комплексной задачей обеспечения финансовой и экономической устойчивости.

Коммерческие потери должны рассчитываться не только в киловатт-часах, как составляющая баланса электроэнергии, но и в денежном выражении, как финансовые убытки энергопредприятия, как явно упущенная его выгода в форме недополученной прибыли, включающая в себя потери при востребовании оплаты за поставленную клиентам электроэнергию.

Лекция 18.

Методы регулирования частоты в ЭЭС.

Цель лекции: показать как осуществляется регулирование частоты в систем, рассмотреть первичное и вторичное регулирование, а также противоаварийные мероприятия при снижении частоты в ЭЭС.

При снижении генерируемых мощностей в системе происходят изменения частоты и напряжения. Снижение генерируемой активной мощности приводит к уменьшению частоты и напряжения. Для регулировании частоты используется изменение генерируемой активной мощности путем изменения пуска энергоносителя (пара или воды) в турбину.

Далее рассматриваются характеристики первичных двигателей – тепловых и гидравлических турбин.

В случае регулируемой турбины увеличения ее скорости и сращения приведет в действия автоматический регулятор скорости (APC), который обеспечит уменьшение подачи энергоносителя в турбину, чтобы сохранить постоянной ее скорость вращения. Принцип работы APC основан на обратной отрицательной связи системы регулирования.

Если АРС после окончания переходного процесса восстанавливает прежнюю скорость – регулирование называется астатическим, в противном случае – статическим. Вводится понятие крутизны характеристики регулирования, т.е. коэффициента равного тангенсу угла наклона характеристики АРС к оси абсцисс. При статической характеристике регулятор скорости турбины оказывает стабилизирующее действие на частоту ЭЭС и называется первичным регулятором частоты, а процесс изменения частоты по его действиям – первичным регулированием частоты. Эффективность первичного регулирования частоты зависит от статизма регулятора скорости.

Для дополнительной корректировки частоты после первичного регулирования применяют вторичное регулирование, в процессе которого изменяют мощность турбины в зависимости от частоты в системе. Вторичное регулирование выполняет автоматический регулятор частоты (APU).

Статизм характеристики регулятора — это величина обратная коэффициенту крутизны. Вводится понятие коэффициента резерва, т.е. отношения номинальной генерирующей мощности к фактической нагрузке. Турбины станций ЭЭС снабжены статическими регуляторами скорости, для которых записывается закон первичного регулирования вторичное регулирование, можно получить эффект астатического регулирования. Наиболее просто вторичное регулирование осуществляется с помощью одной станции. Такой метод называется методом ведущей станции по частоте.

Рассматриваются противоаварийные мероприятия при снижении частоты в электроэнергетических системах.

При аварийных отключениях генераторов применяют ААРЧ — автоматическую аварийную разгрузку по частоте, которая заключается в отключении системной автоматической части потребителей.

3. ПРАКТИЧЕСКИЕ ЗАНЯТИЯ

3.1. Методические рекомендации по проведению практических занятий

Практические занятия проводятся для того, чтобы студенты получили навыки в расчете установившихся режимов в анализе графиков электрических нагрузок, выборе оптимального варианта схемы сети, компенсации реактивной мощности, эквивалентировании систем большой сложности.

В результате проведения практических занятий студенты должны научиться разрабатывать конкурентоспособные варианты схем соединения электрических сетей, рассчитывать режимы в системах большой сложности, в том числе и особые, обеспечивать снижение потерь электроэнергии и требуемые уровни напряжения путем компенсации реактивной мощности.

При изучении дисциплины предусмотрено проведение 9 практических занятий. Их перечень приведен ниже.

- ПЗ 1. Расчет вероятностных характеристик графиков нагрузки подстанций и режимных характеристик сети.
- ПЗ 2. Разработка и технический анализ вариантов конфигураций электрических сетей. Определение рационального напряжения сети.
- ПЗ 3. Выбор числа и мощности силовых трансформаторов на ПС. Выбор и проверка сечений воздушных и кабельных линий
 - ПЗ 4. Расчет экономических показателей электрических сетей.
 - ПЗ 5. Выбор оптимального варианта схемы электрической сети.

- ПЗ 6. Регулирование напряжения в электрической сети. Продольная компенсация реактивной мощности в сети.
 - ПЗ 7. Регулирование напряжения с помощью синхронных компенсаторов, СТК.
- ПЗ 8. Преобразование и эквивалентирование схем электрических сетей сложной конфигурации.
 - ПЗ 9. Определение потерь электроэнергии в электрической сети

В процессе обучения студенты пользуются информационными и компьютерными технологиями. При решении задач целесообразно использовать программные продукты MathCad, Visio, Расчет сети SДО-6, банк информационных электронных данных кафедры энергетики.

Практические занятия целесообразно проводить согласно следующему плану.

План проведения практического занятия.

- 1. Цель занятия.
- 2. Краткие теоретические сведения.
- 3. Блиц-опрос студентов.
- 4. Решение задач.
- 5. Анализ качества выполнения индивидуальных домашних заданий и разбор типовых ошибок.
 - 6. Выводы и обобщение результатов.
 - 7. Домашнее задание и задание на самостоятельную проработку.

На первом занятии целесообразно устроить входной контроль, на последнем – комплексную проверку качества знаний студентов.

При изложении кратких теоретических сведений рекомендуется систематизировать и обобщить материал, выделив при этом главные моменты. В процессе изложения материала целесообразно вовлекать студентов в его анализ, активизировать процесс мышления студентов за счет средств интенсивного обучения.

Блиц-опрос студентов или небольшая самостоятельная работа по теме практического занятия позволят лучше усвоить ход решения задач, понять их сущность.

При решении задач можно использовать разные формы. Например, преподаватель, решая задачу на доске, поясняет ее и привлекает к работе всю группу путем вопросов, постоянно подводя студентов к правильному решению.

Другая форма решения задач - самостоятельная работа студентов под контролем преподавателя с пояснением наиболее трудных моментов. Возможно решение задачи на доске студентом, но в этом случае преподаватель руководить процессом решения и вовлекает в работу всю группу.

Как правило, защита индивидуальных домашних заданий должна проводиться во внеаудиторное время, а на практическом занятии следует показать типовые ошибки, про-анализировать результаты выполнения и защиты индивидуальных заданий, отметить лучшие и худшие из них, предложить студентам в виде деловой игры принять решение по устранению замечаний.

В конце практического занятия преподаватель называет тему следующего, указывает разделы теоретического материала, которые студент должен освоить для наиболее эффективного решения задач, выдает домашнее задание.

В процессе проведения практических занятий используются классические и современные педагогические технологии.

3.2. Методические указания по проведению практических занятий

Практическое занятие № 1.

Расчет вероятностных характеристик графиков нагрузки подстанций и режимных характеристик сети.

Цель занятия: научиться определять вероятностные характеристики графиков электрических нагрузок подстанций при разных способах задания исходной информации.

К вероятностным характеристикам графика электрической нагрузки относятся средняя мощность, среднеквадратичная или эффективная мощность, максимальная мощность, минимальная мощность.

Порядок расчета вероятностных и режимных характеристик электрической сети следующий:

строится суточный график электрических нагрузок подстанции по заданной структуре электропотребления;

по графику нагрузки определяются вероятностные характеристики, коэффициенты графиков нагрузки и число часов использования наибольшей нагрузки;

определяются режимные характеристики сети с учетом попадания нагрузки в максимум энергосистемы.

В качестве примера ниже показано определение вероятностных характеристик подстанций заданного энергорайона.

Пример

Для построения суточных графиков электрических нагрузок рассчитаем активные и реактивные мощности для понизительных подстанций по формулам:

$$P_{i}^{(t_{j}-t_{j+1})} = P_{*}^{(t_{j}-t_{j+1})} \cdot a_{*i} \cdot P_{max}, \tag{1}$$

где P_i – активная мощность для интервала времени $(t_j - t_{j+1})$;

 P_{*i} – относительная ордината суточного графика активной мощности для интервала времени $(t_i - t_{i+1})$;

 a_{i} – процентное соотношение активной нагрузки потребителя;

 P_{max} – максимальное значение мощности, указанное в задании на проект.

$$Q_{i}^{(t_{j}-t_{j+1})} = Q_{*}^{(t_{j}-t_{j+1})} \cdot a_{**i} \cdot P_{max}, \tag{2}$$

где Q_i – реактивная мощность для интервала времени $(t_i - t_{i+1})$;

 Q_{*i} – относительная ордината суточного графика реактивной мощности для интервала времени $(t_j - t_{j+1})$;

 a_{**i} – процентное соотношение реактивной нагрузки потребителя;

 P_{max} – максимальное значение активной мощности, указанное в задании.

Характеристикой потребителей также является годовой график по продолжительности активной нагрузки. Площадь, ограниченная этим графиком и осями координат, пропорциональна активной энергии, потребляемой в год W. По ней можно определить еще одну характеристику-число часов использования наибольшей нагрузки T_{max} .

$$T_{max} = W/P_{max} = \sum P_i \cdot \Delta T_i / P_{max}$$
 (3)

Вероятностные характеристики графика нагрузки определяются по следующим формулам:

Средняя нагрузка:

$$P_{cp} = \frac{1}{24} \sum_{i=1}^{n} P_i t_i$$

$$Q_{cp} = \frac{1}{24} \sum_{i=1}^{n} Q_i t_i$$
(4)

Эффективная нагрузка:

$$P_{\vartheta\phi} = \sqrt{\frac{1}{24} \sum_{i=1}^{n} P_i^2 \cdot t_i}$$

$$Q_{\vartheta\phi} = \sqrt{\frac{1}{24} \sum_{i=1}^{n} Q_i^2 \cdot t_i}$$
(5)

Максимальная нагрузка:

$$P_{max} = P_{cp}(1+1,96\sqrt{K_{\phi p}^2 - 1})$$

$$Q_{max} = Q_{cp}(1+1,96\sqrt{K_{\phi p}^2 - 1})$$
(6)

где P_{cp} , Q_{cp} - средняя нагрузка;

 $P_{\scriptscriptstyle{
m max}}$, $Q_{\scriptscriptstyle{
m max}}$ - максимальная нагрузка;

 $K_{\scriptscriptstyle o}$ - коэффициент формы.

Минимальная нагрузка:

$$P_{min} = P_{cp}(1 - 1,96\sqrt{K_{\phi p}^2 - 1})$$

$$Q_{min} = Q_{cp}(1 - 1,96\sqrt{K_{\phi p}^2 - 1})$$
(7)

Коэффициент формы определяется следующим образом:

$$K_{\phi p} = P_{\rho \phi} / P_{cp}$$

$$K_{\phi O} = Q_{\rho \phi} / Q_{cp}$$
(8)

где $P_{\imath\phi}$, $Q_{\imath\phi}$ - соответственно эффективная активная и реактивная мощность

Вероятностные характеристики на примере трех ПС представлены в таблице 1

Таблица 1 – Вероятностные характеристики

Время	ПС	Pcp	Рэф	Pmax	Pmin	Qcp	Qэф	Qmax	Qmin
Зима	A	80.60	80.64	84.85	76.37	83.87	83.87	85.11	82.63
Лето	A	78.19	78.22	82.30	74.08	82.19	82.19	83.41	80.97
Год	A	79.40	79.44	84.2	74.60	83.03	83.04	85.08	80.98
Зима	Б	9.52	9.80	14.02	5.09	5.08	5.23	7.59	2.56
Лето	Б	7.57	7.76	10.97	4.16	2.75	2.84	4.12	1.38
Год	Б	8.55	8.84	12.99	4.12	3.91	4.21	6.96	0.86
Зима	В	6.12	6.30	9.01	3.23	3.26	3.37	4.88	1.65
Лето	В	4.87	4.99	7.05	2.68	1.77	1.82	2.65	0.88
Год	В	5.49	5.68	8.34	2.65	2.51	2.71	4.48	0.55

Далее проводится анализ полученных графиков, определяются их коэффициенты и режимные характеристики сети.

Практическое занятие № 2.

Разработка и технический анализ вариантов конфигураций электрических сетей. Определение рационального напряжения сети.

Цель занятия: научиться составлять технически осуществимые варианты конфигурации электрических сетей и отбирать конкурентно-способные для дальнейшего анализа. Для выбранного или заданного варианта схемы соединения сети определить номинальное напряжение сети.

При составлении схем конфигураций электрической сети целесообразно пользоваться следующими принципами:

- а) разветвление сети только в узле нагрузки;
- б) исключение обратных потоков мощности в разомкнутых сетях;
- в) в кольцевых сетях только один уровень напряжения;
- г) применение простых с минимальным количеством трансформаций РУ ПС;
- д) магистрально-радиальные цепи имеют по сравнению с кольцевыми большую протяженность ВЛ в одноцепном исполнении, менее сложные схемы РУ, меньшую стоимость потерь электроэнергии. Кольцевые сети более надежны, удобны при диспетчерском управлении;
 - е) возможность развития электрических нагрузок в пунктах потребления.

Сопоставляя между собой по 2 похожих варианта конфигурации электрической сети, отбирают 3-4 для дальнейшего технического анализа.

При анализе отобранных вариантов проверяют их техническую осуществимость и выбирают два конкурентно-способных варианта, один из которых имеет наименьшую суммарную длину линий в одноцепном исполнении, второй — наименьшее количество выключателей.

Примеры такого анализа приведены в примере расчета курсового проекта по данной дисциплине в п. 5.

Рекомендуется начинать выбор напряжения с наиболее загруженного головного участка. Выбор напряжения нужно осуществлять двумя способами: по эмпирическим формулам (Стилла, Илларионова или Залесского) и по номограммам.

Пример выбора номинального напряжения сети приведен в примере выполнения курсового проекта (см. п.5).

Практическое занятие № 3.

Выбор числа и мощности силовых трансформаторов на ПС. Выбор и проверка сечений воздушных и кабельных линий

Цель занятия: научиться выбирать для выбранного или заданного варианта схемы соединения сети число и мощность силовых трансформаторов понизительных подстанций, научиться выбирать и проверять сечения ЛЭП различными методами.

Прежде чем выбирать силовые трансформаторы и сечения линий, необходимо осуществить поперечную компенсацию реактивной мощности в сети. Компенсирующие устройства выбираются по параметрам зимнего режима на основе решения трех задач компенсации реактивной мощности. По параметрам летнего режима проверяется целесообразность отключения части из них.

Пример выбора компенсирующих устройств показан в п. 5 при выполнении курсового проекта.

Мощность силовых трансформаторов следует выбирать по средней зимней нагрузке, проверять по максимальной нагрузке.

Силовые трансформаторы также проверяются на перегрузочную способность в послеаварийном режиме. Затем осуществляется проверка по летнему режиму и делается вывод о целесообразности одновременной работы двух трансформаторов на подстанции.

Для ВЛ напряжением 110 кВ и выше сечения проводов выбирают методом экономических токовых интервалов в зависимости от региона, где проектируется линия.

Для ВЛ и кабельных линий напряжением 6-35 кВ сечения выбирают по допустимой потере напряжения.

Выбранные сечения проверяют по нагреву длительно допустимым током в нормальном и послеаварийном режимах.

В КЛ 110 кВ и выше сечения выбирают по нагреву длительно допустимым током в нормальном режиме и проверяют по нагреву в послеаварийных режимах.

Пример выбора сечений проводов ВЛ показан в п. 5 настоящего УМКД при выполнении курсового проекта, а также ниже.

Пример

Выбрать сечение проводов двухцепной ВЛ 220 кВ, питающей подстанцию с трехобмоточными трансформаторами.

Решение

Определяем суммарную нагрузку двух СТ:

$$S_{\Sigma} = P_c + P_H + j (Q_c + Q_H).$$

Определяем ток, протекающий через обмотку ВН трансформатора
$$I_{pacu.} = \frac{S \Sigma 2}{\sqrt{3 \ U_{Hom} \cdot 2}} = \frac{\sqrt{(Pc + Ph)^2 + (Qc + Qh)^2}}{2 \sqrt{3 \ U_{Hom}}}.$$

Определяем максимальный расчетный ток линии.

$$I = \alpha_i \alpha_T I_{pacu} = 1.05 \alpha_T I_{pacu}$$

По максимальному расчетному току линии с учетом района по гололеду и вида опор для заданного района РФ выбираем сечение линии по экономическим токовым интервалам.

Практическое занятие № 4. Расчет экономических показателей электрических сетей

Цель занятия: научиться определять экономические показатели электрической сети.

К технико-экономическим показателям электрической сети относятся: капитальные вложения в проектируемую сеть, эксплуатационные издержки.

Капитальные вложения в электрическую сеть определяются по формуле:

$$K=K_{BJ}+K_{IIC}$$

где К_{ВЛ} - капитальные вложения в воздушные линии;

K_{ПС} − капитальные вложения в подстанции.

Капитальные вложения в воздушные линии определяются по формуле:

$$K_{RJ}=K_{\theta}\cdot l\cdot K_{mn}$$

где K_0 - стоимость одного километра линии;

1 – длина линии по кратчайшему геометрическому расстоянию;

 K_{TP} - коэффициент трассы.

Капитальные вложения в подстанции определяются по формуле:

$$K_{nc}=K_{py}+K_{mp}+K_{\kappa y}+K_{nocm},$$

где K_{py} , $K_{\tau p}$, $K_{\kappa y}$, K_{noct} — соответственно стоимость распределительных устройств подстанций, стоимость трансформаторов, компенсирующих устройств, постоянная часть затрат, определяются по укрупненным показателям, например, по [9].

Эксплуатационные издержки состоят из амортизационных отчислений, отчислений на ремонт и обслуживание и стоимости потерь электроэнергии. Они также определяются для линий и подстанций:

$$\boldsymbol{H} = \boldsymbol{H}_{BJ} + \boldsymbol{H}_{nc} = (\boldsymbol{\alpha}_{a.n} + \boldsymbol{\alpha}_{pn} + \boldsymbol{\alpha}_{on}) \cdot \boldsymbol{K}_{BJ} + (\boldsymbol{\alpha}_{a.nc} + \boldsymbol{\alpha}_{pnc} + \boldsymbol{\alpha}_{onc}) \cdot \boldsymbol{K}_{nc} + \boldsymbol{H}_{\Delta W}$$

Стоимость потерь электроэнергии определяется по формуле:

$$H_{\Delta W} = C_o \cdot \Delta W$$

где C_0 – тариф на технологические потери электроэнергии;

 ΔW — потери электроэнергии в сети, в данном случае в линиях и трансформаторах, компенсирующих устройствах.

Пример расчета экономических показателей приведен в примере курсового проекта (см. п. 5 настоящего УМКД).

Практическое занятие № 5

Выбор оптимального варианта схемы электрической сети.

Цель занятия: научиться выбирать оптимальный вариант схемы электрической сети Оптимальный вариант электрической сети может выбираться либо с помощью чистого дисконтированного дохода (ЧДД), либо с помощью среднегодовых эксплуатационных расходов, как частного случая ЧДД, в зависимости от поставленной задачи и имеющихся исходных данных.

Ниже показано как выбирать оптимальный вариант с помощью среднегодовых эксплуатационных затрат:

$$3 = E \cdot K + U$$

где E – норматив дисконтирования, определяемый по ставке рефинансирования Центробанка $P\Phi$.

Такие затраты рассчитываются для выбранных конкурентоспособных вариантов, оптимальным считается тот вариант, у которого эти затраты меньше. Если затраты отличаются не более, чем на 5%, то варианты сети считаются экономически одинаковыми, тогда принимается тот вариант, у которого больше технических преимуществ, либо стоимость потерь электроэнергии ниже.

Пример выбора оптимального варианта сети приведен в п.5

Практическое занятие № 6

Регулирование напряжения в электрической сети. Продольная компенсация реактивной мощности в сети.

Цель занятия: научиться определять параметры устройств продольной компенсации (УПК), обеспечивающие желаемые уровни напряжения в сети.

Приводится алгоритм решения задачи продольной компенсации реактивной мощности, показывается ее область применения.

Алгоритм этой задачи продемонстрирован на примере для лучшего понимания.

Пример

Определить необходимое число конденсаторов, $U_{\text{ном}}$ и установленную мощность БК, если районная понижающая ПС связана с ЦП одноцепной ВЛ с U = 110 кВ длиной 80 км ($Z_{\rm Л} = 21+j~34~{\rm Om}$). Расчетная наибольшая нагрузка потребителей ПС S = 22+ $j~20~{\rm MBA}$. По условиям работы потребителей потери напряжения в ВЛ не должны быть более 6%.

Решение

1) Определим потери напряжения в ВЛ без конденсаторов. Расчет выполним без учета потерь мощности в ВЛ:

$$\Delta U = \frac{PR + QX}{U} = \frac{22 \cdot 21 + 20 \cdot 34}{110} = 10,4 \text{ kB}.$$

2) Определим допустимое значение потерь U в кВ:

$$\Delta U \partial on = \frac{\Delta U_{\partial on} \% \ U_{HoM}}{100} = \frac{6 \cdot 110}{100} = 6.6 \ \kappa B$$

3) Определим сопротивление БК, снижающих потери U в ВЛ до $U_{\text{доп}}$, из уравнения

$$\Delta U_{\partial on} = \frac{PR + Q (X_{en} - X_{EK})}{U_{Hom}},$$

$$X_{EK} = rac{PR + Q \, X_{e\pi} - \Delta U_{\partial on} \, U_{Hom}}{Q} = rac{22 \cdot 21 + 20 \cdot 34 - 6,6 \cdot 110}{20} = 24,1 \, Om.$$

4) найдем ток в ВЛ при заданной расчетной нагрузке:

$$I_{BJI} = \frac{\sqrt{P^2 + Q^2}}{U_3 \ U_{HOM}} = \frac{\sqrt{22^2 + 20^2}}{U_3 \cdot 110} \cdot 10^3 = 157 \ A.$$

5) Примем однофазные стандартные конденсаторы для снижения потерь напряжения, включаемые последовательно в каждую фазу, типа КС 2A-0,66 – 40 мощность 40 квар, $U_{\text{ном}} = 0,66 \text{ kB}$.

Найдем номинальный ток конденсаторов.

$$I_{K HOM} = \frac{Q_{HOM}}{U_{HOM}} = \frac{40000}{660} = 60,6 A$$

Для получения расчетного тока ВЛ число конденсаторов, включенных параллельно в одну фазу должно быть больше отношения r_n , равно

$$r_{n,} = \frac{I_{6\pi}}{I_{KHOM}} = \frac{157}{60,6} = 2,59.$$

Примем число параллельно включаемых конденсаторов 3.

6) Определим сопротивление конденсаторов КС 2A-0,66-40

$$X_{\kappa \, HOM} = \frac{U_{\kappa \, HOM}}{I_{\kappa \, HOM}} = \frac{660}{60,6} = 10,9 \, OM.$$

7) Определим число конденсаторов n, включенных последовательно, зная сопротивление каждого конденсатора и число их параллельных ветвей из уравнения:

$$\frac{X_{\kappa \text{ ном}} \cdot n}{K} = X_{K}$$
, где К - число параллельных ветвей.

Откуда

$$n = \frac{K X_{EK}}{X_{KHOM}} = \frac{3 \cdot 24,1}{10,9} = 6,63.$$

Примем n = 7.

8) Определим общее число конденсаторов в одной и трех фазах ВЛ:

$$n_o = n \cdot \kappa = 3 \cdot 7 = 21$$
 – в одной фазе;

$$n_3 = 3n_0 = 3.21 = 63 - B$$
 Tpex фазах.

9) Определим установленную мощность БК:

$$Q_{vcm} = n_3 Q_K = 63 \cdot 40 \cdot 10^{-3} = 2,52 \text{ MBap.}$$

10) Определим номинальное напряжение БК:

$$U_{EK HOM} = U_{K HOM} n = 0.66 \cdot 7 = 4.62 \text{ KB}.$$

11) Номинальный ток БК

$$I_{EK \text{ HOM}} = I_{K \text{ HOM}} \ K = 3 \cdot 60, 6 = 181, 8 \ A.$$

12) Определим действительное сопротивление БК с учетом принятого числа конденсаторов:

$$X_{EK} = \frac{X_K \cdot n}{\kappa} = \frac{10.9 \cdot 7}{3} = 25.4 \text{ Om.}$$

13) Определим фактическую потерю напряжения в ВЛ при установке УПК:

$$\Delta U = \frac{PQ + (X_{BJI} - X_{EK})}{U_{HOM}} = \frac{22 \cdot 21 + 20 (34 - 25, 4)}{110} = 5,77 \,\kappa\text{B} < 6,6 \,\kappa\text{B},$$

т. е меньше допускаемой величины

Практическое занятие № 7.

Регулирование напряжения с помощью синхронных компенсаторов, СТК.

Цель занятия: научиться выбирать мощность компенсирующего устройства, необходимого для обеспечения желаемого напряжения сети.

Показывается какие устройства можно использовать для регулирования напряжения. Приводится алгоритм выбора компенсирующих устройств, предназначенных для поддержания желаемого напряжения для ПС с двухобмоточными и трехобмоточными трансформаторами или автотрансформаторами.

Данные алгоритмы демонстрируются примерами.

Регулирование напряжения в сети с помощью синхронных компенсаторов.

Компенсатор выбирается из условия поддержания желаемого U на сторонах СН и HH.

Вспомним формулу потерь напряжения:

$$\Delta U = \frac{PR + QX}{U}.$$

Распишем суммарную потерю напряжения в схеме с трехобмоточным трансформатором (автотрансформатором)

$$\Delta U = \frac{(P_{cH} + P_{HH}) (R_{6A} + R_{m6}) + P_{cH} R_{mc} + P_{HH} R_{mH}}{U_{1}} + U_{1}$$

$$+ J \frac{(Q_{cH} + Q_{HH} - Q_{cH}) (X_{6A} + X_{m6}) + Q_{cH} X_{mc} + (Q_{HH} - Q_{cH}) X_{mH}}{U_{1}}$$

Из данного выражения найдем необходимую мощность синхронного компенсатора Оск

$$Q_{CK} = \frac{P_{CH} (R_{6A} + R_{m6} + R_{mc}) + P_{HH} (R_{6A} + R_{m6} + R_{mH}) + Q_{CH} (X_{mc} + X_{m6} + X_{6A}) +}{X_{6A} + X_{m6} + X_{mH}} + \frac{Q_{HH} (X_{mH} + X_{m6} + X_{6A}) - \Delta U_{\Sigma} U_{1}}{1}$$

Здесь неизвестно ΔU_{Σ} .

Запишем выражение для
$$\Delta U_{\text{сн}}$$
 и $\Delta U_{\text{нн}}$ $\Delta U_{\text{сн}} = U_{I}$ $\Delta U_{CH} = U_{CH} = U_{CH}$ $\Delta U_{CH} = U_{CH}$ $\Delta U_{CH} = U_{CH}$

$$arDelta \; U_{
m HH} \; = U_1 - \; U_{
m HH} \; = U_{
m HH} \; rac{U_1}{U_{
m HH \; HOM}}$$

Тогда
$$\Delta U_{cH} + U_{HH} = \Delta U_{\Sigma}$$
.

$$\Delta U_{\Sigma} = 2 \ U_{1} - U_{ch} - U_{hh} = 2 \ U_{1} - U_{ch}$$
 $U_{ch} - U_{hh} = U_{hh} - U_{ch}$ $U_{ch} - U_{hh} - U_{$

Студентам раздаются индивидуальные задания для решения аналогичных задач.

Практическое занятие № 8.

Преобразование и эквивалентирование схем электрических сетей сложной конфигурации.

Цель занятия: овладеть упрощающими преобразованиями сети, научиться составлять ленточные матрицы, делить системы на подсистемы, пользоваться методом диакоптики.

При эквивалентировании систем большой сложности способ или метод целесообразно выбирать в зависимости от вида схемы сети (цепочная, многоконтурная и т.д.), системы уравнений узловых напряжений (линейная, нелинейная), цели эквивалентирования.

Примеры использования упрощающих преобразований показаны в [4].

Практическое занятие № 9.

Определение потерь электроэнергии в электрической сети

Оценка допустимости неполнофазных режимов. Обзор задач по всем темам.

Цель занятия: научиться определять составляющие потерь электроэнергии согласно приказу № 326 Минэнерго РФ. Также на этом занятии необходимо рассмотреть допустимость неполнофазных режимов, систематизировать практические навыки, полученные в семестре, при изучении данной дисциплины.

Приводятся алгоритмы определения составляющих потерь электроэнергии и сами примеры. При этом используется [12].

Вторая часть практического занятия посвящена оценке допустимости неполнофазных режимов, алгоритм которой продемонстрирован следующим примером.

Проверить возможность неполнофазного режима при отключении одной фазы воздушной линии напряжением 110 кВ, питающей трехфазный трансформатор Т мощностью 40 МВА с коэффициентом трансформации 110/10 кВ. Обмотки трансформатора соединены по схеме Y_{-0}/Δ . Наибольшая мощность суммарной нагрузки на стороне 10 кВ трансформатора Т равна 15+j7,5 МВА. Мощность трехфазного к.з. на шинах 110 кВ трансформатора Т равна 2000 МВА.

Решение

Проверка возможности неполнофазного режима должна производиться по следующим параметрам:

- 1) уменьшению напряжения прямой последовательности на шинах 10 кВ;
- 2) величине напряжения обратной последовательности на этих же шинах;
- 3) значением токов в обмотках трансформатора Т и заземляющем устройстве.

Расчет выполняем в относительных единицах (о.е.) За базисные значения принимаем номинальное напряжение сети и мощность трансформатора $S_{\text{тном}}$: U_6 =10кB; S_6 =40 MBA.

Для выполнения расчета применяется схема замещения для расчета параметров при разрыве одной фазы.

Примем, что эквивалентное сопротивление системы одинаково для всех трех последовательностей и является чисто реактивным.

1) Определим сопротивление системы:

$$X_c = \frac{S_o}{S_{\kappa,3}} = \frac{40}{2000} = 0.02.$$

2) Определим индуктивное сопротивление трансформатора $X_{\scriptscriptstyle T}$ = $U_{\scriptscriptstyle K}$ для всех трех последовательностей в о.е. Активное сопротивление и ветвь намагничивания в схеме за-

мещения CT в данном случае не учитываются ввиду их относительной малости. $X_{\rm T}$ = 0,105.

Определим сопротивление обратной последовательности нагрузки на стороне 10κB.

В о.е. при токе промышленной частоты для нагрузки, присоединенной к сети 6-10 кВ, $Z_{2*} = 0.18 + j 0.24$, присоединенной к сети 110 кВ, $Z_{2*} = 0.19 + j 0.36$.

С учетом относительной мощности нагрузки, равной:

С учетом относительной мощности наг
$$\frac{S_{\text{нагр}}}{S_{\text{тигом}}} = \frac{\sqrt{(15^2 + 7.5^2)}}{40} = \frac{16.8}{40} = 0.42.$$

Сопротивление обратной последовательности нагрузки на стороне 10 кВ равно:

$$Z_{2H} = Z_{2*} \frac{S_{Hazp}}{S_{MHOM}} = (0.18 + j 0.24) \frac{40}{16.8} = 0.428 + j 0.572.$$

Определим эквивалентное сопротивление схемы обратной последовательности:

$$Z_{2\Sigma} = jX_c + jX_m + Z_{2H} = j 0.02 + j 0.105 + 0.428 + j 0.572 = 0.428 + j 0.697.$$

Определим эквивалентное сопротивление схемы нулевой последовательности $Z_{o\Sigma} = jX_c + jX_m = j \ 0.02 + j \ 0.105 = j \ 0.125.$

3) Заменим разветвление из схем обратной и нулевой последовательности эквивалентным сопротивлением (они соединены параллельно).

$$Z_{\Delta} = \frac{Z_{\Sigma}Z_{o\Sigma}}{Z_{2\Sigma} + Z_{o\Sigma}} = \frac{(0.428 + j\ 0.697)\ j\ 0.125}{0.428 + j\ 0.697 + j\ 0.125} = 0.008 + j\ 0.11.$$
 Это сопротивление Z_{Δ} является добавочным в схеме прямой последовательности

и потому вызывает дополнительную потерю напряжения.

4) Определим в о.е. ток прямой последовательности:

$$I_1 = \frac{S_H}{S_{m \text{ nom}}} = \frac{15 + j 7.5}{40} = 0.375 + j 0.187$$

5) Определим дополнительное снижение напряжения прямой последовательности на шинах 10 кВ ПС, с учетом того, что при расчете в о.е. коэффициент U₃ не вводится.

$$\Delta U_1 = I_{1a}R_{\Delta} + I_{1p}X_{\Delta} = 0.375 \cdot 0.008 + 0.187 \cdot 0.11 = 0.0242$$
.

Эта величина составляет 2,42 %, т.е. невелика. При наличии устройств РПН требуемый режим напряжения может быть обеспечен.

6) Ток обратной последовательности в питающей сети 110 кВ:

$$\dot{I}_{2} = -\dot{I}_{1} \frac{\dot{Z}_{\Delta}}{\dot{Z}_{2\Sigma}} = -(0.375 + j \ 0.187) \frac{0.008 + j \ 0.11}{0.428 + j \ 0.677} = -(0.031 + j \ 0.038) \text{ o.e.}$$

Модуль этого тока равен $\dot{I}_2 = 0.05$.

7) Определим относительное напряжение обратной последовательности на шинах 10 кВ при сопротивлении нагрузки по модулю, равном

$$Z_{2H} = \sqrt{Z_{2H}^2}_a + Z_{2H}^2_p = \sqrt{0.428^2 + 0.572^2} = 0.715$$
.
 $U_2 = I_2 Z_{2H} = 0.05 \cdot 0.715 = 0.0358 \text{ unu } 3.6 \%$.

Полученная несимметрия напряжения практически относится к зажимам ЭП независимо от места их подключения, т.к. сопротивление распределительной сети относи-

Такая несимметрия может оказаться недопустимой для осветительной нагрузки и для ЭД. Допустимость работ ЭП с такой несимметрией требует дополнительной проверки.

8) Ток нулевой последовательности в сети 10 кВ отсутствует, т.к. обмотка вторичного напряжения соединена в Δ .

Определим ток нулевой последовательности в питающей сети 110 кВ по выражению:

$$\dot{I}_{o} = -\dot{I}_{1} \frac{\dot{Z}_{\Delta}}{\dot{Z}_{o\Sigma}} = -(0.375 + j 0.187) \frac{0.008 + j 0.11}{j 0.125} = -(0.338 + j 0.143) \text{ o.e.}$$

Модуль тока нулевой последовательности равен $\dot{I}_0 = 0.368$.

9) Действительный ток, проходящий по заземляющему устройству, равен:

$$\dot{I}_3 = 3 \dot{I}_0 \frac{S_{\delta}}{U_3 U_{\delta}} = 3 \cdot 0.368 \frac{40000}{U_3 \cdot 110} = 232 A$$

Это достаточно большой ток. Допустимость длительного прохождения столь большого тока по устройствам заземления требует дополнительной проверки.

10) Определим токи в фазах трансформатора подстанции по выражению:

$$\dot{I} = \dot{I}_{1} \dot{S}_{1} + \dot{I}_{2} \dot{S}_{2} + \dot{I}_{o} \dot{S}_{o},$$
 $\Gamma \partial e \dot{S} = \| \dot{S} \dot{S} \dot{S} \| = \| 1 \ 1 \ 1 \|$ - матрица системы симметричных координат а $a \ a \ 1 \|$ координат

$$I = \begin{bmatrix} 0 \\ 0.65 \\ 0.72 \end{bmatrix}$$

Полученные результаты показывают, что токи в фазах трансформатора не превышают номинальных. В данном случае это очевидно, связано с тем, что в нормальном режиме трансформатор загружен всего на 42 %. При работе трансформатора с большим коэффициентом загрузки в нормальных условиях его перегрузка при отключении одной фазы могла оказаться недопустимой. Т.о., рассматриваемый режим нельзя признать безусловно допустимым по всем параметрам. В частности требуется симметрирование U в распределительной сети.

4. ЛАБОРАТОРНЫЕ ЗАНЯТИЯ

При изучении данной дисциплины предусмотрено проведение шести лабораторных работ (ЛР), перечень которых приведен ниже.

ЛР № 1. Построение и анализ графиков электрической нагрузки подстанций – 2 чаca.

ЛР № 2. Исследование симметричного установившегося режима работы разомкнутой электрической сети – 4 часа.

ЛР № 3. Исследование симметричного установившегося режима работы замкнутой сети с двумя источниками питания – 4 часа.

ЛР № 4. Расчет установившегося режима с помощью промышленных ПВК: СДО – 6 и RastrWin – 4 часа.

ЛР № 5. Исследование несимметричного установившегося режима работы электрической сети – 2 часа.

ЛР № 6. Регулирование напряжения и активной мощности генератора, работающего в параллель с электрической системой – 2 часа.

Выполнение лабораторных работ № 2, 3, 5, 6, 7 предусмотрено с помощью лабораторного комплекса «Электроэнергетика. Модель одномашинной системы».

Выполнение лабораторных работ № 1, 4 осуществляется на ПК с помощью программ «Расчет сети», CUPS PM – лабораторная работа №1, и ПВК СДО – 6 и RastrWin.

Описание лабораторных работ и указания к их выполнению приведены в [17].

5. КУРСОВОЕ ПРОЕКТИРОВАНИЕ

5.1. Методические указания по выполнению курсового проекта

Задание на курсовой проект

ЗАДАНИЕ №									
на курсовой проект по дисциплине «Электроэнергетические системы и сети»									
Студент	группа Дата выдачи задания «» г.								
Тема проекта: «Проектирование районной электрической сети»									
Спроектировать э									
Географическо	е расположение и						й Вост	ок Росс	сии
	Данные о п	отре	ебител	ях элеі	строэн	_			
Данн	ные					Пункт	1	_	2.72
, ,			Α	Б	В	Γ	Д	Е	Ж
Максимальная нагрузн									
Коэффициент реактив:	ной мощности на-								
грузки, tgф									
Структура электропот	ребления (№ вар.)								
Состав потребителей	1 категория								
по категориям, %	2 категория								
по категориям, 70	3 категория								
Желаемое напряжение	вторичной сети, і	κB							
Наименование источн	ика								
Напряжение на шина:	х источника при			ŢŢ				TT	
наибольших нагрузках	к, кВ			U _{ног}	М			$_{\rm U_{HOM}}$	
при наименьших нагрузках, кВ				U _{ном}			U _{ном}		
при тяжелых авария		U _{HOM} U _{HOM}							
Для всех пунктов:									
Продолжительность использования наибольшей нагрузки Тмакс час									
Стоимость 1 кВт-ч потерянной электроэнергии руб/кВт-ч									
Схема сети									

Приложение к заданию

на курсовой проект по дисциплине «Электроэнергетические системы и сети».

Таблица 1 – Структура электропотребления

Отношение нагрузки к суммарной установленной мощности подстанции, %							
	Вариант Вариа					ариан	ΙΤ
Потребитель	пь 1 2 3 Потребитель		Потребитель	4	5	6	
Чёрная металлургия	40	50	35	Цветная металлургия	60	55	65
Станкостроение	15	10	20	Металлообработка	20	15	10
Металлообработка	20	15	10	Пищевая промышленность	5	10	5
Пищевая промышленность	10	15	15	Лёгкая промышленность	10	5	5
Город	15	10	20	Город	5	15	15
	В	ариа	HT		Ba	ариан	ΙΤ
Потребитель	7	8	9	Потребитель	10	11	12
Нефтепереработка	35	40	30	Угледобыча	25	30	35
Станкостроение	20	25		Металлообработка	30	20	25
Деревообработка	15	20	10	Станкостроение	30	25	20
Лёгкая промышленность	10	10	10	Деревообработка	10	5	15
Город	20	5	20	Город	5	20	5
		ариа				ариант	
Потребитель	13	14	15	Потребитель	16	17	18
Химическая промышленность	70	65	60	Сельское хозяйство	40	55	50
Лёгкая промышленность	10	15		Пищевая промышленность	35	25	20
Город	20	20	20	Лёгкая промышленность	25	20	30
		ариа			Вариан		
Потребитель	19	20	21	Потребитель	22	23	24
Угледобыча	30	25	25	Сельское хозяйство	60	65	55
Деревообработка	25	35		Пищевая промышленность	20	20	23
Сельское хозяйство	45	40	50	Лёгкая промышленность	20	15	22
		ариа			Вариа		
Потребитель	25	26	27	Потребитель	28	29	30
Угледобыча	20	25	20	Сельское хозяйство	50	45	60
Деревообработка	20	20	15	Пищевая промышленность	27	30	30
Сельское хозяйство	60	55		Лёгкая промышленность	23	25	10
		Вариант		Вари			
Потребитель	31	32	33	Потребитель	34	35	36
Чёрная металлургия	100	_	_	Цветная металлургия	100	_	_
Станкостроение	_	100	_	Нефтепереработка	_	100	_
Металлообработка		_		Лёгкая промышленность	_	_	100
Вариа		HT			Т		
Потребитель	37	38					
Химическая промышлен.	100	_					
Деревообработка	_	100					

В ходе проектирования необходимо выполнить следующие разделы.

- 1. Энергоэкономическая характеристика района.
- 1.1. Характеристика источников питания.
- 1.2. Характеристика потребителей (структура электропотребления, категорийность, режим работы, влияние на сеть энергосистемы).
- 1.3. Климатические условия (средние, минимальные и максимальные температуры, глубина и температура промерзания грунта, районы по толщине стенки гололёда и скоростному напору ветра).

- 1.4. Географические условия.
- 2. Расчёт вероятностных и режимных характеристик потребителей.
- 3. Отбор конкурентоспособных вариантов.
- 4. Баланс активной и реактивной мощностей.
- 5. Технический анализ четырёх вариантов.

Для каждого из четырёх вариантов необходимо осуществить выбор номинального напряжения; выбор числа и мощности силовых трансформаторов, сечений проводов ВЛ с учётом компенсации реактивной мощности; выбор схем распределительных устройств ВН и СН (если есть). Отбор двух вариантов осуществляется по минимуму суммарной длины трасс ВЛ в одноцепном исполнении, суммарного количества выключателей и минимуму ступеней трансформации.

- 6. Выбор оптимального варианта (осуществляется по критерию сравнительной эффективности максимуму ЧДД, частный случай ЧДД среднегодовые затраты).
- 7. Расчёт установившихся режимов.
- 7.1. Ручной расчёт максимального установившегося режима.
- 7.2. Расчёт в программе СДО 6 или RASTR максимального, минимального и послеаварийного режимов.
- 8. Регулирование напряжения в принятом варианте сети.
- 9. Анализ установившихся режимов.
- 10. Определение себестоимости передачи электроэнергии.
- 11. Задание для углублённой проработки (например, способы регулирования напряжения).

Опыт подготовки инженеров-электроэнергетиков убедительно показал существенное значение выполнения студентами курсового проекта, в котором в конкретной форме прорабатываются основы проектирования районных или распределительных электрических сетей 110(35)—220 кВ, обеспечивающих надежную и экономичную работу электроэнергетических систем.

Такая роль проекта определяется: во-первых, тем, что здесь студенты впервые решают конкретную задачу формирования комплекса линий электропередачи, подстанций, средств компенсации реактивных нагрузок и т. п. и их характеристик на основе специальных технических, технико-экономических и нормативных требований, обеспечивающих необходимое качество работы собственно проектируемой электрической сети, а также электроснабжения потребителей; во-вторых, эти непростые задачи должны решаться студентами в основном самостоятельно на основе комплекса знаний закономерностей электротехники, теории электрических сетей и с привлечением некоторых материалов курсов по электрическим машинам, электротехническим материалам и т. п.

Многосторонность вопросов проектирования электрических сетей энергосистем, ограниченное время работы студентов над проектом и незавершенность (в период работы над проектом) полного цикла высшего электроэнергетического образования обуславливает допущения и упрощения выполнения некоторых расчетов и принятия решений (не приводящие к принципиальным, качественным или недопустимым погрешностям), которые оговариваются в методических указаниях.

Исходя из учебно-методических установок и назначения курсового проектирования, как одной из основных форм самостоятельной учебной работы студентов, данные указания составлены в форме научно-технических консультаций и без дублирования лекционных и литературных материалов по вопросам электрических сетей.

1. Содержание и основные разделы курсового проекта

Проектирование электроэнергетических систем должно решать задачи формирования целесообразного комплекса электрических станций, линий электропередачи и понижающих подстанций, обеспечивающих высококачественное электроснабжение всех потребителей рассматриваемого региона (промышленность, транспорт, коммунальнобытовой комплекс, сельскохозяйственные производства и населенные пункты). При этом современная трактовка «целесообразного» выполнения энергосистемы подразумевает не только экономическую эффективность ее осуществления, но и соответствие требованиям охраны природы и экологической среды человека, технической эстетики, учета развития как потребителей электроэнергии, так и иных факторов народного хозяйства страны и т. п. В успешном решении данных задач очевидна роль научно-грамотного формирования конфигураций, схем и выбора параметров электрических сетей районов, являющихся связующей подсистемой между электрическими станциями и электроустановками непосредственных потребителей электроэнергии. В настоящее время в нашей стране, как и в иных индустриально развитых странах большая часть электрических сетей указанного назначения осуществляется при напряжениях классов 110—115 и 220—230 кВ. Протяженность электрических сетей 35—220 кВ в электроэнергетических системах составляет около 90% суммарной протяженности электросетей 35—1150 кВ.

Развитие современных электроэнергетических систем, имея в виду их базовое значение в индустриальном и социальном развитии страны, необходимо прогнозировать на 15 — 25 лет вперед. Планирование развития и проектирование конкретных электросетей районов осуществляется с прогнозом электропотребления, электрических нагрузок, состава электростанций и т. п. — на 10 — 15 лет. При этом неизбежна ограниченность достоверности указанных выше и иных исходных условий проектирования.

В данном курсовом проекте осуществляется «эскизное» проектирование электрических сетей заданного района с пятью — семью пунктами потребления электроэнергии, в которых будут сооружаться понижающие напряжение подстанции. Источником питания может быть крупная электростанция или подстанция 220—750 кВ, входящая в состав объединенной электроэнергетической системы. В отдельных случаях могут быть указаны два источника питания, но в таких заданиях для одного из них обязательно задаются графики выдачи активной и реактивной мощностей. В предшествующем и последующем текстах номинальное напряжение 35 кВ записывается в скобках в связи с ограниченной пропускной способностью линий электропередачи (ЛЭП) данного напряжения, что обусловливает тенденции ограничения их развития; применение данного напряжения находит применение в основном в электроснабжении сельскохозяйственных районов.

Каждому студенту в индивидуальном задании на проект указываются:

- а) схема географического расположения источника питания района, пунктов потребления электроэнергии, а также район страны, в котором проектируется электрическая сеть;
- б) номинальные напряжения распределительных устройств источников питания (35—110—220 кВ), от которых может осуществляться электроснабжение рассматриваемого района;
- в) максимальные электрические нагрузки (активные и коэффициент реактивной мощности) в каждом из пунктов потребления электроэнергии, а также продолжительность использования наибольших нагрузок в год и состав потребителей электроэнергии по требованиям надежности электроснабжения;
 - г) конкретизация состава расчетов, выполняемых на ПК.

При выполнении проектов, как правило, следует предполагать, что номинальное напряжение распределительных электросетей в пунктах потребления электроэнергии равно 10 кВ; в соответствии с нормами и международными тенденциями следует исключать перспективы применения напряжения 6 кВ.

Могут быть заданы типовые суточные графики потребления активной и реактивной мощности в заданных пунктах или структура электропотребления по ПС. Вместе с тем в той части заданий, где не указаны типовые графики электрических нагрузок, для всех пунктов подразумевается характерный суточный график активной нагрузки с вечерним максимумом (в зимнее время) в период 17—20 часов, с нагрузками в период 9—12 час, равными 80—90% от максимальных и с минимальными нагрузками в период 0—6 ч.

Характерные разделы курсового проекта и ориентировочные значения их относительного объема (по трудозатратам) - следующие:

- 1. Ознакомление с заданием на проект, с методическими указаниями, формирование конкретных условий, задач и плана выполнения проекта—5%.
- 2. Потребление активной мощности и баланс реактивной мощности в проектируемой сети 10%.
- 3. Выбор схемы и основных параметров линий электропередачи и понижающих подстанций сети 40%.
- 4. Овладение алгоритмом и использованием программы автоматизированного расчета на ЭВМ 15%.
 - 5. Расчеты параметров основных режимов работы сети 15%.
 - 6. Регулирование напряжения на подстанциях сети 10%.
- 7. Основные технико-экономические показатели спроектированной электрической сети 5%.

В указанные выше объемы разделов проекта входят и трудозатраты на написание и корректировку (по рекомендациям преподавателей) материалов расчетно-пояснительной записки и чертежей. Необходимо иметь в виду трудоемкость этой работы, составляющей не менее 10—15% общего рабочего времени, затрачиваемого студентами на выполнение проекта.

2. Потребление активной и баланс реактивной мощности в проектируемой сети Задачи проработки раздела

Задачами расчетов и анализа полученных результатов в данном разделе проекта являются: оценка суммарного потребления реактивной мощности в проектируемой электрической сети; анализ выполнения условий баланса реактивной мощности в проектируемой сети; определение суммарной мощности компенсирующих устройств, устанавливаемых в сети; определение мощности компенсирующих устройств и их размещения в узлах электрической сети.

Расчет баланса мощности должен выполняться для всех основных нормальных и наиболее тяжелых послеаварийных режимов работы проектируемой сети. На первом этапе выполнения проекта оценка баланса реактивной мощности выполняется только для нормального режима работы проектируемой сети при наибольших нагрузках потребителей.

Обеспечение потребителей активной и реактивной мощностью

Потребление активной мощности в проектируемой сети в период наибольших нагрузок слагается из заданных нагрузок в пунктах потребления электроэнергии и потерь мощности в линиях, понижающих трансформаторах и автотрансформаторах. При определении одновременно потребляемой активной мощности следует учитывать несовпадение по времени суток наибольших нагрузок отдельных потребителей. За счет этого несовпадения одновременно потребляемая активная мощность составляет обычно 95 — 96 % от суммы заданных наибольших нагрузок. Потери активной мощности в правильно спроектированной сети составляют 4 — 6 % от потребляемой мощности.

Источниками активной мощности в электроэнергетических системах являются электрические станции. Установленная мощность генераторов электростанции должна быть такой, чтобы покрыть все требуемые нагрузки с учетом потребителей собственных нужд станций и потерь мощности в элементах сети, а также обеспечить необходимый резерв мощности в системе. В курсовом проекте рассматривается электроснабжение района

от электростанции или от одной из подстанций, входящих в состав крупной электроэнергетической системы, способной обеспечить выдачу активной мощности всем потребителям проектируемой сети без каких-либо ограничений.

Наибольшая суммарная активная мощность, потребляемая в проектируемой сети, составляет

$$P_{n,H\delta} = k_{0(P)} \sum_{i=1}^{n} P_{H\delta,i} + \Delta P_{C} \sum_{i=1}^{n} P_{H\delta,i} = (k_{0(P)} + \Delta P_{C}) \sum_{i=1}^{n} P_{H\delta,i}$$

где $P_{H6,i}$ — наибольшая активная нагрузка подстанции i, 1=1, 2, ..., n;

 $k_{0(P)}=0.95$ - 0.96 — коэффициент одновременности наибольших нагрузок подстанций; ΔP_c =0.05—суммарные потери мощности в сети в долях от суммарной нагрузки подстанций.

Соответствующая данной $P_{H\!6,i}$ необходимая установленная мощность генераторов электростанций определяется следующими составляющими:

$$P_{\mathcal{C}} = P_{\Pi,H6} + P_{\mathcal{C},CH} + P_{\mathcal{C},pes}$$

где $P_{\text{эс.сн}}$ — электрическая нагрузка собственных нужд и $P_{\text{эс.рез}}$ — оперативный резерв мощности электростанций.

Нагрузка собственных нужд зависит от типа электрической станции и может быть ориентировочно принята для КЭС 3—8 %, для ТЭЦ 8 — 14 %, для АЭС 5 — 8 % и для ГЭС— 0.5 - 3 % от установленной мощности генераторов электрической станции.

Оперативный резерв обосновывается экономическим сопоставлением ущербов от вероятного недоотпуска электроэнергии при аварийном повреждении агрегатов на электростанции с дополнительными затратами на создание резерва мощности. Ориентировочно резервная мощность электростанций должна составлять 10—12% от суммарной установленной мощности генераторов, но быть не менее номинальной мощности наиболее крупного из генераторов, питающих рассматриваемых потребителей.

Баланс реактивной мощности в проектируемой сети

Основным, но не единственным источником реактивной мощности в системе являются генераторы электростанций. Располагаемая реактивная мощность электростанций определяется согласно номинальному коэффициенту мощности установленных на станциях генераторов. Кроме этого, в электрических сетях широко используются дополнительные источники реактивной мощности — компенсирующие устройства (КУ). Основным типом КУ, устанавливаемых на подстанциях потребителей, являются конденсаторные батареи. На основе специальных расчетов распределения реактивной мощности в электроэнергетической системе, для каждого узла системы определяется реактивная мощность, которую целесообразно передавать из системы в распределительные сети, питающиеся от того или иного узла.

Поэтому при проектировании электрической сети, получающей питание от системы, задается реактивная мощность Q_c , которую целесообразно потреблять из системы (в заданном узле присоединения) в режиме наибольших нагрузок. Потребление большей мощности приведет к дополнительной загрузке системных источников реактивной мощности, к дополнительным затратам на генерацию и передачу этой мощности и, следовательно, к отступлению от оптимального режима питающей системы. В связи с этим в проекте следует предусмотреть мероприятия, обеспечивающие выполнение поставленных электроэнергетической системой условий по потреблению реактивной мощности. Для этого необходим расчет баланса реактивной мощности в проектируемой сети.

Решить вопрос о необходимости установки КУ в проектируемой сети следует до выполнения расчетов возможных вариантов схемы и параметров сети, так как компенсация реактивной мощности влияет на передаваемые по линиям электропередачи и через трансформаторы мощности, на потери мощности и напряжения в элементах сети и может влиять на выбираемые номинальные мощности трансформаторов и сечения проводов линий. Таким образом, выбор мощности КУ и их размещение влияют на оценку технических

и технико-экономических характеристик и показателей вариантов схемы сети и, следовательно, на принятие окончательного решения по рациональной схеме проектируемой сети района. В окончательно выбранном варианте электрической сети после расчетов установившихся режимов мощности КУ должны быть уточнены для обеспечения выполнения баланса реактивной мощности.

При небольшом количестве пунктов потребления, рассматриваемых в данном проекте, результаты расчетов баланса реактивной мощности для разных схем сетей (при совпадающих номинальных напряжениях) отличаются незначительно. Поэтому, расчет баланса реактивной мощности допустимо выполнять для одного из вариантов электрической сети. В случае необходимости этот расчет может быть уточнен после окончательного выбора схемы сети.

Суммарная наибольшая реактивная мощность, потребляемая с шин электростанции или районной подстанции, являющихся источниками питания для проектируемой сети, может быть оценена по выражению:

$$Q_{n.\mathsf{H}\delta} = k_{0(Q)} \sum_{i=1}^{n} Q_{\mathsf{H}\delta.i} + \Delta Q_{T.\Sigma} + \sum_{i=1}^{m} (\Delta Q_{l} - \Delta Q_{c.l})$$

где $k_{0(Q)}$ — коэффициент одновременности наибольших реактивных нагрузок потребителей $k_{0(Q)}\approx 0.98$; $Q_{{\scriptscriptstyle H}\bar{0},i}$ — наибольшая реактивная нагрузка узла i; n — количество пунктов потребления электроэнергии; $\Delta Q_{T,\Sigma}$ —суммарные потери реактивной мощности в трансформаторах и автотрансформаторах; ΔQ_l — потери реактивной мощности в линии l: $\Delta Q_{c,l}$ — реактивная мощность, генерируемая линией l; l—номера линий в рассматриваемой сети (l=1,2,...,m).

Для оценки потерь реактивной мощности в трансформаторах и автотрансформаторах можно принять, что при каждой трансформации напряжения потери реактивной мощности составляют приблизительно 10% от передаваемой через трансформатор полной мошности

$$\Delta Q_{T.\Sigma} \cong 0,1 \sum_{i=1}^{n} a_{T,i} S_{H\delta,i}$$

где $a_{T,i}$ - количество трансформаций напряжения от источника до потребителей в i-м пункте сети.

Потери реактивной мощности в линии ΔQ_l ; существенно зависят от передаваемой мощности и длины линии; генерируемая линией реактивная мощность $\Delta Q_{c,l}$ пропорциональна длине линии. Обе эти величины зависят от напряжения электропередачи, причем потери мощности обратно пропорциональны, а зарядная мощность прямо пропорциональна квадрату напряжения линии электропередачи. Вследствие этого соотношение ΔQ_l и $\Delta Q_{c,l}$ весьма различается для линий разных номинальных напряжений. Сечение проводов воздушной линии практически не оказывает влияния на величины ΔQ_l и $\Delta Q_{c,l}$.

Для воздушных линий 110 кВ допускается на этой стадии расчета принимать равными величины потерь и генерации реактивной мощности. Для сетей с номинальным напряжением 220 кВ целесообразен расчет потерь реактивной мощности и зарядной мощности линий. Для оценки потерь реактивной мощности в воздушных линиях 220 кВ удельное реактивное сопротивление линии может быть принято равным $0,42~\mathrm{Om/km}$, а удельная генерация реактивной мощности q_c =0,14 Мвар/км. При этом следует учитывать количество цепей воздушной линии.

Полученное значение суммарной потребляемой реактивной мощности $Q_{n,h6}$ сравнивается с указанным в задании на проект значением реактивной мощности Q_c , которую экономически целесообразно получать из системы в проектируемую сеть. В случае $Q_{n,h6} \le Q_c$ необходимость в установке КУ в узлах проектируемой сети отсутствует, так как системные источники реактивной мощности полностью покрывают всю потребность в ней.

При $Q_{n,H\delta} > Q_c$ в проектируемой сети должны быть установлены КУ, суммарная мощность которых определяется из выражения

$$Q_{k,\Sigma} = Q_{n,H\delta} - Q_c$$

Как уже отмечалось выше, основным типом КУ являются конденсаторные батареи, подключаемые в электрических сетях 10(6) кВ, питающихся от подстанций проектируемой сети. Вместе с тем, на крупных узловых подстанциях с высшим номинальным напряжением 110—220 кВ и более в ряде случаев может быть оправдана установка синхронных компенсаторов или статических тиристорных компенсаторов.

Размещение компенсирующих устройств в электрической сети

Конденсаторные батареи суммарной мощностью $Q_{k,\Sigma}$ должны быть распределены между подстанциями проектируемой сети таким образом, чтобы потери активной мощности в сети были минимальны. Решение этой оптимизационной задачи для сложной распределительной электрической сети может быть получено только с помощью специальных методов оптимизации режимов и расчета на ЭВМ по специальным программам. В то же время для достаточно простых схем, рассматриваемых в курсовом проекте, можно дать некоторые рекомендации по решению данной задачи без применения ЭВМ:

- 1. В электрических сетях двух и более номинальных напряжений (например, 220/110 кВ) следует в первую очередь устанавливать КУ в сетях 10 кВ, питающихся от подстанции более низкого номинального напряжения (например, 110 кВ).
- 2. В сети одного номинального напряжения экономически целесообразна в первую очередь компенсация реактивной мощности у наиболее электрически удаленных потребителей (по активному сопротивлению сети). При этом может быть экономически целесообразна полная компенсация реактивной мощности на данных подстанциях.
- 3. При незначительной разнице в электрической удаленности подстанций от источника питания в сети одного номинального напряжения расстановка КУ может производиться по условию равенства коэффициентов мощности нагрузок на шинах 10 кВ, удовлетворяющему требованию баланса реактивной мощности в проектируемой сети

$$tg\varphi_{\delta} = (\sum_{i=1}^{n_k} Q_{n\delta,i} - Q_{k\Sigma}) / \sum_{i=1}^{n_k} P_{n\delta,i}$$

где i, n_{κ} — номера подстанций, на которых предусматривается установка конденсаторных батарей.

Тогда мощность конденсаторной батареи в каждом из рассмотренных узлов определяется в соответствии с выражением

$$Q_{k,i} = P_{H\delta,i}(tg\phi_i - tg\phi_\delta)$$

Компенсация реактивной мощности оказывает существенное влияние на экономические показатели функционирования электрической сети, так как позволяет снизить потери активной мощности и электроэнергии в элементах сети. При выполнении норм экономически целесообразной компенсации реактивной мощности у потребителей $tg\phi_i$ на шинах 10~kB подстанций должен быть доведен до значения $tg\phi_i = 0.4~b$ соответствии с приказом Минэнерго $P\Phi$ №49. Исходя из этого условия, на каждой подстанции должны быть установлены конденсаторные батареи мощностью

$$Q_i = P_{H\delta,I}(tg\phi_I - tg\phi_I)$$

Окончательное решение о необходимой мощности конденсаторных батарей на каждой из подстанций принимается по большей из величин, вычисленных ранее. Для некоторых из рассматриваемых подстанций вычисленная мощность КУ может оказаться отрицательной. Это свидетельствует о том, что единый коэффициент мощности достаточно высок и установка КУ в данном узле неоправданна. Данный узел должен быть исключен из числа n_{κ} , соответственно уточнены значения $tg\phi_6$ и мощности КУ в узлах сети. Заключительным в данном разделе расчетом является определение действительных нагрузок подстанций с учетом мощности установленных конденсаторных батарей. Все результаты расчетов целесообразно свести в таблицу, указав в ней значения потребляемых активных

и реактивных мощностей в узлах сети и реактивную мощность, потребляемую из сети каждой подстанцией с учетом мощности установленных конденсаторных батарей.

2. Выбор номинального напряжения, схемы и основных параметров линий и подстанций

Задачи и исходные положения проработки раздела

В этом разделе проекта выбираются номинальное напряжение электрической сети, ее схема, образуемая линиями электропередачи, схемы электрических соединений понижающих подстанций, марки проводов воздушных линий и число и мощности трансформаторов, и автотрансформаторов подстанций.

Эти фундаментальные характеристики определяют капиталовложения и расходы по эксплуатации электрической сети, и потому их комплекс должен отвечать требованиям экономической целесообразности. При этом следует учитывать, что указанные характеристики и параметры сети находятся в тесной технико-экономической взаимосвязи. Так, изменение схемы сети может повлечь необходимость изменений не только сечений проводов воздушных линий и схем подстанций, но и изменения ее номинального напряжения (по техническим условиям или по технико-экономическим соображениям).

В общем виде требования к комплексу схемы, номинального напряжения и основных параметров сети должны обеспечивать экономическую ее целесообразность (на основе принятых или нормированных технико-экономических критериев) при обеспечении обоснованной (или заданной) надежности электроснабжения потребителей электроэнергии и нормированного качества напряжения.

Решение данной сложной задачи, как правило, осуществляется на основе формирования ряда вариантов выполнения сети, обладающих отличающимися техническими и технико-экономическими характеристиками и показателями; при этом используются сведения, характеристики и закономерности, полученные в научных исследованиях и на основе практики проектирования [16].

Общие принципы экономически целесообразного формирования электрических сетей могут быть сформулированы следующим образом:

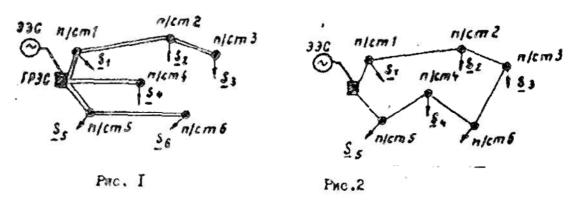
- а) схема сети должна быть по возможности (обоснованно) простой и передача электроэнергии потребителям должна осуществляться по возможно кратчайшему пути, что обеспечивает снижение стоимости сооружения линий и экономию потерь мощности и электроэнергии;
- б) схемы электрических соединений понижающих подстанций также должны быть, возможно, (обоснованно) простыми, что обеспечивает снижение их стоимости сооружения и эксплуатации, а также повышение надежности их работы;
- в) следует стремиться осуществлять электрические сети с минимальным количеством трансформаций напряжения, что снижает необходимую установленную мощность трансформаторов и автотрансформаторов, а также потери мощности и электроэнергии;
- г) комплекс номинального напряжения и схемы сети должны обеспечивать необходимое качество электроснабжения потребителей и выполнение технических ограничений электрооборудования линий и подстанций (по токам в различных режимах сети, по механической прочности и т. п.).

Все расчеты данного раздела выполняются, в основном, по методикам, изложенным в [4,5], и с учетом рекомендаций и норм по [8,16,18].

Формирование вариантов схемы и номинального напряжения сети

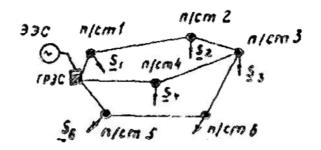
Выше было сказано о том, что выбор рациональной схемы сети производится на основе технико-экономического сопоставления ряда ее вариантов, которые составляются проектировщиком (студентом). Сопоставляемые варианты обязательно должны отвечать условиям технической осуществимости каждого из них по параметрам основного электрооборудования (провода, трансформаторы и т. п.), а также быть равноценными по надежности электроснабжения потребителей, относящихся к первой категории по 8,16,18].

Необходимость составления альтернативных или дополняющих друг друга вариантов схемы сети обуславливается тем, что основные различные типы схем обладают различными и часто конкурирующими техническими и технико-экономическими показателями (при сооружении, эксплуатации и т. п.).


Разработку вариантов необходимо начинать не по пути «всевозможных сочетаний» линий, подстанций и номинальных напряжений, а на основе принципов, приведенных в предыдущем параграфе, и с учетом соображений альтернативности качеств и показателей определенных типов схем сетей.

На такой основе можно рекомендовать формирование в первую очередь вариантов схем сетей:

- а) радиально-магистрального типа, при котором линии (двухцепные или одноцепные) не образуют замкнутых контуров (рис. 1);
 - б) простейшего замкнутого кольцевого (петлевого) типа (рис. 2).


Магистрально-радиальные сети, как правило:

- а) имеют наименьшую длину трасс линий;
- б) такие же величины потерь напряжения, мощности и электроэнергии;
- в) возможности применения простых схем на стороне высшего напряжения транзитных («проходных») подстанций (ПС 2 на рис. 1);
- г) могут иметь высокую суммарную длину и стоимость линий, которые на большей части (или на всех участках) должны сооружаться двухцепными по условию надежного питания ответственных и крупных подстанций;
- д) обладают большими резервами по пропускной способности линий при перспективном росте нагрузок в заданных пунктах.

Кольцевые (петлевые) схемы обычно:

- а) обладают повышенной длиной трасс линий;
- б) имеют повышенные потери мощности и электроэнергии и большие потери напряжения в послеаварийных режимах (отключение участка «ЭС—ПС 7» или «ЭС—ПС 5»— на рис. 2);
- в) могут иметь весьма простые схемы транзитных подстанций (ПС 1, 2 и др. на рис. 2);
- г) могут иметь пониженную суммарную стоимость линий одноцепных на всех или большей части участков;
- д) обладают хорошими возможностями присоединения новых подстанций, располагающихся по территории района, Промежуточными («компромиссными») техническими и технико-экономическими характеристиками могут обладать сложно-замкнутые сети, образуемые сооружением диагональных линий в составе кольцевых сетей (рис. 3). В некоторых случаях такое выполнение схемы сети может оказаться рациональным (например, при преобладающей нагрузке ПС3).

Puc. 3

Питание мелких подстанций, в составе потребителей которых отсутствует первая категория (по требованиям надежности электроснабжения), в некоторых случаях может осуществляться по одноцепным воздушным линиям (ПС 3 на рис. 4). При этом надо иметь в виду, что по [18] любая группа потребителей электроэнергии с суммарной максимальной нагрузкой 10 МВт и более относится к первой категории. Технико-экономическая обоснованность питания по одноцепной воздушной линии подстанции без потребителей первой категории может быть установлена специальным анализом, о котором говорится ниже.

Применение в обсуждаемых случаях вариантов с одноцепными нерезервированными линиями в большинстве случаев не означает осуществление и однотрансформаторных подстанций. Это связано с тем, что:

- а) все плановые ремонты воздушных линий могут быть выполнены без ее отключения, а аварийные ремонты производятся за относительно короткое время (одноцепных линий 8—10 час, двухцепных линий 20— 30 час);
- б) все плановые ремонты трансформаторов требуют его отключения на длительный срок (600—700 час) и в некоторых случаях этот ремонт должен выполняться с доставкой трансформатора в специальные мастерские.

Таким образом, осуществление однотрансформаторных понижающих подстанций возможно лишь при наличии передвижного трансформаторного резерва в рассматриваемой сети. Такое выполнение подстанций осуществимо при наличии развитой сети хороших шоссейных дорог, применяется при трансформаторах напряжением до 110 кВ и мощностью до 6,3 МВ-А и экономически оправдывается при обслуживании передвижным резервом не менее 2—3-х подстанций, расположенных в общем районе.


Для каждого из намеченных вариантов схемы намечаются номинальные напряжения сети. Для этого может быть применено эмпирическое расчетное выражение из [16] экономически целесообразного номинального напряжения

$$U_{\text{HOM}}^{9} = 1000/\sqrt{500/L + 2500/P}, \ \kappa B$$
 (3.1)

где L — длина линии электропередачи, км; P — передаваемая активная мощность, MBт.

В наиболее приближенной форме допустимо сформулировать целесообразность передачи электроэнергии при напряжении: а) 35 кВ — до 10—15 МВт на расстояния до 10—15 км; 110 кВ — десятков МВт на десятки км; в) 220 кВ— 100—250 МВт на 150—250 км.

Введение промежуточных трансформаций в настоящем курсовом проекте (220/110 кВ, 110/35 кВ) может предварительно намечаться, но целесообразность реализации таких вариантов следует подвергнуть тщательному технико-экономическому анализу. Варианты применения двух номинальных напряжений в пределах проектируемой сети могут быть полезны в случаях явного подразделения компактных групп потребителей электроэнергии по величинам нагрузок подстанций и расстояниям передачи электроэнергии (рис. 4). Нецелесообразно введение «второго» номинального напряжения для питания одной или двух подстанций.

PHC. 4

Как отмечалось ранее, не рекомендуется без серьезных обоснований применение напряжения 35 кВ. Экономически неоправданно применение близких по техническим и технико-экономическим показателям номинальных напряжений в пределах одной и той же сети (например, 110 и 150 кВ или 220 и 330 кВ).

Приемлемость по техническим показателям намеченных вариантов комплексов схем и номинальных напряжений сети в первом приближении может проверяться по требующимся сечениям токоведущей части проводов (как правило, сталеалюминиевых), а также по наибольшим потерям напряжения в нормальных и послеаварийных режимах сети (см. ниже). Указанные сечения проводов в общем случае должны находиться в пределах: при напряжении 35 кВ—50—150 мм²; при 110 кВ—70—240 мм²; 220 кВ — 240—400 мм².

Поскольку в современных электрических сетях 110(35)— 220 кВ практически на всех вновь сооружаемых подстанциях устанавливаются трансформаторы с регулированием коэффициента трансформации под нагрузкой, то для этих сетей отсутствует нормирование потерь напряжения. Вместе с тем для предварительной технической оценки вариантов схем и номинальных напряжений сети можно рекомендовать в качестве допустимых суммарные потери напряжения в сети до 10—12% в нормальных и до 15—17% в послеаварийных режимах работы.

На основе изложенных выше принципов и рекомендаций формируется некоторое количество дополняющих друг друга и конкурирующих между собой вариантов (по комплексу схем и номинальных напряжений) электрической сети заданного района. При охарактеризованных в разделе 1 условиях выполнения данного курсового проекта количество обоснованных вариантов находится в пределах 6 — 8. Из их числа далее должны быть выбраны конкурентоспособные по комплексу показателей и характеристик.

Выбор схем электрических подстанций

Схемы электрических соединений (типы схем) понижающих подстанций (ПС) 110(35) - 220/10 кВ на стороне высшего напряжения (ВН) определяется назначением каждой из ПС и ее «местоположением» в составе сети. Это могут быть узловая, проходная (транзитная), тупиковая или на ответвлениях («отпайках») от линии ПС. В соответствии с классификацией по [16] ПС подразделяются на три группы:

1. ПС 110(35) — 330 кВ, осуществляемые по, так называемым, упрощенным схемам на стороне ВН с минимальным количеством или без выключателей, с одним или двумя трансформаторами, питающимся по одной или двум линиям ВН; на стороне «среднего» напряжения (СН, 110 или 35 кВ) может быть до шести присоединений воздушных линий.

- 2. ПС проходные (транзитные) 110 500 кВ с количеством трансформаторов или автотрансформаторов от двух до четырех, с количествами присоединяемых воздушных линий ВН до четырех и на СН до десяти и с количеством выключателей на ВН до девяти.
- 3. Узловые ПС (общесистемного значения) 330 1150 кВ с количествами автотрансформаторов до четырех, воздушных линий на ВН до восьми и на СН до 10.

В проектируемой районной сети ПС относятся к первым двум группам. Обоснованный выбор схем ПС в общем случае является самостоятельной достаточно сложной технико-экономической задачей, которая в полном объеме рассматривается в курсах по электрическим станциям и подстанциям. В данном курсовом проекте разрешается произвести выбор схем без детальных технико-экономических расчетов и из состава типовых решений, рассматриваемых в [8]. Ниже приводятся краткие характеристики областей применения основных типов рекомендуемых для данных проектов схем ПС.

Для тупиковых ПС применяется схема с двумя блочными соединениями воздушных линий и трансформаторов. В цепях присоединений трансформаторов имеются выключатели. Со стороны линий ВН имеется перемычка с двумя разъединителями, один из которых отключен в нормальных режимах работы. Перемычка используется (при обоих включенных разъединителях) после отключения поврежденной линии, что позволяет сохранить в работе оба трансформатора; это повышает надежность электроснабжения потребителей и экономичность режима ПС. Указанное расположение перемычки объясняется существенно большей повреждаемостью воздушных линий сравнительно с трансформаторами.

Аналогичная схема применяется при присоединении ПС на ответвлении (на «отпайке») к одной или двум магистральным воздушным линиям.

Для ПС кольцевых сетей широко применяется схема «мостика» с выключателем в цепях трансформаторов или линий. Имеющаяся в схеме дополнительная перемычка (с разъединителями), разомкнутая в нормальных режимах, позволяет при ревизиях и ремонтах выключателя перемычки сохранить кольцевую сеть в замкнутом состоянии.

Для крупных ПС 220 кВ со значительной мощностью двух трансформаторов или автотрансформаторов, питающихся по двум линиям, рекомендуется применение схемы «четырехугольника», обеспечивающей высокую надежность электроснабжения потребителей. Вариант этой схемы может применяться при присоединении ПС указанного типа к двум транзитным воздушным линиям.

При количестве присоединений на стороне ВН ПС более 6 при напряжениях 110—220 кВ рекомендуется схема с одной рабочей, секционированной выключателем, и обходной системами шин. Подача напряжения на обходную систему шин осуществляется только при включении предназначенного для этого выключателя. Такая операция нужна при ремонте или замене любого иного выключателя данной схемы.

Схемы ПС с трехобмоточными трансформаторами или с автотрансформаторами на стороне СН определяются числом отходящих воздушных линий. При четном числе отходящих линий (от 4 до 10) рекомендуется применять на стороне СН одиночную секционированную систему шин с выключателями в цепях трансформаторов или автотрансформаторов. При этом следует учесть необходимость — по условиям надежности питания потребителей — каждую цепь двухцепной линии СН подключать к разным секциям шин.

Рекомендуется использовать автотрансформаторы с регулированием под нагрузкой рабочих ответвлений на стороне 110 кВ. В некоторых случаях для обеспечения независимого регулирования напряжения на шинах 10 кВ может потребоваться установка линейных регулировочных трансформаторов, включаемых в цепи трансформаторов с обмотками данного напряжения.

При включении на шины 10 кВ конденсаторных установок следует предусмотреть для них соответствующие ячейки выключателей.

На стороне «низшего» напряжения (НН) ПС (в курсовых проектах— 10 кВ) могут применяться различные типы схем в зависимости от разнообразных условий непосредственного электроснабжения промышленных, коммунально-бытовых, сельскохозяйственных и электротранспортных потребителей. На ПС блочного типа обычно используются секционированные шины НН. При применении трансформаторов с расщепленной обмоткой НН рекомендуется двойная секционированная система шин. Секционные выключатели НН как правило, разомкнуты в нормальных режимах работы ПС и автоматически включаются при аварийном (или плановом) отключении одного из трансформаторов.

Выбор технических параметров и характеристик основного оборудования линий и подстанций сети

К основному оборудованию, рассматриваемому в данном проекте, относятся линии электропередачи, трансформаторы, (АТ), выключатели понижающих ПС и компенсирующие устройства. Все электрооборудование должно выбираться со стандартными Детальный анализ возможностей номинальными параметрами. систематической учетом реального графика и коэффициента начальной нагрузки перегрузки трансформаторного оборудования ПС в нормальных режимах в задачу данного проекта не входит. Поэтому, в соответствии с существующей практикой проектирования, мощность трансформаторов на понижающих ПС рекомендуется выбирать из условия допустимой перегрузки в послеаварийных режимах до 70—80%, на время максимума общей суточной продолжительностью не более 6 часов в течение не более 5 суток, т. е. по условию

$$S_{T,HOM} \ge \frac{P_{H\delta}}{(1.7-1.8)(\eta_T - 1)Cos\varphi_H}$$

где η_T — число однотипных трансформаторов, устанавливаемых на ПС.

Иным вариантом является выбор трансформаторов по средней мощности в зимний период с обязательной проверкой на допустимую перегрузку в послеаварийном режиме.

В случае установки АТ или трехобмоточных трансформаторов это условие преобразуется к виду

$$S_{AT,HOM} \ge \frac{S_{cn,n\delta} + S_{nn,n\delta}}{(1,7-1,8)(\eta_{AT}-1)}$$

где S_{ch} , S_{hh} . — полные мощности нагрузки соответственно на стороне CH и HH.

Для AT 220 кВ, номинальная мощность обмотки HH отличается от номинальной мощности AT и указанное выше условие должно быть дополнено следующим:

$$S_{AT,HOM} \ge \frac{S_{_{HH,H\acute{0}}}}{2}$$

Если в составе нагрузки ПС имеются потребители 1-й категории или $P_{\text{нмах}} \geq 10$ МВт, то число устанавливаемых трансформаторов должно быть не менее двух. Установка на ПС более двух трансформаторов или АТ не рекомендуется и должна быть обоснована специально. На ПС 110 кВ, осуществляющих электроснабжение потребителей ІІ-й и ІІІ-й категорий, допускается установка одного трансформатора до 6,3 МВА при наличии в сетевом районе централизованного передвижного трансформаторного резерва, дающего возможность замены поврежденного трансформатора за время не более одних суток. Мощность трансформатора на однотрансформаторной ПС выбирается по максимальной нагрузке потребления (с учетом систематически допустимых перегрузок).

На ВЛ предусматривается применение только сталеалюминиевых проводов марки АС, маркируемых в соответствии с ГОСТ 839—80. Выбор проводов производится по методу экономических интервалов токовых нагрузок для сталеалюминиевых проводов ВЛ 35—750 кВ при полной номенклатуре сечений [8] с последующей проверкой по допустимому нагреву. При необходимости прокладки двух линий по одной трассе предпочтение отдается применению двухцепных опор, как более экономичных и обеспечивающих надежность электроснабжения, удовлетворяющую потребителей 1-й категории. ВЛ 35—110 кВ и одноцепные линии до 330 кВ сооружаются, как правило, на железобетонных опорах. Двухцепные опоры на ВЛ 220 кВ применяются как стальные, так и железобетонные.

Для определения параметров линий и наибольших потерь напряжения необходимо знание потокораспределения в вариантах выполнения сети. На этой стадии проектирования допустимо определение потокораспределения без учета потерь мощности в трансформаторах и линиях. В замкнутых сетях одного номинального напряжения допускается определять потокораспределение по длинам линий. Потери напряжения следует определять с учетом действительных погонных активных сопротивлений выбранных проводов, но допускается использование среднего значения погонных реактивных сопротивлений линий (0,4 Ом/км).

При определении наибольших потоков мощности по линиям электропередачи, питающих 4—5 и более подстанций, следует учитывать коэффициенты одновременности для активных и реактивных мощностей, указанные в разделе 2. Неучет коэффициента одновременности приводит к завышению расчетных значений потерь напряжения, мощности и в отдельных случаях может привести к выбору завышенных сечений проводов.

В настоящем курсовом проекте не производится выбор конкретных типов выключателей. Вместе с тем, следует иметь в виду, что на ПС применяются элегазовые или вакуумные выключатели в зависимости от номинального напряжения. Мощность компенсирующих устройств при сравнении вариантов выбирается, как это было рекомендовано выше.

Анализ вариантов и выбор схемы и номинального напряжения сети

Из числа разработанных вариантов выполнения сети (см. выше) должен быть выбран наиболее рациональный. Как известно основным технико-экономическим критерием оценки инженерных решений является чистый дисконтированный доход. В данном курсовом проекте используется его частный случай - среднегодовые эксплуатационные затраты.

Однако, полный и строгий технико-экономический анализ всех составленных вариантов схемы и номинального напряжения сети — чрезмерно трудоемок и не является необходимым. Может быть рекомендован двухэтапный анализ технико-экономической рациональности рассматриваемых вариантов.

На первом этапе варианты с одинаковым номинальным напряжением сопоставляются по натуральным количественным показателям, отражающим капиталовложения, а следовательно, и эксплуатационные расходы по сети. Такими показателями являются: а) протяженность трасс линий; б) протяженность линий в одноцепном исчислении; в) суммарное количество ячеек выключателей 110(35)—220 кВ на подстанциях сети. В этом анализе могут также учитываться: а) наибольшие потери напряжения в сети (%), если варианты близки по только что указанным количественным показателям линий и подстанций; б) сопоставление вариантов по принципу передачи электроэнергии «вперед» от источника питания к потребителям сравнительно с перетоками мощности по линиям «поперек» указанного направления. В результате такого количественно-качественного анализа обычно могут быть выбраны два-три варианта, обладающих преимущественными показателями. Данные варианты подлежат последующему уточненному сравнению на основе расчетов среднегодовых эксплуатационных затрат, связанных с их сооружением и эксплуатацией. Желательно, чтобы в таком технико-экономическом сопоставлении участвовали варианты схем как радиально-магистрального, так и кольцевого (или сложно замкнутого) типа. Выше указывалось, что данные принципы построения схемы сети обладают рядом конкурирующих качеств и показателей.

На втором окончательном этапе ограниченное число вариантов выполнения сети (2—3) сравнивается по основному технико-экономическому критерию - среднегодовых эксплуатационных затрат, учитывающих суммарные капиталовложения в сеть и ежегодные издержки по ее эксплуатации. При рассмотрении вариантов с разной надежностью питания потребителей в их составе учитываются ущербы от недоотпуска электроэнергии при плановых и аварийных отключениях потребителей (рассматриваются в качестве индивидуальных заданий углубленной проработки).

Капиталовложения на осуществление каждой из линий и подстанции и издержки по их эксплуатации определяются на основе номинальных параметров основного электрооборудования (марки проводов воздушных линий, мощности трансформаторов и автотрансформаторов и др.) и по их укрупненным стоимостным показателям.

Капиталовложения на подстанции определяются в зависимости от их номинального напряжения, схемы электрических соединений (на напряжениях 35—220 кВ), типов отключающей аппаратуры на стороне высшего напряжения, количества и мощности устанавливаемых трансформаторов.

Капиталовложения на сооружение линий сети находятся в зависимости от их номинальных напряжений, марок проводов, материала и типа опор (одноцепные, двухцепные).

Капиталовложения на компенсирующие устройства должны учитываться в тех случаях, когда в рассматриваемых вариантах выполнения сети отличаются необходимые мощности данных устройств (по условиям баланса реактивной мощности или т. п.).

Задача регулирования напряжения в проекте, как правило, решается применением трансформаторов и автотрансформаторов с регулированием ответвлений под нагрузкой. Поэтому при сравнении вариантов не требуется выбор иных средств регулирования напряжения, если наибольшие потери напряжения не превосходят значений рекомендуемых в [18], кроме тех заданий, где эти средства рассматриваются как вопросы углубленной проработки.

Если в вариантах схемы сети рассматривается питание пунктов с потребителями II и III категорий без резервирования линий или без резервирования линий и трансформаторов, то должны определяться и учитываться ущербы от недоотпусков электроэнергии по методике [4,8,16] с учетом вероятностей аварийного и планового перерывов электроснабжения, среднего времени восстановления элементов и плановых ремонтов. Здесь должны учитываться возможные отключения всех элементов нерезервированных цепей питания потребителей: линий, трансформаторов, выключателей и т.п. Целесообразна оценка от недоотпуска электроэнергии и в варианте с резервированием линий и трансформаторов. Такие ситуации могут быть при одновременном аварийном повреждении в обеих параллельных цепях сети (например, при повреждении двух взаиморезервирующих линий, проложенных по общей трассе) или в аварийном режиме одной из цепей при плановом ремонте электрооборудования второй цепи. Ущербы при плановых и аварийных отключениях потребителей оцениваются на основе удельных показателей [19]. Последние зависят от состава основных групп потребителей электроэнергии (промышленность, коммунальнобытовое хозяйство и др.) и характеристик их суточных графиков нагрузок. В данном проекте удельные убытки от недоотпуска электроэнергии могут оцениваться приближенно.

Для определения параметров линий, наибольших потерь напряжения и суммарных потерь электроэнергии необходимо знание потокораспределения в вариантах выполнения сети. На этой стадии проектирования допустимо определение потокораспределения без учета потерь мощности в трансформаторах (автотрансформаторах) и линиях. В замкнутых сетях одного номинального напряжения допускается определять потокораспределение по длинам линий. Рекомендуется применение метода наложения при расчетах послеаварийных режимов сложнозамкнутых сетей. Потери напряжения следует определять с учетом действительных погонных активных сопротивлений выбранных проводов, но допускается использование среднего значения погонных реактивных сопротивлений линий. Потери электроэнергии определяются с учетом реальных активных сопротивлений и проводимостей линий и трансформаторов (автотрансформаторов). Все расчеты на данной стадии проектирования выполняются по номинальным напряжениям сети.

На основе определения среднегодовых эксплуатационных затрат по сравниваемым вариантам производится окончательный выбор экономически целесообразных конфигураций, номинального напряжения, схемы электрических соединений и параметров сети. Варианты схем считаются экономически равноценными, если разница в полных приве-

денных затратах по сравниваемым объектам ориентировочно составляет не более 5—7%. В таком случае следует выбирать вариант сети: с более высоким номинальным напряжением; с более высокой надежностью электроснабжения; с большей оперативной гибкостью схемы (приспосабливаемость схемы к различным режимам работы сети); с меньшим необходимым количеством электрической аппаратуры; с лучшими возможностями развития сети при росте нагрузок и появлении новых пунктов потребления электроэнергии, с меньшей стоимость потерь электроэнергии и т. п.

Результатами проработок материалов раздела являются выбор экономически целесообразных конфигураций, номинального напряжения, схемы электрических соединений, а также номинальных параметров проводов линий электропередачи и трансформаторов и автотрансформаторов подстанций. Эти параметры должны быть приведены в соответствующих таблицах в конце раздела. Здесь же приводится рисунок конфигурации сети и сведения о выбранных схемах электрических соединений подстанций.

4. Расчет параметров основных режимов сети

Задачи и исходные условия расчетов

Задачей данного раздела курсового проекта является определение потоков мощности по линиям выбранного варианта электрической сети и напряжений на шинах подстанций в основных расчетных нормальных и послеаварийных режимах работы с учетом потерь мощности и напряжения в элементах сети. Исходными данными для выполнения расчетов являются заданные напряжения на шинах источника питания, узловые мощности нагрузок, параметры схем замещения элементов электрической сети. Перед выполнением расчета режима работы сети следует для каждой подстанции определить ее расчетную нагрузку, включающую кроме нагрузки потребителей потери мощности в трансформаторах и суммарную реактивную мощность присоединенных к подстанции линий электропередачи.

Линии электропередачи в расчетах режимов представляются П-образной схемой замещения. При определении параметров схемы замещения ВЛ следует учесть, что протяженность ВЛ оказывается больше расстояния по прямой, соединяющей пункты.

Расчет установившихся режимов работы спроектированной электрической сети выполняется методом «в два этапа». На первом этапе расчета выполняется расчет потокораспределения в сети с учетом потерь мощности в элементах сети. Потери мощности определяются по номинальному напряжению сети. Для кольцевых участков сети предварительно определяется точка потокораздела. После этого уже выполняется расчет потокораспределения с учетом потерь мощности.

На втором этапе расчета определяются напряжения в узлах сети. Исходными данными для расчета падения напряжения является напряжение в начале элемента и поток мощности в начале этого же элемента, вычисленный на предыдущем этапе расчета. Для электрических сетей напряжением 110 кВ и ниже допускается ограничиваться вычислением только потери (продольной составляющей падения) напряжения.

В результате выполнения расчетов установившихся режимов работы сети может оказаться необходимым изменение сечений проводов линий, мощности трансформаторов и автотрансформаторов, компенсирующих устройств. После соответствующей корректировки расчет должен быть выполнен вновь. Расчет режимов осуществляется также с помощью ПВК СДО-6 или RastrWin

Рекомендации по расчетам основных режимов сети

Расчетными режимами работы электрической сети являются нормальные и послеаварийные установившиеся режимы, при которых нагрузки элементов сети имеют наибольшие и наименьшие значения, а рабочие напряжения на подстанциях — высшие и низшие значения. Такими режимами являются нормальные режимы наибольших и наименьших нагрузок подстанций, а также наиболее тяжелые послеаварийные режимы, связанные с отключением линий и трансформаторов.

Нормальный режим наибольших нагрузок рассчитывается по активным нагрузкам подстанций, указанным в задании на проект, и по реактивным нагрузкам подстанций с учетом мощности установленных на них компенсирующих устройств. По окончании расчета этого режима следует проверить, не оказалась ли реактивная мощность, передаваемая из энергосистемы в электрическую сеть, больше того значения мощности Q_c , которую допустимо потреблять в заданном питающем сеть узле энергосистемы. В случае невыполнения этого условия дополнительные конденсаторные батареи соответствующей мощности должны быть размещены на подстанциях сети. Размещение следует выполнять, руководствуясь теми же рекомендациями, что приведены во втором разделе указаний. Корректировку режима работы сети после этого следует выполнить помощью ПВК. В ряде случаев после расчета потокораспределения может оказаться, что расчетный ток, протекающий по какой либо из линий, не соответствует экономическому интервалу применения выбранного на основании предварительных расчетов сечения проводов этой линии. Наиболее вероятно это может иметь место в кольцевых неоднородных сетях. В этом случае следует выбрать экономическое сечение проводов, пересчитать параметры схемы замещения такой линии и вновь выполнить расчет режима наибольших нагрузок.

Расчет нормального режима при наименьших нагрузках подстанций выполняется при заданном уменьшении активных нагрузок и таком же уменьшении реактивных нагрузок подстанций. Конденсаторные установки на подстанциях в этом режиме могут быть отключены во избежание выдачи реактивной мощности из проектируемой сети в систему. На некоторых двухтрансформаторных подстанциях в этом режиме может оказаться экономически целесообразным отключение одного из трансформаторов, что позволит снизить потери мощности в стали, но при этом увеличатся нагрузочные потери. Решение о возможности отключения одного из трансформаторов принимается на основании соответствующего расчета потерь мощности и электроэнергии и в зависимости от схемы электрических соединений подстанции и сети. Оно недопустимо в случаях существенного снижения надежности электроснабжения потребителей вследствие необходимости одновременного с трансформаторами отключения линий сети, при отсутствии автоматизированного или телемеханизированного управления коммутационными аппаратами в цепях трансформаторов и т. п.

Кроме того, в курсовом проекте должен быть рассчитан послеаварийный режим в период наибольших нагрузок подстанций, приводящий к наибольшему снижению напряжений на шинах высшего напряжения подстанций потребителей. В качестве послеаварийного режима рассматривается режим, соответствующий отключению одной из линий сети. Выбор отключаемой линии выполняется в каждом конкретном случае индивидуально. Чаще всего это может быть наиболее загруженная линия кольцевой части сети, отключение которой приводит к значительному перераспределению потоков мощности, или отключение одной цепи двухцепной линии, по которой получают питание все или большая часть подстанций. Совпадение аварийных отключений двух и более взаиморезервирующих линий не рассматривается как маловероятное. При расчете послеаварийных режимов следует учитывать, что повреждение ВЛ на одном из участков может приводить к отключению ее и на других участках, а также — к отключению трансформаторов. Поэтому следует внимательно анализировать состав линий и трансформаторов, отключенных с учетом конкретных схем электрических соединений сети и действий релейной защиты, устройств автоматики и оперативного персонала. При использовании схем подстанций без выключателей или с ограниченным их числом на стороне высшего напряжения аварийное отключение одной из линий может приводить к отключениям и смежных линий, трансформато-

Расчетным в данном случае является режим сети, который соответствует частично восстановленной схеме сети при отключенном состоянии только поврежденного элемента (с учетом выбранных схем подстанций).

После расчета послеаварийного режима, как правило, оказывается, что реактивная мощность, передаваемая из энергосистемы в проектируемую сеть, больше экономически целесообразного значения Q_c . Так как такой режим работы сети относительно кратковременен и не скажется на экономичности работы энергосистемы в целом, то в этом случае допускается отклонение от заданного потребления реактивной мощности. Установка дополнительных КУ в электрической сети не предусматривается, а повышенное потребление реактивной мощности покрывается за счет использования резерва реактивной мощности в энергосистеме.

Уровни напряжения на шинах источника питания в режимах наибольших и наименьших нагрузок указываются в задании на проектирование. Возможности регулирования напряжения на шинах источника питания сети в послеаварийных режимах должны быть согласованы с техническими возможностями осуществления такого регулирования и указаны в расчетно-пояснительной записке. При этом следует иметь в виду, что оперативные повышения напряжения возможны лишь при отдельных наиболее тяжелых авариях, какими могут считаться отключения линий 110 кВ длиной около 100 км и более и линий 220 кВ длиной 200 км и более, по которым передаются значительные мощности.

В сетях двух номинальных напряжений (например, 220/110 кВ), обычно связанных автотрансформаторами, при переходе к расчету напряжений в сети среднего (например 110 кВ) напряжения следует выбрать коэффициент трансформации, который может отличаться от номинального значения. Для снижения потерь активной и реактивной мощности и потерь электроэнергии в сети целесообразно поддержание возможно большего уровня рабочего напряжения на шинах источника питания в режиме наибольших нагрузок. Так как подстанция с автотрансформаторами является источником питания для сети более низкого напряжения, то коэффициент трансформации АТ следует выбирать таким, чтобы напряжение на стороне среднего напряжения составляло ~ 110 % номинального напряжения в режиме наибольших нагрузок и в послеаварийных режимах и 100—105 % номинального напряжения в режиме наименьших нагрузок. В частности, оно может быть принято таким же, как задано на шинах источника питания проектируемой сети: 220 и 110 кВ. Автотрансформаторы, используемые для связи этих сетей, имеют следующие номинальные напряжения обмоток: $U_{BH} = 230 \text{ kB}$; $U_{CH} = 121 \text{ kB}$; $U_{HH} = 11 \text{ kB}$. Регулирование напряжения осуществляется за счет РПН на стороне среднего напряжения и имеет пределы регулирования напряжения $\pm 6 \times 2$ %. При известном желаемом напряжении на стороне среднего напряжения $U_{\text{с.жел}}$ требуемое ответвление регулируемой части обмотки может быть определено по выражению

$$n^{\text{MCEA}}_{ome} = \left(\frac{U_{c,\text{MCEA}} \cdot U_{eH}}{U_{c}' \cdot U_{cH}} - 1\right) \frac{100}{\Delta U_{ome}}$$

$$(4.1)$$

где Uc' — рассчитанное напряжение со стороны среднего напряжения, приведенное к стороне высшего напряжения; $\Delta U_{\text{отв}}$ — ступень регулирования напряжения в процентах ($\Delta U_{\text{отв}}$ =2%).

Полученное значение округляется до ближайшего целого значения $n_{\text{отв}}$, по модулю не превышающего максимального количества ответвлений, равного шести, и вычисляется действительное напряжение со стороны среднего напряжения

$$U_{c} = \frac{U'_{c,} \cdot U_{ch}}{U_{6h}} (1 + n_{ome} \frac{\Delta U_{ome}}{100})$$
 (4.2)

Далее выполняется расчет напряжений в сети напряжением 110 кВ.

В расчетно-пояснительной записке может приводиться только расчет режима наибольших нагрузок. Результаты расчетов режима наименьших нагрузок и послеаварийного режима могут быть сведены в таблицы, в которых должны быть указаны расчетные нагрузки подстанций, мощности, протекающие в начале и конце каждой линии электрической сети, а также напряжения в узлах сети.

5. Регулирование напряжения в сети

Задачей проработки этого раздела проекта является обеспечение нормативных отклонений напряжения на шинах 10 кВ подстанций проектируемой сети, которые задаются в виде желаемых напряжений на шинах НН ПС.

Основным экономически целесообразным средством регулирования напряжения в проектируемой сети являются трансформаторы с регулированием коэффициента трансформации под нагрузкой (РПН).

Согласно ПУЭ на шинах 10 кВ подстанций должен осуществляться закон встречного регулирования напряжения в пределах отклонений напряжения от +5 (или более) до 0% при изменениях нагрузки подстанций от наибольшей до наименьшей. Обычно при наибольших нагрузках достаточны отклонения напряжения на этих шинах в пределах +5—6%. Определение желаемых отклонений напряжения на шинах 10 кВ подстанций при промежуточных значениях нагрузки производится линейной интерполяцией.

Аварийные отключения линий и трансформаторов рассматриваются, как правило, при наибольших нагрузках подстанций. Поэтому желаемые отклонения напряжения на шинах 10 кВ в таких режимах должны соответствовать отклонениям напряжения, требуемым в режиме наибольших нагрузок.

В этом разделе проекта должны быть выбраны рабочие ответвления понижающих трансформаторов, обеспечивающие поддержание требуемых отклонений напряжения на шинах $10~\mathrm{kB}$ подстанций во всех рассмотренных режимах работы. Выполняется это следующим образом. После расчета установившегося режима работы сети известны напряжения на шинах высшего напряжения каждой из подстанций U_{6} . Напряжение на шинах низшего напряжения, приведенное к стороне высшего напряжения (т. е. без учета коэффициента трансформации трансформаторов), можно определить по [20].

Понижающие трансформаторы имеют РПН в нейтрали обмотки высшего напряжения. Ответвление регулируемой части обмотки, обеспечивающее желаемое напряжение на шинах низшего напряжения $U_{\mu \text{ жел}}$, может быть также определено по выражению

$$n^{\text{MCEN}}_{ome} = \left(\frac{U_{\text{H}} \cdot U_{\text{HH}}}{U_{\text{H,MCEN}} \cdot U_{\text{GH}}} - 1\right) \frac{100}{\Delta U_{ome}}$$
(5.2)

где $U_{\text{нн}}$, $U_{\text{вн}}$ — номинальные напряжения обмоток низшего и высшего напряжения; $\Delta U_{\text{отв}}$ — ступень регулирования напряжения в процентах.

Вычисленное значение округляется до ближайшего целого числа $n_{\text{отв}}$ с учетом максимального числа ответвлений, которое может колебаться от 8 до 10 для различных типов трансформаторов. После этого следует определить действительное напряжение на шинах низшего напряжения подстанции

$$U_{H} = \frac{U'_{H} \cdot U_{HH}}{U_{gH} (1 + n_{ome} \frac{\Delta U_{ome}}{100})}$$
(5.3)

и отклонение напряжения на напряжения на этих шинах от номинального напряжения ($U_{\text{ном}}$ =10 кВ)

$$\delta U = \frac{U_H - U_{HOM}}{U_{HOM}} 100,\% \tag{5.4}$$

Отдельно решается вопрос регулирования напряжения на шинах низшего напряжения подстанций с автотрансформаторами. Так как в автотрансформаторах устройство РПН осуществляется на стороне среднего напряжения, то здесь отсутствует возможность регулирования напряжения на стороне низшего напряжения. На крупных подстанциях требуемое напряжение непосредственно на шинах низшего напряжения может быть обеспечено с помощью синхронных компенсаторов. Другим способом регулирования напряжения является использование линейных регулировочных трансформаторов, позволяю-

щих регулировать напряжение в пределах ± 10 х I,5 % номинального напряжения.

Если в результате расчета регулировочных ответвлений трансформаторов выясняется, что необходимо произвести корректировку напряжения на шинах источника питания, то новые значения напряжений на подстанциях допускается оценивать приближенно, ориентировочно считая, что во всех точках сети напряжения изменятся на столько же процентов, на сколько было изменено напряжение на шинах источника питания.

Результаты расчетов ответвлений трансформаторов, обеспечивающих желаемые напряжения на шинах низшего напряжения подстанций в режиме наименьших нагрузок и послеаварийном режиме, сводятся в таблицы, в которых указываются напряжения низшей стороны трансформатора, приведенные к стороне высшего напряжения, расчетный номер ответвления обмотки, округленное значение номера ответвления с учетом возможного диапазона регулирования напряжения, действительное напряжение на шинах низшего напряжения подстанции и отклонение этого напряжения от номинального напряжения.

6. Основные технико-экономические показатели спроектированной сети

В этом разделе проекта определяются основные показатели, характеризующие полные расходы денежных средств и электрооборудования, необходимые для сооружения и эксплуатации сети, а также некоторые удельные технико-экономические показатели, характеризующие обоснованность решений, принятых в процессе проектирования сети. Иными словами они определяют инвестиционную привлекательность проекта. К ним относятся:

- 1) капиталовложения на сооружение линий, подстанции и сети в целом (руб);
- 2) ежегодные издержки по эксплуатации линий, подстанций и сети в целом (руб/год);
- 3) удельная себестоимость передачи электроэнергии по сети от шин заданного источника питания до шин вторичного напряжения (10 кВ) понижающих подстанций 35—220 кВ (коп/кВт-ч);
- 4) потери активной мощности и потери электроэнергии в спроектированной сети, соответственно в кВт, кВт-ч/год, и в процентах от полезно отпущенной потребителям мощности и электроэнергии;
- 5) основные натуральные показатели сети, как-то: количество понижающих трансформаторов с разделением по номинальным напряжениям и мощностям; количество выключателей с разделением но номинальным напряжениям; количество километров проводов (по маркам и в однофазном исчислении); суммарная мощность компенсирующих устройств с разделением по типам и номинальным напряжениям.

При определении капиталовложений следует учитывать стоимость сооружения всех линий и подстанций спроектированной сети от шин заданного источника питания сети до шин 10 кВ подстанций включительно. При этом должны быть учтены стоимости электрооборудования конструктивной и строительной частей, а также стоимость строительно-монтажных работ. При оценке стоимости ячеек выключателей 10 кВ подстанции надо учитывать ячейки выключателей в цепях понижающих трансформаторов и автотрансформаторов, секционные и шиносоединительные выключатели и выключатели линий 10 кВ, отходящих от шин понижающих подстанций. Количество таких ячеек выключателей определяется исходя из максимальной нагрузки подстанции и мощности, условно приходящейся на одну линию; так при вторичном напряжении 10 кВ такой величиной может быть принято 1,5—2 МВт [16]. (Такое определение количества ячеек учитывает ячейки линий, секционные, резервные, измерительных трансформаторов и др.)

Эксплуатационные издержки также определяются с учетом всего указанного оборудования и стоимости потерь электроэнергии в сети в целом от шин источника питания до шин вторичного напряжения понижающих подстанций. Следует помнить, что затраты на потери мощности и электроэнергии должны оцениваться с учетом региона сооружения сети.

Если при расчетах режимов сети было принято решение об экономической целесообразности отключения части трансформаторов в режиме наименьших нагрузок, то это необходимо учитывать при определении потерь электроэнергии. Для этого надо знать длительность режимов работы сети с полным и сниженным числом трансформаторов. Допускается, в первом приближении, применять следующий метод оценки длительности режимов наибольших и наименьших нагрузок подстанций (при условном двухступенчатом годовом графике нагрузки). Электроэнергия, потребленная за один год с шин вторичного напряжения каждой понизительной подстанции:

$$W_{r,i} = P_{H\delta, i} \cdot T_{H\delta,i} = P_{H\delta, i} \cdot t_{H\delta,i} + P_{HM i} \cdot t_{HM,i}$$

где $T_{H6,i}$ — продолжительность использования наибольших нагрузок, ч/год; $P_{H6,i}$, $P_{HM.i}$ — соответственно наибольшая и наименьшая активные нагрузки подстанции i (см. табл. 1); $t_{n6,i}$, $t_{HM,i}$ — соответственно условные длительности наибольшей и наименьшей нагрузок при упрощенном двухступенчатом годовом графике по продолжительности активных нагрузок (ч/год), причем $t_{H6,i}$ =8760— $t_{HM,i}$, ч; 8760 — длительность невисокосного года в час. Таблица 1 - Ориентировочные значения соотношений наименьших и наибольших нагрузок подстанции

Т, час/год	3000	4000	5000	6000	7000	8000
$P_{\scriptscriptstyle { m HM}}$ в долях от $P_{\scriptscriptstyle { m H}ar{0}}$	0,2-0,3	0,3-0,35	0,35-0,40	0,40-0,45	0,6-0,7	0,75-0,8

Суммарные потери мощности в режиме наибольших нагрузок, как и в любом ином режиме работы, спроектированной электрической сети наиболее просто могут быть определены по разности суммарной нагрузки сети (на шинах источника питания сети в целом) и суммы нагрузок на шинах 10(6)—20 кB подстанций.

Удельная себестоимость передачи полезно отпущенной потребителям электроэнергии в спроектированной сети определяется, как

$$c = \frac{\boldsymbol{H}_{\Sigma}}{\sum_{i=1}^{n} \boldsymbol{P}_{\boldsymbol{\mu}\boldsymbol{\delta},i} \boldsymbol{T}_{\boldsymbol{\mu}\boldsymbol{\delta},i}}$$
, руб./кВт-ч,

где $И_{\Sigma}$ — суммарные ежегодные издержки по эксплуатации спроектированной сети.

Суммарные потери активной мощности (ΔP_{Σ} %) и электроэнергии (ΔW_{Σ} %) в сети в процентах определяются без учета коэффициентов одновременности наибольших нагрузок подстанций, соответственно по выражениям:

$$\Delta P_{\Sigma}\% = \frac{\Delta P_{\Sigma}}{\sum_{i=1}^{n} P_{H\delta,i}} 100 \qquad \Delta W_{\Sigma}\% = \frac{\Delta W_{\Sigma}}{\sum_{i=1}^{n} P_{H\delta,i} T_{H\delta,i}} 100$$

Определение капиталовложений и годовых эксплуатационных расходов производится по единичным или удельным экономическим показателям.

7. Оформление материалов проекта

Курсовой проект должен быть оформлен в виде сброшюрованной расчетно-пояснительной записки с титульным листом определенной формы и чертежей.

В расчетно-пояснительной записке должен содержаться следующий материал: оригинал задания на проект, содержание, перечень чертежей к проекту, основной материал по всем этапам разработки проекта (см. выше), рисунки, список литературы, которая использовалась при выполнении проекта.

Каждая глава и изложение каждого вопроса в записке должны начинаться с четкой формулировки задачи проектирования в данном разделе. Далее приводятся нормы, критерии и требования, которые должны быть соблюдены при разработке вопроса, а также — конкретные исходные данные для расчетов. На основании сформулированных требований намечаются возможные варианты решения поставленной задачи (например, варианты схемы и конфигурации сети, варианты возможных размещений компенсирующих уст-

ройств и др.). Здесь должно быть обращено особое внимание на описания и обоснования выдвигаемых вариантов и применяемых методов расчетов и решений.

При выполнении первого из расчетов того или иного типа дается обоснование или пояснение по применяемому методу расчета и расчетная формула в общем виде. Далее однократно показывается численная подстановка конкретных исходных данных в расчетную формулу и приводится результат вычисления. Во всех последующих случаях применения тех же расчетных методов и формул — приводятся лишь результаты расчетов, сведенные в продуманные удобочитаемые таблицы. Каждая таблица должна иметь номер и наименование. Все результаты расчетов должны иметь указания размерности.

По ходу изложения приводятся ссылки на литературные источники, список которых помещается в конце записки, на рисунки и чертежи к проекту. Следует обратить особое внимание на письменный анализ результатов каждой основной группы расчетов или этапа проектирования (например, выбор конфигурации и схемы сети, результаты расчета баланса реактивной мощности, решение задачи регулирования напряжения на подстанциях и т. д.). На основании такого анализа формируются выводы о выполнении задач проектирования в данном разделе, соблюдении норм и условий проектирования и др. Такие выводы в большинстве случаев являются одними из исходных материалов для следующего этапа проектирования.

В расчетно-пояснительной записке обязательно должны быть рисунки, изображающие основные варианты конфигурации, принятые схемы электрических соединений подстанций, потокораспределения в различных режимах работы сети и т. п. Рисунки должны иметь нумерацию и наименования, а в тексте расчетно-пояснительной записки следует делать ссылки на номера рисунков.

По проекту обычно выполняются два чертежа, на которых изображаются:

- а) схема района, для которого проектируется электрическая сеть (с соблюдением масштаба), основные рассматриваемые в проекте варианты конфигурации и схемы сети. Эти варианты изображаются упрощенно с указанием лишь выключателей сетей 110(35)—220 кВ и трансформаторов. Здесь указываются номинальные напряжения сети или ее участков, марки проводов линий, длины линий и номинальные мощности трансформаторов и автотрансформаторов, активные и реактивные нагрузки ПС;
- б) полная принципиальная схема электрических соединений спроектированной сети, схема замещения сети и основные результаты расчетов режимов. Здесь должны быть показаны все линии, трансформаторы, выключатели и разъединители 35—220 кВ. Схемы подстанций на стороне 10 кВ изображаются условно в виде одиночной секционированной системы шин. Здесь должны быть представлены выключатели в цепях трансформаторов, секционирующий шины выключатель, а также выключатели нескольких отходящих линий. Подключение компенсирующих устройств изображается условно непосредственно к шинам 10 кВ подстанций.

5.2. Пример выполнения курсового проекта

Введение

Начало развития электрических систем в нашей стране было положено планом ГО-ЭЛРО – планом электрификации всей России. Его идеи привели к созданию объединённых энергетических систем, в том числе и Единой энергетической системы (ЕЭС). Задачу проектирования следует рассматривать как задачу развития ЕЭС России. При проектировании электрических систем важно учитывать интересы и специфику административных и экономических районов. Поэтому проектирование развития ЕЭС должно основываться на учёте развития отдельных энергосистем и их объединений.

Создание мощных электрических систем обусловлено их большими техникоэкономическими преимуществами. С увеличением их мощности появляется возможность сооружения крупных электрических станций с более экономичными агрегатами, повышается надёжность электроснабжения потребителей, более полно и рационально используется оборудование.

Однако фундаментальные проблемы электроэнергетики, наметившиеся в 80 годы и получившие развитие в последующие период, не нашли своего разрешения. На фоне общеэкономического спада продолжала повышаться энергоемкость экономики, произошло резкое падение объемов инвестиций с одновременным снижением эффективности работ отдельных секторов отрасли. Нерешенность указанных проблем может привести к замедлению экономического роста.

Качественный рост энергоэффективности экономики и изменения инвестиционного климата в энергетики невозможны без изменения сложившейся системы экономических отношений и безотлагательного проведения структурной реформы электроэнергетики и тесно связанной с ней газовой отрасли.

Целями реформирования электроэнергетики Российской Федерации являются обеспечение устойчивого функционирования и развития экономики и социальной сферы, повышение эффективности производства и потребления электроэнергии, обеспечение надежного и бесперебойного энергоснабжения потребителей.

Стратегической задачей реформирования является перевод электроэнергетики в режим устойчивого развития на базе применения прогрессивных технологий и рыночных принципов функционирования, обеспечение на этой основе надежного, экономически эффективного удовлетворения платежеспособного спроса на электрическую и тепловую энергию в краткосрочной и долгосрочной перспективе.

Формирование электрических систем осуществляется с помощью электрических сетей, которые выполняют функции передачи энергии и электроснабжения потребителей. С учётом этого и ведётся их проектирование.

ОЭС Востока расположена в южной, наиболее обжитой части Дальнего Востока. Характерной особенностью электрической схемы ОЭС Востока является ее цепочечный характер. Протяженность такой цепочки с запада на восток составляет около 3500 километров. Четыре энергосистемы (Амурская, Дальневосточная, Хабаровская и Южно-Якутский энергорайон Якутскэнерго) работают параллельно на напряжении 500-220 кВ. От ОЭС Востока в ремонтном режиме питается часть Читинской энергосистемы.

Приводятся цель и задачи проекта.

1. Энергоэкономическая характеристика района

Хабаровский край – расположен в центральной части южной половины Дальнего Востока, у Тихого океана. Граничит с Китаем на юго-западе; с востока омывается Охотским и Японским морями, проливами Татарский и Невельского отделяется от острова Сахалин. Площадь Хабаровского края составляет 824,6 тысяч км², он разделен на 17 административных районов, имеет 7 городов и 29 поселков городского типа. Центр – город Хабаровск. Побережье Хабаровского края изрезано слабо, за исключением юго-западного участка Охотского моря, где имеются Удская губа и заливы Тугурский, Академии и др. Протяженность береговой линии около 2500 километров. На территории края преобладают горные рельефы (около 70 % от территории). На юге горные системы вытянуты в северовосточном направлении. Юго-запад занимают Хребты Турана, Малый Хинган и др. с высотами от 750 до 2500 метров. В центральной части края – горы широтной ориентацией: хребты Джагарда, Селемджинский. Наиболее обширные низменности: на юге – Нижне- и Средне Амурская.

Климат умеренно муссонный, холодной малоснежной зимой и теплым влажным летом. Средняя температура января от -22 °C на юге, до -40 °C на севере, на морском побережье от -15 °C до -25 °C; средняя температура июля до 11 °C в приморской части, до 21 °C в южных внутренних районах. Осадков в год от 400 мм на севере до 800 мм на юге и 1000 мм на восточном склоне Сихотэ-Алиня. По толщине стенки гололеда центр Хабаровского края относится ко II группе, по скоростному напору ветра к III. Среднегодовая

продолжительность гроз от 20 до 40 часов. Центр Хабаровского края относится к району с редкой пляской проводов, с повторяемостью пляски один раз в десять лет.

В Хабаровском крае в основном распространены дерново-подзолистые почвы, на равнинных участках — лугово-болотные и болотные почвы, в южных районах — бурые лесные и буротаежные почвы. На севере формируются горно-таежные и горно-тундровые почвы.

Экологическая ситуация в целом умеренно острая, на севере условно удовлетворительная, вокруг промышленных центров — острая и очень острая в результате загрязнения атмосферы и вод суши, утраты продуктивности земель и лесных ресурсов. По степени загрязненности окружающей среды Хабаровский край относится ко второму классу.

Структура промышленности Хабаровского края: машиностроение 14,7 %; переработка сырья 25,8 %; топливно-энергетический комплекс 38,3 %; химическая промышленность 1,8 %; легкая, пищевая и др. 19,7 %.

Внутренние различия центральной части Хабаровского края – наиболее заселена и освоена в промышленном и сельскохозяйственном отношении часть. Здесь сосредоточены предприятия:

- машиностроения и металлообработки (океанические и морские суда, самолеты, дизели, метало режущие станки);
- черной металлургии (прокат черного металла, сталь);
- лесной, деревообрабатывающей отрасли и целлюлозы (деловая древесина, фанера, целлюлоза);
- горнодобывающей отрасли (уголь, руда цветных металлов (олово и медный концентрат):
- химической отрасли (кислородный, сернокислый, шиноремонтный, гидролизный и биохимический, химико-фармацевтический);
- стройматериалов;
- рыбной, пищевой и легкой.

Самыми крупными потребителями, влияющими на качество электрической энергии, являются черная металлургия и металлообработка, они искажают синусоидальность и симметрию.

Самые крупные промышленные и транспортные центры – Хабаровск, Комсомольск-на-Амуре, Амурск.

В качестве узловой распределительной подстанции была принята подстанция Комсомольская. Подстанция Комсомольская является одной из крупнейших подстанций в Хабаровском крае (после подстанции 500 кВ Хабаровская). Она имеет четыре ступеней напряжения – 500, 220, 110 и 10 кВ. Распределительные устройства 500, 220, 110 кВ выполнены открытыми (ОРУ).

На сегодняшний день на подстанции из самого крупного оборудования установлены: один автотрансформатор типа 3xAOДЦТН - 167000/500/220/10; два автотрансформатора типа ATДЦТН - 63000/220/110/10; один реактор типа 3xPOДЦ - 60000/500У1.

Выдача электроэнергии промышленным и сельскохозяйственным потребителям про-изводится на напряжениях 220 и 110 кВ.

ОРУ 500 кВ ПС Комсомольская получает электрическую энергию по ВЛ 500 кВ от ПС Хабаровская. ОРУ 220 кВ ПС Комсомольская выполнена по схеме – две рабочие с обходной секции шин. От ОРУ 220 кВ отходят три линии (двухцепная ВЛ на ПС Старт, одноцепные на ПС Селихино, и ПС ГПП – 4). ОРУ 110 кВ ПС Комсомольская выполнена по схеме – одна рабочая, секционированная выключателем, и обходная система шин. От ОРУ 110 кВ отходят четыре линии (двух цепные ВЛ на ПС Береговая, ПС К, Амурскую ТЭЦ, и одноцепная на ПС Гайтер). ЗРУ 10 кВ применяют, через тока ограничивающие реакторы для питания нагрузки собственных нужд подстанции.

В качестве электрической станции приняли Амурскую ТЭЦ. Амурская ТЭЦ является одной из крупнейших станций в Хабаровском крае. Она имеет две ступени напряжения — 110 кВ и генераторное напряжение. Распределительное устройство 110 кВ выполнено от-

крытым (ОРУ). На станции установлены: три генератора мощностью по 60 МВт; один генератор мощностью 80 МВт; один генератор мощностью 25 МВт; два повышающих трансформатора мощностью 60 МВА; один повышающий трансформатор мощностью 125 МВА.

Выдача электроэнергии промышленным и сельскохозяйственным потребителям производится на напряжении 110 кВ. ОРУ 110 кВ Амурской ТЭЦ выполнено по схеме – две рабочие с обходной секции шин. От ОРУ 110 кВ отходят три двухцепные воздушные линии на ПС Эльбан, ПС Амурмаш, ПС Комсомольская.

2. Определение вероятностных характеристик графиков электрических нагрузок и режимных характеристик потребителей электрической сети

Для построения суточных графиков электрических нагрузок рассчитаем активные и реактивные мощности для понизительных подстанций по формулам:

$$\boldsymbol{P}_{i}^{(t_{j}-t_{j+1})} = \boldsymbol{P}_{*}^{(t_{j}-t_{j+1})} \cdot \boldsymbol{a}_{*i} \cdot \boldsymbol{P}_{max}, \tag{1}$$

где P_i – активная мощность для интервала времени $(t_j - t_{j+1})$; P_{*i} – относительная ордината суточного графика потребления для интервала времени $(t_j - t_{j+1})$; a_{*i} – процентное соотношение нагрузки потребителя; P_{max} – максимальное значение мощности, указанное в задании на проект.

$$\mathbf{Q}_{i}^{(t_{j}-t_{j+1})} = \mathbf{Q}_{*}^{(t_{j}-t_{j+1})} \cdot \mathbf{a}_{*,} \cdot \mathbf{P}_{max}, \tag{2}$$

где Q_i — реактивная мощность для интервала времени $(t_j-t_{j+1});\ Q_{*i}$ — относительная ордината суточного графика потребления для интервала времени $(t_j-t_{j+1});\ a_{**i}$ — процентное соотношение нагрузки потребителя; P_{max} — максимальное значение мощности, указанное в задании на проект.

Характеристикой потребителей также является годовой график по продолжительности активной нагрузки.

Это упорядоченный график, в котором значения мощности расположены в порядке убывания, показывающий длительность работы в течение года с различной нагрузкой.

Площадь, ограниченная этим графиком и осями координат пропорциональна активной энергии, потребляемой в год W.

По ней можно определить еще одну характеристику-число часов использования наибольшей нагрузки $T_{\rm max}$.

$$T_{max} = W/P_{max} = \sum P_i \cdot \Delta T_i / P_{max}$$
 (3)

Вероятностные характеристики графика электрических нагрузок определяются по следующим формулам.

Средняя нагрузка:

$$P_{\tilde{n}\tilde{o}} = \frac{1}{24} \sum_{i=1}^{n} P_{i} t_{i}$$

$$Q_{\tilde{n}\tilde{o}} = \frac{1}{24} \sum_{i=1}^{n} Q_{i} t_{i}$$
(4)

Эффективная нагрузка:

$$\mathbf{\mathcal{D}}_{\hat{y}\hat{o}} = \sqrt{\frac{1}{24} \sum_{i=1}^{n} \mathbf{P}_{i}^{2} \cdot \mathbf{t}_{i}}$$

$$\mathbf{\mathcal{Q}}_{\hat{y}\hat{o}} = \sqrt{\frac{1}{24} \sum_{i=1}^{n} \mathbf{\mathcal{Q}}_{i}^{2} \cdot \mathbf{t}_{i}}$$
(5)

Максимальная нагрузка:

$$P_{max} = P_{\tilde{n}\tilde{o}}(1+1,96\sqrt{K_{\tilde{o}\tilde{o}}^2-1})$$

$$Q_{max} = Q_{\tilde{n}\tilde{o}}(1+1,96\sqrt{K_{\tilde{o}\tilde{o}}^2-1})$$
(6)

где P_{cp} , Q_{cp} - средняя нагрузка; P_{\max} , Q_{\max} - максимальная нагрузка; K_{ϕ} - коэффициент формы.

Минимальная нагрузка:

$$P_{min} = P_{\tilde{n}\delta}(1-1,96\sqrt{K_{\delta\delta}^2-1})$$

$$Q_{min} = Q_{\tilde{n}\delta}(1-1,96\sqrt{K_{\delta\delta}^2-1})$$

где P_{cp} , Q_{cp} - средняя нагрузка; K_{ϕ} - коэффициент формы; P_{\min} , Q_{\min} - минимальная нагрузка.

Коэффициент формы определяется следующим образом:

$$\hat{E}_{\hat{\sigma}\hat{\sigma}} = \mathcal{D}_{\hat{y}\hat{\sigma}} / \mathcal{D}_{\hat{n}\hat{\sigma}}
\hat{E}_{\hat{\sigma}\hat{Q}} = \mathcal{Q}_{\hat{y}\hat{\sigma}} / \mathcal{Q}_{\hat{n}\hat{\sigma}}$$
(8)

где $P_{_{\circ\phi}}$, $Q_{_{\circ\phi}}$ - эффективная мощность

Вероятностные характеристики представлены в таблице 1

Таблица 1 – Вероятностные характеристики

Время	ПС	Pcp	Рэф	Pmax	Pmin	Qcp	Qэф	Qmax	Qmin
Зима	A	80.60	80.637	84.847	76.37	83.867	83.869	85.108	82.625
Лето	A	78.19	78.218	82.301	74.079	82.189	82.192	83.406	80.972
Год	A	79.399	79.437	84.2	74.598	83.028	83.035	85.081	80.975
Зима	Б	9.523	9.795	14.022	5.093	5.075	5.234	7.588	2.561
Лето	Б	7.567	7.764	10.969	4.165	2.748	2.836	4.122	1.375
Год	Б	8.545	8.838	12.97	4.119	3.911	4.21	6.961	0.862
Зима	В	6.122	6.297	9.014	3.229	3.262	3.365	4.878	1.646
Лето	В	4.865	4.991	7.052	2.677	1.767	1.823	2.65	0.884
Год	В	5.493	5.682	8.338	2.648	2.514	2.706	4.475	0.554
Зима	Γ	69.382	69.54	77.998	60.766	72.643	72.695	78.013	67.274
Лето	Γ	51.342	51.445	57.718	44.967	50.124	50.16	53.829	46.419
Год	Γ	60.362	61.155	79.597	41.127	61.384	62.452	83.93	38.838
Зима	Д	17.685	18.191	26.041	9.329	9.424	9.72	14.093	4.756
Лето	Д	14.053	14.418	20.372	7.734	5.104	5.267	7.655	2.553
Год	Д	15.869	16.414	24.087	7.65	7.264	7.818	12.928	1.6
Зима	Е	32.332	32.532	39.405	25.259	30.115	30.175	33.837	26.393
Лето	Е	28.818	28.949	34.202	23.435	26.658	26.689	29.215	24.1
Год	Е	30.575	30.793	37.741	23.409	28.386	28.485	33.042	23.73
Зима	Ж	35.735	35.957	43.552	27.918	33.285	33.351	37.399	29.171
Лето	Ж	31.852	31.996	37.802	25.902	29.464	29.499	32.29	26.637
Год	Ж	33.793	34.034	47.714	25.873	31.374	31.484	36.52	26.228

3. Выбор и технический анализ принятых вариантов сети

3. 1. Построение схем электрической сети

Выбор рациональной схемы сети производится на основе технико-экономического сопоставления ряда ее вариантов. Сопоставляемые варианты обязательно должны отвечать условиям технической осуществимости каждого из них по параметрам основного электрооборудования (провода, трансформаторы и т. п.), а также быть равноценными по надежности электроснабжения потребителей, относящихся к первой категории.

Общие принципы экономически целесообразного формирования электрических сетей могут быть сформулированы следующим образом: схема сети должна быть по возможности простой, и передача электроэнергии потребителям должна осуществляться по возможно кратчайшему пути, что обеспечивает снижение стоимости сооружения линий и экономию потерь мощности и электроэнергии; следует стремиться осуществлять электрические сети с минимальным количеством трансформаций напряжения, что снижает необходимую установленную мощность трансформаторов и автотрансформаторов, а также — потери мощности и электроэнергии; комплекс номинального напряжения и схемы сети должны обеспечивать необходимое качество электроснабжения потребителей и выполнение технических ограничений электрооборудования линий и подстанций (по токам в различных режимах сети, по механической прочности и т. п.).

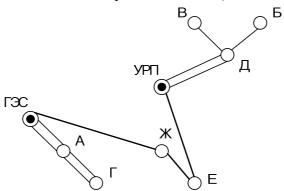


Рисунок 1- Первый вариант схемы

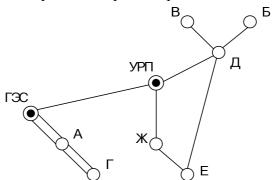


Рисунок 2- Второй вариант схемы

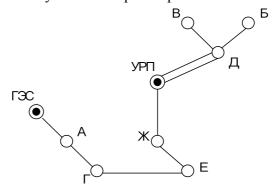


Рисунок 3- Третий вариант схемы 3.2. Анализ трех вариантов

Рациональное напряжение электрической сети может быть выбрано по эмпирическим формулам:

а) Формула Стилла:

$$U = 4.34\sqrt{L + 16P} \tag{9}$$

Uрасч.кВ

Uном.кВ

применяется при $L \le 250 \kappa M$, $P \le 60 MBm$

б) Формула А.М Залесского:

$$U = \sqrt{P(100 + 15\sqrt{L})}\tag{10}$$

применяется при $L \leq 1000 \kappa M$, $P \geq 60 MBm$

Линия

в) Формула Г.А Илларионова:

$$U = 1000\sqrt{(500/L + 2500/P)} \tag{11}$$

При увеличении количества проводников в фазе мощность в формулах 3-5 делится на количество проводников.

Данные формулы дают удовлетворительные результаты для всей шкалы номинальных напряжений от 35 до 1150кВ. В формулах P - является мощностью передаваемой по одной цепи ЛЭП; L-является длиной трасы ЛЭП

Длинна

Таблица 2 – Данные расчета

№ Варианта

ла Барианта	JIMIMA	длинна	Opac-1,KD	OHOM,KD
	ГЭС-А	23,759	139	220
	А-Г	23,759	109	220
	ГЭС-Ж	69,26	112	110
№ 1	Ж-Е	23,759	79	110
	УРП-Д	37,566	110	110
	Д-В	23,759	53	110
	Д-Б	23,759	68	110
	УРП-Е	53,124	120	110
Продолжение таб	блицы 2			
	ГЭС-А	23,759	139	220
	А-Г	23,759	109	220
	УРП-Ж	33,6	121	110
	Д-Е	53,126	68	110
	УРП-Д	37,566	110	110
№ 2	Ж-Е	23,759	110	110
	Д-Б	23,759	68	110
	Д-В	23,759	53	110
	ГЭС-УРП	21,466	220	220
	ГЭС-А	23,759	162	220
	А-Г	23,759	128	220
	Г-Е	50,4	72	220
№ 3	Ж-Е	23,759	118	220
	УРП-Ж	33,6	154	220
	УРП-Д	23,759	110	110
	Д-Б	23,759	68	110
	Д-В	23,759	53	110
			•	

Таблица 3 – Данные вариантов сети

Вариант	Длина линии, км	Число выключателей
№ 1	352,296	21
№2	352,929	21
№3	277,93	19

По наименьшей суммарной длине линий и наименьшему количеству выключателей для дальнейшего анализа выбираем варианты 1 и 3.

4. Выбор технических параметров и характеристик основного оборудования линий и подстанций сети

4.1. Выбор силовых трансформаторов.

$$S_{PT} = \frac{\sqrt{P_{cp}^2 + (P_{\text{max}}^{3UM} * tg(\varphi))^2}}{n_T \cdot K_3^{O\Pi T}},$$
(12)

где S_{PT} — расчётная мощность трансформатора, MBA; P_{CP} — активная средняя годовая мощность, MBT; $P^{3\mathcal{UM}}_{\max}$ — значение максимальной активной мощности, MBT; n_T — число трансформаторов; K_3^{OIIT} — оптимальный коэффициент загрузки.

По формуле рассчитаем мощность трансформатора ПС А:

$$S_{PT} = \frac{\sqrt{80,60^2 + (84,847*0,4)^2}}{2 \cdot 0,7} = 61,09MBA.$$

Рассчитаем мощность трансформатора ПС Б:

$$S_{PT} = \frac{\sqrt{9,523^2 + (4,022*0,3)^2}}{0.9} = 11,567MBA.$$

Рассчитаем мощность трансформатора ПС В:

$$S_{PT} = \frac{\sqrt{6,122^2 + (9,014*0,3)^2}}{0,9} = 7,436MBA.$$

По аналогии рассчитываем мощности других трансформаторов. Результаты заносим в таблицу 4

Таблица 4- Трансформаторы

		ВАРИАНТ №1	ВАРИАНТ №3
ПОДСТАНЦИЯ	S расч, MBA	Марка тр-ра	Марка тр-ра
A	61,09	ТРДН 63000/220	ТРДН 63000/220
Б	11,415	ТДН 16000/110	ТДН 16000/110
В	6,544	ТДН 10000/110	ТДН 10000/110
Γ	49,549	ТРДН 63000/220	ТРДН 63000/220
Д	22,895	ТРДН 25000/110	ТРДН 25000/110
Е	23,18	ТРДН 25000/110	ТРДН 32000/220
Ж	29,132	ТРДН 32000/110	ТРДН 32000/2200

Определим коэффициент загрузки трансформатора в нормальном режиме, который, не должен превышать 0,7 по формуле

$$K_3^{HOPM} = \frac{\sqrt{P_{CP}^2 + Q_{HECK}^2}}{N_T \cdot S_{HOM}}$$
 (13)

и коэффициент загрузки трансформатора в послеаварийном режиме, который, не должен превышать 1,4,

Коэффициент аварийной перегрузки определяется из учета того, что один трансформатор отказал в период наибольшей загрузки трансформатора. Возможна перегрузка силовых трансформаторов в том случае если температура нагрева масла и температура нагрева обмоток не будет превышать допустимые

$$K_{_{3}}^{_{\Pi/A}} = \frac{\sqrt{P_{_{CP}}^{^{2}} + Q_{_{HECK}}^{^{2}}}}{S_{_{HOM}}}$$
(14)

Рассчитаем коэффициент загрузки трансформатора в нормальном и аварийном режимах на примере подстанции А.

$$K_{3}^{HOPM} = \frac{\sqrt{80,60^{2} + (84,847 * 0,4)^{2}}}{2 \cdot 63} = 0,694$$

$$K_{3}^{HI/A} = \frac{\sqrt{80,60^{2} + (84,847 * 0,4)^{2}}}{63} = 1,388$$

Аналогично определим коэффициенты для других трансформаторов и занесем их в таблицу 5.

Таблица 5- Коэффициенты загрузки трансформаторов в нормальном и послеаварийном режимах

режимих.		
Подстанция	$K_{_3}^{^{HOPM}}$	$K_{_3}^{^{\Pi/A}}$
A	0,7	1,4
Б	0,65	
В	0,69	
Γ	0,58	1,16
Д	0,77	
Е	0,56	1,12
Ж	0,6	1,19

4.2. Баланс реактивной мощности

Основным, но не единственным источником реактивной мощности в системе являются генераторы электростанций. Располагаемая реактивная мощность электростанций определяется согласно номинальному коэффициенту мощности установленных на станциях генераторов. Кроме этого, в электрических сетях широко используются дополнительные источники реактивной мощности — компенсирующие устройства (КУ). Основным типом КУ, устанавливаемых на подстанциях потребителей, являются конденсаторные батареи.

На основе специальных расчетов распределения реактивной мощности в электроэнергетической системе, для каждого узла системы определяется реактивная мощность, которую целесообразно передавать из системы в распределительные сети, питающиеся от того или иного узла.

Поэтому при проектировании электрической сети, получающей питание от системы, задается реактивная мощность Q_c , которую целесообразно потреблять из системы (в заданном узле присоединения) в режиме наибольших нагрузок. Потребление большей мощности приведет к дополнительной загрузке системных источников реактивной мощности, к дополнительным затратам на генерацию и передачу этой мощности и, следовательно, к отступлению от оптимального режима питающей системы. В связи с этим в проекте следует предусмотреть мероприятия, обеспечивающие выполнение поставленных электроэнергетической системой условий по потреблению реактивной мощности. Для этого необходим расчет баланса реактивной мощности в проектируемой сети.

Решить вопрос о необходимости установки КУ в проектируемой сети следует до выполнения расчетов возможных вариантов схемы и параметров сети, так как компенсация

реактивной мощности влияет на передаваемые по линиям электропередачи и через трансформаторы мощности, на потери мощности и напряжения в элементах сети и может влиять на выбираемые номинальные мощности трансформаторов и сечения проводов линий. Таким образом, выбор мощности КУ и их размещение влияют на оценку технических и технико-экономических характеристик и показателей вариантов схемы сети и, следовательно, на принятие окончательного решения по рациональной схеме проектируемой сети района.

В окончательно выбранном варианте электрической сети после расчетов установившихся режимов мощности КУ должны быть уточнены для обеспечения выполнения баланса реактивной мощности.

Баланс реактивной мощности должен соблюдаться м/у $\sum Q_{{\scriptscriptstyle \it TEH}}$ и $\ \sum Q_{{\scriptscriptstyle \it HOTP}}$,

r.e $\sum Q_{\text{\tiny FEH}} \geq \sum Q_{\text{\tiny HOTP}}$

$$\sum Q_{\Gamma EH} = Q_{\Gamma EH}^{\Gamma \supset C} + Q_{\Gamma EH}^{VP\Pi} + \Delta Q_{B\Pi} , \qquad (15)$$

где $Q_{\it \Gamma EH}^{\it \Gamma \supset C}$ - генерируемая реактивная мощность с шин $\it \Gamma \supset C$, MBap;

 $Q^{\scriptscriptstyle VP\Pi}_{\scriptscriptstyle IEH}$ - генерируемая реактивная мощность с шин УРП.

$$Q_{\text{TEH}}^{\text{TGC}} = 0.62*(P_{\text{TGC-A}} + P_{\text{A-}\Gamma})$$
 (16)

где $P_{\Gamma \supset C-A}$, $P_{A-\Gamma}$ -максимальные зимние активные мощности подстанций A и Γ , MBт.

$$Q_{\text{\tiny FEH}}^{\text{\tiny VPII}} = 0.8*(Q_{\text{\tiny VPII-XK}} + Q_{\text{\tiny XK-E}} + \sum (Q_{\text{\tiny ZI-B-B}}^{\text{\tiny IIC}})) \tag{17}$$

 $Q_{\text{\tiny FEH}}^{\text{\tiny FSC}} = 0,62*(158,566+73,101) = 143,633$ MBap;

 $Q_{\text{\tiny \it FEH}}^{\text{\tiny \it VPII}} = 0.8*(103,301+43,788+14,093+4,878+7,588) = 138,92 \text{ MBap};$

$$\Delta Q_{\rm\scriptscriptstyle BJT1} = q_{\scriptscriptstyle 0} *0.6* L_{\scriptscriptstyle \Gamma\supset C-\Gamma} = 0.139*0.6*47,518 = 3,963 {
m MBap};$$

$$\sum Q_{\text{\tiny FEH}} = 143,633+138,92+3,963=286,516 \text{ MBap.}$$

$$\sum Q_{\Pi O T P} = Q_{\Pi O T P}^{\Sigma} + \sum \Delta Q_{T P} + \Delta Q_{B \Pi}$$
(18)

где $Q_{{\scriptscriptstyle {\it norp}}}^{\scriptscriptstyle {\Sigma}}$ - суммарная максимальная реактивная мощность потребителей, МВар;

 $\sum \Delta Q_{_{TP}}$ - суммарные потери реактивной мощности в трансформаторах.

$$Q_{\text{\tiny DOTP}}^{\scriptscriptstyle \Sigma}$$
 =85,108+7,588+4,878+78,013+14,093+33,837+37,399=260,916 MBap.

$$\sum \Delta Q_{TP} = 0.1*(\sum S_{TP}) \tag{19}$$

 $\sum \Delta Q_{TP} = 0.1*(63*2+16+10+63*2+25+32*2+2*32)=43,1$ MBap.

$$\Delta Q_{BR} = q_0 *0.4 * L_{PBC-VPR} = 0.139 *0.4 *128,636 = 7,152$$
 MBap. (20) $\sum Q_{RBR} = 260,916 + 43,1 + 7,152 = 311,168$ MBap.

Сравним $\sum Q_{\rm \it FEH}$ и $\sum Q_{\rm \it HOTP}$. $\sum Q_{\rm \it FEH}$ =286,516 Mвар < $\sum Q_{\rm \it HOTP}$ =311,168 Мвар, следовательно, требуется компенсация реактивной мощности.

4.3. Выбор компенсирующих устройств

Мощность компенсирующих устройств определяется по формуле:

$$Q\kappa y = (Q \max - Q_{9H})/2 \tag{21}$$

где Q_{cm} – мощность компенсирующих устройств на две секции шин, Мвар; Q_{max} – максимальная реактивная мощность для зимнего периода, Мвар; Q_{9H} – эффективная целесообразная реактивная мощность для зимнего периода, МВт.

Реактивная мощность подстанций:

Qэн =
$$\operatorname{Pmax} * tg(\varphi)_{\text{эн}}$$
 (22)

где $tg(\varphi)_{\scriptscriptstyle{ ext{
m 2H}}}$ – экономически целесообразный коэффициент реактивной мощности;

 $tg(\phi)_{_{2H}}$ =0.33 –для зимы и для напряжения 110 кВ;

$$tg(\phi)_{_{2H}}$$
=0.4 –для зимы и напряжения 220 кВ; $tg(\phi)_{_{2H}}$ =0.7 –для лета.

Значения максимальных, активных и реактивных мощностей даны в таблице 1.

Рассчитаем мощность КУ для подстанции А по формуле (21)

$$Q\kappa y = (Q \max - Q_{3H})/2 = (84,847 - 33,9388)/2 = 25,5846 \text{ MBap}$$
 (23)

8*УКЛ 56-10.5-3150 У3,УКЛ 56-10.5-450 У3, КС-10.5-75 У3

Окуф=25,725 -фактическая мощность компенсирующих устройств на 1 сш.

QHeck =
$$Qmax - Qky\phi = 84,847 - 25,725*2=33,658$$
 MBap (24)

Так же производится расчет и для летнего времени года, в качестве максимальных мощностей берутся летние максимальные нагрузки.

Результаты расчета снесены в таблицу 6 и 7.

Таблица 6 – Компенсирующие устройства для третьего варианта

ПС	Qэн	Qку	марка и кол-во	Окуф	Qнеск	погрешн.
			8*УКЛ 56-10.5-3150 У3,			
A	33,94	25,6	УКЛ 56-10.5-450 У3, КС-10.5-75 У3	25,7	33,66	0,83
Б	4,674	2,91	УКЛ 56-10.5-2700 У3, 4* КС-10.5-75 У3	3	4,588	1,83
В	3,004	,	УКЛ 56-10.5-900 УЗ, 3* УКЛ 56-10.5-330 УЗ	1,89	2,988	0,54
			7*УКЛ 56-10.5-3150 УЗ, 3*УКЛ 56-10.5-450 УЗ,			
Γ	31,2	23,4	КС-10.5-75 УЗ	23,5	31,06	0,44
			УКЛ 56-10.5-2700 УЗ, 3*УКЛ 56-10.5-900 УЗ,			
Д	8,679	5,41	2*KCB 32-10.5-10 У3	5,42	8,673	0,07
Е	15,76	9,04	,	9	15,84	-0,5
			2*УКЛ 56-10.5-3150 УЗ, УКЛ 56-10.5-2700 УЗ,			
Ж	17,42	9,99	3* УКЛ 56-10.5-330 У3	9,99	17,42	0,01

ЛЕТО

ПС	Qэн	Qку	марка и кол-во	Окуф	Qнеск	погреш
Α	57,61	12,9	4*УКЛ 56-10.5-3150 УЗ, УКЛ 56-10.5-450 УЗ	13,1	57,31	0,53
Б	7,678	3,56				
В	4,936	2,29				
Γ	40,4	6,71	2*УКЛ 56-10.5-3150 УЗ, УКЛ 56-10.5-450 УЗ	6,75	40,33	0,18
Д	14,26	6,61				
Е	23,94	2,64	УКЛ 56-10.5-2700 УЗ			
Ж	26,46	2,91	УКЛ 56-10.5-2700 УЗ, УКЛ 56-10.5-330 УЗ	3,03	26,23	0,87

Таблица 7 – Компенсирующие устройства для первого варианта

				1		
ПС	Qэн	Qку	марка и кол-во	Окуф	Qнеск	погрешн.
			8*УКЛ 56-10.5-3150 УЗ,УКЛ 56-10.5-450 УЗ,			
A	33,94	25,58	КС-10.5-75 УЗ	25,7	33,66	0,83
			2*УКЛ 56-10.5-900 У3,2*УКЛ 56-10.5-450			
Б	4,674	2,914	У3,4* КС-10.5-75 У3	3	4,588	1,83
В	3,004	1,874	УКЛ 56-10.5-900 У3,3* УКЛ 56-10.5-330 У3	1,89	2,988	0,54
	-		7*УКЛ 56-10.5-3150 У3,3*УКЛ 56-10.5-450			
Γ	31,2	23,41	У3,КС-10.5-75 У3	23,5	31,06	0,44
			УКЛ 56-10.5-2700 У3,3*УКЛ 56-10.5-900			
Д	8,679	5,414	У3,2*КСВ 32-10.5-10 У3	5,42	8,673	0,07
			2*УКЛ 56-10.5-3150 У3,УКЛ 56-10.5-2700 У3,			
Е	13,13	10,35	УКЛ 56-10.5-900 УЗ,УКЛ 56-10.5-450 УЗ	10,4	13,14	-0,03
			2*УКЛ 56-10.5-3150 У3,УКЛ 56-10.5-2700 У3,			
Ж	14,52	11,44	2*УКЛ 56-10.5-900 У3,2* УКЛ 56-10.5-330 У3	11,5	14,48	0,25

ПС	Qэн	Qкy	марка и кол-во	Окуф	Онеск	погреш
A	57,61	12,9	4*УКЛ 56-10.5-3150 УЗ,УКЛ 56-10.5-450 УЗ	13,1	57,31	0,53
Б	7,678	-3,556				
В	4,936	-2,286				
Γ	40,4	6,713	2*УКЛ 56-10.5-3150 УЗ,УКЛ 56-10.5-450 УЗ	6,75	40,33	0,18
Д	14,26	-6,605				
Е	23,94	2,637	УКЛ 56-10.5-2700 УЗ			
Ж	26,46	2,914	УКЛ 56-10.5-2700 УЗ,УКЛ 56-10.5-330 УЗ	3,03	26,23	0,87

После компенсации проводим повторный расчет баланса, где в место суммарной максимальной реактивной мощностей потребителей (Q_{norp}^{Σ}), подставляем сумму получившихся не скомпенсированных мощностей. В результате получаем: $\sum Q_{\text{ген}}$ =286,516 и $\sum Q_{\text{потр}}$ =164,421 Мвар.

Основным типом КУ являются конденсаторные батареи, подключаемые в электрических сетях 10 кВ, питающихся от подстанций проектируемой сети. Вместе с тем, на крупных узловых подстанциях с высшим номинальным напряжением 110—220 кВ и более в ряде случаев может быть оправдана установка синхронных компенсаторов или статических тиристорных компенсаторов.

4.4. Выбор сечений линий в вариантах

Сечение провода – важнейший параметр линии. С увеличением сечения проводов линии, увеличиваются затраты на ее сооружение и отчисления от них. Одновременно уменьшаются потери электроэнергии и их стоимость за год.

На воздушных линиях предусматривается применение только сталеалюминевых проводов марки AC, маркируемых в соответствии с ГОСТ 839—80. Выбор проводов производится по методу экономических интервалов токовых нагрузок для сталеалюминевых проводов ВЛ 110—750 кВ при полной номенклатуре сечений.

Для полученных двух вариантов схем определим потокораспределение реактивной мощности без учета потерь, а так же выберем сечение и марку провода.

Расчетный ток в воздушных линиях между подстанциями вычисляется по формуле

$$I_{\text{max}} = \frac{\sqrt{P_{\text{max}}^2 + Q_{\text{neck}}^2}}{\sqrt{3} \cdot U_{\text{nom}} \cdot n},$$
(25)

где n – количество цепей; $U_{\text{ном}}$ – номинальное напряжение, кВ;

 $P_{\text{max}},\,Q_{\text{неск}}$ – потоки активной максимальной и максимальной нескомпенсированной реактивной мощности соответственно.

Найдём токи на участках, в зависимости от которых, по экономическим токовым интервалам, принимается суммарное сечение проводов ЛЭП:

$$I_p = I_{\text{Max}} \cdot \alpha_i \cdot \alpha_t , \qquad (26)$$

где α_i – коэффициент, учитывающий изменение тока по годам эксплуатации;

 α_t — коэффициент, учитывающий число часов использования максимальной нагрузки линии ($T_{\rm M}$).

Для воздушных линий $110 - 220 \text{ кB } \alpha_i$ принимается равным 1,05.

Для $T_{\scriptscriptstyle M}$ равным 3800 часов α_t принимается равным 0,9. По формуле (26) находим токи $I_{\scriptscriptstyle D}$. Результаты расчётов заносим в таблицу 8.

Таблица 8 – Расчётные токи

Bap. 1	ГЭС-А	А-Г	В-Д	Б-Д	УРП-Д	ГЭС-Ж	УРП-Е	Ж-Е
I_{pacu} , A	211	101	47	73	128	97	120	16
Bap. 3	ГЭС-А	УРП-Ж	А-Г	Г-Е	Ж-Е	Б-Д	УРП-Д	В-Д
I_{pacy} , A	200	128	90	26	77	73	128	47

По экономическим токовым интервалам выбираем провода.

Таблица 9 – Марки проводов

Вариант	Участок	Марка провода	Материал опор
	ГЭС-А	AC-240	Сталь
1	А-Г	AC-240	Сталь
1	В-Д	AC-150	Сталь
	Б-Д	AC-150	Сталь
	УРП-Д	AC-150	Сталь
1	ГЭС-Ж	AC-185	Сталь
1	УРП-Е	AC-240	Сталь
	Ж-Е	AC-150	Сталь
	ГЭС-А	AC-400	Сталь
	УРП-Ж	AC-240	Сталь
3	А-Г	AC-240	Сталь
	Г-Е	AC-240	Сталь
	Ж-Е	AC-240	Сталь
	Д-В	AC-150	Сталь
	Д-Б	AC-150	Сталь
3	УРП-Д	AC-150	Сталь

5. Технико-экономическое сравнение вариантов

5.1. Потери электрической энергии

Потери в силовых трансформаторах.

Потери электроэнергии в каждом силовом трансформаторе определяются по формуле:

$$\Delta W_{T} = \sum \frac{(P_{s\phi i}^{2} + Q_{s\phi}^{2})}{2 \cdot S_{T_{HOM}}^{2}} \cdot \Delta P_{\kappa} \cdot T_{i} + \Delta P_{\kappa} \cdot T_{i} , \qquad (27)$$

где ΔW_T - потери энергии в силовом трансформаторе; T_i - количество зимних (летних) часов; $S_{T\; \text{ном}}$ — номинальная мощность трансформатора; ΔP_{κ} — потери при коротком замыкании в трансформаторе; ΔP_x — потери холостого хода в трансформаторе; $P_{9\varphi i}$ — эффективная мощность подстанции; $Q_{9\varphi}$ — эффективная мощность подстанции.

Расчёт потерь в силовых трансформаторах будем вести с учётом того, что на некоторых подстанциях стоят два трансформатора.

Потери электроэнергии в линиях.

Потери электроэнергии в воздушных линиях определяются по формуле:

$$\Delta W_{\scriptscriptstyle BJI} = \frac{P_{\scriptscriptstyle 9\phi}^2 + Q_{\scriptscriptstyle 9\phi}^2}{U_{\scriptscriptstyle HOM}^2} \cdot R_{\scriptscriptstyle BJ} \cdot T \,, \tag{28}$$

где ΔW_{BJ} — потери энергии в воздушных линиях; $P_{9\varphi}$, $Q_{9\varphi}$ — потоки эффективной активной и нескомпенсированной реактивной мощности; R_{BJ} — сопротивление линии; T — количество зимних (летних) часов.

Сопротивление воздушной линии определяется по формуле:

$$R_{BJ} = (r_0 \cdot l)/n \tag{29}$$

где r_0 – сопротивление линии на один км, Ом·км; l – длина линии, км; n - количество цепей

Потери в компенсирующих устройствах для данных подстанций определим по формуле:

$$\Delta W_{_{KV}} = 0.003 \cdot Q_{_{\mathcal{O}AKT}KV} \cdot 2 \cdot T_{_3} \tag{30}$$

Капиталовложения.

Определим капиталовложения в районную электрическую сеть первого и третьего вариантов схемы. Капиталовложения определяются по формуле:

$$K = K_{BJI} + K_{II/cT}, \tag{31}$$

где $K_{\rm BJ}$ - капиталовложения в воздушные линии; $K_{\Pi/c\tau}$ - капиталовложения в подстанции.

Капиталовложения в воздушные линии определяются по формуле:

$$K_{BJ} = K_0 \cdot l \cdot 1, 1$$
 (32)

где K_0 - стоимость одного километра линии;

Стоимость одного км ВЛ всех участков обоих схем в таблицах 10 и 11.

Таблица 10- Стоимость одного километра ВЛ первого варианта

Участок	Марка провода	Длина линии, км	Стоимость 1км, тыс. руб.
ГЭС-А	AC-240	47,518	16,6
А-Г	AC-240	47,518	16,6
Ж-ЭЄТ	AC-185	69,26	11,9
УРП-Е	AC-240	53,124	12,6
УРП-Д	AC-150	75,132	11,5
Е-Ж	AC-150	23,759	11,5
Д-В	AC-150	23,759	11,5
Д-Б	AC-150	23,759	11,5

Таблица 11- Стоимость одного километра третьего варианта

Участок	Марка провода	Длина линии, км	Стоимость 1км, тыс. р.
ГЭС-А	AC-400	23,759	18,8
А-Г	AC-240	23,759	16,6
Е-Г	AC-240	50,4	16,6
УРП-Ж	AC-240	33,6	16,6
Ж-Е	AC-240	23,759	16,6
УРП-Д	AC-150	75,132	11,5
Д-Б	AC-150	23,759	11,5
Д-В	AC-150	23,759	11,5

Капиталовложения в подстанции определяется по формуле:

$$K_{\text{nc}} = K_{\text{opy}} + K_{\text{Tp}} + K_{\text{бк}} + K_{\text{noct}}, \tag{33}$$

где K_{opy} , K_{Tp} , $K_{бк}$, K_{noct} – справочные данные.

5.2. Издержки

Издержки для обоих вариантов находятся по формуле:

$$M = M_{arg} + C_{\Delta W} \tag{34}$$

Издержки И_{атэ} определяются по формуле:

$$H_{\text{arg}} = H_{\text{BJI}} + H_{\text{II/cr}} = (\alpha_{\text{a.II}} + \alpha_{\text{pII}} + \alpha_{\text{oII}}) \cdot K_{\text{BJI}} + (\alpha_{\text{a.IIc}} + \alpha_{\text{pIIc}} + \alpha_{\text{oIIc}}) \cdot K_{\text{IIc}}, \qquad (35)$$

где $(\alpha_{a.n}+\alpha_{pn}+\alpha_{on})$ –ежегодные отчисления на амортизацию, текущий ремонт и обслуживание ЛЭП в о.е.; $(\alpha_{a.nc}+\alpha_{pnc}+\alpha_{onc})$ – ежегодные отчисления на амортизацию, текущий ремонт и обслуживание подстанций в о.е.

Стоимость потерь электроэнергии определим по формуле:

$$C_{\Delta W} = C_0 \cdot \Delta W \tag{36}$$

где C_0 – удельная стоимость потерь электроэнергии; ΔW – потери электроэнергии в сети. Затраты определяются по формуле:

$$3 = E \cdot K + M \tag{37}$$

где E_H – норматив дисконтирования, равный 0,1.

Расчет выполнен в программе CRNET, результаты даны в приложении 1.

5.3. Выбор оптимального варианта сети

На основании технико-экономического расчета выбираем оптимальный вариант сети. По наименьшим затратам выбираем третий вариант электрической сети и производим ее дальнейший расчет. Суммарные приведенные затраты для второго варианта: $\sum R = 1300.87$ тыс. руб. Суммарные приведенные затраты для третьего варианта: $\sum R = 1119.72$ тыс. руб.

6. Расчет установившихся режимов

Схема электрической сети

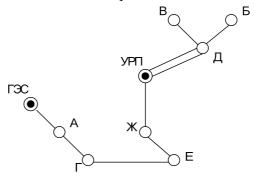
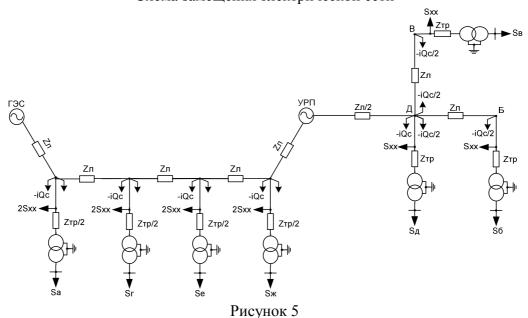



Рисунок 4 Схема замещения электрической сети

С помощью СКМ MathCAD рассчитываем максимальный режим и выбираем отпайки для трансформаторов, номера отпаек занесем в таблицу, сам расчет прилагается в Приложении 2.

Таблица 12 - отпайки РПН

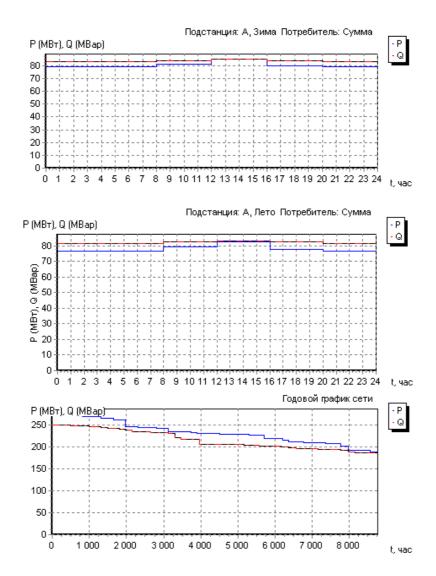
ПС	A	Б	В	Γ	Д	Е	Ж
$U_{{\scriptscriptstyle H\!H}}^{{\scriptscriptstyle B\!H}}$, кВ	243,046	115,129	113,152	239,573	115,757	233,101	235,721
$U_{\scriptscriptstyle \it HH}^{\it жел}$, к ${ m B}$	10	10,5	10,5	10,1	10,4	10,3	10,2
Номер от- пайки п	6	-5	-7	5	1	1	4
$U_{\scriptscriptstyle \it HH}^{\it \it $	10,126	10,513	10,513	10,168	10,352	10,245	10,154

Заключение

В данном курсовом проекте были рассмотрены следующие вопросы:

- рассчитаны электрические нагрузки узлов по программе "Расчет сети";
- составили двенадцать вариантов электрической сети;
- по программе "Расчет сети" рассчитали потоки мощности на участках, и исходя из длины участка и протекаемой по участку мощности и по эмпирическим формулам рассчитали напряжение;
- по наименьшей длине воздушных линий и количеству выключателей на подстанции выбраны три варианта;
- рассчитан баланс реактивной мощности и выбраны два варианта сети;
- выбраны компенсирующие устройства, трансформаторы и сечения линий по экономическим токовым интервалам;
- на основании технико-экономического расчета был выбран третий вариант.
- вручную был просчитан максимальный режим, а по программе SDO-6 были также просчитаны максимальный, послеаварийный и минимальный режим.

Список использованных источников


См. рабочую программу дисциплины.

Приложение 1

Пример расчета показателей и характеристик ГЭН

Расчет проводится для каждого потребителя подстанции, затем строится суммарный график нагрузки всех потребителей подстанции для зимнего и летнего периода, а после этого годовой график сети. Показан пример для подстанции A.

Приложение 2

Пример расчета в программе KRNET

Схема №1 ГЭС-Г Введите число п/ст N= 2 Введите длины линий в п

Введите длины линий в км L(1) 47.517 L(2) 47.517

Введите время использования максимума нагрузки в часах Тм = 3800

Введите стоимость потерь эл. энергии В (руб/кВт*ч)=0.013 Введите экономический коэффициент мощности Тэ= 0.4

Введите активные мощности п/ст в МВт и коэффициент мощности

P(1) 74.868 T(1) 1.042 P(2) 81.453 T(2) 1.045

Введите номинальное напряжение сети в кВ Uном. сети = 220

Введите нормативный коэффициент (o.e) En= 0.12

Введите коэффициент отчислений на амортизацию (о.е) Ра= 0.125

Время максимальных потерь Тр = 2225.18 ч.

Введите удельные сопротивления линий в Ом/км

Ro(1) 0.121 Xo(1) 0.435

Ro(2) 0.121 Xo(2) 0.435

Введите удельные проводимости линий в $*10^-6$ См/км

Bo(1) 2.6 Bo(2) 2.6

Введите номинальное напряжение источника в кВ Ином. ист. = 225

Введите номинальное напряжение сети в кВ Uном. сети = 220

Расчетные мощности в узлах Sp(1) = 78.526Sp(2) = 86.614Выберите по таблицам необходимые трансформаторы Введите количество трансформаторов на п/ст. и их номинальные мощности в МВА K(1) 2S(1) 63K(2) 2S(2) 63Введите потери К.З. и Х.Х. в кВт Ркз(1) 345 Рхх(1) 137 Ркз(2) 345 Рхх(2) 137 Потери энергии в трансформаторах W1= 6122347.05кВт*ч Введите удельные стоимости линии (на 100 км.) в тыс. руб. C1(1) 16.6 C1(2) 16.6 Введите количество масляных выключателей В= 6 Введите стоимость одного масляного выключателя в тыс. руб. Во= 16.5 Введите количество трансформаторов и цену одного трансформатора тыс.руб. K(1) 2C2(1) 153 K(2) 2C2(2) 153 Введите суммарные амортизационные отчисления в % для линий 2.8 Введите суммарные амортизационные отчисления в % для оборудования 8.4 Стоимость линии S1= 1577.56 тыс.руб. Стоимость масляных выключателей S2= 148.50 тыс.руб. Стоимость трансформаторов S3= 612.00 тыс.руб. Стоимость потерь эл. энергии S4= 193.79 тыс.руб. Приведенные затраты R= 652.56 тыс.руб. ГЭС-УРП Ввелите число $\pi/c\tau$ N= 2 Введите длины линий в км L(1) 69.26 L(2) 23.759 L(3) 53.124 Введите время использования максимума нагрузки в часах Тм = 3800 Введите стоимость потерь эл. энергии В (руб/кВт*ч)=0.013 Введите экономический коэффициент мощности Тэ= 0.3333 Введите активные мощности п/ст в МВт и коэффициент мощности P(1) 41.81 T(1) 0.895 P(2) 37.828 T(2) 0.894 Введите напряжение источника 1 в кВ 121 Введите напряжение источника 2 в кВ 121 Расчетное значение номинального напряжения Uном.pac.= 109.90 Введите номинальное напряжение сети в кВ Uном. сети = 110 Введите нормативный коэффициент (o.e) En= 0.12 Введите коэффициент отчислений на амортизацию (о.е) Ра= 0.125 Время максимальных потерь Тр = 2225.18 ч. Введите удельные сопротивления линий в Ом/км Ro(1) 0.162 Xo(1) 0.413 Ro(2) 0.198 Xo(2) 0.42 Ro(3) 0.12 Xo(3) 0.405 Введите удельные проводимости линий в *10^-6 См/км Bo(1) 2.75Bo(2) 2.7Bo(3) 2.81 Расчетные мощности в узлах Sp(1) = 44.073Sp(2) = 39.874Введите количество трансформаторов на п/ст. и их номинальные мощности в МВА S(2) 25K(1) 2S(1) 32K(2) 2Введите потери К.З. и Х.Х. в кВт Ркз(1) 145 Pxx(1) 44 Ркз(2) 120 Pxx(2) 36 Потери энергии в трансформаторах W1= 2047249.66кВт*ч Введите удельные стоимости линии (на 100 км.) в тыс. руб. C1(1) 11.9 C1(2) 11.5 C1(3) 12.6 Введите количество масляных выключателей В= 8 Введите стоимость одного масляного выключателя в тыс. руб. Во= 16.5 Введите количество трансформаторов и цену одного трансформатора тыс.руб. K(1) 2 C2(1) 73.4 K(2) 2C2(2)64

Введите суммарные амортизационные отчисления в % для линий 2.8

Введите суммарные амортизационные отчисления в % для оборудования 8.4

Стоимость линии S1= 1766.78 тыс.руб.

Стоимость масляных выключателей S2= 132.00 тыс.руб.

Стоимость трансформаторов S3= 274.80 тыс.руб.

Стоимость потерь эл. энергии S4= 97.55 тыс.руб.

Приведенные затраты R= 507.23 тыс.руб.

Д-Б

Введите число $\pi/\text{ст } N=1$

Введите длины линий в км L(1) 23.759

Введите время использования максимума нагрузки в часах Тм = 3800

Введите стоимость потерь эл. энергии В (руб/кВт*ч)=0.013

Введите экономический коэффициент мощности Тэ= 0.333

Введите активные мощности $\pi/\text{ст}$ в MBт и коэффициент мощности P(1) 13.461 T(1) 0.5411

Расчетные мощности компенсирующих устройств в Мвар Q4(1)=2.80

Выбрать по справочнику и ввести выдаваемые мощности компенсирующих устройств Q5(1)=3.05

Реактивные мощности нагрузок с учетом установки компенсирующих устройств в Мвар Q(1)=4.484

Введите номинальное напряжение сети в кВ Uном. сети = 110

Выбор сечения проводов

Введите нормативный коэффициент (o.e) En= 0.12

Введите коэффициент отчислений на амортизацию (о.е) Ра= 0.125

Время максимальных потерь Тр = 2225.18 ч.

Введите удельные проводимости линий в *10^-6 См/км Во(1) 2.7

Расчетные мощности в узлах Sp(1) = 14.047

Выберите по таблицам необходимые трансформаторы

Введите количество трансформаторов на п/ст. и их номинальные мощности в МВА

K(1) 1 S(1) 16

Введите потери К.З. и Х.Х. в кВт Ркз(1) 85 Рхх(1) 18

Потери энергии в трансформаторах W1= 303459.79кВт*ч

Введите удельные стоимости линии (на 100 км.) в тыс. руб. С1(1) 0.257

Введите количество масляных выключателей В= 1

Введите стоимость одного масляного выключателя в тыс. руб. Во= 16.5

Введите количество трансформаторов и цену одного трансформатора тыс.руб.

K(1) 1 C2(1) 110

Введите суммарные амортизационные отчисления в % для линий 2.8

Введите суммарные амортизационные отчисления в % для оборудования 8.4

Стоимость линии S1= 6.11 тыс.руб.

Стоимость масляных выключателей S2= 16.50 тыс.руб.

Стоимость трансформаторов S3= 110.00 тыс.руб.

Стоимость потерь эл. энергии S4= 5.89 тыс.руб.

Приведенные затраты R= 36.58 тыс.руб.

Д-В

Ввелите число $\pi/c\tau$ N= 1

Введите длины линий в км L(1) 23.759

Введите время использования максимума нагрузки в часах Тм = 3800

Введите стоимость потерь эл. энергии В (руб/кВт*ч)=0.013

Введите экономический коэффициент мощности Тэ= 0.333

Введите активные мощности $\pi/\text{ст}$ в MBт и коэффициент мощности P(1) 7.693 T(1) 0.5411

Расчетные мощности компенсирующих устройств в Мвар Q4(1)=1.60

Выбрать по справочнику и ввести выдаваемые мощности компенсирующих устройств Q5(1)=1.6

Реактивные мощности нагрузок с учетом установки компенсирующих устройств в Мвар Q(1)=2.563

Расчетное значение номинального напряжения Uном.pac. = 52.59

Введите номинальное напряжение сети в кВ Uном. сети = 110

Выбор сечения проводов

Введите нормативный коэффициент (o.e) En= 0.12

Введите коэффициент отчислений на амортизацию (о.е) Ра= 0.125

Время максимальных потерь Тр = 2225.18 ч.

Корень из сигмы (* 10^-2) = 9.20 (кВт/руб)

Значения токов на участках I[1]=42.56 A

Выберите по номограммам сечение проводников

Введите удельные сопротивления линий в $O_{M/KM}$ Ro(1) 0.21 Xo(1) 0.416

Введите удельные проводимости линий в *10^-6 См/км Во(1) 2.7

Введите номинальное напряжение источника в кВ Ином. ист. = 121

Введите номинальное напряжение сети в кВ Uном. сети = 110

Расчетные мощности в узлах Sp(1) = 7.973

Выберите по таблицам необходимые трансформаторы

Введите количество трансформаторов на п/ст. и их номинальные мощности в МВА

K(1) 1 S(1) 10

Введите потери К.З. и Х.Х. в кВт Ркз(1) 58 Рхх(1) 14

Введите удельные стоимости линии (на 100 км.) в тыс. руб. С1(1) 0.257

Введите количество масляных выключателей В= 1

Введите стоимость одного масляного выключателя в тыс. руб. Во= 16.5

Введите количество трансформаторов и цену одного трансформатора тыс.руб.

K(1) 1 C2(1) 87.5

Введите суммарные амортизационные отчисления в % для линий 2.8

Введите суммарные амортизационные отчисления в % для оборудования 8.4

Стоимость линии S1= 6.11 тыс.руб.

Стоимость масляных выключателей S2= 16.50 тыс.руб.

Стоимость трансформаторов S3= 87.50 тыс.руб.

Стоимость потерь эл. энергии S4= 3.29 тыс.руб.

Приведенные затраты R= 28.71 тыс.руб.

УРП-Д

Введите число п/ст N= 1

Введите длины линий в км

L(1) 75.132

Введите время использования максимума нагрузки в часах Тм = 3800

Введите стоимость потерь эл. энергии В (руб/кВт*ч)=0.013

Введите экономический коэффициент мощности Тэ= 0.333

Введите активные мощности п/ст в МВт и коэффициент мощности Р(1) 26.922 Т(1) 0.5412

Расчетные мощности компенсирующих устройств в Мвар Q4(1)=5.61

Выбрать по справочнику и ввести выдаваемые мощности компенсирующих устройств Q5(1)=5.61

Реактивные мощности нагрузок с учетом установки компенсирующих устройств в Мвар Q(1)=8.960

Расчетное значение номинального напряжения Uном.pac. = 97.61

Введите номинальное напряжение сети в кВ Uном. сети = 110

Выбор сечения проводов

Введите нормативный коэффициент (o.e) En= 0.12

Введите коэффициент отчислений на амортизацию (о.е) Ра= 0.125

Время максимальных потерь Тр = 2225.18 ч.

Корень из сигмы (* 10^-2) = 9.20 (кВт/руб)

Значения токов на участках I[1]=148.92 A

Выберите по номограммам сечение проводников

Введите удельные сопротивления линий в O_{M}/κ_{M} Ro(1) 0.21 Xo(1) 0.416

Введите удельные проводимости линий в *10^-6 См/км

Bo(1) 2.7

Введите номинальное напряжение источника в кВ Uном. ист. = 121

Введите номинальное напряжение сети в кВ Uном. сети = 110

Скорректированные реактивные мощности нагрузок в Мвар Q(1)= 7.48

Расчетные мощности в узлах Sp(1) = 27.941

Выберите по таблицам необходимые трансформаторы

Введите количество трансформаторов на п/ст. и их номинальные мощности в МВА

K(1) 1 S(1) 25

Введите потери К.З. и Х.Х. в кВт Ркз(1) 120 Рхх(1) 25

Потери энергии в трансформаторах W1= 552530.23кВт*ч

Напряжение в узле U = 115.05 кB

Введите удельные стоимости линии (на 100 км.) в тыс. руб. С1(1) 0.257

Введите количество масляных выключателей В= 3

Введите стоимость одного масляного выключателя в тыс. руб. Во= 16.5

Введите количество трансформаторов и цену одного трансформатора тыс.руб.

K(1) 1 C2(1) 125

Введите суммарные амортизационные отчисления в % для линий 2.8

Введите суммарные амортизационные отчисления в % для оборудования 8.4

Стоимость линии S1= 19.31 тыс.руб.

Стоимость масляных выключателей S2= 49.50 тыс.руб.

Стоимость трансформаторов S3= 125.00 тыс.руб.

Стоимость потерь эл. энергии S4= 31.52 тыс.руб.

Приведенные затраты R= 75.79 тыс.руб.

 $R_{\Sigma = 652.56 + 507.23 + 36.58 + 28.71 + 75.79 = 1300.87}$

Схема №3

ГЭС-УРП-220

Введите число $\pi/\text{ст } N=4$

Введите длины линий в км L(1) 23.759 L(2) 23.759 L(3) 50.4 L(4) 23.759 L(5) 33.6

Введите время использования максимума нагрузки в часах Тм = 3800

Введите стоимость потерь эл. энергии В (руб/кВт*ч)=0.013

Введите экономический коэффициент мощности Тэ= 0.4

Введите активные мощности п/ст в МВт и коэффициент мощности

P(1) 81.453 T(1) 1.04 P(2) 74.868 T(2) 1.042

P(3) 41.81 T(3) 0.895 P(4) 37.828 T(4) 0.894

Расчетное значение номинального напряжения Uном.pac.= 209.81

Введите номинальное напряжение сети в кВ Uном. сети = 220

Введите нормативный коэффициент (o.e) En= 0.12

Введите коэффициент отчислений на амортизацию (о.е) Ра= 0.125

Время максимальных потерь Тр = 2225.18 ч.

Введите удельные сопротивления линий в Ом/км

Ro(1) 0.075 Xo(1) 0.42 Ro(2) 0.121 Xo(2) 0.435 Ro(3) 0.121 Xo(3) 0.435

Ro(4) 0.121 Xo(4) 0.435 Ro(5) 0.121 Xo(5) 0.435 Ro(3) 0.121 Xo(3) 0.435

```
Ro(4) 0.121
             Xo(4) 0.435 Ro(5) 0.121
                                       Xo(5) 0.435
Введите удельные проводимости линий в *10^-6 См/км
             Bo(2) 2.6
Bo(1) 2.7
                          Bo(3) 2.6
                                       Bo(4) 2.6
                                                    Bo(5) 2.6
Расчетные мощности в узлах
Sp(1) = 87.728
                   Sp(2) = 80.634
                                       Sp(3) = 45.029
                                                           Sp(4) = 40.741
Введите количество трансформаторов на п/ст. и их номинальные мощности в МВА
K(1) 2
          S(1) 63
                          K(2) 2
                                     S(2) 63
          S(3) 32
                          K(4) 2
                                     S(4) 32
K(3) 2
Введите потери К.З. и Х.Х. в кВт
Ркз(1) 345
             Pxx(1) 137
                                Ркз(2) 345
                                              Pxx(2) 137
Ркз(3) 215
                                Ркз(4) 215
             Pxx(3) 125
                                              Pxx(4)
Напряжение в узле 1 U = 221.29 \text{ кB}
                                       Напряжение в узле 2 U = 219.08 \text{ кB}
Напряжение в узле 3 U = 219.50 \text{ кB}
                                       Напряжение в узле 4 U = 221.04 \text{ kB}
Введите удельные стоимости линии (на 100 км.) в тыс. руб.
C1(1) 18.8
             C1(2) 16.6
                          C1(3) 16.6
                                       C1(4) 16.6
                                                    C1(5) 16.6
Введите количество масляных выключателей В= 14
Введите стоимость одного масляного выключателя в тыс. руб. Во= 16.5
Введите количество трансформаторов и цену одного трансформатора тыс.руб.
K(1) 2
          C2(1) 153
                                K(2) 2
                                           C2(2) 153
K(3)2
          C2(3) 110
                                K(4) 2
                                           C2(4) 110
Введите суммарные амортизационные отчисления в % для линий 2.8
Введите суммарные амортизационные отчисления в % для оборудования 8.4
Стоимость линии S1= 2629.87 тыс.руб.
Стоимость масляных выключателей S2= 231.00 тыс.руб.
Стоимость трансформаторов S3= 1052.00 тыс.руб.
Стоимость потерь эл. энергии S4= 210.31 тыс.руб.
Приведенные затраты R= 978.64 тыс.руб.
Д-Б
Введите число \pi/\text{ст } N=1
Введите длины линий в км
                                L(1) 23.759
Введите время использования максимума нагрузки в часах Тм = 3800
Введите стоимость потерь эл. энергии В (руб/кВт*ч)=0.013
Введите экономический коэффициент мощности Тэ= 0.333
Введите активные мощности п/ст в МВт и коэффициент мощности Р(1) 13.461
                                                                                  T(1)
0.5411
Расчетные мощности компенсирующих устройств в Мвар
                                                           Q4(1)=2.80
Выбрать по справочнику и ввести выдаваемые мощности компенсирующих устройств
Q5(1)=3.05
Реактивные мощности нагрузок с учетом установки компенсирующих устройств в Мвар
O(1)=4.484
Введите номинальное напряжение сети в кВ Uном. сети = 110
Выбор сечения проводов
Введите нормативный коэффициент (o.e) En= 0.12
Введите коэффициент отчислений на амортизацию (о.е) Ра= 0.125
Время максимальных потерь Тр = 2225.18 ч.
Введите удельные сопротивления линий в Ом/км
                                                    Ro(1) 0.21
                                                                 Xo(1) 0.416
Введите удельные проводимости линий в *10^-6 См/км
                                                                 Bo(1) 2.7
                                       Sp(1) = 14.047
Расчетные мощности в узлах
Выберите по таблицам необходимые трансформаторы
Введите количество трансформаторов на п/ст. и их номинальные мощности в МВА
K(1) 1
          S(1) 16
Введите потери К.З. и Х.Х. в кВт
                                                    Pxx(1) 18
                                       Ркз(1) 85
```

Потери энергии в трансформаторах W1= 303459.79кВт*ч

Введите удельные стоимости линии (на 100 км.) в тыс. руб. С1(1) 0.257

Введите количество масляных выключателей В= 1

Введите стоимость одного масляного выключателя в тыс. руб. Во= 16.5

Введите количество трансформаторов и цену одного трансформатора тыс.руб.

K(1) 1C2(1) 110

Введите суммарные амортизационные отчисления в % для линий 2.8

Введите суммарные амортизационные отчисления в % для оборудования 8.4

Стоимость линии S1= 6.11 тыс.руб.

Стоимость масляных выключателей S2= 16.50 тыс.руб.

Стоимость трансформаторов S3= 110.00 тыс.руб.

Стоимость потерь эл. энергии S4= 5.89 тыс.руб.

Приведенные затраты R= 36.58 тыс.руб.

Л-В

Введите число п/ст N= 1

Введите длины линий в км L(1) 23.759

Введите время использования максимума нагрузки в часах Тм = 3800

Введите стоимость потерь эл. энергии В (руб/кВт*ч)=0.013

Введите экономический коэффициент мощности Тэ= 0.333

Введите активные мощности п/ст в МВт и коэффициент мощности Р(1) 7.693 T(1)0.5411

Расчетные мощности компенсирующих устройств в Мвар

Выбрать по справочнику и ввести выдаваемые мощности компенсирующих устройств O5(1)=1.6

Реактивные мощности нагрузок с учетом установки компенсирующих устройств в Мвар Q(1)=2.563

Расчетное значение номинального напряжения Uном.pac. = 52.59

Введите номинальное напряжение сети в кВ Uном. сети = 110

Выбор сечения проводов

Введите нормативный коэффициент (o.e) En= 0.12

Введите коэффициент отчислений на амортизацию (о.е) Ра= 0.125

Время максимальных потерь Тр = 2225.18 ч.

Корень из сигмы (* 10^-2) = 9.20 (кВт/руб)

Значения токов на участках I[1]=42.56 A

Выберите по номограммам сечение проводников

Введите удельные сопротивления линий в Ом/км Ro(1) 0.21Xo(1) 0.416

Введите удельные проводимости линий в *10^-6 См/км

Bo(1) 2.7

Введите номинальное напряжение сети в кВ Uном. сети = 110

Расчетные мощности в узлах Sp(1) = 7.973

Выберите по таблицам необходимые трансформаторы

Введите количество трансформаторов на п/ст. и их номинальные мощности в МВА

K(1) 1S(1) 10

Введите потери К.З. и Х.Х. в кВт Ркз(1) 58 Pxx(1) 14

Введите удельные стоимости линии (на 100 км.) в тыс. руб. С1(1) 0.257

Введите количество масляных выключателей В= 1

Введите стоимость одного масляного выключателя в тыс. руб. Во= 16.5

Введите количество трансформаторов и цену одного трансформатора тыс.руб.

K(1) 1C2(1) 87.5

Введите суммарные амортизационные отчисления в % для линий 2.8

Введите суммарные амортизационные отчисления в % для оборудования 8.4

Стоимость линии S1= 6.11 тыс.руб.

Стоимость масляных выключателей S2= 16.50 тыс.руб.

Стоимость трансформаторов S3= 87.50 тыс.руб.

Стоимость потерь эл.энергии S4= 3.29 тыс.руб.

Приведенные затраты R= 28.71 тыс.руб.

УРП-Д

Введите число п/ст N= 1

Введите длины линий в км L(1) 75.132

Введите время использования максимума нагрузки в часах Тм = 3800

Введите стоимость потерь эл. энергии В (руб/кВт*ч)=0.013

Введите экономический коэффициент мощности Тэ= 0.333

Введите активные мощности $\pi/\text{ст}$ в MBт и коэффициент мощности P(1) 26.922 T(1) 0.5412

Расчетные мощности компенсирующих устройств в Мвар Q4(1)=5.61

Выбрать по справочнику и ввести выдаваемые мощности компенсирующих устройств Q5(1)=5.61

Реактивные мощности нагрузок с учетом установки компенсирующих устройств в Мвар Q(1)=8.960

Расчетное значение номинального напряжения Uном.pac.= 97.61

Введите номинальное напряжение сети в кВ Uном. сети = 110

Выбор сечения проводов

Введите нормативный коэффициент (o.e) En= 0.12

Введите коэффициент отчислений на амортизацию (о.е) Ра= 0.125

Время максимальных потерь Тр = 2225.18 ч.

Корень из сигмы (* 10^-2) = 9.20 (кВт/руб)

Значения токов на участках [1]=148.92 А

Выберите по номограммам сечение проводников

Введите удельные сопротивления линий в Ом/км Ro(1) 0.21 Xo(1) 0.416

Введите удельные проводимости линий в $*10^{-6}$ См/км Во(1) 2.7

Введите номинальное напряжение источника в кВ Uном. ист. = 121

Введите номинальное напряжение сети в кВ Uном. сети = 110

Скорректированные реактивные мощности нагрузок в Мвар Q(1)= 7.48

Расчетные мощности в узлах Sp(1) = 27.941

Выберите по таблицам необходимые трансформаторы

Введите количество трансформаторов на п/ст. и их номинальные мощности в МВА

K(1) 1 S(1) 25

Введите потери К.З. и Х.Х. в кВт Ркз(1) 120 Рхх(1) 25

Потери энергии в трансформаторах W1= 552530.23кBт*ч

Напряжение в узле U = 115.05 кB

Введите удельные стоимости линии (на 100 км.) в тыс. руб. С1(1) 0.257

Введите количество масляных выключателей В= 3

Введите стоимость одного масляного выключателя в тыс. руб. Во= 16.5

Введите количество трансформаторов и цену одного трансформатора тыс.руб.

K(1) 1 C2(1) 125

Введите суммарные амортизационные отчисления в % для линий 2.8

Введите суммарные амортизационные отчисления в % для оборудования 8.4

Стоимость линии S1= 19.31 тыс.руб.

Стоимость масляных выключателей S2= 49.50 тыс.руб.

Стоимость трансформаторов S3= 125.00 тыс.руб.

Стоимость потерь эл. энергии S4= 31.52 тыс.руб.

Приведенные затраты R= 75.79 тыс.руб.

 $R_{\Sigma} = 978.64 + 36.58 + 28.71 + 75.79 = 1119,72$

РАСЧЕТ УСТАНОВИВШЕГОСЯ РЕЖИМА

$$i := \sqrt{-1}$$

Находим сопротивления и проводимости линий по справочным данным.

$$Z_{13} \coloneqq 0.075 \cdot 23.759 + i \cdot 0.42 \cdot 23.759 \qquad \qquad Z_{13} = 1.782 + 9.979i$$

$$Z_{34} \coloneqq 0.121 \cdot 23.759 + i \cdot 0.435 \cdot 23.759 \qquad \qquad Z_{34} = 2.875 + 10.335i$$

$$Z_{45} \coloneqq 0.121 \cdot 50.4 + i \cdot 0.435 \cdot 50.4 \qquad \qquad Z_{45} = 6.098 + 21.924i$$

$$Z_{56} \coloneqq 0.121 \cdot 23.759 + i \cdot 0.435 \cdot 23.759 \qquad \qquad Z_{56} = 2.875 + 10.335i$$

$$Z_{62} \coloneqq 0.121 \cdot 33.6 + i \cdot 0.435 \cdot 33.6 \qquad \qquad Z_{62} = 4.066 + 14.616i$$

$$Z_{27} \coloneqq \frac{0.198 \cdot 37.566 + i \cdot 0.416 \cdot 37.566}{2} \qquad \qquad Z_{78} \equiv 0.198 \cdot 23.759 + i \cdot 0.416 \cdot 23.759 \qquad \qquad Z_{78} = 4.704 + 9.884i$$

$$Z_{79} \coloneqq 0.198 \cdot 23.759 + i \cdot 0.416 \cdot 23.759 \qquad \qquad Z_{79} = 4.704 + 9.884i$$

$$D_{13} \coloneqq 2.7 \cdot 10^{-6} \cdot 2$$

$$D_{034} \coloneqq 2.6 \cdot 10^{-6} \qquad \qquad D_{056} \coloneqq 2.6 \cdot 10^{-6}$$

$$D_{045} \coloneqq 2.737 \cdot 10^{-6} \cdot 2$$

$$D_{079} \coloneqq 2.737 \cdot 10^{-6}$$

$$D_{079} \coloneqq 2.737 \cdot 10^{-6}$$

Находим зарядные мощности.

$$Q_{13} := \frac{110^2 \cdot b_{013} \cdot 23.759}{2} \qquad Q_{13} = 0.776$$

$$Q_{34} := \frac{110^2 \cdot b_{034} \cdot 23.759}{2}$$

$$Q_{34} = 0.374$$

$$Q_{45} := \frac{110^2 \cdot b_{045} \cdot 60.574}{2} \qquad Q_{45} = 0.953$$

$$Q_{62} := \frac{110^2 \cdot b_{062} \cdot 53.126}{2}$$
 $Q_{62} = 0.903$

$$Q_{56} := \frac{110^2 \cdot b_{056} \cdot 23.759}{2} \qquad Q_{56} = 0.374$$

$$Q_{27} := \frac{110^2 \cdot b_{027} \cdot 37.566}{2}$$

$$Q_{27} = 1.244$$

$$Q_{78} := \frac{110^2 \cdot b_{078} \cdot 23.759}{2} \qquad Q_{78} = 0.393$$

$$Q_{79} := \frac{110^2 \cdot b_{027} \cdot 23.759}{2}$$

$$Q_{79} = 0.787$$

Данные выбранных ранее трансформаторов:

$$\begin{split} Z_{Tp3} &:= 4 + 100\mathrm{i} & S_{xx3} := 0.137 + 0.504\mathrm{i} \\ Z_{Tp9} &:= 4.38 + 86.7\mathrm{i} & S_{xx9} := 0.026 + 0.112\mathrm{i} \\ Z_{Tp8} &:= 7.95 + 139\mathrm{i} & S_{xx8} := 0.014 + 0.07\mathrm{i} \\ Z_{Tp4} &:= 4 + 100\mathrm{i} & S_{xx4} := 0.137 + 0.504\mathrm{i} \\ Z_{Tp7} &:= 2.54 + 55.9\mathrm{i} & S_{xx7} := 0.036 + 0.175\mathrm{i} \\ Z_{Tp6} &:= 8.63 + 198\mathrm{i} & S_{xx6} := 0.125 + 0.288\mathrm{i} \\ Z_{Tp5} &:= 8.63 + 198\mathrm{i} & S_{xx5} := 0.125 + 0.288\mathrm{i} \\ \end{split}$$

Находим мощности нагрузок: $S := P_{max} + Q_{heck}$

$$S_3 := 84.847 + 33.658i$$
 $S_7 := 26.041 + 8.673i$ $S_9 := 9.014 + 2.988i$ $S_6 := 43.552 + 17.419i$ $S_8 := 26.041 + 8.673i$ $S_5 := 39.405 + 15.837i$ $S_4 := 77.998 + 31.063i$

Расчет линии с 2-х сторонним питанием 1-3-4-2 (ГЭС-УРП):

Находим потери мощности трансформаторов и расчетные нагрузки узлов:

$$\Delta S_{Tp} = \frac{\left(\text{Re}\left(\frac{S}{2}\right)\right)^2 + \left(\text{Im}\left(\frac{S}{2}\right)\right)^2}{\left(U_{HOM}\right)^2} \cdot Z_{Tp}$$

$$\Delta S_{Tp3} := \frac{Re\left(\frac{S_3}{2}\right)^2 + Im\left(\frac{S_3}{2}\right)^2}{220^2} \cdot Z_{Tp3}$$

$$\Delta S_{Tp3} := S_3 + 2 \cdot \left(\Delta S_{Tp3} + S_{xx3}\right)$$

$$S_{IIp3} := S_{IIp3} - i \cdot \left(Q_{13} + Q_{34}\right)$$

$$\Delta S_{Tp4} := \frac{Re\left(\frac{S_4}{2}\right)^2 + Im\left(\frac{S_4}{2}\right)^2}{220^2} \cdot Z_{Tp4}$$

$$\Delta S_{Tp4} := \frac{1}{220^2} \cdot Z_{Tp4}$$

$$\Delta S_{Tp4} = 0.146 + 3.641i$$

$$S_{Ip4} := S_4 + 2 \cdot (\Delta S_{Tp4} + S_{xx4})$$

$$S_{Ip4} = 78.563 + 39.353i$$

$$S_{4p} := S_{Ip4} - i \cdot (Q_{34} + Q_{45})$$

$$S_{4p} = 78.563 + 38.026i$$

$$\Delta S_{Tp5} \coloneqq \frac{\text{Re}{\left(\frac{S_5}{2}\right)^2 + \text{Im}{\left(\frac{S_5}{2}\right)^2}}}{220^2} \cdot Z_{Tp5}$$

$$\Delta S_{\text{Tp5}} = 0.08 + 1.845i$$

$$S_{np5} := S_5 + 2 \cdot \left(\Delta S_{rp5} + S_{xx5} \right)$$

$$S_{\text{mp5}} = 39.816 + 20.102i$$

$$S_{5p} := S_{\pi p5} - i \cdot (Q_{45} + Q_{56})$$

$$S_{5p} = 39.816 + 18.776i$$

$$\Delta S_{Tp6} := \frac{\text{Re}{\left(\frac{S_6}{2}\right)^2 + \text{Im}{\left(\frac{S_6}{2}\right)^2}}}{220^2} \cdot Z_{Tp6}$$

$$\Delta S_{\text{Tp6}} = 0.098 + 2.25i$$

$$S_{\pi p6} := S_6 + 2\Delta S_{\pi p6} + 2 \cdot S_{xx6}$$

$$S_{np6} = 43.998 + 22.495i$$

$$S_{6p} := S_{\pi p6} - i \cdot (Q_{56} + Q_{62})$$

$$S_{6n} = 43.998 + 21.219i$$

Расчет участка цепи 2-7-(8,9) (УРП-Д-В,Б)

$$\Delta S_{\text{Tp7}} := \frac{\text{Re}(S_7)^2 + \text{Im}(S_7)^2}{110^2} \cdot Z_{\text{Tp7}}$$

$$\Delta S_{Tp7} = 0.158 + 3.48i$$

$$S_{\pi p7} := S_7 + \Delta S_{\pi p7} + S_{xx'}$$

$$S_{\pi p7} = 26.235 + 12.328i$$

$$S_{7p} := S_{\pi p7} - i \cdot (Q_{27} + Q_{78} + Q_{79})$$

$$S_{7p} = 26.235 + 9.904i$$

$$\Delta S_{TP8} := \frac{\text{Re}(S_8)^2 + \text{Im}(S_8)^2}{110^2} \cdot Z_{TP8}$$

$$\Delta S_{\text{Tp8}} = 0.495 + 8.654i$$

$$S_{\pi p8} := S_8 + \Delta S_{\tau p8} + S_{xx3}$$

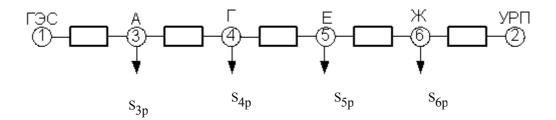
$$S_{\pi p8} = 26.55 + 17.397i$$

$$S_{8p} := S_{\pi p8} - i \cdot Q_{78}$$

$$S_{8p} = 26.55 + 17.004i$$

$$\Delta S_{Tp9} := \frac{\text{Re}(S_9)^2 + \text{Im}(S_9)^2}{110^2} \cdot Z_{Tp9}$$

$$\Delta S_{Tp9} = 0.033 + 0.646i$$


$$S_{\pi p9} := S_9 + \Delta S_{\pi p9} + S_{xx9}$$

$$S_{\text{IID}9} = 9.073 + 3.746i$$

$$S_{9p} := S_{\pi p9} - i \cdot Q_{79}$$

$$S_{9p} = 9.073 + 2.959i$$

Рассчитываем линию с 2-х сторонним питанием 1-3-4-5-6-2 (ГЭС-УРП):

$$\mathbf{S}_{13} := \frac{\mathbf{S}_{3p} \cdot \left(\overline{Z}_{34} + \overline{Z}_{45} + \overline{Z}_{56} + \overline{Z}_{62}\right) + \mathbf{S}_{4p} \cdot \left(\overline{Z}_{45} + \overline{Z}_{56} + \overline{Z}_{62}\right) + \mathbf{S}_{5p} \cdot \left(\overline{Z}_{56} + \overline{Z}_{62}\right) + \mathbf{S}_{6p} \cdot \overline{Z}_{62}}{\left(\overline{Z}_{13} + \overline{Z}_{34} + \overline{Z}_{45} + \overline{Z}_{56} + \overline{Z}_{62}\right)}$$

$$S_{13} = 151.47 + 76.356i$$

$$s_{26} \coloneqq \frac{s_{6p} \cdot \left(\overline{z_{56} + z_{45} + z_{34} + z_{13}}\right) + s_{5p} \cdot \left(\overline{z_{45} + z_{34} + z_{13}}\right) + s_{4p} \cdot \left(\overline{z_{34} + z_{13}}\right) + s_{3p} \cdot \overline{z_{13}}}{\left(\overline{z_{13} + z_{34} + z_{45} + z_{56} + z_{62}}\right)}$$

$$S_{26} = 96.373 + 43.788i$$

Определяем уравнительную мощность

 $U_H := 220$

$$S_{\text{YP}} := \frac{U_{\text{H}} \cdot 1.13 - U_{\text{H}} \cdot 1.09}{\left(Z_{13} + Z_{34} + Z_{45} + Z_{56} + Z_{62}\right)} \cdot U_{\text{H}}$$

$$S_{VP} = 7.097 + 26.945i$$

$$S_{13f} := S_{13} + S_{YP}$$

$$S_{13f} = 158.566 + 103.301i$$

$$\begin{split} \mathbf{S}_{34} &\coloneqq \mathbf{S}_{13\mathrm{f}} - \mathbf{S}_{3\mathrm{p}} \\ &\quad \mathbf{S}_{34} = 73.101 + 61.178\mathrm{i} \end{split} \qquad \begin{aligned} \mathbf{S}_{65} &\coloneqq \mathbf{S}_{26\mathrm{f}} - \mathbf{S}_{6\mathrm{p}} \\ &\quad \mathbf{S}_{26} = 96.373 + 43.788\mathrm{i} \end{aligned}$$

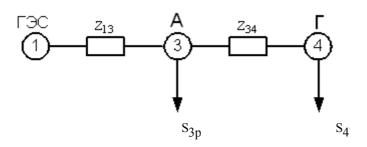
$$\mathbf{S}_{45} &\coloneqq \mathbf{S}_{34} - \mathbf{S}_{4\mathrm{p}} \\ &\quad \mathbf{S}_{54} \coloneqq \mathbf{S}_{65} - \mathbf{S}_{5\mathrm{p}} \end{aligned}$$

$$\mathbf{S}_{54} &\coloneqq \mathbf{S}_{65} - \mathbf{S}_{5\mathrm{p}} \\ &\quad \mathbf{S}_{54} = 5.462 - 23.152\mathrm{i} \end{split}$$

 $S_{26f} = 89.276 + 16.842i$

Рассчитываем потери мощности на участке между точками потокораздела

$$\Delta S_{45} := \frac{\text{Re}(S_{45})^2 + \text{Im}(S_{45})^2}{220^2} \cdot Z_{45}$$


$$\Delta S_{45} = 0.071 + 0.256i$$

Определяем нагрузки в конце каждой разомкнутой сети

 $S_{26f} := S_{26} - S_{VP}$

$$\begin{split} \mathbf{S_{4'}} &:= \text{Re}\big(\mathbf{S_{34}}\big) + \text{Re}\big(\mathbf{S_{45}}\big) + \text{Im}\big(\mathbf{S_{34}}\big) \, \mathbf{i} \\ \\ \mathbf{S_{5'}} &:= \text{Re}\big(\mathbf{S_{65}}\big) + \big(\text{Im}\big(\mathbf{S_{45}}\big) + \text{Im}\big(\mathbf{S_{45}}\big) \mathbf{i} \\ \\ \mathbf{S_{5'}} &:= 45.278 + 46.303 \, \mathbf{i} \end{split}$$

Разрезаем сеть по точке потокораздела и рассчитываем две разомкнутые сети.

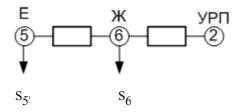
$$\Delta S_{34} := \frac{\text{Re}(S_{4'})^2 + \text{Im}(S_{4'})^2}{220^2} \cdot Z_{34}$$

$$\Delta S_{34} = 0.494 + 1.776i$$

$$S_{34H} := S_{4'} + \Delta S_{34}$$

$$S_{34H} = 68.133 + 62.954i$$

$$S_{13K} := S_{34H} + S_{3D}$$


$$S_{13\kappa} = 153.598 + 105.077i$$

$$\Delta S_{13} := \frac{\text{Re} \left(S_{13\text{K}}\right)^2 + \text{Im} \left(S_{13\text{K}}\right)^2}{220^2} \cdot Z_{13}$$

$$\Delta S_{13} = 1.275 + 7.141i$$

$$S_{13H} := S_{13K} + \Delta S_{13}$$

$$S_{13H} = 154.873 + 112.218i$$

$$\Delta S_{65} := \frac{\text{Re}(S_{5'})^2 + \text{Im}(S_{5'})^2}{220^2} \cdot Z_{56}$$

$$\Delta S_{65} = 0.249 + 0.896i$$

$$S_{65H} := S_{5'} + \Delta S_{65}$$

$$S_{65H} = 45.527 + 47.199i$$

$$S_{26K} := S_{65H} + S_{9p}$$

$$S_{26\kappa} = 54.6 + 50.158i$$

$$\Delta S_{26} := \frac{\text{Re}(S_{26K})^2 + \text{Im}(S_{26K})^2}{220^2} \cdot Z_{62}$$

$$\Delta S_{26} = 0.462 + 1.66i$$

$$\mathrm{S}_{26\mathrm{H}} \coloneqq \mathrm{S}_{26\kappa} + \Delta \mathrm{S}_{26}$$

$$S_{26H} = 55.061 + 51.818i$$

Расчет разомкнутой сети 2-7-(8,9):

7-8

$$\mathrm{S}_{78\kappa} \coloneqq \mathrm{S}_{8p}$$

$$S_{78\kappa} = 26.55 + 17.004i$$

$$\Delta S_{78} := \frac{\text{Re}(S_{78K})^2 + \text{Im}(S_{78K})^2}{110^2} \cdot Z_{78}$$

$$\Delta S_{78} = 0.386 + 0.812i$$

$$S_{78H} := S_{78K} + \Delta S_{78}$$

 $S_{78H} = 26.936 + 17.816i$

7-9

$$S_{79K} := S_{9p}$$

 $S_{78\kappa} = 26.55 + 17.004i$

$$\Delta S_{79} := \frac{\text{Re}(S_{79K})^2 + \text{Im}(S_{79K})^2}{110^2} \cdot Z_{79K}$$

$$\Delta S_{79} = 0.035 + 0.074i$$

$$S_{79H} := S_{79K} + \Delta S_{79}$$

$$S_{79H} = 9.108 + 3.034i$$

2-7

$$S_{27K} := S_{79H} + S_{78H} + S_{7p}$$

$$S_{27\kappa} = 62.28 + 30.754i$$

$$\Delta S_{27} := \frac{\text{Re}(S_{27\text{K}})^2 + \text{Im}(S_{27\text{K}})^2}{110^2} \cdot Z_{27}$$

$$\Delta S_{27} = 1.483 + 3.116i$$

$$S_{27H} := S_{27K} + \Delta S_{27}$$

$$S_{27H} = 63.762 + 33.869i$$

 $U_{HOM} := 220$

$$U_{\Gamma \ni C} := U_{HOM} \cdot 1.13$$

$$U_{\Gamma \ni C} = 248.6$$

$$\mathbf{U}_{\mathbf{A}} \coloneqq \mathbf{U}_{\Gamma \ni \mathbf{C}} - \frac{\overline{\mathbf{S}_{13_{\mathrm{H}}}}}{\overline{\mathbf{U}_{\Gamma \ni \mathbf{C}}}} \cdot \mathbf{Z}_{13}$$

$$U_A = 242.985 - 5.412i$$

$$|U_{A}| = 243.046$$

$$\mathrm{U}_{A} := \mathrm{U}_{\Gamma \ni C} - \left(\frac{\text{Re}\left(\mathrm{S}_{13_{H}}\right) \cdot \text{Re}\left(\mathrm{Z}_{13}\right) + \\ \\ \overline{\mathrm{U}_{\Gamma \ni C}}}{\overline{\mathrm{U}_{\Gamma \ni C}}} + \\ \mathrm{i} \cdot \frac{\text{Re}\left(\mathrm{S}_{13_{H}}\right) \cdot \\ \\ \mathrm{Im}\left(\mathrm{Z}_{13}\right) - \\ \\ \overline{\mathrm{U}_{\Gamma \ni C}} \right) \right)$$

$$U_A = 242.985 - 5.412i$$

$$|U_{A}| = 243.046$$

$$\mathbf{U}_{\Gamma} \coloneqq \mathbf{U}_{\mathbf{A}} - \frac{\overline{\mathbf{S}_{34_{\mathbf{H}}}}}{\overline{\mathbf{U}_{\mathbf{A}}}} \cdot \mathbf{Z}_{34}$$

$$U_{\Gamma} = 239.455 - 7.487i$$

$$\left| \mathbf{U}_{\Gamma} \right| = 239.573$$

$$U_{\text{УР}\Pi} := U_{\text{HOM}} \cdot 1.09$$

$$\mathbf{U}_{\mathcal{K}} \coloneqq \mathbf{U}_{\mathbf{YP\Pi}} - \frac{\overline{\mathbf{S}_{\mathbf{26H}}}}{\overline{\mathbf{U}_{\mathbf{YP\Pi}}}} \cdot \mathbf{Z}_{\mathbf{62}}$$

$$U_{\text{KK}} = 235.708 - 2.478i$$

$$\left| \mathbf{U}_{\mathbf{K}} \right| = 235.721$$

$$\mathrm{U}_E \coloneqq \mathrm{U}_{\mathrm{W}} - \frac{\overline{\mathrm{S}_{65\mathrm{H}}}}{\overline{\mathrm{U}_{\mathrm{W}}}} \cdot \mathrm{Z}_{34}$$

$$U_E = 233.069 - 3.87i$$

$$|U_{\rm E}| = 233.101$$

$$U_{\text{YP}\Pi} := U_{\text{HOM}} \cdot 1.09$$

$$U_E' := U_{\Gamma} - \frac{\overline{S_{65H}}}{\overline{U_{\Gamma}}} \cdot Z_{34}$$

$$U'_{E} = 236.831 - 8.803i$$

$$|U'_{E}| = 236.994$$

$$\epsilon \coloneqq \frac{\left| \mathbf{U}_E \right| - \left| \mathbf{U}_E' \right|}{\left| \mathbf{U}_E \right|} \cdot 100$$

$$\varepsilon = -1.67$$

$$U_{HOM} := 110$$

$$U_{\text{YP}\Pi} := U_{\text{HOM}} \cdot 1.09$$

$$\mathbf{U}_{\coprod} \coloneqq \mathbf{U}_{\mathbf{YP\Pi}} - \frac{\overline{\mathbf{S}_{\mathbf{27H}}}}{\overline{\mathbf{U}_{\mathbf{YP\Pi}}}} \cdot \mathbf{Z}_{\mathbf{27}}$$

$$U_{\text{Д}} = 115.715 - 3.105i$$

$$|U_{\text{Д}}| = 115.757$$

$$\begin{split} \mathbf{U_B} \coloneqq \mathbf{U_{\mathcal{I}}} - \frac{\overline{\mathbf{S_{78H}}}}{\overline{\mathbf{U_{\mathcal{I}}}}} \cdot \mathbf{Z_{78}} & \mathbf{U_B} = 113.058 - 4.61\mathrm{i} \\ & |\mathbf{U_B}| = 113.152 \\ & \mathbf{U_B} \coloneqq \mathbf{U_{\mathcal{I}}} - \frac{\overline{\mathbf{S_{79H}}}}{\overline{\mathbf{U_{\mathcal{I}}}}} \cdot \mathbf{Z_{79}} & \mathbf{U_{\mathcal{B}}} = 115.069 - 3.742\mathrm{i} \\ & |\mathbf{U_{\mathcal{B}}}| = 115.129 \end{split}$$

Определим напряжение низшей стороны, приведенное к высшей стороне:

ПОДСТАНЦИЯ-А

$$S_{3pn} := \frac{S_{\pi p3} - 2 \cdot S_{xx3}}{2}$$
 $S_{3pn} = 42.596 + 21.133i$

$$\mathbf{U}_{\text{HHBH3}} \coloneqq \mathbf{U}_{A} - \left(\frac{\text{Re}\left(\mathbf{S}_{3pn}\right) \cdot \text{Re}\left(\mathbf{Z}_{Tp3}\right) + \text{Im}\left(\mathbf{S}_{3pn}\right) \cdot \text{Im}\left(\mathbf{Z}_{Tp3}\right)}{\overline{\mathbf{U}_{A}}} + i \cdot \frac{\text{Re}\left(\mathbf{S}_{3pn}\right) \cdot \text{Im}\left(\mathbf{Z}_{Tp3}\right) + \text{Im}\left(\mathbf{S}_{3pn}\right) \cdot \text{Re}\left(\mathbf{Z}_{Tp3}\right)}{\overline{\mathbf{U}_{A}}}\right)$$

 $U_{HHBH3} = 233.194 - 23.072i$

$$k_t := \frac{230}{11} \qquad \qquad k_t = 20.909$$

$$U_{HH} := \frac{\left|U_{HHBH3}\right|}{k_t}$$

$$U_{HH} = 11.207$$

$$k_{t \text{жел}} := \frac{\left| U_{\text{HHBH3}} \right|}{10}$$
 $k_{t \text{жел}} = 23.433$

$$n := \left(\frac{k_{\text{twen}}}{k_{\text{t}}} - 1\right) \cdot \frac{1}{0.0178} \qquad \qquad n = 6.782$$

$$n_{ct} := 6$$

$$U_{\text{HHf3}} := \frac{U_{\text{HHBH3}}}{k_{\text{t}} \cdot \left(1 + n_{\text{ct}} \cdot 0.0178\right)} \qquad \left| U_{\text{HHf3}} \right| = 10.126$$

ПОДСТАНЦИЯ-Г

$$S_{4pn} := \frac{S_{\pi p4} - 2 \cdot S_{xx4}}{2}$$
 $S_{4pn} = 39.145 + 19.172i$

$$\mathbf{U_{HHBH4}} \coloneqq \mathbf{U_{\Gamma}} - \left(\frac{\text{Re}\left(\mathbf{S_{4pn}}\right) \cdot \text{Re}\left(\mathbf{Z_{Tp4}}\right) + \text{Im}\left(\mathbf{S_{4pn}}\right) \cdot \text{Im}\left(\mathbf{Z_{Tp4}}\right)}{\overline{\mathbf{U_{\Gamma}}}} + i \cdot \frac{\text{Re}\left(\mathbf{S_{4pn}}\right) \cdot \text{Im}\left(\mathbf{Z_{Tp4}}\right) + \text{Im}\left(\mathbf{S_{4pn}}\right) \cdot \text{Re}\left(\mathbf{Z_{Tp4}}\right)}{\overline{\mathbf{U_{\Gamma}}}}\right)$$

 $U_{HHBH4} = 230.283 - 23.868i$

$$k_t := \frac{230}{11}$$
 $k_t = 20.909$

$$U_{HH} := \frac{\left|U_{HHBH4}\right|}{k_t}$$

$$U_{HH} = 11.073$$

$$k_{t \text{жел}} := \frac{\left| U_{\text{HHBH4}} \right|}{10.1}$$
 $k_{t \text{жел}} = 22.922$

$$n := \left(\frac{k_{\text{tжел}}}{k_{\text{t}}} - 1\right) \cdot \frac{1}{0.0178} \qquad \qquad n = 5.41$$

$$n_{ct} := 5$$

$$U_{\text{HHf4}} \coloneqq \frac{U_{\text{HHBH4}}}{k_{\text{t}} \cdot \left(1 + n_{\text{ct}} \cdot 0.0178\right)} \qquad \left| U_{\text{HHf4}} \right| = 10.168$$

ПОДСТАНЦИЯ-Ж

$$S_{5pn} := \frac{S_{np5} - 2 \cdot S_{xx5}}{2}$$
 $S_{5pn} = 19.783 + 9.763i$

$$\mathbf{U_{HHBH5}} \coloneqq \mathbf{U_{\mathcal{K}}} - \left(\frac{\text{Re}\left(\mathbf{S_{5pn}}\right) \cdot \text{Re}\left(\mathbf{Z_{Tp5}}\right) + \text{Im}\left(\mathbf{S_{5pn}}\right) \cdot \text{Im}\left(\mathbf{Z_{Tp5}}\right)}{\overline{\mathbf{U_{\mathcal{K}}}}} + i \cdot \frac{\text{Re}\left(\mathbf{S_{5pn}}\right) \cdot \text{Im}\left(\mathbf{Z_{Tp5}}\right) + \text{Im}\left(\mathbf{S_{5pn}}\right) \cdot \text{Re}\left(\mathbf{Z_{Tp5}}\right)}{\overline{\mathbf{U_{\mathcal{K}}}}}\right)$$

$$U_{HHBH5} = 226.605 - 19.357i$$

$$k_t := \frac{230}{11}$$

$$k_t = 20.909$$

$$\mathbf{U}_{\mathbf{H}\mathbf{H}} \coloneqq \frac{\left|\mathbf{U}_{\mathbf{H}\mathbf{H}\mathbf{B}\mathbf{H}\mathbf{5}}\right|}{\mathbf{k}_{\mathbf{t}}}$$

$$U_{HH} = 10.877$$

$$k_{tжел} := \frac{\left| U_{HHBH5} \right|}{10.2}$$

$$k_{t \text{жел}} = 22.297$$

$$n := \left(\frac{k_{t\text{жел}}}{k_t} - 1\right) \cdot \frac{1}{0.0178}$$

$$n = 3.729$$

$$n_{ct} := 4$$

$$\mathbf{U}_{\mathrm{HHf5}} \coloneqq \frac{\mathbf{U}_{\mathrm{HHBH5}}}{\mathbf{k}_{\mathrm{t}} \cdot \left(1 + \mathbf{n}_{\mathrm{ct}} \cdot 0.0178\right)}$$

$$\left| U_{\text{HHf5}} \right| = 10.154$$

ПОДСТАНЦИЯ-Е

$$S_{6pn} := \frac{S_{\pi p4} - 2 \cdot S_{xx4}}{2}$$

$$S_{6pn} = 39.145 + 19.172i$$

$$U_{\text{HHBH6}} \coloneqq U_E - \left(\frac{\text{Re}\big(S_{6pn}\big) \cdot \text{Re}\big(Z_{Tp6}\big) + \text{Im}\big(S_{6pn}\big) \cdot \text{Im}\big(Z_{Tp6}\big)}{\overline{U_E}} + i \cdot \frac{\text{Re}\big(S_{6pn}\big) \cdot \text{Im}\big(Z_{Tp6}\big) + \text{Im}\big(S_{6pn}\big) \cdot \text{Re}\big(Z_{Tp6}\big)}{\overline{U_E}}\right)$$

$$U_{HHBH6} = 214.773 - 37.531i$$

$$k_t := \frac{230}{11}$$

$$k_t = 20.909$$

$$U_{HH} \coloneqq \frac{\left|U_{HHBH6}\right|}{k_{\mathsf{f}}}$$

$$U_{HH} = 10.427$$

$$k_{\text{tжел}} := \frac{\left| U_{\text{ннвн6}} \right|}{10.3}$$

$$k_{tжел} = 21.168$$

$$n := \left(\frac{k_{t \text{жел}}}{k_t} - 1\right) \cdot \frac{1}{0.0178}$$

n = 0.695

$$n_{ct} := 1$$

$$\mathbf{U}_{\text{HHf6}} \coloneqq \frac{\mathbf{U}_{\text{HHBH6}}}{\mathbf{k}_{\text{t}} \cdot \left(1 + \mathbf{n}_{\text{ct}} \cdot 0.0178\right)}$$

 $\left| U_{\rm HHf6} \right| = 10.245$

ПОДСТАНЦИЯ-Д

$$S_{7pn} := S_{\pi p7} - 2 \cdot S_{xx'}$$

$$S_{7pn} = 26.163 + 11.978i$$

$$\mathbf{U}_{\mathbf{HHBH7}} \coloneqq \mathbf{U}_{\mathbf{\prod}} - \left(\frac{\mathrm{Re}\left(\mathbf{S}_{7pn}\right) \cdot \mathrm{Re}\left(\mathbf{Z}_{Tp7}\right) + \mathrm{Im}\left(\mathbf{S}_{7pn}\right) \cdot \mathrm{Im}\left(\mathbf{Z}_{Tp7}\right)}{\overline{\mathbf{U}_{\mathbf{\prod}}}} + \mathrm{i} \cdot \frac{\mathrm{Re}\left(\mathbf{S}_{7pn}\right) \cdot \mathrm{Im}\left(\mathbf{Z}_{Tp7}\right) + \mathrm{Im}\left(\mathbf{S}_{7pn}\right) \cdot \mathrm{Re}\left(\mathbf{Z}_{Tp7}\right)}{\overline{\mathbf{U}_{\mathbf{\prod}}}}\right)$$

$$U_{HHBH7} = 109.013 - 15.827i$$

$$k_t := \frac{115}{11}$$

$$k_t = 10.455$$

$$\boldsymbol{U}_{HH} \coloneqq \frac{\left|\boldsymbol{U}_{HHBH7}\right|}{k_{t}}$$

$$U_{HH} = 10.537$$

$$\mathbf{k}_{\text{tжел}} \coloneqq \frac{\left| \mathbf{U}_{\text{ннвн7}} \right|}{10.4}$$

$$k_{tжел} = 10.592$$

$$n := \left(\frac{k_{\text{tjkej}}}{k_t} - 1\right) \cdot \frac{1}{0.0178}$$

$$n = 0.738$$

$$n_{ct} := 1$$

$$\mathrm{U}_{\mathrm{HHf7}} \coloneqq \frac{\mathrm{U}_{\mathrm{HHBH7}}}{\mathrm{k}_{t} \cdot \left(1 + \mathrm{n}_{ct} \cdot 0.0178\right)}$$

$$\left| U_{\text{HHf7}} \right| = 10.352$$

ПОДСТАНЦИЯ-В

$$S_{8pn} := S_{\pi p8} - 2 \cdot S_{xx5}$$

$$S_{8pn} = 26.522 + 17.257i$$

$$\mathbf{U}_{\mathbf{HHBH8}} := \mathbf{U}_{B} - \left(\frac{\text{Re}\big(\mathbf{S}_{8pn}\big) \cdot \text{Re}\big(\mathbf{Z}_{Tp8}\big) + \text{Im}\big(\mathbf{S}_{8pn}\big) \cdot \text{Im}\big(\mathbf{Z}_{Tp8}\big)}{\overline{\mathbf{U}_{B}}} + i \cdot \frac{\text{Re}\big(\mathbf{S}_{8pn}\big) \cdot \text{Im}\big(\mathbf{Z}_{Tp8}\big) + \text{Im}\big(\mathbf{S}_{8pn}\big) \cdot \text{Re}\big(\mathbf{Z}_{Tp8}\big)}{\overline{\mathbf{U}_{B}}}\right)$$

 $U_{HHBH8} = 88.637 - 37.435i$

$$k_{t} := \frac{115}{11}$$

$$k_t = 10.455$$

$$\mathbf{U}_{\mathrm{HH}} \coloneqq \frac{\left|\mathbf{U}_{\mathrm{HHBH8}}\right|}{\mathbf{k}_{\mathrm{t}}}$$

$$U_{HH} = 9.204$$

$$k_{\text{tжел}} := \frac{\left| U_{\text{ннвн8}} \right|}{10.5}$$

$$k_{tжел} = 9.164$$

$$n := \left(\frac{k_{t\text{жел}}}{k_t} - 1\right) \cdot \frac{1}{0.0178}$$

$$n = -6.937$$

$$n_{ct} := -7$$

$$\mathbf{U}_{\text{HHf8}} \coloneqq \frac{\mathbf{U}_{\text{HHBH8}}}{\mathbf{k}_{\text{t}} \cdot \left(1 + \mathbf{n}_{\text{ct}} \cdot 0.0178\right)}$$

$$\left| \mathbf{U}_{\mathbf{HHf8}} \right| = 10.513$$

ПОДСТАНЦИЯ-Б

$$S_{9pn} := S_{\pi p9} - 2 \cdot S_{xx9}$$

$$S_{9pn} = 9.021 + 3.522i$$

$$\mathbf{U_{HHBH9}} \coloneqq \mathbf{U_{\overline{b}}} - \left(\frac{\text{Re}\big(\mathbf{S_{6pn}}\big) \cdot \text{Re}\big(\mathbf{Z_{Tp6}}\big) + \text{Im}\big(\mathbf{S_{6pn}}\big) \cdot \text{Im}\big(\mathbf{Z_{Tp6}}\big)}{\overline{\mathbf{U_{\overline{b}}}}} + i \cdot \frac{\text{Re}\big(\mathbf{S_{6pn}}\big) \cdot \text{Im}\big(\mathbf{Z_{Tp6}}\big) + \text{Im}\big(\mathbf{S_{6pn}}\big) \cdot \text{Re}\big(\mathbf{Z_{Tp6}}\big)}{\overline{\mathbf{U_{\overline{b}}}}}\right)$$

$$U_{HHBH9} = 76.946 - 71.297i$$

$$k_t := \frac{115}{10.5}$$

$$k_t = 10.952$$

$$\mathbf{U}_{\mathbf{H}\mathbf{H}} := \frac{\left|\mathbf{U}_{\mathbf{H}\mathbf{H}\mathbf{B}\mathbf{H}}\mathbf{9}\right|}{k_{\mathsf{f}}}$$

$$U_{HH} = 9.578$$

$$k_{tжел} := \frac{\left| U_{HHBH9} \right|}{10.5}$$

$$k_{t \text{жел}} = 9.99$$

$$n := \left(\frac{k_{t\text{tmep}}}{k_t} - 1\right) \cdot \frac{1}{0.0178}$$

$$n = -4.934$$

$$n_{ct} := -5$$

$$U_{\text{HHf9}} \coloneqq \frac{U_{\text{HHBH9}}}{k_{\text{t}} \cdot \left(1 + n_{\text{ct}} \cdot 0.0178\right)}$$

$$\left| \mathbf{U}_{\mathbf{HHf9}} \right| = 10.513$$

Листинг расчета в ПВК SDO-6

Время расчета: 04:46:44 Для задания коэффициентов трансформации используется полярная система координат

```
* Расчет установившегося режима
                                                ----- Время:04:46:46.28
  *СРЖМ
(В): В ветви 2-- 17 заданы нулевые сопротивления
(В): В узле
             1 задан источник реак.мощности без пределов регулирования
             2 задан источник реак.мощности без пределов регулирования
(В): В узле
(В): В узле
            17 задан источник реак.мощности без пределов регулирования
                 узлов- 17
                                       ветвей- 9
             генераторов- 0
                                    трансформаторов- 7
         синхр. компенсаторов- 3
                                      из них трехобмоточных- 7
          узлов с нагрузкой- 7
                                  тр-ов с поперечным рег.- 0
           узлов со с.х.н.- 0
                                    ветвей с фикс. Р- 0
           узлов с шунтами- 0
                                     параллельных ветвей- 0
          из них управляемых- 0
                                        перетоков сальдо- 0
          узлов с пределами- 0
                                      ветвей с пределами- 0
     контр. параметров по узлам-
                                 0 контр. параметров по ветвям- 0
             vзлов с стк- 0
                                  отключенных ветвей- 0
          Температура: 20 град.
          Частота системы 1 = 50.00 гц
     Суммарная нагрузка по Р:
                                295. Мвт
                                           по Q:
                                                    114. Мвар
    Суммарная генерация по Р:
                                  0. Mbt
                                           по О:
                                                    0. Мвар
     Узлы балансирующие по Р:
                                  1
                                      2
                                         17
     Узлы балансирующие по Q:
                                   1
                                       2
                                         17
            Рнб тах( узел)
                             Онб тах ( узел) шаг
 Итерация
                                                      якобиан ннэ
                         723.378( 3) .100E+01 .379*E 85
 0 Q-U
          113.289(3)
                                                             89
 1 P-D
          84.061(10)
                          16.327( 7) .929E+00 .379*E 85
                                                            89
 2 Q-U
           8.003(
                   4)
                         22.426( 3) .842E+00 .379*E 85
                                                            89
                         11.582( 10) .611E+00 .379*E 85
 3 P-D
           14.674(4)
                                                            89
                         12.410( 10) .900E+00 .379*E 85
4 O-U
            .741(3)
                                                            89
(И): Расчет закончен. Макс.небаланс = .19040E+00
           Информация об узлах схема: DENMAX
                                                          Рш
                   D(град)
                             P_{\rm H}
                                            P_{\Gamma}
                                                   QΓ
                                                                  Qш
                                                                          Рнб
   N узла
             U
                                    Qн
Онб
      1
          248.600
                                     161.497
                                              102.375
      2
         239.800
                                      87.493
                                              17.484
      3
         242.990
                   -1.341
      4
         239.351
                   -1.925
      5
         237.071
                   -1.690
      6
         237.316
                   -1.217
      7
          117.061
                   -1.313
          116.351
                   -1.615
      9
          115.961
                   -1.786
      10
          10.017
                   -5.543
                            84.850
                                   33.660
      11
           10.084
                   -5.897
                            78.000
                                    31.060
```

15.840

17.420

8.673

4.588

12

13

14

15

10.363

10.139

10.467

10.461

-5.739

-5.702

-7.622

-7.097

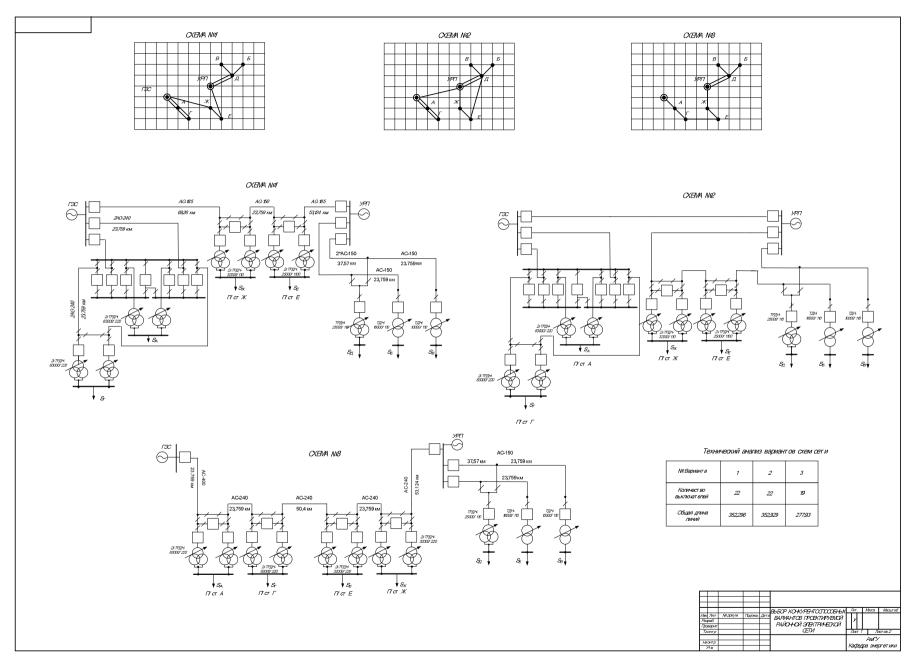
39.400

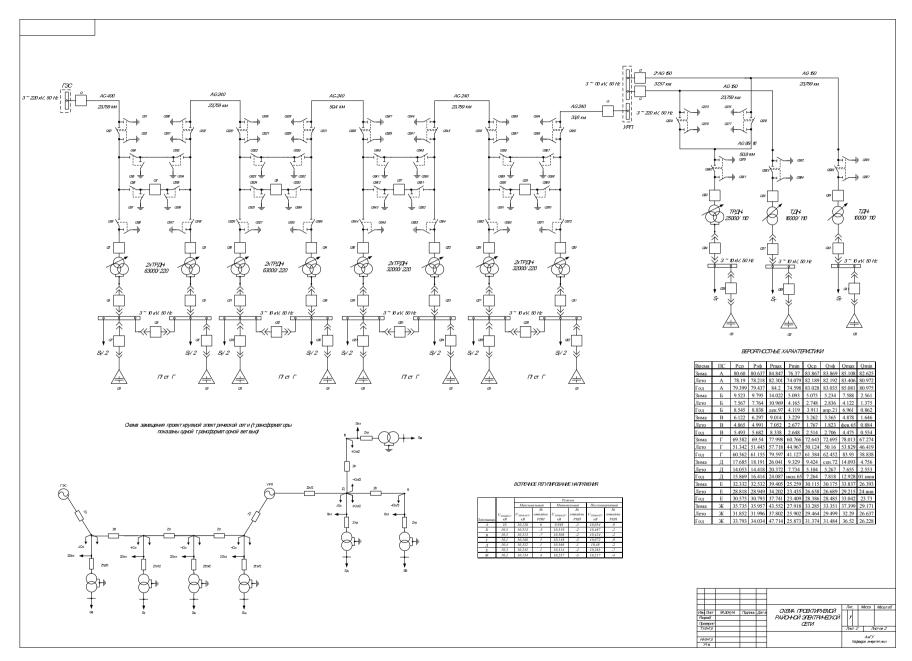
43.550

26.040

14.020

	16 17			9.014 2.988 50.134 14.073	
			294.8	74 114.229 299.125 133.132 .000	.000
В	етвь			етвях схема: DENMAX ¹ ji Qji дР корона дQ Іл Кт	od Карг
QΓ		-	-		_
1-	3	161.497	112.375	-160.381 -106.114 1.1162 - 6.2612	.457
2-	6	87.493	17.484	-86.935 -15.460 .5582 - 2.0242 .21	
2-	17	-			-
3-	4	75.245	65.071	-74.767 -63.337 .4779 - 1.7339 .23	37
4-		-3.493		3.565 -25.627 .07212612 .063	
5-				43.211 -6.084 .09633501 .106	
7-				9.073 -3.983 .03410723 .049	
				-14.098 -6.089 .08241750 .077	
7-	17	-49.473	-22.375	50.134 24.073 .6615 - 1.6975 .2	68
-					
				3.0986 .0 7.575	.000
		Инфо	ормания с	трансформаторах схема - DENMAX	.000
Имя	тр-ра			к Кмод Карг Р Q I dP do	Q Psh Qsh
				MBт MBAp кA MBт MBAp M	
				.00 85.124 41.031 .225 .3025 7.5618	,
	10	10.		-84.822 -33.470	
	4	239.		.00 78.231 37.459 .209 .2626 3.5660)
	11	10.0	084	-77.968 -30.893	
	 5	237 (071 22 00	.00 39.540 19.205 .107 .1483 2.4034	
	12		363		:
	12				
				.00 43.721 21.539 .119 .1820 3.1757	•
	13			-43.539 -17.364 	
	7			.00 26.190 12.047 .142 .1540 1.3900)
	14	10.4	467	-26.036 -8.657	
	8	116.	351 10.64	.00 9.070 3.990 .049 .0077 0.0081	
		10.4		-9.012 -2.982	
	9	115	 961 10 64	.00 14.093 6.099 .077 .0768 0.5205	
				-14.017 -4.578	
 , kī	гог	o.		1.1840 12.6255	
Y1			ределения	потерь в схеме: DENMAX	
			•	ги: активн. реактивн.	
				294.874 114.229	
				299.125 133.932	
		енерация		.000	


	гери в шунта	.000					
	з них в БСК		.000				
	гери в СК	.000					
	гери в ЛЭП						
	гери в тран-р			25			
	гери на корог	•					
Cyr	ммарные пот	ери 4.2	283 20.	201			
		х электроперед					
		е % реактивн		ер. в ЛЭП %	корона	%	
110.0 117.				.00 .0			
220.0 240.	.9 2.32 54	5.63 26.	4 .00 .0	0. 00.			
 Итого:	2 000 72			000 0			
	3.099 <i>12.</i> 2 гери в трансф		9	.000 .0			
		рорматорах	0/_				
	-	92 14.7	/0				
	29 0.7 3.5 90 20.9 11						
220.0	90 20.9 11	./1 34.0					
Итого: 1	.184 27.6 1	2.625 68.7					
		рмация об отг	-				
		1-ая Uрпн N	Г-ая 1-ая З	ЭДС N-ая 1-	-ая угол 1	N-ая K	мод Карг
Кмод Карг	•						
		4.6 4.0		0.00	00 00	400 00	
3 -		16 19		.000			
4 -	0- 11 1	15 19		.000			
5 -	0- 12 1	11 19		.000			
6 -	0- 13 1	14 19		.000			
7 -	0- 14 1	11 19		.000		544 .00	
8 -	0- 16 1	3 19		.000	.00 10.6		
9 -	0- 15 1	5 19	55.00	.000	.00 10.6	44 .00	
N		я об узлах схе			D.	0	D 6
N узла	U D(r)	рад) Рн	QH P	г Ог	Рш	Qш	Рнб
Qнб 1	112 400		120 106	06.476			
	213.400 -		128.196	86.476	-	-	-
	217.800 -		87.520	56.616 -	-	-	-
		433 -				-	
		969 - 700				-	
		788 -				-	
		256 -				-	
		436 - 774 -				-	
		963 -				-	
10			57.040			-	
10			57.040			-	-
		972 57.720	40.330			-	-
12 13		237 34.200 248 37.800	26.230		-	-	-
13 14			20.230			-	-
					-	-	-
15 16		773 10.970			-	-	-
16 17	10.519 -6.7 108.900 -	717 7.052	20.029	 1762	-	-	-
1 /	100.700 -		39.038	4.762 -	-	-	-
	2	50.412 123.6	500 254.75	4 147.854	.000	.000	

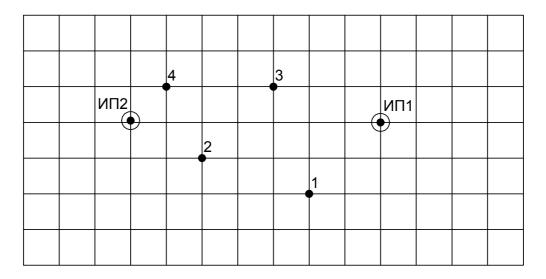

Ветвь Qг	Информация о і Ріј Qij			дQ Іл	Kmod Kapr
1- 3	128.196 96.476	-127.188 -9	90.825 1.0074	- 2.65	09 .435
2- 6	87.520 66.616	-86.492 -62	2.888 1.0283	- 1.728	3 .292
2- 17 3- 4			9.500 .1564		.135
4- 5	-13.796 -27.343	13.930 27	7.827 .1334	4833	.086
5- 6	-48.246 -30.491	48.457 31	1.257 .2113	7666	.157
7- 9	7.108 .656 11.067 1.033 -38.637 -3.734	-11.0179 39.038 4	.0503 -	.1068	.060
3	а узел имя Ите	о трансформа ж Кмод Кар МВт М .00 82.844	аторах схема - I ог Р Q ВАр кА М 4 70.768 .303	DENMIN I dP MBt MBA	dQ Psh Qsh Ap MВт MВАр
	206.278 19.20 10.148	-57.717	40.331		5.5302
	209.589 20.19				6700
6			5 31.633 .135 26.230	.2355 2	2.4030
	107.486 10.27 10.366	-20.370	.000		
	107.117 10.10 5 10.519	.00 7.087			
	106.911 10.10 5 10.508	-10.970	.000		
(H I I		я потерь в схо сти: актин 250.412 254.754 .000	1.3374 1' еме: DENMIN вн. реактивн 123.600	7.9256	

П П С И ном Ц 110.0 10	U ср. акти 17.6 .47 1.1 2.5	I Э П ран-рах корону е потери ери в лин вные % 7 10.9	1.33′ .000 4.3 иях элект реактивн 0.18 2.7 6.20 25.3	7 17.) 46 2 ропереда ые % ге	.926 4.302 ч енер. в 0 .0	0. 00	кор	оона %	6		
Итого:		69.2)	.00	0. 0					
U ном г 110.0	отери в трактивные .17 4.0 1.16 26.7	% реакт 1.59 8	тивные ⁹ .1	%							
 Итого: 1.337 30.8 17.926 72.1											
111010.		Інформац		айках тра	нсфор	маторов					
F	Номера уз.						ая у	гол N-а	я К	МОД	Карг
Кмод Кај			1		, ,		,				1
	- 0- 10	1 5				.000			.00		
		1 5				.000			.00		
			19			.000	.00		.00		
	- 0- 13		19			.000			.00		
	0- 14		19			.000	.00		.00		
	0- 16		19			.000			.00		
9 -	- 0- 15	1 8	19			.000	.00	10.095	.00		
	Инфор	мация об	υρπον ανα	wa: DEN	AVAD						
N узла		D(град)	•	QH	Рг	QΓ	Рш	Qш		Рнб	
Qнб	ı	Б(град)	1 11	ŲΠ	11	Q1	1 111	ζш		1 110	
QIIO											
2	228.800	-		267.698	8 208	.479	-	_	_	_	
3	179.535	-12.060	-		-	-	-	-	-		
4	183.698	-10.772	-		-	-	-	-	-		
5	200.947	-6.057	-		-	-	-	-	-		
6	211.189	-3.646	-		-	-	-	-	-		
7	111.355	-1.437	-		-	-	-	-	-		
8	110.596	-1.769	-		-	-	-	-	-		
9	110.179	-1.957	-		-	-	-	-	-		
10	10.054	-19.989	84.850	33.660	-	-	-	-	-	-	
11	10.072	-17.673	78.000	31.060	-	-	-	-	-	-	
12	10.265	-11.781	39.400	15.840	-	-	-	-	-	-	
13	10.217	-9.382	43.550	17.420	-	-	-	-	-	-	
14	10.430	-8.461	26.040	8.673	-	-	-	-	-	-	
15	10.424	-7.875	14.020	4.588	-	-	-	-	-	-	
16	10.487	-7.824	9.014	2.988	-	-	-	-	-	-	
17	114.400	-		50.269	9 25.	060 -			-	-	
		294.87	74 114.2	29 317.9	967 2	33.539	.00	.00	00		

	твь		мация о в Qij P				дQ	Іл Кто	od	Карг
Qг 2-	6	267.698	208.479	-258.830	-176.328	8.8671	- 3	2.1516	.857	-
- 2-	17	-		_				_	_	
			-48.057				3.0	552 .31	4 -	-
4-	5	-164.227	-93.542	170.629	116.745	6.4020	- 23	3.2029	.595	-
5-	6	-210.497	-137.357	214.958	153.534	4.4604	- 1	6.1772	.723	-
7-	8	9 117	4.198 -	.9 079 -4	4 117	0382 -	0811	052	_	_
			6.488 -							_
			-23.158							-
-										
				21.4	.0	76.766			.000	
		Инф	ормация с	трансфо	пматопах	схема - D	ENAVA	\R		
Имя з	гр-р		мя Uтен) Psl	h Osh
	-r r									
	3		535 18.02							•
	10	10	.054)				
	 1	183	698 18.02		 857 /24	 505 270	1668	11 6609	·	
			.072				.4006	11.0090	•	
			947 18.59				.2129	4.8838		
	12	2 10.	265	-39.324	-15.825					
	6	211	189 19.52	00 43	760 22.8	323 135	2357	5 4068		
			217				.2337	2.1000		
	7		355 10.10			172 .151	.1726	3.7987		
	14	10.	480 	-26.040	-8.6/3 					
	8	110.	596 10.10	.00 9.0	79 4.11	17 .052	.0646	1.1293		
	16	10.	487	-9.014	-2.988					
	9	110	179 10.10	00 14	 106 62	92 081	0861	1 7039		
			424			, 2 .001	.0001	1.,055		
 -	гог					.8258 43.	2720			
			пепепециа	HOTENL P			.4147			
Таблица распределения потерь в схеме: DENAVAR Суммарные мощности: активн. реактивн.										
Нагрузка 294.874 114.229										
Генерация 317.967 233.539										
		⁻ енерация			.000	1				
<u> </u>				.000	.00	00				
из них в БСК					.000					
Потери в СК			СК	.000						

```
Потери в ЛЭП
                           21.444
                                      76.766
       Потери в тран-рах
                             1.826
                                      43.273
       Потери на корону
                             .000
       Суммарные потери
                             23.270
                                       120.039
             Потери в линиях электропередач
U ном U ср. активные % реактивные % генер. в ЛЭП % корона
                                                               %
 110.0 111.6 .87 3.7
                        2.18 1.8
                                   0. 00. 0. 00.
 220.0 200.8 20.57 88.4 74.59 62.1
                                     .00 .0
                                               .00 .0
           21.444 92.2 76.766 64.0
Итого:
                                            0.000.
       Потери в трансформаторах
       активные % реактивные
U ном
 110.0
         .32 1.4
                  6.63 5.5
 220.0
        1.50 6.5
                  36.64 30.5
     -----
        1.826 7.8 43.273 36.0
Итого:
               Информация об отпайках трансформаторов
       Номера узлов 1-ая Uрпн N-ая 1-ая ЭДС N-ая 1-ая угол N-ая Кмод Карг
Кмод Карг
      3 - 0- 10
                         19
                   1
                      1
                                                 .000 .00 18.022 .00
      4 - 0- 11
                      1
                         19
                   1
                                                 .000 .00 18.022 .00
      5 - 0- 12
                      3
                         19
                                                 .000 .00 18.592 .00
                   1
      6 - 0- 13
                         19
                      6
                                                 .000 .00 19.519 .00
                   1
      7 - 0- 14
                      8
                         19
                                                 .000 .00 10.095 .00
                   1
      8 - 0- 16
                   1
                      8
                         19
                                                 .000 .00 10.095 .00
      9 - 0- 15
                      8
                   1
                         19
                                                 .000 .00 10.095 .00
```


6. САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ

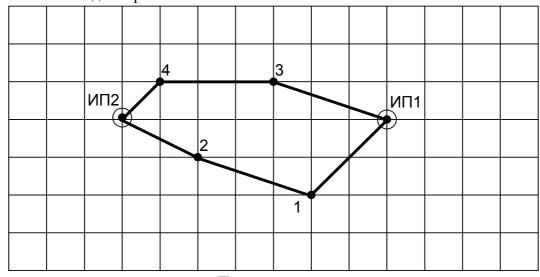

6.2 Методические указания по выполнению домашних заданий и контрольных работ

При изучении дисциплины предусмотрено выполнение индивидуальных домашних заданий по всем темам практических занятий. При этом по практическим занятиям № 1,2,3,4 выдается комплексное задание, которое выполняется на протяжении двух месяцев с промежуточной аттестацией по каждой теме и после каждого практического занятия.

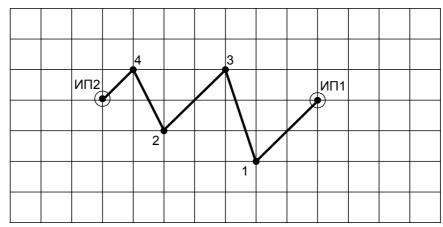
Ниже приведен пример его выполнения.

Задача №1-4. Вариант №8.

Выбрать вариант схемы электрической сети, рассчитать номинальное напряжение сети, выбрать силовые трансформаторы, разработать схему распредустройства высокого напряжения, выбрать сечения линий.



 $\begin{array}{ll} P_{cp1}\!\!=\!\!7~MB{\rm T}; & P_{cp2}\!\!=\!\!21~MB{\rm T}; \\ P_{cp3}\!\!=\!\!36~MB{\rm T}; & P_{cp4}\!\!=\!\!45~MB{\rm T}. \end{array}$


Масштаб: в 1 клетке 17 км. Район по гололёду — I.

Решение

Составляем два варианта схемы сети:

Первый вариант

Второй вариант

Определяем длины ВЛ, используя расстояния между подстанциями и коэффициент трассы (1,3):

 $L_{1-3}=41,1\cdot1,3=53,4$ km; $L_{2-4}=29,1\cdot1,3=37.8$ km; $L_{2-4}=29,1\cdot1,3=37.8$ km;

 $L_{2-3}=36.8\cdot1.3=47.8$ KM.

Определяем максимальные активные мощности, используя заданный коэффициент максимума (1,15):

 $P_{\text{max}} = K_{\text{max}} \cdot P_{\text{cp}};$

 $P_{max1}=1,15.6=6,9 \text{ MBT};$ $P_{max3}=1,15.15=17,3 \text{ MBT};$ $P_{max2}=1,15.4=4,6 \text{ MBT};$ $P_{max4}=1,15.11=12,6 \text{ MBT}.$

Рассчитываем потоки максимальной активной мощности без учёта потерь в линиях. 1 вариант

$$P_{\text{ИП1-I}} = \frac{P_{\text{max1}} \cdot (L_{1-2} + L_{\text{ИП2-2}}) + P_{\text{max2}} \cdot L_{\text{ИП2-2}}}{L_{\text{ИП1-I}} + L_{1-2} + L_{\text{ИП2-2}}} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{47.8 + 37.8} = \frac{6.9 \cdot (53.4 + 37.8) + 4.6 \cdot 37.8}{$$

 $=5.8 \text{ MB}_{\text{T}}$:

$$P_{\text{ИП2-2}} = \frac{P_{\text{max}1} \cdot L_{\text{ИП1-1}} + P_{\text{max}2} \cdot (L_{\text{ИП1-1}} + L_{1-2})}{L_{\text{ИП1-1}} + L_{1-2} + L_{\text{ИП2-2}}} = \frac{6.9 \cdot 47.8 + 4.6 \cdot (47.8 + 53.4)}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot 47.8 + 4.6 \cdot (47.8 + 53.4)}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot 47.8 + 4.6 \cdot (47.8 + 53.4)}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot 47.8 + 4.6 \cdot (47.8 + 53.4)}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot 47.8 + 4.6 \cdot (47.8 + 53.4)}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot 47.8 + 4.6 \cdot (47.8 + 53.4)}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot 47.8 + 4.6 \cdot (47.8 + 53.4)}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot 47.8 + 4.6 \cdot (47.8 + 53.4)}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot 47.8 + 4.6 \cdot (47.8 + 53.4)}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot 47.8 + 4.6 \cdot (47.8 + 53.4)}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot 47.8 + 53.4 + 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot 47.8 + 53.4 + 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot 47.8 + 53.4 + 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot 47.8 + 53.4 + 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot 47.8 + 53.4 + 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot 47.8 + 53.4 + 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot 47.8 + 53.4 + 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot 47.8 + 53.4 + 37.8}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot 47.8 + 4.6 \cdot (47.8 + 53.4)}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot 47.8 + 4.6 \cdot (47.8 + 53.4)}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot 47.8 + 4.6 \cdot (47.8 + 53.4)}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot 47.8 + 4.6 \cdot (47.8 + 53.4)}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot 47.8 + 4.6 \cdot (47.8 + 53.4)}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot 47.8 + 4.6 \cdot (47.8 + 53.4)}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot 47.8 + 4.6 \cdot (47.8 + 53.4)}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot 47.8 + 4.6 \cdot (47.8 + 53.4)}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot 47.8 + 4.6 \cdot (47.8 + 53.4)}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot 47.8 + 4.6 \cdot (47.8 + 53.4)}{47.8 + 53.4 + 37.8} = \frac{6.9 \cdot 47.8 + 4.6 \cdot (47.8 + 53.4)}{47.8 + 53.4} = \frac{6.9 \cdot 47.8 + 4.6 \cdot (47.8 + 53.4)}{47.8 + 53.4} = \frac{6.9 \cdot 47.8 + 4.6 \cdot (47.8 + 53.4)}{47.8 + 53.4} = \frac{6.9 \cdot 47.8 + 53.4}{47.8 + 53.4} = \frac{6.9 \cdot 47.8 + 53.4}{47.$$

=5,7 MBT;

проверка: $P_{\text{ИП1-2}} + P_{\text{ИП2-2}} = 5,8 + 5,7 = 11,5 \text{ MBT};$ $P_{\text{max1}} + P_{\text{max2}} = 6,9 + 4,6 = 11, \text{ MBT};$

 $P_{2-1}=P_{\text{MII}2-2}-P_{\text{max}2}=5,7-4,6=1,1 \text{ MBT}.$

$$P_{\text{ИП1-3}} = \frac{P_{\text{max}3} \cdot (L_{3-4} + L_{\text{ИП2-4}}) + P_{\text{max}4} \cdot L_{\text{ИП2-4}}}{L_{\text{ИП1-3}} + L_{3-4} + L_{\text{ИП2-4}}} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot (50,7 + 23,9) + 12,6 \cdot 23,9}{53,4 + 50,7 + 23,9}$$

=12,4 MBT;

$$P_{\text{И}\Pi2\text{--}4} = \frac{P_{\text{max}3} \cdot L_{\text{И}\Pi1\text{--}3} + P_{\text{max}4} \cdot (L_{\text{И}\Pi1\text{--}3} + L_{3\text{--}4})}{L_{\text{И}\Pi1\text{--}3} + L_{3\text{--}4} + L_{\text{И}\Pi2\text{--}4}} = \frac{17,3 \cdot 53,4 + 12,6 \cdot (53,4 + 50,7)}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot 53,4 + 12,6 \cdot (53,4 + 50,7)}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot 53,4 + 12,6 \cdot (53,4 + 50,7)}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot 53,4 + 12,6 \cdot (53,4 + 50,7)}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot 53,4 + 12,6 \cdot (53,4 + 50,7)}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot 53,4 + 12,6 \cdot (53,4 + 50,7)}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot 53,4 + 12,6 \cdot (53,4 + 50,7)}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot 53,4 + 12,6 \cdot (53,4 + 50,7)}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot 53,4 + 12,6 \cdot (53,4 + 50,7)}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot 53,4 + 12,6 \cdot (53,4 + 50,7)}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot 53,4 + 50,7 + 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot 53,4 + 50,7 + 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot 53,4 + 50,7 + 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot 53,4 + 50,7 + 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot 53,4 + 50,7 + 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot 53,4 + 50,7 + 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot 53,4 + 50,7 + 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot 53,4 + 50,7 + 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot 53,4 + 50,7 + 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot 53,4 + 50,7 + 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot 53,4 + 50,7 + 23,9}{53,4 + 50,7 + 23,9} = \frac{17,3 \cdot 53,4 + 50,7 + 23,9}{53,4 + 50,7 + 50,7} = \frac{17,3 \cdot 53,4 + 50,7 + 23,9}{53,4 + 50,7 + 50,7} = \frac{17,3 \cdot 53,4 + 50,7}{53,4 + 50,7}$$

=17,5 MBT;

проверка: $P_{И\Pi 1-3}+P_{И\Pi 2-4}=12,4+17,5=29,9 \text{ MBT};$ $P_{max3}+P_{max4}=17,3+12,6=29,9 \text{ MBT};$

 $P_{4-3}=P_{\text{MII}2-4}-P_{\text{max}4}=17,5-12,6=4,9 \text{ MBt.}$

 $P_{\text{И}\Pi 1-1} = \frac{P_{\text{max}1} \cdot (L_{1-3} + L_{2-3} + L_{2-4} + L_{\text{И}\Pi 2-4}) + P_{\text{max}3} \cdot (L_{2-3} + L_{2-4} + L_{\text{И}\Pi 2-4})}{L_{\text{И}\Pi 1-3} + L_{1-3} + L_{2-3} + L_{2-4} + L_{\text{И}\Pi 2-4}} +$

$$\begin{split} &+\frac{P_{\max 2} \cdot (L_{2-4} + L_{\text{ИП2}-4}) + P_{\max 4} \cdot L_{\text{ИП2}-4}}{L_{\text{ИП1}-3} + L_{1-3} + L_{2-3} + L_{2-4} + L_{\text{ИП2}-4}} = \frac{6.9 \cdot (53.4 + 47.8 + 37.8 + 23.9)}{47.8 + 53.4 + 47.8 + 37.8 + 23.9} + \\ &= \frac{17.3 \cdot (47.8 + 37.8 + 23.9) + 4.6 \cdot (37.8 + 23.9) + 12.6 \cdot 23.9}{47.8 + 53.4 + 47.8 + 37.8 + 23.9} = 17.1 \text{ MBT}; \\ &P_{\text{ИП2}-4} = \frac{P_{\max 1} \cdot L_{\text{ИП1}-3} + P_{\max 3} \cdot (L_{\text{ИП1}-3} + L_{1-3}) + P_{\max 2} \cdot (L_{\text{ИП1}-3} + L_{1-3} + L_{2-3})}{L_{\text{ИП1}-3} + L_{1-3} + L_{2-3} + L_{2-4}} + \frac{P_{\max 4} \cdot (L_{\text{ИП1}-3} + L_{1-3} + L_{2-3} + L_{2-4})}{47.8 + 53.4 + 47.8 + 37.8 + 23.9} = \frac{6.9 \cdot 47.8 + 17.3 \cdot (47.8 + 53.4)}{47.8 + 53.4 + 47.8 + 37.8 + 23.9} + \frac{4.6 \cdot (47.8 + 53.4 + 47.8) + 12.6 \cdot (47.8 + 53.4 + 47.8 + 37.8)}{47.8 + 53.4 + 47.8 + 37.8 + 23.9} = 24.3 \text{ MBT}; \\ &P_{\max 1} + P_{\max 2} + P_{\max 3} + P_{\max 2} + P_{\max 4} = 6.9 + 17.3 + 4.6 + 12.6 = 41.4 \text{ MBT}; \\ &P_{\max 1} + P_{\max 3} + P_{\max 2} + P_{\max 4} = 6.9 + 17.3 + 4.6 + 12.6 = 41.4 \text{ MBT}; \\ &P_{1-3} = P_{\text{ИП1}-1} - P_{\max 1} = 17.1 - 6.9 = 10.2 \text{ MBT}; \\ &P_{1-3} = P_{\text{UП1}-1} - P_{\max 1} = 17.1 - 6.9 = 10.2 \text{ MBT}; \\ &P_{1-2} = P_{\text{UП2}-4} - P_{\max 4} = 24.3 - 12.6 = 11.7 \text{ MBT}; \\ &P_{2-3} = P_{4-2} - P_{\max 2} = 11.7 - 4.6 = 7.1 \text{ MBT}. \end{split}$$

Рациональные напряжения определим по формуле Илларионова:

$$U_{\text{рац}} = \frac{1000}{\sqrt{\frac{500}{L} + \frac{2500}{\frac{P}{n_{\text{II}}}}}},$$

где $U_{\text{рац}}$ – рациональное напряжение, кВ; L – длина линии, км; P – мощность, протекающая по линии, МВт; $n_{\text{ц}}$ – число цепей.

В замкнутых сетях определяют $U_{\text{рац}}$ на головных участках и принимают большее значение в качестве исходного для выбора номинального напряжения.

1 вариант

$$\begin{split} U_{\text{рац. ИП1-1}} = & \frac{1000}{\sqrt{\frac{500}{L_{\text{ИП1-1}}}}} + \frac{2500}{P_{\text{ИП1-1}}} = \frac{1000}{\sqrt{\frac{500}{47.8} + \frac{2500}{5.8}}} = 47.5 \text{ kB.} \\ U_{\text{рац. ИП2-2}} = & \frac{1000}{\sqrt{\frac{500}{L_{\text{ИП2-2}}}}} + \frac{2500}{P_{\text{ИП2-2}}} = \frac{1000}{\sqrt{\frac{500}{37.8} + \frac{2500}{5.7}}} = 47.1 \text{ kB.} \end{split}$$

Для линии с двухсторонним питанием ИП1-1-2–ИП2 принимаем номинальное напряжение 35 кВ.

$$U_{\text{рац. ИП1-3}} = \frac{1000}{\sqrt{\frac{500}{L_{\text{ИП1-3}}} + \frac{2500}{P_{\text{ИП1-3}}}}} = \frac{1000}{\sqrt{\frac{500}{53,4} + \frac{2500}{12,4}}} = 68,9 \text{ kB};$$

$$U_{\text{рац. ИП2-4}} = \frac{1000}{\sqrt{\frac{500}{L_{\text{ИП2-4}}} + \frac{2500}{P_{\text{ИП2-4}}}}} = \frac{1000}{\sqrt{\frac{500}{23,9} + \frac{2500}{17,5}}} = 78,1 \text{ kB}.$$

Для линии с двухсторонним питанием ИП1–3–4–ИП2 принимаем номинальное напряжение 110 кВ.

2 вариант

$$U_{\text{рац. ИП1-I}} = \frac{1000}{\sqrt{\frac{500}{L_{\text{ИП1-I}}} + \frac{2500}{P_{\text{ИП1-I}}}}} = \frac{1000}{\sqrt{\frac{500}{47.8} + \frac{2500}{17.1}}} = 79.9 \text{ kB};$$

$$U_{\text{рац. ИП2-4}} = \frac{1000}{\sqrt{\frac{500}{L_{\text{ИП2-4}}} + \frac{2500}{P_{\text{ИП2-4}}}}} = \frac{1000}{\sqrt{\frac{500}{23.9} + \frac{2500}{24.3}}} = 89.9 \text{ kB}.$$

Для линии с двухсторонним питанием ИП1-1-3-2-4-ИП2 принимаем номинальное напряжение 110 кВ.

Экономически целесообразное значение реактивной мощности определяется по формуле:

$$Q_9 = P_{max} \cdot tg \varphi_9$$
.

Значение экономически целесообразного коэффициента мощности tg ϕ_3 задается энергосистемой. В данном случае это tg ϕ_3 =0,25 для сети 110 кВ и 0,3 для сети 220 кВ.

Определим экономически целесообразные значения реактивной мощности для обоих вариантов.

1 вариант

$$\begin{array}{lll} Q_{91} = P_{max1} \cdot tg\phi_9 = 6,9 \cdot 0,25 = 1,7 \text{ MBAp}; & Q_{93} = P_{max3} \cdot tg\phi_9 = 17,3 \cdot 0,3 = 5,2 \text{ MBAp}; \\ Q_{92} = P_{max2} \cdot tg\phi_9 = 4,6 \cdot 0,25 = 1,2 \text{ MBAp}; & Q_{94} = P_{max4} \cdot tg\phi_9 = 12,6 \cdot 0,3 = 3,8 \text{ MBAp}. \\ Q_{91} = P_{max1} \cdot tg\phi_9 = 6,9 \cdot 0,3 = 2,1 \text{ MBAp}; & Q_{93} = P_{max3} \cdot tg\phi_9 = 17,3 \cdot 0,3 = 5,2 \text{ MBAp}; \\ Q_{92} = P_{max2} \cdot tg\phi_9 = 4,6 \cdot 0,3 = 1,4 \text{ MBAp}; & Q_{94} = P_{max4} \cdot tg\phi_9 = 17,3 \cdot 0,3 = 5,2 \text{ MBAp}; \\ Q_{92} = P_{max2} \cdot tg\phi_9 = 4,6 \cdot 0,3 = 1,4 \text{ MBAp}; & Q_{94} = P_{max4} \cdot tg\phi_9 = 12,6 \cdot 0,3 = 3,8 \text{ MBAp}. \end{array}$$

Расчётная мощность силовых трансформаторов определяется по формуле:

$$S_{\text{Tp.pacu.}} = \frac{\sqrt{P_{cp}^2 + Q_9^2}}{K_{3 \text{ OUT}} \cdot N_T},$$

где $N_T=2$ – число трансформаторов;

К_{з.опт.}=0,7 – оптимальный коэффициент загрузки.

По расчётной мощности и номинальному напряжению выбирается конкретный силовой трансформатор.

Выберем силовые трансформаторы для каждого из двух вариантов.

1 вариант

$$S_{\text{тр.расч.1}} = \frac{\sqrt{6^2 + 1,7^2}}{2 \cdot 0,7} = 4,5 \text{ MBA},$$
выбираем ТМН–6300/35; $S_{\text{тр.расч.2}} = \frac{\sqrt{4^2 + 1,2^2}}{2 \cdot 0,7} = 3 \text{ MBA},$ выбираем ТМН–4000/35; $S_{\text{тр.расч.3}} = \frac{\sqrt{15^2 + 5,2^2}}{2 \cdot 0,7} = 11,3 \text{ MBA},$ выбираем ТДН–16000/110; $S_{\text{тр.расч.4}} = \frac{\sqrt{11^2 + 3,8^2}}{2 \cdot 0,7} = 8,3 \text{ MBA},$ выбираем ТДН–10000/110.

Проверяем трансформаторы по коэффициентам загрузки в нормальном и послеаварийном режимах работы:

$$0,50 \leq K_{3.\text{норм}} = \frac{\sqrt{P_{cp}^2 + Q_3^2}}{N_{_{\rm T}} \cdot S_{_{\rm TP.HOM}}} \leq 0,75; \qquad K_{_{3.\text{ПОСЛЕАВ.}}} = \frac{\sqrt{P_{cp}^2 + Q_3^2}}{S_{_{\rm TP.HOM}}} \leq 1,4;$$

$$K_{3.\text{норм1}} = \frac{\sqrt{6^2 + 1,7^2}}{2 \cdot 6,3} = 0,50; \qquad K_{3.\text{послеав.}1} = \frac{\sqrt{6^2 + 1,7^2}}{6,3} = 1;$$

$$K_{3.\text{норм2}} = \frac{\sqrt{4^2 + 1,2^2}}{2 \cdot 4} = 0,52; \qquad K_{3.\text{послеав.}2} = \frac{\sqrt{4^2 + 1,2^2}}{4} = 1,04;$$

$$K_{3.\text{норм 3}} = \frac{\sqrt{15^2 + 5,2^2}}{2 \cdot 16} = 0,50; \qquad K_{3.\text{послеав.}3} = \frac{\sqrt{15^2 + 5,2^2}}{16} = 1;$$

$$K_{3.\text{норм 4}} = \frac{\sqrt{11^2 + 3,8^2}}{2 \cdot 10} = 0,58; \qquad K_{3.\text{послеав.}4} = \frac{\sqrt{11^2 + 3,8^2}}{10} = 1,16.$$

Вывод: все трансформаторы выбраны правильно.

2 вариант

$$S_{\text{тр.расч. 1}} = \frac{\sqrt{6^2 + 2,1^2}}{2 \cdot 0,7} = 4,5 \text{ MBA}, выбираем ТМН-6300/110};$$

$$S_{\text{тр.расч.2}} = \frac{\sqrt{4^2 + 1,4^2}}{2 \cdot 0.7} = 3 \text{ MBA}, выбираем ТМ-4000/110};$$

Проверяем коэффициенты загрузки:

$$K_{3.\text{норм1}} = \frac{\sqrt{6^2 + 2,1^2}}{2 \cdot 6,3} = 0,50;$$
 $K_{3.\text{послеав.1}} = \frac{\sqrt{6^2 + 2,1^2}}{6,3} = 1;$ $K_{3.\text{норм2}} = \frac{\sqrt{4^2 + 1,4^2}}{2 \cdot 4} = 0,53;$ $K_{3.\text{послеав.2}} = \frac{\sqrt{4^2 + 1,4^2}}{4} = 1,06.$

Трансформаторы для подстанций 1 и 2 выбраны правильно, на подстанциях 3 и 4 стоят те же трансформаторы, что и в первом варианте.

Для выбора сечений проводов ВЛЭП необходимо знать токи, протекающие по линиям, следовательно, требуется определить потоки Q_9 в линиях. Расчёт потоков Q_9 был выполнен аналогично расчёту потоков P_{max} , результаты расчётов даны ниже.

1 вариант

$$Q_{\text{ИП1-1}}\!=\!1,4$$
 МВАр; $Q_{\text{2-1}}\!=\!0,3$ МВАр; $Q_{4-3}\!=\!1,5$ МВАр; $Q_{4-3}\!=\!1,5$ МВАр; $Q_{\text{ИП2-2}}\!=\!1,4$ МВАр; $Q_{\text{ИП2-4}}\!=\!5,2$ МВАр; $Q_{\text{ИП2-4}}\!=\!5,2$ МВАр. $Q_{\text{ИП1-1}}\!=\!5,1$ МВАр; $Q_{4-2}\!=\!3,5$ МВАр; $Q_{4-2}\!=\!3,5$ МВАр; $Q_{4-3}\!=\!3,1$ МВАр; $Q_{4-3}\!=\!2,1$ МВАр;

Сечения проводов выбираются согласно экономическим токовым интервалам по значению расчётного тока:

$$I_{\text{pacy}} = \alpha_i \cdot \alpha_T \cdot I_{\text{max}} = \alpha_i \cdot \alpha_T \cdot \frac{\sqrt{P_{\text{max}}^2 + Q_9^2}}{\sqrt{3} \cdot U_{\text{HOM}} \cdot n_{_{\text{II}}}},$$

здесь $I_{\text{мах}}$ - максимальный ток; P_{max} - поток максимальной активной мощности по линии; Q_{9} - поток экономически целесообразной реактивной мощности по линии; $n_{\text{ц}}$ - число цепей; α_{T} -

коэффициент, зависящий от числа часов использования наибольшей нагрузки T_{max} и от коэффициента совмещения максимумов К_м.

По [8] определили, что α_t =1,05 при T_{max} =5000 ч и $K_{\text{\tiny M}}$ =0,95.

По экономическим токовым интервалам [8] выбираем сечения проводов.

1 вариант

$$I_{\text{расч. }1-2} = 1,05 \cdot 1,05 \cdot \frac{\sqrt{5,8^2 + 1,4^2}}{\sqrt{3} \cdot 35} \cdot 1000 = 108 \text{ A, выбираем провод AC} - 120/19;$$

$$I_{\text{расч. }1-2} = 1,05 \cdot 1,05 \cdot \frac{\sqrt{1,1^2 + 0,3^2}}{\sqrt{3} \cdot 35} \cdot 1000 = 21 \text{ A, выбираем провод AC} - 70/11;$$

$$I_{\text{расч. }1-2}$$
=1,05·1,05· $\frac{\sqrt{1,1^2+0,3^2}}{\sqrt{3}\cdot 35}$ ·1000=21 A, выбираем провод AC-70/11;

$$I_{\text{расч.ИП2-2}}\!\!=\!\!1,\!05\cdot 1,\!05\cdot \frac{\sqrt{5,\!7^2+1,\!4^2}}{\sqrt{3}\cdot 35}\cdot 1000\!\!=\!\!107\text{ A, выбираем провод AC-120/19};$$

$$I_{\text{расч.ИП1-3}} = 1,05 \cdot 1,05 \cdot \frac{\sqrt{12,4^2+3,7^2}}{\sqrt{3} \cdot 110} \cdot 1000 = 75 \text{ A, выбираем провод AC-150/24};$$

$$I_{\text{расч. 3-4}} = 1,05 \cdot 1,05 \cdot \frac{\sqrt{4,9^2 + 1,5^2}}{\sqrt{3} \cdot 110} \cdot 1000 = 29 \text{ A, выбираем провод AC-150/24};$$

$$I_{\text{расч. ИП2-4}} = 1,05 \cdot 1,05 \cdot \frac{\sqrt{17,5^2 + 5,2^2}}{\sqrt{3} \cdot 110} \cdot 1000 = 106 \text{ A, выбираем провод AC-240/32}.$$

2 вариант

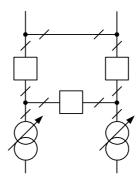
$$I_{\text{расч.ИП1-I}} = 1,05 \cdot 1,05 \cdot \frac{\sqrt{17,1^2 + 5,1^2}}{\sqrt{3} \cdot 110} \cdot 1000 = 103 \text{ A, выбираем провод AC-185/29};$$

$$I_{\text{расч. 1-3}} = 1,05 \cdot 1,05 \cdot \frac{\sqrt{10,2^2 + 3,1^2}}{\sqrt{3} \cdot 110} \cdot 1000 = 62 \text{ A, выбираем провод AC-150/24};$$

$$I_{\text{расч. 2-3}} = 1,05 \cdot 1,05 \cdot \frac{\sqrt{7,1^2+2,1^2}}{\sqrt{3} \cdot 110} \cdot 1000 = 43 \text{ A, выбираем провод AC-150/24};$$

$$I_{\text{расч. 4-2}} = 1,05 \cdot 1,05 \cdot \frac{\sqrt{11,7^2 + 3,5^2}}{\sqrt{3} \cdot 110} \cdot 1000 = 71 \text{ A, выбираем провод AC-150/24};$$

$$I_{\text{расч. ИП2-4}} = 1,05 \cdot 1,05 \cdot \frac{\sqrt{24,3^2 + 7,3^2}}{\sqrt{3} \cdot 110} \cdot 1000 = 147 \text{ A, выбираем провод AC-240/32}.$$


Определяем суммарные длины линий в одноцепном исполнении для каждого из вариантов.

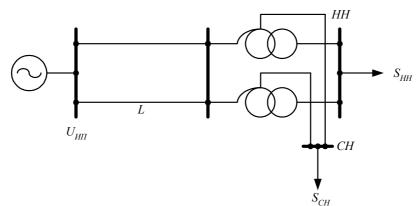
1 вариант

$$L_{\Sigma} = L_{\Pi\Pi 1-1} + L_{1-2} + L_{\Pi\Pi 2-2} + L_{\Pi\Pi 1-3} + L_{3-4} + L_{\Pi\Pi 2-4} = 47,8 + 53,4 + 37,8 + 53,4 + 50,7 + 23,9 = 267,1$$
 км. 2 вариант

$$L_{\Sigma} \!\!=\! L_{U\Pi 1-1} \!+\! L_{1-3} \!+\! L_{2-3} \!+\! L_{2-4} \!+\! L_{U\Pi 2-4} \!\!=\!\! 47,\! 8+53,\! 4+47,\! 8+37,\! 8+23,\! 9 \!\!=\!\! 210,\! 7 \text{ km}.$$

В обоих вариантах распределительные устройства высокого напряжения всех подстанций выполнены по схеме мостика с выключателями в цепях линий и ремонтной перемычкой со стороны линий:

Суммарное число выключателей ВН также зависит от числа выключателей на шинах ИП, которое определяется по количеству отходящих линий. Рассчитаем общее количество выключателей.


1 вариант $N_{\Sigma}=4.3+4=16$. 2 вариант $N_{\Sigma}=4.3+2=14.$

Во втором варианте значительно меньше длина линий, количество выключателей также меньше, следовательно, второй вариант – лучший, его и принимаем к исполнению.

Пример решения заданий по практическим занятиям 6,7 показан ниже.

Задача №6. Вариант №8.

Выбрать тип и число синхронных компенсаторов для регулирования напряжения в сети.

Исходные данные: U_{ИП}=240 кВ;

$$S_{HH}=45+j20 \text{ MBA};$$

L=67 km;

$$U_{HH}^{\text{жел}}$$
=10,5 кВ.

Для выбора синхронного компенсатора необходимо знать сопротивления ВЛ и обмоток автотрансформаторов, следовательно, необходимо выбрать сечение проводов ВЛ и марку автотрансформатора по заданной нагрузке.

Определяем ток в линии:

$$I = \frac{\sqrt{(P_{CH} + P_{HH})^2 + (Q_{CH} + Q_{HH})^2}}{\sqrt{3} \cdot U_{\text{HOM}} \cdot n_{\text{ILEH}}} = \frac{\sqrt{(50 + 45)^2 + (22 + 20)^2}}{\sqrt{3} \cdot 220 \cdot 2} \cdot 1000 = 136 \text{ A}.$$

Принимаем провод AC-240/32, имеющий удельное сопротивление z_0 =0,121+j0,435 Ом/км. Сопротивление линии:

 $Z_{BJI} = R_{BJI} + jX_{BJI} = z_0 \cdot L/n_{HeII} = (0.121 + j0.435) \cdot 67/2 = 4.05 + j14.57 \text{ OM}.$

Требуемая мощность автотрансформатора:

$$S_{\text{AT.pacq}} = \frac{\sqrt{(P_{\text{CH}} + P_{\text{HH}})^2 + (Q_{\text{CH}} + Q_{\text{HH}})^2}}{K_{_{3.\text{OIIT.}}} \cdot N_{_{T}}} = \frac{\sqrt{(50 + 45)^2 + (22 + 20)^2}}{2 \cdot 0.7} = 74 \text{ MBA}.$$

Принимаем к установке два автотрансформатора АТДЦТН–125000/220/110. По справочным данным определили сопротивления высокой, средней и низкой сторон АТ:

$$R_{ATB}=0,5\cdot0,55=0,275 \text{ Om};$$
 $X_{ATB}=0,5\cdot59,2=29,6 \text{ Om};$

$$R_{ATC}=0,5\cdot0,48=0,24 \text{ Om};$$
 $X_{ATC}=0;$

$$R_{ATH}=0.5\cdot3.2=1.6 \text{ Om};$$
 $X_{ATH}=0.5\cdot131=65.5 \text{ Om}.$

Компенсатор выбирается из условия поддержания желаемого напряжения на шинах CH и HH.

Допустимая суммарная потеря напряжения ΔU_{Σ} , определённая по заданным желаемым напряжениям на сторонах CH и HH:

$$\Delta U_{\Sigma_{\text{ДОП}}} = \Delta U_{\text{СНДОП}} + \Delta U_{\text{ННДОП}}$$

$$\Delta U_{\text{CH_{JO\Pi}}} = U_{\text{И\Pi}} - U_{\text{CH}}^{\text{BH}} = U_{\text{И\Pi}} - U_{\text{CH}}^{\text{жел}} \cdot \frac{U_{\text{AT BH}}^{\text{HOM}}}{U_{\text{AT CH}}^{\text{HOM}}};$$

$$\Delta U_{HH\text{\tiny JO\Pi}}\!\!=\!\!U_{\text{\tiny H\Pi}}\!-\!U_{\text{\tiny HH}}^{\text{\tiny BH}}\!\!=\!\!U_{\text{\tiny H\Pi}}\!-\!U_{\text{\tiny HH}}^{\text{\tiny жел}}\cdot\!\frac{U_{\text{\tiny ATBH}}^{\text{\tiny HOM}}}{U_{\text{\tiny ATHH}}^{\text{\tiny Hom}}}.$$

Рассчитываем $\Delta U_{\Sigma \text{доп}}$:

$$\Delta U_{\Sigma \text{,don}} \!\!=\!\! 2 \!\cdot\! U_{\text{И}\Pi} \!-\! U_{\text{CH}}^{\text{жел}} \cdot \! \frac{U_{\text{AT\,BH}}^{\text{ном}}}{U_{\text{AT\,CH}}^{\text{нom}}} \!\!-\! U_{\text{HH}}^{\text{жел}} \cdot \! \frac{U_{\text{AT\,BH}}^{\text{нom}}}{U_{\text{AT\,HH}}^{\text{нom}}} ;$$

$$\Delta U_{\Sigma} = 2.240 - 121 \cdot \frac{230}{121} - 10.5 \cdot \frac{230}{10.5} = 20 \text{ kB}.$$

Суммарная потеря напряжения в схеме до установки СК:

$$\begin{split} \Delta U_{\Sigma} &= \frac{(P_{CH} + P_{HH}) \cdot (R_{BJI} + R_{ATB}) + P_{CH} \cdot R_{ATC} + P_{HH} \cdot R_{ATH}}{U_{IIII}} + \\ &+ \frac{(Q_{CH} + Q_{HH} - Q_{CK}) \cdot (X_{BJI} + X_{ATB}) + Q_{CH} \cdot X_{ATC} + (Q_{HH} - Q_{CK}) \cdot X_{ATH}}{U_{IIII}}. \end{split}$$

Из выражения для суммарной потери напряжения находим Q_{CK} :

$$Q_{\text{CK}} = \frac{P_{\text{CH}} \cdot (R_{\text{BJ}} + R_{\text{ATB}} + R_{\text{ATC}}) + P_{\text{HH}} \cdot (R_{\text{BJ}} + R_{\text{ATB}} + R_{\text{ATH}}) + Q_{\text{CH}} \cdot (X_{\text{BJ}} + X_{\text{ATB}} + X_{\text{ATC}})}{X_{\text{BJ}} + X_{\text{ATB}} + X_{\text{ATH}}} + \frac{1}{2} \left(\frac{1}{2} \left($$

$$+ Q_{HH} \! - \! \frac{\Delta U_\Sigma \cdot U_{HII}}{X_{BJI} + X_{ATB} + X_{ATH}} \, . \label{eq:continuous}$$

Рассчитываем Оск:

$$Q_{CK} = \frac{50 \cdot (4,05 + 0,275 + 0,24) + 45 \cdot (4,05 + 0,275 + 1,6) + 22 \cdot (14,57 + 29,6 + 0)}{14,57 + 29,6 + 65,5} + \frac{14,57 + 29,6 + 65,5}{14,57 + 29,5} + \frac{14,57 + 29,6 + 65,5}{14,57 + 29,5} + \frac{14,57 + 29,6 + 65,5}{14,57 + 29,5} + \frac{14,57 + 29,5}{14,57 + 29,$$

$$+20 - \frac{20 \cdot 240}{14,57 + 29,6 + 65,5} = -10,4 \text{ MBAp.}$$

Принимаем к установке два синхронных компенсатора КС 16-10У3, каждый должен потреблять по 5,2 МВАр реактивной мощности.

Задача №7. Вариант №8.

Определить необходимое число конденсаторов, номинальное напряжение и установленную мощность батареи конденсаторов для следующих условий. Районная понижающая подстанция связана с центром питания (U_{ИП}=235 кВ) одноцепной ВЛЭП длиной 170 км, марка провода АС–240. Наибольшая расчетная нагрузка подстанции равна

110+j50 MBA. По условиям работы потребителей потери напряжения в ВЛЭП при этой нагрузке не должны превышать $\Delta U_{\text{доп}\%}$ =7%. Для снижения потерь напряжения в каждую фазу ВЛ необходимо включить однофазные трансформаторные конденсаторы.

Решение

Рассчитываем сопротивление ВЛЭП:

$$Z_{BJ}=L\cdot(r_o+jx_o)=170\cdot(0,121+j0,435)=20,57+j73,95 \text{ Om.}$$

Определяем потери напряжения в ВЛ без конденсаторов. Расчет выполняем без учёта потерь мощности в ВЛ:

$$\Delta U = \frac{P \cdot R_{BJI} + Q \cdot X_{BJI}}{U_{MII}} = \frac{110 \cdot 20,57 + 50 \cdot 73,95}{235} = 25,4 \text{ kB}.$$

Допустимое значение потерь напряжения:

$$\Delta U_{\text{доп}} = \Delta U_{\text{доп}\%} \cdot U_{\text{HoM}} / 100 = 7 \cdot 220 / 100 = 15,4 \text{ kB}.$$

Определяем сопротивление БК, снижающей потери ΔU в ВЛЭП до $\Delta U_{\text{доп}}$, из уравнения

Определяем ток, текущий по линии:

$$I_{BJI} = \frac{\sqrt{P^2 + Q^2}}{\sqrt{3} \cdot U} = \frac{\sqrt{110^2 + 50^2}}{\sqrt{3} \cdot 220} \cdot 1000 = 317 \text{ A}.$$

Выбираем однофазные стандартные конденсаторы для снижения потерь напряжения, включаемые последовательно в каждую фазу, типа КС-6,3-225У1, мощностью Q_{K} ном=225 кВАр, напряжением U_{K} ном=6,3 кВ.

Номинальный ток одного конденсатора:

$$I_{K \text{ HOM}} = \frac{Q_{K \text{ HOM}}}{U_{K \text{ HOM}}} = \frac{225}{6,3} = 35,714 \text{ A}.$$

Определяем число конденсаторов k, включенных параллельно в одну фазу, для получения расчетного тока ВЛ по условию:

$$k \ge \frac{I_{BЛ}}{I_{K \text{ Hom}}} = \frac{317}{35,714} = 8,9;$$
 округляем: $k = 9$.

Рассчитываем сопротивление одного конденсатора:

$$X_{\text{K HOM}} = \frac{U_{\text{K HOM}}}{I_{\text{K HOM}}} = \frac{6300}{35,71} = 176,4 \text{ Om.}$$

Определим число конденсаторов n, включенных последовательно, зная сопротивление каждого конденсатора $X_{\text{ном БK}}$, число параллельных ветвей k и требуемое сопротивление $X_{\text{БK}}$, из уравнения:

$$X_{\text{БK}} = \frac{X_{\text{K ном}} \cdot n}{k},$$
 получили: $n = \frac{X_{\text{БK}} \cdot k}{X_{\text{ном БK}}} = \frac{46,82 \cdot 9}{176,4} = 2,4;$ округляем: n=3.

Общее число конденсаторов, стоящих в одной и трёх фазах ВЛЭП:

$$n_1=n \cdot k=3 \cdot 9=27;$$
 $n_3=3 \cdot n_1=3 \cdot 27=81.$

Установленная мощность БК:

Определяем номинальное напряжение и номинальный ток БК:

$$U_{\text{ном БК}} = U_{\text{K ном}} \cdot \text{n} = 6,3 \cdot 3 = 18,9 \text{ кB};$$

$$I_{\text{HOM } \text{BK}} = I_{\text{K } \text{HOM}} \cdot k = 35,714 \cdot 9 = 321,4 \text{ A}.$$

Рассчитываем действительное сопротивление БК с учётом принятого числа конденсаторов:

$$X_{\text{BK}} = \frac{X_{\text{K HOM}} \cdot n}{k} = \frac{176,4 \cdot 3}{9} = 58,8 \text{ Om.}$$

Определим фактические потери напряжения в ЛЭП после установки УПК:

$$\Delta U_{\varphi} = \frac{P \cdot R_{BJI} + Q \cdot (X_{BJI} - X_{BK})}{U_{IJII}} = \frac{110 \cdot 20,57 + 50 \cdot (73,95 - 58,8)}{235} = 12,85 \text{ kB};$$

$$\Delta U_{\varphi} = 12,8$$

Рекомендуемая литература по темам индивидуальных домашних заданий приведена в п. 1 настоящего УМКД. Индивидуальные задания выполняются с помощью программных продуктов MathCad, Visio, Sдо-6, RASTR, «Расчет сети».

Самостоятельное изучение теоретического материала

Расчет сложнозамкнутых сетей методами матричной алгебры.

- 1. Метод контурных токов. [4,5]
- 2. Метод узловых напряжений. [4,5]
- 3. Метод обобщенных параметров. [4]

Вопросы для самопроверки.

- 1. Как складываются матрицы?
- 2. Как умножаются или делятся матрицы?
- 3. Как формируется матрица соединений в узлах?
- 4. Как формируется матрица соединений в контурах?
- 5. Как записывается закон Ома в матричной форме?
- 6. Как записывается закон Кирхгофа в матричной форме?
- 7. Что значит транспонированная матрица?
- 8. Что значит обратная матрица?
- 9. Какая матрица имеет обратную?
- 10. Как определяется матрица контурных сопротивлений?
- 11. Как определяется матрица узловых проводимостей?

При изучении данного материала необходимо повторить соответствующие разделы курса "Теоретические основы электротехники". В процессе работы необходимо обратить внимание на методику организации матриц контурных сопротивлений и узловых проводимостей по конфигурации схемы и параметрам ветвей.

Проектирование электрических сетей.

- 1. Среднегодовые эксплуатационные затраты как критерий сравнения вариантов электрической сети. [4,5,9]
- 2. Выбор сечений проводов в районных и местных электрических сетях. [2,4,5]
- 3. Выбор мощности компенсирующих устройств и их целесообразное размещение. [4,5,8,14]

- 4. Проверка проводов и тросов на механическую прочность. [8,16]
- 5. Показатели качества электроэнергии и их нормирование. Способы их улучшения. [2,8]

Вопросы для самопроверки.

- 1. Какие статьи расходов и отчислений учитываются в формуле приведенных затрат?
- 2. На что расходуются отчисления от капиталовложений?
- 3. Как определить потери энергии в линии, если известен график нагрузки?
- 4. Что такое время использования максимальной нагрузки?
- 5. Что такое время потерь?
- 6. Как выбираются сечение проводов в районных электрических сетях?
- 7. Как выбираются сечения проводов в местных электрических сетях?
- 8. Какие проверки выбранных сечений проводятся при проектировании районных и местных электрических сетей?
- 9. От каких факторов зависит стоимость потерянной электроэнергии?
- 10. Как определить вероятность отключенного состояния элемента электрической сети?
- 11. Как оценить вероятность перерыва электроснабжения в разомкнутой сети или кольцевой сети?
- 12.По каким критериям выбирается мощность компенсирующих устройств?
- 13. Какие механические нагрузки действуют на провода и тросы?
- 14. Для чего составляется уравнение состояния провода?
- 15. Как используется понятие о критических пролетах при проверке проводов на механическую прочность?
- 16. Какую характеристику провода можно определить, используя понятие критической температуры?
- 17. Перечислить показатели качества электроэнергии и их допустимые величины согласно ГОСТ 13109-97.

Изучая среднегодовые эксплуатационные затраты, как критерий сравнения вариантов, необходимо обратить внимание на то, что отчисления от стоимости линий резко отличаются от отчислений от стоимости оборудования подстанций; что потери энергии можно рассчитать, используя приказ Минэнерго РФ № 326.

Знакомясь с методикой выбора сечений проводов магистрали по допустимой потере напряжения, следует обратить внимание на ограничения, накладываемые на исходные условия; уяснить какие проверки необходимо выполнить выбранным сечением в местных и районных электрических сетях.

Раздел об оценке ущерба от недоотпуска электроэнергии изучается с увязкой с курсом "Математические задачи энергетики". Необходимо проработать особенности определения вероятной длительности перерыва электроснабжения в разомкнутых и кольцевых сетях.

Изучая раздел, посвященный показателям качества электроэнергии, следует особое внимание обратить на причины, вызывающие отклонение показателей качества от их нормируемых значений.

Анализ режимов линий электропередачи.

- 1. Пропускная способность ЛЭП. [5,8]
- 2. Физические процессы в линии при Р=Рнт, Р>Рнт, Р<Рнт. [5,85]
- 3. Об особенностях линий с половинной длины волны. [5].
- 4. Схемы ЛЭП переменного и постоянного тока. [5,8,16]

Вопросы для самопроверки.

- 1. Что называется пропускной способностью ЛЭП?
- 2. Какими путями можно увеличить пропускную способность ЛЭП?
- 3. Что значит настроить ЛЭП на определенную длину?
- 4. Как влияет зарядная мощность линии на пропускную способность?

- 5. Что называется натуральной мощностью линии?
- 6. Чем характерен режим ЛЭП, когда Р=Рнт, Р>Рнт, Р<Рнт?
- 7. Чем характерен режим холостого хода линии?
- 8. Схемы построения ЛЭП переменного тока.
- 9. Схемы построения ЛЭП постоянного тока.
- 10.Преимущества и недостатки ЛЭП переменного тока в сравнении с ЛЭП постоянного тока.

Изучая материал, следует обратить внимание на возможность настройки ЛЭП переменного тока на другую длину с целью изменения пропускной способности линии. Необходимо обратить внимание на физическую сущность процессов передачи энергии по ЛЭП, если P=Pнт, P> Pнт, P<Pнт, а также самого понятия "натуральная мощность линии".

Регулирование режимов электрических сетей.

- 1. Регулирование напряжения в электрических сетях. [4,5]
- 2. Методы уменьшения потерь энергии в сети. (Оптимизация режимов). [4,5,12]
- 3. Регулирование частоты в электрической системе. [2,3,4,5]
- 4. Особые режимы электрических сетей. [4]

Вопросы для самопроверки:

- 1. В чем отличие метода регулирования напряжения с помощью трансформаторов с ПБВ и трансформаторов с РПН?
- 2. В чем особенность метода централизованного регулирования напряжения в центре питания?
- 3. Что такое встречное регулирование напряжения?
- 4. Как влияет включение установки продольной компенсации на напряжение в конце линии?
- 5. Как влияет включение установки поперечной компенсации, подключенной в узловой точке кольцевой сети, на режим напряжений во всех узлах?
- 6. Какие существуют методы оптимизации режимов электрических сетей?
- 7. Каким путем можно оптимизировать режим работы разомкнутой сети?
- 8. Что должно служить критерием выбора метода оптимизации режима электрической сети?
- 9. Что такое первичное регулирование частоты?
- 10. В чем суть вторичного регулирования частоты?
- 11. Какие требования предъявляются к станции, ведущей частоту?
- 12. В чем особенность регулирования частоты в объединенной энергосистеме в отличие от локальной энергосистемы?
- 13. Какие режимы работы сети считаются особыми и почему?
- 14. Как оценить уровень несимметрии при придельной несимметрии элементов сети?
- 15.В чем особенность составления схемы замещения сети при несимметрии нагрузки?
- 16. Как оценить уровень несинусоидальности в сети?

Работая над изучением материала, необходимо обратить внимание на особенности регулирования напряжения в местных электрических сетях и районных, области применения того или иного метода регулирования.

При изучении методов оптимизации режимов электрических сетей нужно обратить внимание на технико-экономические показатели того или иного метода оптимизации, определяющих области применения средств и методов.

Рассматривая способы регулирования частоты необходимо обратить внимание на необходимость учета пропускной способности ЛЭП, связывающей отдельные энергосистемы между собой; на выбор места расположения станций ведущей частоту, требования, предъявляемые к таким станциям.

Контрольная работа для студентов заочной формы обучения

Контрольная работа дана в нескольких вариантах, поэтому задание каждый студент получает индивидуально от преподавателя. Как правило, номер варианта совпадает с порядковым номером фамилии студента в журнале академической группы.

Контрольная работа для студентов заочной формы обучения включает выполнение заданий:

выбор элементов электрической сети; выбор синхронных компенсаторов или СТК; выбор устройств продольной компенсации.

Задача № І.

Для указанной на рисунке конфигурации сети необходимо выбрать трансформаторы подстанций, сечение проводов линий, (по экономической плотности тока), произвести уточненный расчет режима работы сети, определить потери энергии во всех элементах сети в течение года (8760 часов). Исходные данные: мощности нагрузок подстанций, напряжение на шинах питающих подстанций, длина линий приведены в таблице № 1. Принять время использования максимальной нагрузки равным Тм=3000 часов, материал проводов ЛЭП - алюминий, напряжение электроприемников, подключенных к низкой стороне подстанций - 10 кВ. Расположение проводов на опорах - горизонтальное, расстояние между проводами - 4,5 м. Мощность на однотрансформаторной подстанции выбирается из условия $S_m \ge S_n$. Если на подстанции установлены два трансформатора одинаковой мощто мощность трансформатора определяется ности, одного ПО **УСЛОВИЮ** $S_m \ge (0,65 \div 0,75) S_n$.

При расчете линии с двухсторонним питанием считать начальные фазы напряжений на зажимах источников имеющими нулевые начальные фазы, а следовательно уравнительный поток мощности - активным.

Задача № 2.

Для заданной конфигурации местной разомкнутой сети рассчитать: сечение проводов указанным методом; потоки мощностей на участках сети и напряжение в узлах, потери мощности на участках сети и выразить их в процентах от мощности, протекающей по участку; ущерб недоотпуска электроэнергии при аварийном отключении одного из участков (указанного в задании); выбрать компенсирующее устройство для каждой нагрузки из условия обеспечения предельного коэффициента реактивной мощности.

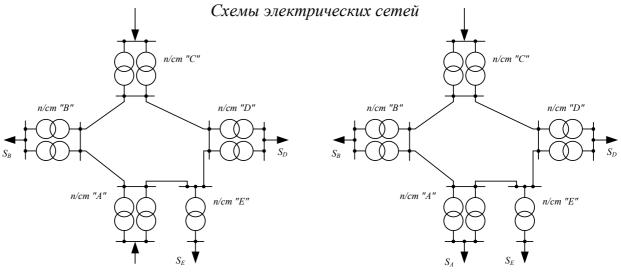
Исходные данные: длины участков, напряжение на зажимах источника, мощности нагрузок, коэффициенты мощности нагрузок, коэффициенты мощности нагрузок и номер схемы сети приведены в таблице 2. Считать, что провода на опоре расположены по вершинам равностороннего треугольника, материал проводов - алюминий.

При выполнении контрольной работы следует помнить, что заданным методом выбирается сечение проводов магистрали. Если отпайки от магистрали содержат только один участок с нагрузкой в конце, то сечение проводов на нем выбирать как для линии с нагрузкой в конце. Если отпайка содержит 2 участка, по её следует рассматривать как вторую магистраль и применять требуемый метод выбора сечений проводов.

Ниже приведены варианты заданий на контрольную работу.

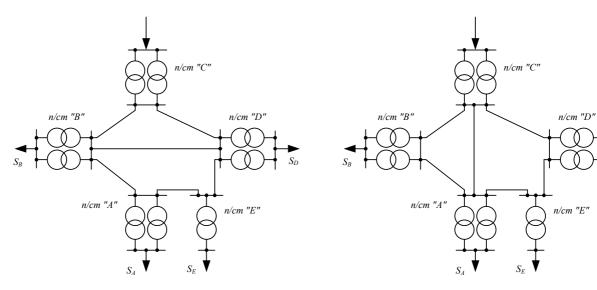
Решения всех типов задач приведены выше.

Таблица №1

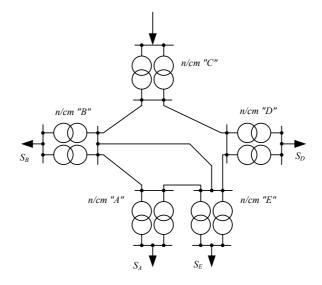

1 4031	пцал																			
№ Вари- анта	№ Cxe-	U_A , $\kappa\mathrm{B}$	U_C , $\kappa\mathrm{B}$	U_D , $\kappa \mathbf{B}$	S_A , MBA	tg φ _A	S_{B} , MBA	tg Фв	S_D , MBA	tg ФD	S_{E} , MBA	${ m tg}~\phi_{ m E}$	L_{AB} , km	L_{BC} , km	L_{AC} , km	L_{CD} , km	L _{DE} , км	L _{AE} , км	L _{BE} , км	L_{BD} , km
1	1,1	110	115	_	_	_	39	0,45	57	0,63	48	0,62	45	95	_	40	38	63	_	_
2	1,2	ı	220	ı	83	0,49	42	0,51	43	0,52	55	0,46	100	70	ı	75	83	67	_	_
3	1,3	ı	121	ı	50	0,44	25	0,41	18	0,40	20	0,51	38	67	ı	57	45	60	_	40
4	1,4	ı	115	1	22	0,50	38	0,38	40	0,57	37	0,44	29	78	30	65	45	30	_	_
5	1,5	-	112	_	70	0,33	50	0,41	65	0,41	53	0,34	40	100	-	45	70	14	40	_
6	1,5	_	230	_	27	0,41	43	0,40	50	0,43	18	0,60	42	90	_	40	75	60	80	_
7	1,4	_	115	_	37	0,35	28	0,37	35	0,40	22	0,50	20	63	28	48	35	40	_	_
8	1,3	_	121	_	30	0,44	18	0,50	37	0,51	14	0,37	40	50	_	40	38	37	_	44
9	1,2	_	220	_	90	0,35	45	0,40	40	0,45	25	0,50	60	70	_	60	50	30	_	_
10	1,1	115	120	_	_	_	35	0,33	30	0,50	20	0,40	50	30	-	35	30	50	_	_
11	1,2		220	_	82	0,30	40	0,42	23	0,50	38	0,46	67	86		57	29	50	_	
12	1,4		121	_	25	0,42	22	0,47	35	0,45	40	0,50	40	37	30	38	25	35	_	
13	1,3		325	_	45	0,30	35	0,50	25	0,40	70	0,87	72	52		48	52	40	_	60
14	1,1	116	110	_	_	_	35	0,45	47	0,45	36	0,35	25	30	_	27	42	45	_	_
15	1,5	ı	2,27	_	40	0,40	70	0,35	80	0,40	47	0,43	50	120	ı	90	50	37	70	_
16	1,1	114	121	_	_	_	25	0,50	45	0,44	40	0,40	30	60	-	45	40	30	_	_
17	1,3	_	115	_	30	0,50	35	0,4	28	0,46	45	0,38	70	40	_	50	55	35	_	25
18	1,5		220	_	80	0,42	40	0,45	35	0,35	70	0,39	90	70	_	65	50	70	60	_
19	1,4		115	_	47	0,37	55	0,34	45	0,41	20	0,34	60	75	40	55	45	26	_	_
20	1,2		225	_	65	0,50	40	0,40	30	0,35	35	0,46	65	100		100	40	35	_	_
21	1,5	١	115	_	28	0,35	35	0,47	40	0,32	25	0,36	45	40	١	50	25	42	40	_
22	1,3		121	_	48	0,40	25	0,32	28	0,35	40	0,43	35	42	_	37	62	70	_	28
23	1,2	_	220	_	75	0,45	60	0,49	20	0,40	75	0,37	80	70	_	90	60	45	_	_

24	1,1	112	118	ı	ı	_	37	0,50	35	0,43	20	0,45	28	57	ı	42	52	39	ı	_
25	1,4	ı	230	١	45	0,37	85	0,40	80	0,37	40	0,42	70	50	60	35	45	40	ı	_
26	1,5	ı	220	١	70	0,35	65	0,41	60	0,38	80	0,32	100	70	ı	45	60	50	30	_
27	1,2	ı	220	١	50	0,40	80	0,35	30	0,45	67	0,50	80	60	ı	50	45	35	ı	_
28	1,1	113	117	1	-	-	45	0,33	50	0,30	40	0,35	70	50	1	40	50	38	1	_
29	1,3	_	121	_	32	0,40	25	0,35	20	0,41	27	0,45	30	45	_	25	40	30	_	40
30	1,5	_	115	-	35	0,42	47	0,37	50	0,35	40	0,42	40	30	_	20	38	34	55	_

Таблица №2

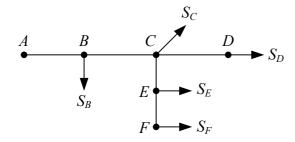

1 405	іица Ј	1																					
№ Вари- ант	№ Схемы	∪л, кВ	S_{B} , κBA	tg Фв	S_C , κBA	tg oc	S_{D} , κBA	tg ФD	S_{E} , κBA	$^{\mathrm{tg}}\phi_{\mathrm{E}}$	S_{F} , $\kappa \mathrm{BA}$	tg OF	$L_{AB,M}$	$\mathrm{L}_{\mathrm{BC},\mathrm{M}}$	$L_{\mathrm{CD},\mathrm{M}}$	L_{CE} , M	$\mathrm{L}_{\mathrm{EF},\mathrm{M}}$	$\mathrm{L}_{\mathrm{CF},\mathrm{M}}$	$\mathrm{L}_{\mathrm{DF},\mathrm{M}}$	$L_{DE,M}$	$\mathrm{L}_{\mathrm{BE},\mathrm{M}}$	$\mathrm{L}_{\mathrm{BF},\mathrm{M}}$	Участок
1	2,8	10,5	18,0	0,42	120	0,40	100	0,45	70	0,35	60	0,43	1000	1000	1500			_	_	510	700		DE
2	2,7	6,3	120	0,13	80	0,45	120	0,37	90	0,42	80	0,42	1200	800	700	600	-	_	900	_	_	_	CE
3	2,6	3,15	80	0,37	70	0,41	50	0,47	50	0,43	50	0,4	800	400	600	_	_	_	_	_	200	200	BE
4	2,5	0,4	15	0,32	10	0,34	8	0,41	8	0,45	10	0,35	100	100	70	-	-	50	_	_	50	_	BE
5	2,4	6,3	100	0,39	50	0,45	50	0,36	100	0,38	70	0,37	700	400	200	-	200	2	_	_	_	250	BF
6	2,3	3,15	55	0,35	80	0,40	75	0,43	65	0,32	80	0,39	1000	700	800	1000	-	800	_	_	_	_	CE
7	2,2	0,4	20	0,47	12	0,39	10	0,36	8	0,41	12	0,43	70	90	80	-	-	_	60	50	_	_	DE
8	2,1	10	200	0,41	150	0,43	100	0,45	60	0,36	50	0,32	1400	1000	800	700	600	_	_	_	_	_	CD
9	2,1	6,3	150	0,36	70	0,37	50	0,41	75	0,42	50	0,40	800	700	600	400	200	_	_	_	_	_	FE
10	2,2	6,0	80	0,43	90	0,47	80	0,39	65	0,44	55	0,34	1300	800	1000			_	600	550	_	_	CF
11	2,3	10,5	200	0,42	150	0,35	100	0,35	80	0,43	80	0,43	1700	1500	1000	600		400	_		_	_	BF
12	2,4	10,7	170	0,47	80	0,43	80	0,45	70	0,46	90	0,48	2000	1500	700	_	500	_	_	_	_	600	CD
13	2,5	3,15	75	0,37	70	0,57	65	0,60	35	0,75	40	0,50	750	550	600	_	_	400	_	_	300	_	CF
14	2,6	6,3	150	0,70	100	0,64	70	0,57	80	0,52	50	0,47	1500	1500	1000	_	_	_	_	_	700	800	BF
15	2,7	0,4	10	0,80	15	0,50	7	0,60	10	0,64	12	0,48	70	80	60	50	_	_	50	_	_	_	BF

16	2,8	6,3	150	0,75	70	0,68	70	0,70	80	0,59	60	0,65	1200	500	800	_	ı	_	ı	600	500	_	BE
17	2,4	0,4	12	0,54	15	0,45	10	0,57	8	0,50	5	0,52	180	100	140	1	60			1		60	CD
18	2,3	6,5	160	0,63	110	0,61	77	0,52	80	0,66	40	0,43	1300	900	500	800	ı	250		1		_	CD
19	2,2	0,4	15	0,51	10	0,64	10	0,57	5	0,70	7	0,50	200	150	80			_	100	95	_	_	CD
20	2,1	10,5	210	0,40	160	0,58	135	0,52	100	0,67	45	0,35	1500	1500	800	500	400	_	_	_	_	_	CD
21	2,5	3,15	140	0,59	95	0,55	75	0,70	50	0,60	50	0,70	600	550	480			400	_	_	350	_	CD
22	2,6	6,3	100	0,58	180	0,60	150	0,61	70	0,53	80	0,46	900	800	700			_	_	_	400	700	CD
23	2,7	0,4	25	0,37	17	0,40	10	0,50	10	0,45	5	0,48	100	150	50	60	-	_	70	_	_	_	DF
24	2,8	3,5	30	0,50	60	0,47	90	0,50	35	0,53	60	0,55	800	600	580	_	-	_	_	250	400	_	CD
25	2,3	3,0	135	0,70	120	0,5	125	0,55	80	0,57	75	0,40	600	700	300	300	-	500	_	_	_	_	CE
26	2,2	10,5	300	0,50	190	0,45	110	0,65	170	0,52	145	0,56	1000	1500	500	_	-	_	800	1600	_	_	DE
27	2,1	3,2	152	0,64	125	0,52	80	0,50	70	0,49	65	0,50	600	450	700	250	300	_	_	_	_	_	CD
28	2,4	10,0	140	0,60	170	0,55	100	0,61	130	0,70	70	0,62	1600	1500	1400	_	800	_	_	_	_	700	CD
29	2,6	6,3	130	0,53	130	0,40	75	0,54	60	0,52	55	0,40	1500	1350	800	_	_	_	_	_	400	700	BF
30	2,8	6,0	132	0,53	125	0,57	70	0,43	85	0,51	75	0,65	1000	800	750	_	_	_	_	650	700	_	CD

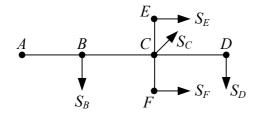


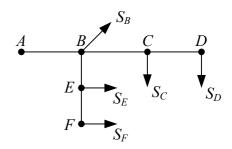
Puc 1.1

Puc 1.2

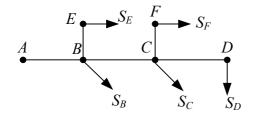


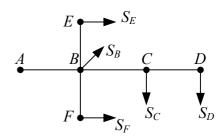
Puc 1.3 Puc 1.4


Puc 1.5

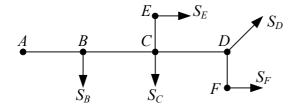

Варианты схем сети

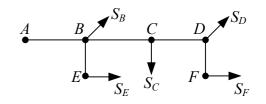
Puc. 2.1


Puc. 2.2



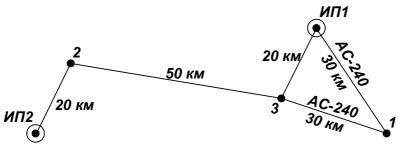
Puc. 2.3


Puc. 2.4



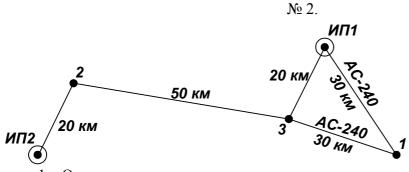
Puc. 2.5

Puc. 2.6

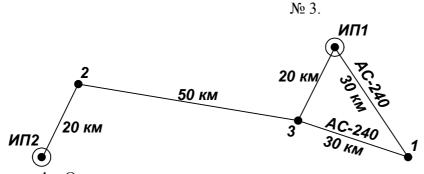


Puc. 2.7

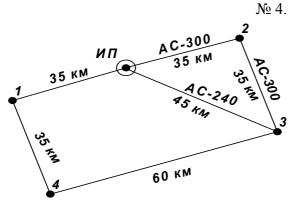
Puc. 2.8


6.3. Комплекты домашних заданий, контрольных работ.

Темы $\Pi 3\ 1-4$ и задания контрольной работы студентов заочной формы обучения. № 1.

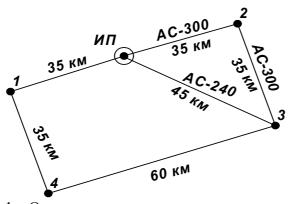

 P_1 =9 MBT, tg ϕ_1 =0,7; P_2 =52 MBT, tg ϕ_2 =0,5; P_3 =26 MBT, tg ϕ_3 =0,45; Район по гололёду –IV.

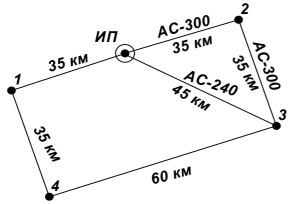
- 1. Определить напряжение сети;
- 2. Выбрать силовые трансформаторы для ПС 3;
- 3. Выбрать сечение проводов ВЛЭП ИП2-2;
- 4. Рассчитать УПК для ВЛ ИП2–2, $U_{\text{ИП}}$ =1,1 $U_{\text{ном}}$, $\Delta U_{\text{доп}}$ =4%.


 P_1 =15 MBT, tg ϕ_1 =0,6 P_2 =46 MBT, tg ϕ_2 =0,4 P_3 =28 MBT, tg ϕ_3 =0,5 P_4 0 Paйон по гололёду –I.

- 1. Определить напряжение сети;
- 2. Выбрать силовые трансформаторы для ПС 1;
- 3. Выбрать сечение проводов ВЛЭП 2-3;
- 4. Рассчитать УПК для ВЛ 2-3, $U_{и\Pi}$ =1,05 $U_{ном}$, $\Delta U_{доп}$ =5 %.

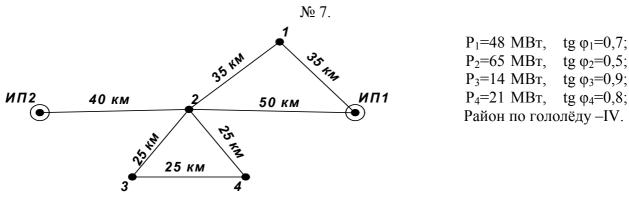
 P_1 =25 MBт, tg ϕ_1 =0,4 P_2 =35 MBт, tg ϕ_2 =0,5 P_3 =41 MBт, tg ϕ_3 =0,6 P_3 =41 мВт, те ϕ_3 =0.6


- 1. Определить напряжение сети;
- 2. Выбрать силовые трансформаторы для ПС 2;
- 3. Выбрать сечение проводов ВЛЭП ИП1-3;
- 4. Рассчитать УПК для ВЛ ИП2–2, $U_{\text{ИП}} = U_{\text{ном}}$, $\Delta U_{\text{доп}} = 3$ %.

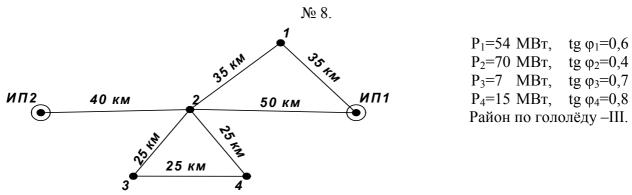

 $\begin{array}{lll} P_1{=}28 \ MB\tau, & tg \ \phi_1{=}0,6; \\ P_2{=}25 \ MB\tau, & tg \ \phi_2{=}0,6; \\ P_3{=}31 \ MB\tau, & tg \ \phi_3{=}0,5; \\ P_4{=}12 \ MB\tau, & tg \ \phi_4{=}0,7; \\ Pайон по гололёду -III. \end{array}$

- 1. Определить напряжение сети;
- 2. Выбрать силовые трансформаторы для ПС 1;
- 3. Выбрать сечение проводов ВЛЭП 3-4;
- 4. Отрегулировать напряжение на шинах 10 кВ ПС 1 с помощью РПН, U_{BH1} =0,98· U_{Hom} , $U_{HHжen}$ =10,5 кВ.

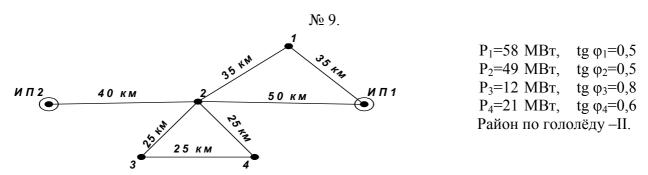
№ 5.



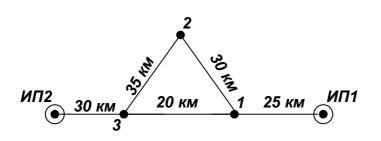
- 1. Определить напряжение сети;
- 2. Выбрать силовые трансформаторы для ПС 4;
- 3. Выбрать сечение проводов ВЛЭП ИП-1;
- 4. Рассчитать УПК для ВЛ ИП–1, $U_{\text{ИП}}$ =1,05 $U_{\text{ном}}$, $\Delta U_{\text{доп}}$ =4 %. N_{0} 6.


 $\begin{array}{lll} P_1{=}21 \ MBT, & tg \ \phi_1{=}0,4; \\ P_2{=}37 \ MBT, & tg \ \phi_2{=}0,4; \\ P_3{=}19 \ MBT, & tg \ \phi_3{=}0,5; \\ P_4{=}25 \ MBT, & tg \ \phi_4{=}0,5; \\ Pайон \ \text{по гололёду} -I. \end{array}$

- 1. Определить напряжение сети;
- 2. Выбрать силовые трансформаторы для ПС 3;
- 3. Выбрать сечение проводов ВЛЭП 1-4;
- 4. Рассчитать УПК для ВЛ 1–4, $U_{\text{ИП}} = U_{\text{ном}}$, $\Delta U_{\text{доп}} = 6$ %.

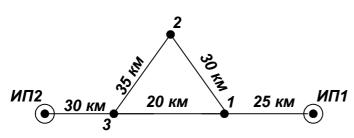

Номинальное напряжение линий 2–3, 2–4 и 3–4: 110 кB; остальных – 220 кB;

- 1. Выбрать автотрансформаторы для ПС 2;
- 2. Выбрать сечение проводов ВЛЭП ИП1-1;
- 3. Выбрать тип и число СК для регулирования напряжения на ПС 2; U_{BH2} =225 кВ, $U_{CHжen}$ =115 кВ; $U_{HHжen}$ =10,3 кВ.


Номинальное напряжение линий 2-3, 2-4 и 3-4: 110 кB; остальных – 220 кB;

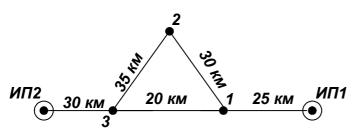
- 1. Выбрать автотрансформаторы для ПС 2;
- 2. Выбрать сечение проводов ВЛЭП ИП1-2;
- 3. Выбрать тип и число СК для регулирования напряжения на ПС 2; U_{BH2} =220 кВ, $U_{CHжe\pi}$ =116 кВ; $U_{HHжe\pi}$ =10,4 кВ.

Номинальное напряжение линий 2-3, 2-4 и 3-4: 110 кВ; остальных – 220 кВ;

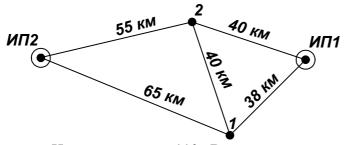

- 1. Выбрать автотрансформаторы для ПС 2;
- 2. Выбрать сечение проводов ВЛЭП ИП2-2;
- 3. Выбрать тип и число СК для регулирования напряжения на ПС 2; U_{BH2} =230 кВ, $U_{CHжen}$ =119 кВ; $U_{HHжen}$ =10,5 кВ.

 P_1 =51 MBT, tg ϕ_1 =0,5 P_2 =23 MBT, tg ϕ_2 =0,7 P_3 =39 MBT, tg ϕ_3 =0,6 Район по гололёду –IV.

- 1. Определить напряжение сети;
- 2. Выбрать силовые трансформаторы для ПС 1;
- 3. Выбрать сечение проводов ВЛЭП ИП2-3;
- 4. Отрегулировать напряжение на шинах 10 кВ ПС 1 с помощью РПН, U_{BH1} =0,95 $\cdot U_{HOM}$, $U_{HHжen}$ =10,5 кВ.


№ 11.

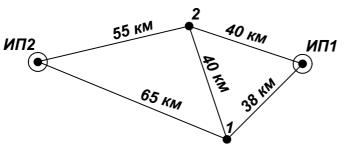
 P_1 =34 MBT, tg ϕ_1 =0,5 P_2 =40 MBT, tg ϕ_2 =0,4 P_3 =80 MBT, tg ϕ_3 =0,3 Район по гололёду –I.


- 1. Определить напряжение сети;
- 2. Выбрать силовые трансформаторы для ПС 2;
- 3. Выбрать сечение проводов ВЛЭП 1-2;
- 4. Отрегулировать напряжение на шинах 10 кВ ПС 2 с помощью РПН, $U_{BH2}\!\!=\!\!U_{\text{ном}},$ $U_{HHжe\pi}\!\!=\!\!10,\!3$ кВ.

№ 12.

 P_1 =35 MBт, tg ϕ_1 =0,5 P_2 =63 MBт, tg ϕ_2 =0,4 P_3 =41 MBт, tg ϕ_3 =0,6 Район по гололёду –II.

- 1. Определить напряжение сети;
- 2. Выбрать силовые трансформаторы для ПС 3;
- 3. Выбрать сечение проводов ВЛЭП ИП1-1;
- 4. Отрегулировать напряжение на шинах 10 кВ ПС 3 с помощью РПН, $U_{BH3} = U_{HOM}$, $U_{HHжen} = 10,4$ кВ.

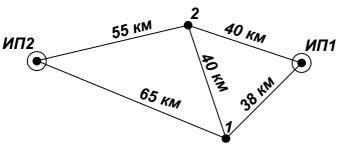


 P_1 =15 MBт, tg ϕ_1 =0,7 P_2 =23 MBт, tg ϕ_2 =0,6 Район по гололёду –II.

Напряжение сети 110 кВ;

- 1. Выбрать силовые трансформаторы для ПС 1;
- 2. Выбрать сечение проводов ВЛЭП ИП1-1 и 1-2;
- 3. Отрегулировать напряжение на шинах 10 кВ ПС 1 с помощью РПН, U_{BH1} =1,05 $U_{\text{ном}},\ U_{HH\text{жел}}$ =10 кВ.

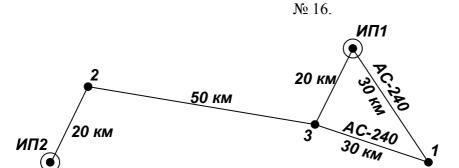
№ 14.



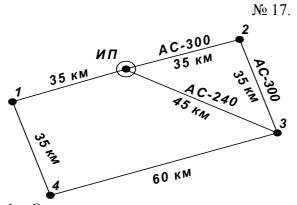
 P_1 =75 МВт, tg ϕ_1 =0,4 P_2 =64 МВт, tg ϕ_2 =0,5 Район по гололёду –IV.

Напряжение сети 220 кВ;

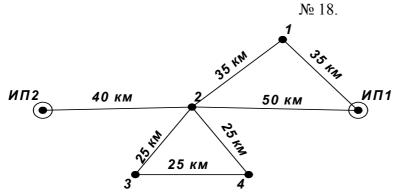
- 1. Выбрать силовые трансформаторы для ПС 2;
- 2. Выбрать сечение проводов ВЛЭП ИП2-1 и ИП1-2;
- 3. Отрегулировать напряжение на шинах 10 кВ ПС 2 с помощью дополнительных КУ, $U_{BH2}\!\!=\!\!U_{\text{ном}},\;U_{HH\text{жел}}\!\!=\!\!10,\!5$ кВ.


№ 15.

 P_1 =27 MBт, tg ϕ_1 =0,6 P_2 =19 MBт, tg ϕ_2 =0,65 Район по гололёду –I.


Напряжение сети 110 кВ;

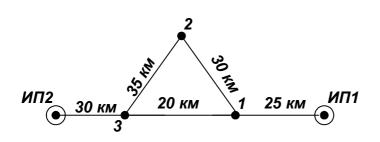
- 1. Выбрать силовые трансформаторы для ПС 1;
- 2. Выбрать сечение проводов ВЛЭП ИП2-1 и 1-2;
- 3. Отрегулировать напряжение на шинах 10 кВ Π С 1 с помощью дополнительных KY, U_{BH1} = U_{Hom} , $U_{HHжen}$ =10,5 кВ.


 P_1 =19 MBт, tg ϕ_1 =0,6; P_2 =36 MBт, tg ϕ_2 =0,4; P_3 =41 MBт, tg ϕ_3 =0,5; Район по гололёду -I.

- 1. Определить напряжение сети;
- 2. Выбрать силовые трансформаторы для ПС 3;
- 3. Выбрать сечение проводов ВЛЭП ИП2-2;
- 4. Рассчитать потери электроэнергии в выбранных элементах сети, $K_{\text{лет.ch}}$ =0,7.

 P_1 =24 MBT, tg ϕ_1 =0,6; P_2 =16 MBT, tg ϕ_2 =0,6; P_3 =43 MBT, tg ϕ_3 =0,5; P_4 =17 MBT, tg ϕ_4 =0,4; P_4 =0,4 Пололёду –II.

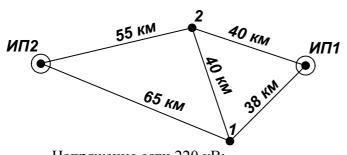
- 1. Определить напряжение сети;
- 2. Выбрать силовые трансформаторы для ПС 2;
- 3. Выбрать сечение проводов ВЛЭП 3-4;
- 4. Рассчитать потери электроэнергии в выбранных элементах сети, $K_{\text{лет.сн}} = 0.68$.



 P_1 =41 MBт, tg ϕ_1 =0,3; P_2 =56 MBт, tg ϕ_2 =0,4; P_3 =15 MBт, tg ϕ_3 =0,7; P_4 =17 MBт, tg ϕ_4 =0,8; P_4 =10 по гололёду –I.

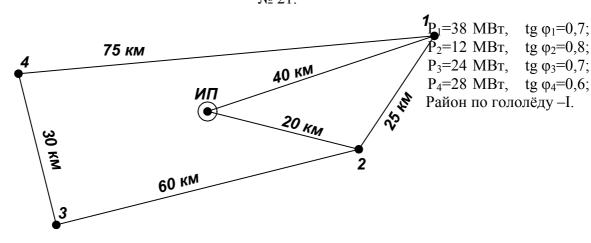
Номинальное напряжение линий 2-3, 2-4 и 3-4: 110 кВ; остальных – 220 кВ;

- 1. Выбрать трансформаторы для ПС 1;
- 2. Выбрать сечение проводов ВЛЭП ИП1-1 и 2-3;
- 3. Рассчитать потери электроэнергии в выбранных элементах сети, $K_{\text{лет.сн}}$ =0,65.

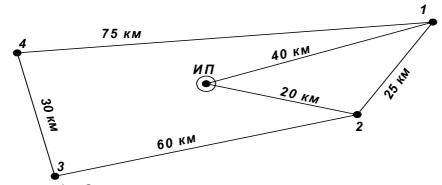

№ 19.

 P_1 =65 MBT, tg ϕ_1 =0,5 P_2 =81 MBT, tg ϕ_2 =0,5 P_3 =46 MBT, tg ϕ_3 =0,3 Район по гололёду –I.

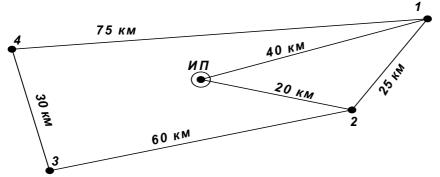
- 1. Определить напряжение сети;
- 2. Выбрать силовые трансформаторы для ПС 1;
- 3. Выбрать сечение проводов ВЛЭП ИП2-3 и 1-2;
- 4. Рассчитать потери электроэнергии в выбранных элементах сети, $K_{\text{лет.сн}}$ =0,75.

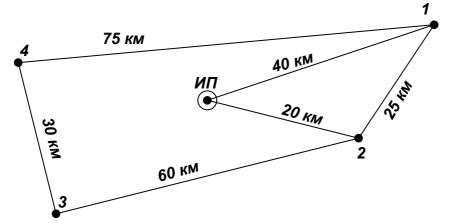

№ 20.

Напряжение сети 220 кВ;


- 1. Выбрать силовые трансформаторы для ПС 2;
- 2. Выбрать сечение проводов ВЛЭП ИП1-1;
- 3. Рассчитать УПК для ВЛ ИП2–2, $U_{\text{ИП}}$ =1,1 $U_{\text{ном}}$, $\Delta U_{\text{доп}}$ =5 %.

№ 21.


- 1. Определить напряжение сети;
- 2. Выбрать силовые трансформаторы для ПС 1;
- 3. Выбрать сечение проводов ВЛЭП ИП-1;
- 4. Рассчитать УПК для ВЛ ИП–2, $U_{\text{ИП}}$ =1,05 $U_{\text{ном}}$, $\Delta U_{\text{доп}}$ =5 %.


 P_1 =46 MBт, tg ϕ_1 =0,5; P_2 =24 MBт, tg ϕ_2 =0,4; P_3 =48 MBт, tg ϕ_3 =0,3; P_4 =32 MBт, tg ϕ_4 =0,5; P_4 =0,00.

- 1. Определить напряжение сети;
- 2. Выбрать силовые трансформаторы для ПС 2;
- 3. Выбрать сечение проводов ВЛЭП 2-3;
- 4. Рассчитать УПК для ВЛ ИП−2, $U_{\text{ИП}}$ =1,05 $U_{\text{ном}}$, $\Delta U_{\text{доп}}$ =4 %. № 23.

 P_1 =30 MBT, tg ϕ_1 =0,6; P_2 =17 MBT, tg ϕ_2 =0,7; P_3 =29 MBT, tg ϕ_3 =0,7; P_4 =56 MBT, tg ϕ_4 =0,4; P_4 =0,4 По гололёду –IV.

- 1. Определить напряжение сети;
- 2. Выбрать силовые трансформаторы для ПС 3;
- 3. Выбрать сечение проводов ВЛЭП ИП-1;
- 4. Рассчитать УПК для ВЛ 2–1, $U_{\text{ИП}}$ =1,1 $U_{\text{ном}}$, $\Delta U_{\text{доп}}$ =5 %. № 24.

 P_1 =42 MBT, tg ϕ_1 =0,5; P_2 =37 MBT, tg ϕ_2 =0,4; P_3 =26 MBT, tg ϕ_3 =0,3; P_4 =25 MBT, tg ϕ_4 =0,5; P_4 =0,5 HBT, P_4 =0,5 HB

- 1. Определить напряжение сети;
- 2. Выбрать силовые трансформаторы для ПС 4;
- 3. Выбрать сечение проводов ВЛЭП 3-4;
- 4. Рассчитать потери электроэнергии в выбранных элементах сети, К_{лет сн}=0,72.

Задания на выбор СК или СТК

Выбрать тип и число синхронных компенсаторов для регулирования напряжения в сети. Схема приведена на рис. Исходные данные приведены в табл.1.

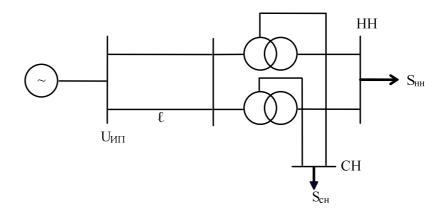


Таблица 1.

таолица т.						
№ варианта	U _{un} , (кВ)	ℓ, (км)	S _{cH} , MBA	S _{HH} , MBA	U ^{сн} жел.,(кВ)	$U_{\text{жел}}^{\text{нн}}$, (кВ)
1	242	84	91+j48	70+j30	120	10,4
2	237	90	77+j 41	33+ j 20	121	10,2
3	240	103	94+ j32	67 + j35	118	10,5
4	241	102	100+j45	100+ j50	120	10
5	230	105	55+ j26	40+ j18	120	10,5
6	235	84	90+ j40	100+ j45	124	10,3
7	242	110	110+ j50	180+ j80	123	10,1
8	240	67	50+ j22	45+ j20	121	10,5
9	238	94	82+ j54	37+ j20	120	10,3
10	229	91	43+ j22	43+ j21	120	10,5
11	236	112	69+ j45	43+ j30	119	10,4
12	228	100	71+ j42	52+ j27	119	10,4
13	240	94	74+ j40	52+ j35	120	10,3
14	238	70	73+ j38	52+ j30	119	10,4
15	240	86	60+ j37	44+ j28	120	10,5
16	239	111	69+ j39	41+ j27	118	10,5
17	227	96	81+ j40	50+ j29	121	10,4
18	234	120	88+ j64	37+ j20	118	10,5
19	236	120	75+ j40	52+ j33	117	10,5
20	230	85	80+ j45	43+ j21	120	10,4

Варианты с 20 по 40 такие же как и с 1 по 20, но с увеличением нагрузки в 1,5 раза.

Задания на выбор УПК

Определить необходимое число конденсаторов, номинальное напряжение и установленную мощность батареи конденсаторов для следующих условий. Районная понижающая подстанция связана с центром питания ВЛЭП длиной 1. Наибольшая расчетная нагрузка подстанции приведена в таблице. По условиям работы потребителей потери напряжения в ВЛЭП при этой нагрузке не должны превышать Δ $U_{\text{доп}}$, %, приведенную в таблице. Для снижения потерь напряжения в каждую фазу ВЛ необходимо включить однофазные трансформаторные конденсаторы, напряжением 0,66 кВ.

Исходные данные

№ ва-	U источни-	Марка	Длина	Количество		Допустимые по-
рианта	ка питания,	провода	ВЛ, км	цепей	подстанции, МВА	тери напряжения,
	кВ	-				%
1	112	AC-120	100	2	30+j20	5
2	115	AC-185	20	1	45+j25	6
3	220	AC-240	150	1	80+j40	8
4	230	AC-300	180	2	100+j55	7
5	117	AC-150	110	1	40+j25	5
6	225	AC-400	200	2	120+j50	8
7	110	AC-240	105	2	50+j25	6
8	235	AC-240	170	1	110+j50	7
9	120	AC-150	120	2	68+j32	6
10	119	AC-185	135	1	74+j38	5
11	229	AC-400	220	1	160+j38	4
12	116	AC-150	117	2	96+j54	5
13	110	выбрать	90	2	70+j25	5
14	220	выбрать	110	2	85+j51	5,5
15	110	выбрать	105	2	61+j24	5,7
16	10	AC-35	25	1	5+j3	3
17	220	AC-240	110	2	145+j75	5
18	35	AC-120	87	1	40+j25	4,7
19	120	AC-185	87	1	42+j21	5,5
20	232	AC-240	150	1	130+j90	6,5
21	115	AC-120	115	1	15+j10	4,7
22	112	AC-150	93	2	43+j21	4,5
23	117	AC-185	99	1	33+j25	4,6
24	117	AC-150	90	1	51+j20	4,5
25	35	выбрать	42	2	37+j20	5,5
26	117	AC-240	105	1	45+j24	4,3
27	110	выбрать	77	2	49+j28	5,2
28	110	AC-150	120	1	45+j40	7
29	225	AC-240	123	1	77+j50	6,1
30	35	выбрать	42	2	32+j18	5
31	220	выбрать	110	2	110,5+j66,3	5,5
32	220	AC-240	150	1	120+j60	8
33	220	AC-240	110	2	188,5+j97,5	5
34	220	выбрать	110	2	127,5+j76,5	5,5
35	220	AC-240	110	2	217,5+j112,5	5

Задания на неполнофазные режимы

Проверить возможность неполнофазного режима при отключении одной фазы ВЛ напряжением 220 кВ, питающей трехфазный автотрансформатор АТ. Обмотки автотрансформатора соединены по схеме Y $_{-0}/\Delta$. Мощность трехфазного к.з. на шинах 220 кВ автотрансформатора равна 4000 МВА. Исходные данные приведены в табл.1.

7. ПЕРЕЧЕНЬ ПРОГРАММНЫХ ПРОДУКТОВ, ИСПОЛЬЗУЕМЫХ СТУДЕНТАМИ ПРИ ИЗУЧЕНИИ ДАННОЙ ДИСЦИПЛИНЫ

При изучении данной дисциплины используются следующие программы и программно-вычислительные комплексы: MathCad; Visio; SДО-6; RastrWin; KR NET, CURS PM, "Расчет сети».

Все вышеперечисленные ПВК широко используются в практической деятельности выпускников и изучаются ранее.

Методические указания по данным программным продуктам изложены в УМКД дисциплин «Информатика», «Пакеты прикладных программ», поэтому в данном УМКД не приводятся.

8. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРИМЕНЕНИЮ СОВРЕМЕННЫХ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Состав информационных технологий, используемых при изучении данной дисциплины:

- 1. Презентации лекций, слайд-лекции на каждое занятие.
- 2. Электронные варианты электрических схем энергетических компаний Дальневосточного региона.
 - 3. Схемы, рисунки, таблицы под медиакомплекс.
- 4. Комплект индивидуальных заданий по дисциплине: домашних и выдаваемых на занятиях.
- 5. Промышленные программно-вычислительные комплексы «СДО-6», RastrWin, пакет автоматизации математических расчетов «MathCad».
 - 6. Презентации практических занятий.
 - 7. Электронный подбор материалов по тематике лекций.
 - 8. Электронные варианты учебников и учебных пособий в библиотеке кафедры.
 - 9. Справочные материалы.

К информационной составляющей УМК относятся учебники, учебные пособия методические разработки. Т.е. их электронные издания (ИЭ). Информационная составляющая является электронным аналогом с:

возможностью использования наряду со статическими текстами и изображениями мультимедийных ресурсов (звука и видео);

наличием встроенных средств навигации, позволяющих пользователю переходить к основной странице издания, предыдущей, следующей странице издания, просмотреть оглавление всего издания или его раздела;

возможность оперативного внесения изменений после публикации.

Электронные издания существуют в различных представлениях. Возможно представление изданий в формате текстового процессора, например Word, публикация издания в переносимом формате, например Adobe PDF. Следующей формой публикации ЭИ является публикация во Всемирной паутине в формате HTML с использованием других технологий, например CSS для стилевого оформления, динамического HTML – для создания динамических документов, Macromedia Flash для анимации.

ЭИ допускает многовариантное представление с различной функциональностью для работы с помощью различных пользовательских агентов. Состав версий ЭИ обеспечи-

вает работу с ним на персональном компьютере и распечатку его на бумаге. Электронное представление ЭИ позволяет хранить его на любых электронных носителях и доставлять через сеть.

Разница проведения практических занятий при очном и дистанционном видах обучения определяется организацией взаимодействия между обучаемым и преподавателем, а также степенью взаимодействия между обучаемыми. В очном образовании преподаватель может управлять ходом решения задач в реальном времени, направляя обучаемых, комментируя и объясняя типичные ошибки. Взаимодействие между обучаемыми позволяет быстрее находить решения, кроме того, обучаемые получают опыт совместной работы. В заочном образовании, обучаемый получает комплект, состоящий из задачника, задания, методических указаний, примеров решения задач, справочных материалов. Участие преподавателя сводится к проверке полученных по почте решений. Дистанционный вариант проведения практических занятий отличается от заочного возможностью оперативного общения между обучаемыми и преподавателем.

Способы общения между преподавателем и обучаемыми в заочной и сокращенной заочной формах обучения:

общение по электронной почте — этот способ является предпочтительным, позволяя его участникам читать и подготавливать сообщения в удобное для них время;

общение через web-форумы, организуемые на web-серверах учебного заведения; общение с помощью служб мгновенных сообщений и чатов.

Способ доставки учебного контента: лично; по почте; электронные средства доставки (ftp, http, E-mail); комбинированные средства доставки.

Средства взаимодействия между преподавателем и обучаемыми вынесены из состава УМК, например электронную почту, форумы, чаты целесообразно совместно использовать под несколько ЭУМК.

9. КОНТРОЛЬ КАЧЕСТВА ОБРАЗОВАНИЯ

9.1. Методические указания профессорско-преподавательскому составу по организации межсессионного и экзаменационного контроля знаний студентов.

В процессе изучения дисциплины используются следующие виды контроля знаний студентов:

входной контроль; текущий контроль; рубежный контроль; экзаменационный (итоговый) контроль; самоконтроль знаний.

Виды и цели контроля

Входной контроль зависит от цели обучающего курса и его специфики. Он определяет готовность студента к работе по курсу (роль допуска к обучению), выполняет диагностические функции, выявляет пробелы в знаниях, компенсируемые процессом дополнительного обучения. Обучающий курс становится адаптивным (каждый учащийся идет своим путем в зависимости от его начального уровня). Работа по тестовым заданиям настраивает студента на предметную область, вводит в терминологию, способствует актуализации знаний, становится стартовой площадкой для новой темы. Обычно входной контроль редок (вступительные экзамены, допуск к лабораторной работе), но при компьютеризации обучения его частота повышается.

Текущий контроль — диагностика знаний, умений и навыков (ЗУН) и коррекция обучения в процессе усвоения темы, позволяющая исправлять недостатки обучения и достигать необходимого уровня его усвоения.

Рубежный контроль — это проверка уровня усвоения очередного раздела курса. Студенту предлагается творческая задача, задача повышенной сложности или задача, предусматривающая перенос усвоенных знаний на другой материал. Успешное решение задачи показывает, что учащийся овладел всей системой знаний и действий, предусмотренных целями обучения по данной теме. Рубежная проверка позволяет обучаемому запрашивать необходимый справочный или информационный материал, советы, разъяснения ошибок, наводящие вопросы. Задания должны быть адекватны этапу познавательной деятельности, элементу которого соответствует серия нескольких заданий. Рубежный контроль может быть входным для изучения последующего материала и поддержки уровня знаний при перерывах в обучении, что характерно для студентов заочной и сокращенной заочной форм. Итогом рубежного контроля являются результаты контрольных точек.

Экзаменационный (итоговый) контроль. Если проверка исходного уровня — «входной» контроль, то заключительный контроль показывает полученные результаты «на выходе». Он представляет собой серию заданий по всему материалу, которую обучаемый должен решить самостоятельно. По результатам экзаменационного контроля учащийся получает отметку.

Самоконтроль знаний — наиболее простой вид. Обычно это вопросы и задачи, на которые учащийся пытается ответить самостоятельно. При затруднении он может обратиться к учебнику и найти в нем ответы. Основная цель самоконтроля — самоутверждение, достижение уверенности в усвоении учебного материала, хотя это может и не соответствовать действительности.

Таким образом, основные цели разных видов контроля следующие: самоутверждение; готовность к изучению нового материала; проверка уровня усвоения; поддержка адаптивного обучения и уровня знаний; формирование базы оценок для определения рейтинга обучаемых. Программные средства контроля знаний должны обеспечивать все стадии его проведения: от идентификации до выдачи результатов.

Контроль (диагностика) знаний, умений, навыков (ЗУН) включает в себя выполнение некоторого множества заданий, характеризуемых трудностью и сложностью. Трудность задания определяется уровнем усвоения, на диагностику которого оно направлено. Сложность характеризуется числом существенных операций в нем, в т.ч. и свернутых.

Педагогически корректное задание для контроля знаний студентов должно быть: содержательно валидным (построенным на содержании предшествующего обучения); функционально валидным (проверка того, для чего его используют); объективным; однозначным; специфичным (требующим конкретных ЗУН, а не общей эрудиции); способным разделить учащихся на знающих и незнающих.

Подбор заданий в группу основан на репрезентативности (полноте охвата дисциплины или ее раздела ограниченной выборкой); однородности (равноценности содержания и трудности наборов заданий); рандомизации (гарантии не предъявления одного и того же набор заданий).

Входной контроль выполняется в виде тестовых заданий. Формами текущего контроля являются блиц-опрос студентов на каждой лекции по пройденному материалу (5-7 минут), опрос на практических занятиях, защита индивидуальных домашних заданий, рефераты.

Рубежный контроль предусматривает выполнение контрольных работ, комплексных заданий, направленных на проверку эвристических способностей студентов, углубленного изучения материала, коллоквиум.

Итоговый контроль — это экзамен по дисциплине. Экзаменационный билет должен включать два теоретических вопроса и задачу. Предусмотрено три типа сложности задач: простой, средней и повышенной сложности. Студенту предлагается выбор задачи по сложности в зависимости от того, на какую оценку он претендует. Если студент не справляется с задачей средней или повышенной сложности, то предлагается простая задача, отсутствие решения которой приводит к неудовлетворительной оценке на экзамене.

Рекомендуется при оценке знаний студентов на экзамене учитывать его работу в семестре.

9.2. Фонды тестовых и контрольных заданий для оценки качества знаний

Для оценки качества знаний по дисциплине «Электроэнергетические системы и сети» используются комплексные задания. Ниже приведен пример таких заданий.

Комплексное задание

по дисциплине «Электроэнергетические системы и сети» Вариант \mathfrak{N}_{2}

Источниками питания электрической сети, конфигурация которой показана на рис., являются ГЭС (однолинейная схема прилагается) и подстанция питающей сети с номинальными напряжениями 500/220/110/35 кВ. Нагрузки и категорийность потребителей приведены в таблице 1. От подстанции 2 питается авиазавод и коммунально-бытовая нагрузка. Для коммунально-бытовых электроприемников подстанции 2, доля которых составляет 20%, известен график нагрузки /см. рис. 2/. Установленная мощность потребителей авиазавода приведена в приложении. Схемы подстанций 1 и 3 прилагаются к билету.

Конфигурация электрической сети

График нагрузки ПС 2.

110 км 1 45 км 3 80 км

Р МВт

0 4 8 12 16 20 24

Рис.1

Рис.2

Таблица 1. Суммарные нагрузки трансформаторов подстанций и категорийность потребителей

№ подстан-	Pcp	Qcp	Рэф	Qэф	Рмах	Qмах	Категорий	йность пот	ребителей
ции	МВт	Мвар	МВт	Мвар	МВт	Мвар	I	II	III
1	92	36	99	40	110	43	20	60	20
3	77	32	85	35	93	38	12	60	28

Примечание: процентное отношение нагрузок средней и низкой сторон трансформаторов составляет для подстанции 1 - 60% / 40%; для подстанции 3- 70% / 30%.

Разработать электрическую сеть, решив при этом следующие вопросы:

- 1. Разработать однолинейную электрическую схему сети, выбрав все необходимые параметры.
- 2. Разработать однолинейную схему подстанции 2 и оценить ее надежность.

- 3. Выбрать и проверить вводной выключатель подстанции 1. Конструкция и эксплуатация изоляции данного выключателя.
- 4. Какие средства для ограничения перенапряжений необходимо установить в электрической сети? Выбрать их для предложенной схемы. Их конструкция и характеристики.
- 5. В чем заключается регулирующий эффект нагрузки? Рассмотреть на примере подстанции 2 предложенной схемы.
- 6. Выбрать релейную защиту воздушной линии ГЭС подстанции 1. Расписать алгоритм выбора уставок основной защиты ВЛ.
- 7. Как выбрать номер ответвления РПН трансформатора? Показать на примере подстанции 1.

Приложение к билету № 5

От подстанции 2 получает питание авиационный завод, доля нагрузки которого составляет 80% нагрузки подстанции.

Состав нагрузок завода следующий:

Наименование	Р, кВт
1. Линейный цех черных металлов	12500
2. Линейный цех цветных металлов	7500
3. Обработка блоков двигателей	3520
4. Обработка деталей двигателей	2480
5. Сборка и испытание двигателей	2270
6. Штамповочный цех деталей корпуса самолета	4460
7. Штамповочный цех деталей покрытия самолета	2360
8. Производство мелких деталей	4480
9. Сборка остова самолетов	3520
10. Сборка самолетов полностью	2800

9.3. Экзаменационный контроль

Вопросы к экзамену

- 1. Тенденции и перспективы развития электроэнергетических систем.
- 2. Цели и задачи проектирования электроэнергетических систем
- 3. Проект развития электрических сетей
- 4. Методы проектирования энергосистем
- 5. Исходные данные для проектирования электрических сетей, электроэнергетических систем, их достоверность и полнота
- 6. Графики электрических нагрузок (ГЭН) и их анализ при проектировании электрических сетей
- 7. Построение ГЭН подстанций из типовых графиков при различных способах задания информации
- 8. Долгосрочное прогнозирование ГЭН
- 9. Практическое применение формулы сложных процентов при прогнозировании электрических нагрузок
- 10. Переход от реальных ГЭН к ГЭН в относительных единицах и построение прогнозируемого ГЭН
- 11. Влияние режимов работы потребителей на формирование ГЭН подстанций
- 12. Понятие "Число часов использования наибольшей нагрузки" и его определение
- 13. Технико-экономические основы проектирования электрических сетей
- 14. Характеристика района проектирования электрической сети
- 15. Общие требования к схемам электрических сетей. Принципы формирования вариантов конфигурации электрической сети

- 16. Выбор схем построения сети. Принципы технического отбора конкурентоспособных вариантов сетей при проектировании
- 17. Учет фактора надежности при проектировании электрических сетей
- 18. Критерии выбора оптимального варианта, алгоритм выбора
- 19. Капитальные вложения
- 20. Эксплуатационные издержки
- 21. Чистый дисконтированный доход, эквивалентные годовые расходы (годовые приведенные затраты) и срок окупаемости капитальных затрат.
- 22. Технико-экономическое сравнение вариантов электрической сети. Выбор оптимального варианта схемы электрической сети при проектировании
- 23. Определение потерь электрической энергии при проектировании электрической сети
- 24. Выбор рационального напряжения сети
- 25. Выбор числа и мощности силовых трансформаторов на ПС
- 26. Определение сечения проводов и кабелей по экономической плотности тока
- 27. Определение сечения проводов по экономическим токовым интервалам
- 28. Определение сечений линий в распределительных сетях по допустимой потере напряжения
- 29. Выбор сечения линии из условия его равенства на всех участках
- 30. Выбор сечения линии из условия минимума потерь мощности
- 31. Выбор сечения линии из условия минимума расхода проводникового материала на сооружение линии
- 32. Особенности выбора и проверки сечений в замкнутых сетях
- 33. Проверка сечений линий по нагреву длительно допустимым током
- 34. Проектирование схем электрических сетей
- 35. Основы расчета нормальных режимов сложных электрических сетей
- 36. Представление системы уравнений узловых напряжений (УУН) для ее решения на ПЭВМ. Раздельное решение уравнений узловых напряжений
- 37. Сходимость решения уравнений установившегося режима
- 38. Существование решения системы УУН
- 39. Единственность решения нелинейных УУН
- 40. Чувствительность решения нелинейных УУН
- 41. Преобразование сети при расчете режимов электроэнергетических систем большой сложности
- 42. Исключение узлов при расчете режимов электроэнергетических систем большой сложности
- 43. Метод расщепления сети. Расчеты однородных сетей
- 44. Расчет системы УУН при перспективном проектировании схем энергосистем
- 45. Учет слабой заполненности матрицы узловых проводимостей
- 46. Методы эквивалентирования сети
- 47. Эквивалентирование при расчетах УУН систем большой сложности
- 48. Разделение электроэнергетических систем на подсистемы при расчете режимов
- 49. Методы решения уравнений узловых напряжений.
- 50. Матричные и топологические методы расчета режимов электроэнергетических систем
- 51. Способы задания параметров элементов схемы, нагрузочных и генераторных узлов. Балансирующий узел
- 52. Расчет режимов с помощью промышленных программно-вычислительных комплексов СДО 6, RastrWin
- 53. Анализ установившихся режимов
- 54. Особые режимы электрических сетей и их анализ
- 55. Источники, вызывающие особые режимы в электрической сети

- 56. Уравнения несимметричных режимов в фазных координатах и переход в систему симметричных координат
- 57. Уравнения несимметричных режимов в системе симметричных координат и переход в систему фазных координат
- 58. УУН в сложнонесимметричных режимах
- 59. Симметрирование режима
- 60. Порядок расчета неполнофазного режима
- 61. Условия допустимости работы с длительно неполнофазным режимом
- 62. Применение метода симметричных составляющих при расчете несимметричных режимов
- 63. Представление системы УУН для анализа несинусоидальных режимов
- 64. Источники и потребители реактивной мощности
- 65. Балансовая задача компенсации реактивной мощности
- 66. Экономическая задача компенсации реактивной мощности
- 67. Регулирование напряжения в сети продольной компенсацией реактивной мощности
- 68. Регулирование напряжения в сети поперечной компенсацией реактивной мощности
- 69. Технические средства компенсации реактивной мощности и регулирования напряжения
- 70. Методы расчета потерь электроэнергии в электрических сетях
- 71. Структурный анализ потерь
- 72. Мероприятия по снижению технических потерь
- 73. Мероприятия по снижению метрологических потерь
- 74. Мероприятия по снижению коммерческих потерь
- 75. Первичное, вторичное и третичное регулирования частоты
- 76. Противоаварийные мероприятия при снижении частоты в электроэнергетических системах

Задания для экзамена сформированы в виде инженерных задач, включающих в себя проектирование электрических сетей, регулирование напряжения с помощью компенсирующих устройств, преобразование сложнозамкнутых электрических сетей для расчета режимов, использование практических приемов для ускорения расчетов режимов на ПЭВМ, представление схем электрической сети и ее параметров для расчета на ПЭВМ, анализ особых режимов.

Пример билета на экзамен

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ 1

- 1. Цели и задачи проектирования энергосистем
- 2. Выбор оптимального варианта схемы электрической сети при проектировании
- 3. Применение метода симметричных составляющих при расчете несимметричных режимов
- 4. Задача

Полный комплект экзаменационных билетов хранится на кафедре.

10. КАРТА ОБЕСПЕЧЕННОСТИ ДИСЦИПЛИНЫ КАДРАМИ ПРОФЕССОРСКО-ПРЕПОДАВАТЕЛЬСКОГО СОСТАВА

Лекции	Практические	Лабораторные за-	Контроль качества зна-	Экзамен
	занятия	нятия	ний студентов	
Д.т.н., проф.	Асс. Маркитан	Асс. Маркитан	Д.т.н., проф. Савина Н.В.,	Д.т.н., проф.
Савина Н.В.	В.Ю.,	В.Ю.,	Асс. Маркитан В.Ю.,	Савина Н.В.
	Асс. Рябинин В.В.	Асс. Рябинин В.В	Асс. Рябинин В.В.	

11.СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Герасименко А.А. Передача и распределение электрической энергии : учеб. пособие: рек. Мин. обр. РФ/ А. А. Герасименко , В. Т. Федин. -Ростов н/Д: Феникс; Красноярск: Издат. проекты, 2008. -719 с.
- 2. Основы современной энергетики в 2т. : Учеб. : рек. Мин. обр. Р Φ : Т2. Современная электроэнергетика / под ред. Е.В. Аметистова. М.: Издат. дом МЭИ, 2010. 632 с.
- 3. Лыкин А.В. Электрические системы и сети : учеб.пособие / А.В.Лыкин . Новосибирск : Изд-во НГТУ, 2002. 247 с.
- 4. Идельчик В.И. Электрические системы и сети : учеб./ В. И. Идельчик. -М.: Энергоатомиздат, 1989. 592 с.
- 5. Электрические системы. Электрические сети. : Учеб. для электроэнерг. спец. вузов/ред. В. А. Веников. -2-е изд., прераб. и доп.. -М.: Высш. шк., 1998. -512 с.
- 6. Кужеков С.Л. Практическое пособие по электрическим сетям и электрооборудованию/ С. Л. Кужеков, С. В. Гончаров. -3-е изд.. -Ростов н/Д: Феникс, 2009. -493 с.
- 7. Пособие к курсовому и дипломному проектированию для электроэнергетических специальностей вузов : учеб. пособие / В.М. Блок, Г.К. Обушев, Л.В. Паперно; Ред. В.М. Блок. 2-е изд., перераб. и доп. М. : Высш. шк., 1990. 384 с.
- 8. Электротехнический справочник : В 4 т./ Под общ. ред. В.Г. Герасимов, Под общ. ред. А.Ф. Дьяков, Под общ. ред. Н.Ф. Ильинский, Гл. ред. А.И. Попов Т. 3 : Производство, передача и распределение электрической энергии : справочное издание. 2002. -964 с.
- 9. Справочник по проектированию электрических сетей / под ред. Д. Л. Файбисовича. -3-е изд., перераб. и доп. -М.: ЭНАС, 2009. -391 с.
- 10. Поспелов Г.Е. Электрические системы и сети: проектирование : учеб. пособие / Г. Е. Поспелов, В. Т. Федин. 2-е изд., испр. и доп. Минск : Высш. шк., 1988. 308 с.
- 11. Шелухина Т.И. Расчеты нормальных и предельных по мощности установившихся режимов сложных энергосистем : учеб. пособие/ Т. И. Шелухина. -М.: Изд-во Моск. энергет. ин-та, 2005. 52 с.
- 12. Савина Н.В. Системный анализ потерь электроэнергии в электрических распредели-тельных сетях: моногр. / Н.В. Савина; Отв. ред. Н.И. Воропай. Новосибирск: Наука, 2008. 228 с.
- 13. Тарасов В.И. Теоретические основы анализа установившихся режимов электро-энергетических систем: моногр. / В. И. Тарасов; Отв. ред. Л.Ю. Анапольский. Новосибирск: Наука, 2002. 344 с.
- 14. Кочкин В.И. Применение статических компенсаторов реактивной мощности в электрических сетях энергосистем и предприятий: УЧЛ К изучению дисциплины / Кочкин В.И., Нечаев О.П. М.: Изд-во НЦ ЭНАС, 2000. 248c.
- 15. Изучение методов расчета установившихся режимов сложных энергосистем: Лабораторный практикум: Учебное пособие / В.А. Строев, Н.Г. Филиппова, Т.И. Шелухина, С.В. Шульженко. М.: Изд-во МЭИ, 2005. 48 с.
- 16. Справочник по проектированию электроэнергетических систем / под ред. С.С. Рокотяна, И.М. Шапиро/ М.: Энергоатомиздат, 1985, 352 с.
- 17. Методические указания к выполнению лабораторных работ по дисциплине «Электроэнергетические системы и сети» / под ред. Н.В.Савиной. Благовещенск, 2012 г. (Электронный вариант).
 - 18. Правила устройства электроустановок/ 7-е изд. М.: , 2012 http://ukrelektrik.com
- 19. Китушин В. Г. Надежность энергетических систем: учеб. пособие/ В. Г. Китушин Ч. 1: Теоретические основы. Новосибирск: изд-во НГТУ 2003. -255 с.
- 20. Савина Н.В. Электрические сети в примерах и расчетах: учеб. пособие/ Н.В. Савина, Ю.В. Мясоедов, Л.Н. Дудченко Благовещенск: Изд-во АмГУ, 1999. 238 с.
 - в) периодические издания (журналы):

- 1. Электричество;
- 2. Известия РАН. Энергетика;
- 3. Электрические станции;
- 4. Энергетик;
- 5. Электрика;
- 6. Вестник МЭИ;
- 7. Промышленная энергетика;
- 8. Энергетика. Сводный том;
- 9. Вестник ИГЭУ;
- 10. IEEE Transaction on Power Systems;
- 11. International Journal of Electrical Power & Energy Systems.