Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение Высшего профессионального образования «Амурский государственный университет»

	У	ТВЕРЖДАЮ
Зав	ой энергетики	
	Ю	.В. Мясоедов
«	»	2012 г.

учебно-методический комплекс по дисциплине

«ЭЛЕКТРОПИТАЮЩИЕ СИСТЕМЫ И ЭЛЕКТРИЧЕСКИЕ СЕТИ»

для специальности: 140211.65 – «Электроснабжение»

Составитель: Н.В. Савина

СОДЕРЖАНИЕ

1. Рабочая программа дисциплины	3
2. Краткий конспект лекций	
2.1. Методические указания по проведению лекций	26
2.2. Краткий конспект лекций	27
3. Практические занятия	
3.1. Методические рекомендации по проведению практических занятий	196
3.2. Методические указания по проведению практических занятий	197
4. Лабораторные занятия	199
4.1. Методические рекомендации по проведению лабораторных занятий	199
4.2. Методические указания по проведению лабораторных занятий	
5. Курсовое проектирование	228
5.1. Методические указания по выполнению курсового проекта Ошибка!	Закладка не
определена.228	
5.2. Пример выполнения курсового проекта	254
6. Самостоятельная работа студентов	
6.1. График самостоятельной работы студентов	317
6.2. Методические указания по выполнению домашних заданий и контроль	ьных работ318
6.3. Комплекты домашних заданий, контрольных работ	318
7. Перечень программных продуктов, используемых студентами при из	зучении данной
дисциплины	327
8. Методические указания по применению современных информационных тех	хнологий 328
9. Контроль качества образования	329
9.1. Методические указания профессорско-преподавательскому составу	по организации
межсессионного и экзаменационного контроля знаний студентов	329
9.2. Фонды тестовых и контрольных заданий для оценки качества знаний	331
10. Список использованных источников	338

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целями освоения дисциплины «Электропитающие системы и электрические сети» являются формирование систематизированных знаний в области электрических сетей электроэнергетических систем, питающих системы электроснабжения, энергосбережения, приобретение студентами навыков их проектирования, развитие культуры экономически целесообразного выбора проектируемого варианта схемы сети, расчета режимов сложных систем, регулирования частоты и напряжения, изучение технических и экономических характеристик основных типов источников питания (теплоцентрали, понижающие подстанции 35-220/6-20 кВ).

Эти знания позволят выпускникам успешно решать задачи в профессиональной деятельности, связанной с проектированием и функционированием электрических сетей.

Задачи дисциплины:

- Изучение научных основ построения электроэнергетических систем, технологий анализа и синтеза схем электрических сетей, принципов и методов разработки и реализации оптимальных технических решений при проектировании электроэнергетических систем и сетей.
- Ознакомление студентов с методом проектирования и его алгоритмом и основами расчета по выбору электрических аппаратов электроэнергетических систем.
- Получение знаний в области энергосбережения, регулирования частоты и напряжения в электроэнергетических системах.
- Изучение методов и алгоритмов расчетов установившихся режимов сложных электроэнергетических систем, в том числе и с помощью промышленных программновычислительных комплексов.
- Овладение методами технических и экономических расчетов, на основе которых выбираются конкретные схемные, параметрические, конструктивные и режимные решения для источников питания и электрических сетей, питающих системы электроснабжения.
- Формирование профессиональных навыков по проектированию и эксплуатации электрических сетей, по применению энергосберегающих технологий.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВПО

Дисциплина «Электропитающие системы и электрические сети» входит в цикл специальных дисциплин (СД.02) и относится к дисциплинам, формирующим специальные профессиональные знания и навыки, необходимые при изучении дисциплин «Изоляция и перенапряжения», входящей в цикл ОПД и читаемой в 8 семестре, дисциплин «Системы электроснабжения», «Надежность электроснабжения», входящих в цикл СД, дисциплин «Электроснабжение промышленных предприятий», «Электроснабжение городов», входящих в цикл ДС, а также при выполнении дипломного проекта.

Требования к обязательному минимуму содержания ООП по направлению подготовки дипломированного специалиста «Электроэнергетика». Федеральный компонент СД.02. Электропитающие системы и электрические сети: основные источники питания электроэнергией объектов – ТЭЦ, главные понижающие подстанции: их структуры, схемы, основное электрооборудование, режимы работы и конструктивное выполнение; балансы активной и реактивной мощности электроэнергетических систем; регулирование частоты; основы компенсации реактивных нагрузок; проектирование электрических сетей питающих

энергосистем, включая выбор схемных решений, параметров основного электрооборудования; расчеты основных режимов и регулирование напряжения.

Дисциплина базируется на курсах цикла общих математических и общенаучных дисциплин (ЕН) «Математика», «Физика», «Математические задачи энергетики», читаемых в 1-5 семестрах, курсах «Электроэнергетика», «Теоретические основы электротехники», «Электромеханика», входящих в цикл общепрофессиональных дисциплин (ОПД) и читаемых в 3-5 семестрах.

Студенты, обучающиеся по данной дисциплине, должны знать и владеть следующими материалами:

Математика – алгебра, решение систем алгебраических уравнений, дифференциальные и интегральные исчисления, графы, теория функций комплексного переменного, вероятность и статистика;

Физика — электричество и магнетизм, явления сверхпроводимости, полупроводники, принципы неопределенности;

Математические задачи энергетики – методы решения систем линейных и нелинейных уравнений в электроэнергетических задачах, применение теории вероятностей и математической статистики к решению электроэнергетических задач, методы оптимизации;

Теоретические основы электротехники – уравнения электромагнитного поля, законы электрических цепей; трехфазные цепи; теория электромагнитного поля, поверхностный эффект и эффект близости; электромагнитное экранирование;

Электромеханика – типы электрических машин, трансформаторы, автотрансформаторы, их режимы работы, конструкции;

Электроэнергетика – основные сведения об электрических сетях, схемах станций и подстанций, общие сведения об электроэнергетике.

3. ТРЕБОВАНИЯ К УРОВНЮ ОСВОЕНИЯ СОДЕРЖАНИЯ ДИСЦИПЛИНЫ

В результате освоения дисциплины обучающийся должен демонстрировать следующие результаты образования:

1) Знать:

современное состояние электроэнергетической системы;

цели, задачи, принципы и общий алгоритм проектирования электроэнергетической системы;

технико-экономические основы проектирования электрических сетей;

критерии выбора оптимального варианта электрической сети;

методы и алгоритмы проектирования электрических сетей;

порядок выбора схем построения электрической сети;

методы расчета режимов сложнозамкнутых электрических сетей;

мероприятия по снижению потерь мощности и энергии в электрических сетях;

методы и способы регулирования частоты и напряжения в электроэнергетической системе:

особые режимы электрических сетей;

схемы электрических соединений теплоэлектроцентрали, типовые схемы понижающих подстанций 110-220/6-20кВ;

современное электрическое оборудование;

конструкции распределительных устройств ВН, СН, НН.

2) Уметь:

составлять и анализировать конкурентоспособные варианты конфигурации электрической сети с учетом фактора надежности, выбирать номинальное напряжение сети;

рассчитать необходимую для питания района установленную мощность генераторов электростанций, а также мощность компенсирующих устройств по условию баланса мощности энергосистемы;

проводить компенсацию реактивной мощности;

выбирать основные параметры электрооборудования линий проектируемой сети, силовые трансформаторы;

рассчитывать технико-экономические показатели вариантов электрической сети и выбирать оптимальный вариант;

рассчитывать установившиеся режимы сложных электрических сетей;

регулировать напряжение на понижающих подстанциях 35-220 кВ и в электрической сети:

определять потери электроэнергии и выбирать мероприятия по их оптимальному снижению.

сформировать схему электрических соединений теплоэлектроцентрали, разработать схему понижающей подстанции 110-220/6-20кВ;

для сформированной схемы источника питания выбрать номинальные параметры основного электрооборудования;

выбрать конструкцию распределительного устройства 6-20 кВ и разработать схему его заполнения:

3) Владеть навыками:

проектирования на вариантной основе районных электрических сетей и пользования справочной литературой;

выбора оптимальных для рассматриваемой схемы электрической сети параметров;

расчетов режимов сложных систем и анализа результатов расчетов;

применения энергосберегающих технологий в электрических сетях;

регулирования напряжения в электрических сетях;

проектирования подстанций;

пользования справочной литературой;

выбора электрических аппаратов.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ «ЭЛЕКТРОЭНЕРГЕТИЧЕСКИЕ СИСТЕМЫ И СЕТИ»

Общая трудоемкость дисциплины составляет 214 часов.

No)a	Вид	Виды учебной работы, включая		боты,	Формы текущего
п/п			стр					контроля успеваемости
	Раздел	стр	Ме	ca	амостоя	ительн	ую	(по неделям семестра)
	дисциплины	Семестр	eo	pa	боту ст	удент	ов и	Форма промежуточной
	дисциплины	Ce	КП	труд	оемкос	ть (в	часах)	аттестации (<i>no</i>
			Неделя семестра	ЛК	ЛК ПЗ ЛР СРС		CPC	семестрам)
			Н					
	ī				ть І			
1	Проектирование	6	1-8	16	8		3	3,5,7 недели – блиц-
	электроэнергетиче							опрос на лекции;
	ских систем и							2,4,6,8 недели – опрос
	сетей							на практике, защита
								индивидуального
								домашнего задания

№ п/п	Раздел дисциплины	Семестр	Неделя семестра	ca pa	ы учебы вклы амостоя боту ст оемкос ПЗ	очая ітельн удент	тую ов и	Формы текущего контроля успеваемости (по неделям семестра) Форма промежуточной аттестации (по семестрам)
2	Расчет установившихся режимов сложных электрических сетей	6	9-12	8	4		3	9, 11 недели - блиц- опрос на лекции; 10, 12 недели - опрос на практике, защита индивидуального домашнего задания; 9 неделя – коллоквиум
3	Повышение энергоэффективно сти и надежности электроэнергетиче ских систем	6	13-18	12	6		2	12, 14, 16, 18 недели - опрос на практике, защита индивидуального домашнего задания; 13,15,17 недели – блицопрос на лекции
4	Курсовой проект	7	1- 15				40	Контроль хода выполнения КП раз в две недели
5	Промежуточная аттестация	6 7						Экзамен КП
6	Источники	7	1-8	Част 12	гь II 8	8	3	1,3,5,7 недели – блиц-
	питания систем электроснабжения							опрос на лекции; 2,4,6,8 недели – опрос на практике, защита индивидуального домашнего задания, защита лабораторных работ
7	Расчеты и выбор основного электрооборудова ния подстанций	7	9-12	8	4	4	2,5	9, 11 недели - блицопрос на лекции; 10, 12 недели - опрос на практике, защита индивидуального домашнего задания; защита лабораторных работ 9 неделя – коллоквиум
8	Конструкции распределительны х устройств подстанций и режимы работы	7	13-16	12	4	4	2,5	13, 15, недели - опрос на практике, защита индивидуального домашнего задания, защита отчета по

№ п/п	Раздел дисциплины	Семестр	Неделя семестра	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах) ЛК ПЗ ЛР СРС		іую ов и часах)	Формы текущего контроля успеваемости (по неделям семестра) Форма промежуточной аттестации (по	
			Нед			семестрам)		
	электрооборудова ния							лабораторной работе 13 неделя – контрольная работа 14, 16 недели – блицопрос на лекции
9	Курсовой проект	8	1- 14				40	Контроль хода выполнения КП раз в две недели
10	Промежуточная аттестация	7 8				Экзамен КП		

Примечания:

 Π К – лекции, Π 3 – практические занятия, Π P – лабораторные работы, CPC – самостоятельная работа студентов, KП – курсовой проект.

5. СОДЕРЖАНИЕ РАЗДЕЛОВ И ТЕМ ДИСЦИПЛИНЫ

Часть І

5.1. Лекции (36 час.)

Раздел 1. Проектирование электроэнергетических систем и сетей

Тема 1. Введение. Характеристика и структура электроэнергетической системы - 2 часа Современное состояние электроэнергетических систем и тенденции их развития. Топливно-энергетический комплекс. Перспективы развития электроэнергетических систем (ЭЭС) по России в целом и на Дальнем Востоке. Неопределенность как фундаментальное свойство ЭЭС.

 Тема
 2.
 Исходные
 данные
 для
 проектирования
 электрических
 сетей,

 электроэнергетических систем - 4 часа.

Характеристика района проектирования. Электрические нагрузки и их представление при проектировании и эксплуатации электроэнергетических систем. Графики электрических нагрузок (ГЭН) и их анализ при проектировании электрических сетей. Построение ГЭН подстанций из типовых графиков при различных способах задания информации. Долгосрочное прогнозирование ГЭН. Практическое применение формулы сложных процентов при проектировании электрических нагрузок. Переход от реальных ГЭН к ГЭН в относительных единицах и построение прогнозируемого ГЭН.

Тема 3. Технико-экономические основы проектирования электрических сетей и систем
 10 часов.

Задачи и методы проектирования электроэнергетических систем и электрических сетей. Общие требования к схемам электрических сетей. Проектирование электрических сетей питающих энергосистем, включая выбор схемных решений, параметров основного электрооборудования. Принципы формирования вариантов конфигурации электрической сети. Выбор вариантов схем построения электрической сети. Критерии выбора оптимального варианта электрической сети. Основные экономические показатели систем передачи и распределения электроэнергии: капитальные вложения (инвестиции); эксплуатационные

издержки; чистый дисконтированный доход; эквивалентные годовые расходы (годовые приведенные затраты) и срок окупаемости капитальных затрат. Определение потерь электроэнергии в электрической сети при ее проектировании. Технико-экономическое сравнение вариантов электрической сети. Выбор рационального напряжения сети. Выбор числа и мощности силовых трансформаторов на подстанциях. Определение сечения проводов воздушных и кабельных линий различными методами. Особенности выбора и проверки сечений линий в замкнутых сетях. Проверка сечений проводов по нагреву длительно допустимым током. Проектирование схем электрических сетей.

Раздел 2. Расчет установившихся режимов сложных электроэнергетических систем

Тема 4. Основы расчета установившихся режимов сложных электроэнергетических систем - 6 часов.

Расчеты основных режимов и регулирование напряжения. Специфика расчетов сложных систем. Преобразования сети при расчете режимов электроэнергетических систем большой сложности. Разделение системы на подсистемы. Эквивалентирование схем сложных электроэнергетических систем. Представление системы уравнений узловых напряжений для расчета с помощью программно-вычислительных комплексов (ПВК) на персональном компьютере. Методы решения уравнений узловых напряжений. Способы задания параметров элементов схемы, нагрузочных и генераторных узлов. Балансирующий узел. Определение параметров режимов. Расчет режимов с помощью промышленных программно-вычислительных комплексов СДО — 6, RastrWin. Анализ полученных результатов.

Тема 5. Особые режимы электроэнергетических систем – 2 часа.

Источники, вызывающие особые режимы в электрической сети. Неполнофазные режимы и условия их допустимости. Расчет несимметричных режимов.

Раздел 3. Повышение энергоэффективности и надежности электроэнергетических систем

Тема 6. Компенсация реактивной мощности и регулирование напряжения в электроэнергетических системах - 6 часов.

Основы компенсации реактивных нагрузок. Современное состояние проблемы компенсации реактивной мощности. Источники и потребители реактивной мощности. Три задачи компенсации реактивной мощности: балансовая задача, регулирование напряжения в сети, экономическая задача. Методы регулирования напряжения. Технические средства компенсации реактивной мощности и регулирования напряжения: синхронные генераторы; синхронные компенсаторы; статические источники реактивной мощности; батареи конденсаторов; СТАТКОМ; FACTS - технологии; устройства РПН, их регулировочные характеристики.

Тема 7. Методы расчета и анализа потерь мощности и электрической энергии в электрических сетях, мероприятия по снижению потерь. - 4 часов.

Общая характеристика проблемы потерь электроэнергии. Методы расчета потерь. Структурный анализ потерь. Мероприятия по снижению технических потерь. Мероприятия по снижению метрологических и коммерческих потерь.

Тема 8. Методы регулирования частоты - 2 часа.

Балансы активной и реактивной мощности электроэнергетических систем; регулирование частоты. Первичное, вторичное и третичное регулирования частоты. Противоаварийные мероприятия при снижении частоты в электроэнергетических системах.

5.2. Практические занятия (18 час.)

Практические занятия проводятся с целью закрепления знаний, полученных при изучении теоретического курса. Тематика практических занятий приведена в табл.

№	Наименование	Кол-во
п.п.	темы	часов

1.	Расчет вероятностных характеристик графиков нагрузки подстанций и	2
	режимных характеристик сети.	
2.	Разработка и технический анализ вариантов конфигурации электрической	2
	сети. Определение рационального напряжения сети.	
3.	Выбор числа и мощности силовых трансформаторов на ПС. Выбор и	2
	проверка сечений воздушных и кабельных линий	
4.	Расчет экономических показателей электрических сетей. Выбор	4
	оптимального варианта схемы электрической сети.	
5.	Регулирование напряжения в электрической сети.	4
6.	Преобразование и эквивалентирование схем электрических сетей сложной	2
	конфигурации	
7.	Определение потерь электроэнергии в электрической сети	2

На практических занятиях каждому студенту выдаются индивидуальные домашние задания.

Часть II

5.3. Лекции (32 час.)

Раздел 1. Источники питания систем электроснабжения.

Тема 1. ТЭЦ – источники питания систем электроснабжения (6 час.)

Основные источники питания электроэнергией объектов – ТЭЦ, их структуры, схемы, основное электрооборудование, режимы работы и конструктивное выполнение. Формирование схем электрических соединений ТЭЦ в связи с режимами их работы в составе электроэнергетических систем и как источников питания систем электроснабжения. Выбор основного электрооборудования. Конструкции и схемы распределительных устройств. Режимы работы ТЭЦ.

Тема 2. Понижающие подстанции электрических сетей 35-220 кВ – источники питания систем электроснабжения (6 час.)

Основные источники питания электроэнергией объектов — главные понижающие подстанции: их структуры, схемы, основное электрооборудование, режимы работы и конструктивное выполнение. Принципы выбора схем подстанций. Установка заземляющих ножей и оперативные блокировки. Выбор схем понижающих подстанций 35-220/6-20 кВ, питающих потребителей системы электроснабжения. Схемы ГПП и ПГВ 35-220 кВ. Присоединение РУ напряжением 6-10 кВ к понижающим трансформаторам. Схемы с двумя системами шин. Схемы РП напряжением выше 1 кВ. Схемы ТП 6-10/0,4 кВ. Схемы РП напряжением до 1 кВ.

Раздел 2. Расчеты и выбор основного электрооборудования подстанций.

Тема 3. Выбор и проверка основного электрооборудования подстанций (8 час.)

Выбор и проверка выключателей. Выбор и проверка предохранителей. Выбор и проверка разъединителей. Выбор и проверка токоограничивающих реакторов. Выбор и проверка трансформаторов напряжения. Выбор и проверка автоматических выключателей. Выбор и проверка трансформаторов тока. Выбор и проверка шин и изоляторов. Выбор и проверка кабелей. Выбор и проверка кабелей и проводов до 1 кВ с учетом выбора защиты.

Раздел 3. Конструкции распределительных устройств подстанций и режимы работы электрооборудования.

Тема 4. Современные конструкции распределительных устройств подстанций (6 час)

Конструктивное исполнение РУ напряжением 0,4 кВ. Конструктивное исполнение РУ напряжением 6-10 кВ. Конструктивное исполнение РУ напряжением 35-220 кВ. Комплектные РУ напряжением до 1 кВ. Комплектные РУ напряжением выше 1 кВ

Тема 5. Режимы питающих электроэнергетических систем и управление качеством электроэнергии (6 час.)

Режимы работы электрооборудования и обеспечение нормативного качества напряжения. Баланс активной и реактивной мощности в питающих электроэнергетических системах. Выбор мощности и размещение компенсирующих устройств. Основы регулирования частоты. Методы и средства регулирования напряжения.

5.4. Практические занятия (16 час.)

Цель проведения практических занятий — научить студентов выбирать схемы и конструкции РУ ТЭЦ и подстанций, выбирать и проверять оборудование ТЭЦ и подстанций, рассчитывать режимы в эл. сетях, уметь выбирать номинальное напряжение сети, сечение проводов и мощности трансформаторов.

Тематика практических занятий приведена в табл.

№	Наименование темы	К-во
Π/Π		часов
1	Конструкции и схемы РУ ТЭЦ	2
2	Расчет режимов ТЭЦ	2
3	Выбор числа и мощности силовых трансформаторов на ПС с учетом КРМ	2
4	Понижающие подстанции эл. сетей 35-220 кВ. Выбор схем электрических	2
	соединений.	
5	Понижающие подстанции 35-220 кВ. Компоновка электрооборудования	2
6	Электродинамическое и термическое воздействие токов КЗ на оборудование ПС	2
7	Выбор и проверка электрических аппаратов и проводников	2
8	Обзор задач по всем темам за семестр	2

Практические занятия проводятся с привлечением пакета программ автоматизации математических расчетов «MathCad» и задач для самостоятельного решения.

На практических занятиях каждому студенту выдаются индивидуальные домашние задания.

5.5. Лабораторные занятия (16 час.) – 7 семестр

Цель проведения лабораторных занятий — ознакомить студентов со схемами РУ ТЭЦ и подстанций, с устройством и конструкцией электрических аппаратов ТЭЦ и подстанций, привить навыки практической работы с электрооборудованием и условиями его эксплуатации.

Тематика лабораторных занятий приведена в табл.

№	Наименование темы	Количество
Π/Π		часов
1	Конструкции и схемы РУ ТЭЦ	4
2	Электрооборудование и режимы работы ТЭЦ.	4
3	Типы конструкций распределительных устройств.	4
4	Основное электрооборудование, его конструкции, принципы	4
	работы и условия эксплуатации.	

6. САМОСТОЯТЕЛЬНАЯ РАБОТА

Ŋ <u>o</u>	№ раздела	Форма (вид)	Трудоёмкость
Π/Π	дисциплины	самостоятельной работы	в часах
		Часть І	
1	1	подготовка к блиц-опросу на лекции;	1
		выполнение индивидуальных домашних заданий и	2
		подготовка к практическому занятию	

0,5 1,5 1 0,5 1,5
1 0,5
1,5
,
1
2
0,5
2
0,5
2

Курсовой проект

Отдельным видом самостоятельной работы студентов является курсовой проект, на выполнение которого отводится учебным планом 40 часов. Учебным планом предусмотрено выполнение по дисциплине двух курсовых проектов, один по первой, выполняемый в 7 семестре, второй – по второй части дисциплины, выполняемый в 8 семестре.

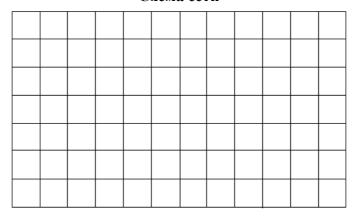
Часть І

Для закрепления теоретических знаний, полученных при изучении дисциплины, приобретения навыков пользования справочной литературой, практических навыков по проектированию районных или распределительных сетей электроэнергетических систем, питающих системы электроснабжения, предусмотрен курсовой проект на темы: «Проектирование районной электрической сети Дальнего Востока», «Проектирование распределительной электрической сети Дальнего Востока».

Ниже приведен пример типового бланка задания на курсовой проект, содержание которого заполняется индивидуально для каждого студента.

ЗАДАНИЕ № ___

7 1		ектропитающие системы и электрич	,
Студент	группа	Дата выдачи задания «» _	20
Задание выдал		Задание принял(а)	
ФИО	руководителя прое	екта, подпись	подпись
студента			
Тема проекта: «П	роектирование ра	айонной электрической сети Даль	ьнего Востока»
Спроектировать эл Ж	ектрическую сеть	для электроснабжения потребит	елей пунктов А -
Географическое рас	положение источн	ников и потребителей –	
=		4.4	


указывается энергорайон

Данные о потребителях электроэнергии

Исходные данные			Пункт							
		A	Б	В	Γ	Д	E	Ж		
Суммарная установленная моц										
Коэффициент реактивной мощност										
Состав потребителей 1 категория										
по категориям надежности, % 2 категория 3 категория										
Желаемое напряжение вторич										

Наименование источника питания					
Напряжение на шинах источника при	$___U_{HOM}$	$___U_{HOM}$			
наибольших нагрузках, кВ					
при наименьших нагрузках, кВ	$___U_{HOM}$	$__\U$			
при тяжелых авариях в сети, кВ	$___U_{HOM}$	U _{ном}			
Для всех пунктов: Продолжительность использования наибольшей нагрузки Т _{макс} час Коэффициент мощности, задаваемый энергосистемой, tgф Коэффициент попадания в максимум нагрузки системы					
Задание для углубленной проработки					

Схема сети

λ	Ласшта	бъ i	1 cM	KN
11	часинта	()K	I CIVI	K IV

В процессе проектирования для заданного энергорайона Дальнего Востока студенты разрабатывают следующие вопросы:

- Характеристика энергорайона: источники питания; электрические сети; потребители; климатическая и географическая характеристика.
 - Расчет и прогнозирование электрических нагрузок.
- Разработка конкурентоспособных вариантов электрической сети: разработка и анализ 8 вариантов конфигурации электрической сети; выбор 4 вариантов конфигурации сети для дальнейшего анализа; расчет упрощенного потокораспределения активной мощности и

выбор номинального напряжения в каждом из 4 вариантов; выбор типов схем РУ подстанций; выбор двух конкурентоспособных вариантов конфигурации электрической сети; компенсация реактивной мощности; выбор сечений проводников в каждом из двух вариантов; выбор числа и мощности силовых трансформаторов; конструктивное исполнение электрической сети.

- Выбор оптимального варианта электрической сети: расчет капитальных вложений в электрическую сеть; расчет потерь электрической энергии; расчет эксплуатационных издержек; выбор оптимального варианта сети.
- Расчет и анализ установившихся режимов: выбор ПВК для расчета режимов и его характеристика; расчет максимального режима; расчет минимального режима; расчет послеаварийного режима; анализ режимов; регулирование напряжения в сети.
- Технико-экономические показатели проекта. Оценка инвестиционной привлекательности проекта.
 - Вопрос для углубленной проработки (выдается в бланке задания индивидуально).

Графическая часть проекта включает в себя: варианты конфигурации и схемы построения электрической сети; подробную однолинейную электрическую схему оптимального варианта сети; схему замещения сети и результаты расчета и анализа установившихся режимов.

Часть II

Для закрепления теоретических знаний, полученных при изучении дисциплины, приобретения навыков пользования справочной литературой, практических навыков по проектированию предусмотрен курсовой проект на тему: «Проектирование электрической части подстанции электроснабжения», «Проектирование главной понизительной подстанции промышленного предприятия».

Курсовой проект предназначен для изучения вопросов проектирования электрической части подстанций электроснабжения: расчета электрических нагрузок, выбора уровня рационального напряжения, выбора числа и мощности силовых трансформаторов с учетом компенсации реактивной мощности, выбора главной электрической схемы подстанции, выбора числа и сечений питающих линий, расчета токов коротких замыканий, выбора и проверки основного электрического оборудования, выбора системы оперативного тока на подстанции, решения вопросов компенсации емкостных токов замыкания на землю и др.

Ниже приведен пример типового бланка задания на курсовой проект, содержание которого заполняется индивидуально для каждого студента.

ЗАДАНИЕ №
на курсовой проект по курсу «Электропитающие системы и сети»
Студент группа Дата выдачи задания «» 200
Тема проекта: «Проектирование электрической части подстанции электроснабжения»»

Выбрать мощность и количество трансформаторов ГПП для питания потребителей электроэнергии I, II и III категорий. Определить мощность компенсирующих устройств для

компенсации реактивной мощности до $\cos \phi = 0.95$ и предусмотреть их установку.

Потребителями электроэнергии при напряжении 380/220 В являются в основном асинхронные электродвигатели небольшой мощности, преобразовательные агрегаты, сварочные трансформаторы, освещение. Нагрузки сконцентрированы в 10 пунктах равномерно, в радиусе около 800 м.

Приведенные в таблице вариантов нагрузки – потребляемые. Число часов использования максимума нагрузок – 3800 час/г.

Выбрать напряжение и число линий питания перечисленных нагрузок, если известно, что питание возможно от энергосистемы, ближайшая подстанция которой удалена от потребителей на указанное в таблице вариантов расстояние.

На подстанции энергосистемы установлены трехобмоточные трансформаторы напряжением 220/110/35 кВ. Мощность короткого замыкания на шинах 220 кВ подстанции составляет 6000 МВ·А. Составить схему электроснабжения, исходя из указанных условий, и разработать однолинейную схему коммутации ГПП.

Рассчитать токи короткого замыкания на шинах ГПП и выбрать основное оборудование (выключатели, отделители, короткозамыкатели, трансформаторы тока и напряжения, разъединители, проходные и опорные изоляторы, сборные шины) с проверкой на действие токов короткого замыкания.

Описать второй лист графической части проекта в соответствии с таблицей вариантов.

Таблица вариантов I.1÷I.10

Варианты	1	2	3	4	5	6	7	8	9	10
Данные вариантов	1	2	3	4	3	O	/	0	9	10
Нагрузка в кВт										
I категории	2500	3000	3500	4000	4500	5000	5500	4000	3500	3000
II категории	5500	6300	7000	7500	8000	8500	9000	8000	7500	7000
III категории	5000	5500	5000	5000	5500	5000	4500	5000	4500	4000
Коэффициент мощности	0,65	0,67	0,69	0,71	0,73	0,75	0,77	0,75	0,73	0,71
Расстояние до подстанции энергосистемы (км)	30	35	40	45	50	55	60	50	40	30
Мощность трансформаторов энергосистемы (MB·A)	100	100	125	160	200	160	125	100	200	160
Графика, 2-й лист	О	3	T	Ш	К	О	3	T	Ш	К

Таблица вариантов I.11÷I.20

Варианты	11	12	13	14	15	16	17	18	19	20
Данные вариантов										
Нагрузка в кВт										
I категории	2500	2000	2000	2500	3000	3500	4000	4500	5000	5500
II категории	6500	6000	5000	5800	6000	6500	7000	7500	8000	8500
III категории	3500	5000	5500	5000	5500	5500	5000	4000	4800	4500
Коэффициент	0,69	0,67	0,65	0,66	0,68	0,70	0,72	0,74	0,76	0,78
мощности	,		, , , , , , , , , , , , , , , , , , ,							
Расстояние до										
подстанции	25	20	25	30	35	40	45	50	45	40
энергосистемы (км)										
Мощность										
трансформаторов	125	100	100	100	100	125	125	160	160	200
энергосистемы,	123	100	100	100	100	123	123	100	100	200
MB·A										

T 1 0 4	_		-	***	TC	_			***	T.C
I рафика 2-й лист	O	3	T	Ш	K	O	3	T	Ш	K

Примечание : на однолинейной схеме коммутации должны быть показаны все аппараты (выключатели, разъединители, силовые и измерительные трансформаторы, реакторы, предохранители), а также измерительные приборы вторичной коммутации; нагрузку присоединений к шинам ГПП следует принимать в пределах 4500–6500 кВА.

7. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При реализации дисциплины «Электропитающие системы и электрические сети», используются традиционные и современные образовательные технологии. Из современных образовательных технологий применяются информационные и компьютерные технологии с привлечением к преподаванию мультимедийной техники и интерактивной доски, технологии активного обучения, проблемного обучения. Применяются следующие активные и интерактивные формы проведения занятий: проблемные ситуации, компьютерные симуляции, деловые игры, разбор конкретных ситуаций по проектированию электрических сетей на примере электроэнергетической системы Дальнего Востока. В рамках дисциплины предусмотрены встречи с представителями энергетических компаний Дальнего Востока.

Самостоятельная работа студентов подразумевает работу под руководством преподавателя: консультации и помощь при выполнении курсовых проектов, индивидуальных домашних заданий, консультации по разъяснению материала, вынесенного на самостоятельную проработку, индивидуальную работу студента в компьютерном классе ЭФ или в библиотеке.

8. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Система оценочных средств и технологий для проведения текущего контроля успеваемости по дисциплине включает вопросы для блиц-опроса на лекциях, индивидуальные домашние задания, задания для курсового проекта и контрольных работ, проводимых на практических занятиях, вопросы для коллоквиума.

Часть І

Тематика вопросов блиц-опроса на лекциях совпадает с тематикой лекций.

Темы индивидуальных домашних заданий:

построение ГЭН подстанции и определение его вероятностных характеристик;

разработка вариантов конфигурации электрической сети, их технический анализ;

выбор номинального напряжения сети, числа и мощности силовых трансформаторов на подстанциях, сечений линий электропередачи;

технико-экономическое сравнение вариантов схем электрических сетей;

регулирование напряжения в сети;

расчет режимов сложных схем электрической сети;

расчет и анализ потерь электроэнергии в сети.

Коллоквиум проводится по первому разделу дисциплины на тему: «Проектирование электроэнергетической системы и электрических сетей». Вопросы к коллоквиуму соответствуют вопросам к экзамену N = 1 - 35.

Промежуточная аттестация осуществляется в виде защиты курсового проекта и сдачи экзамена. Система оценочных средств и технологий для проведения промежуточной

аттестации включает вопросы к защите курсового проекта, контрольные вопросы и задания к экзамену.

Вопросы к защите курсового проекта

- 1. Классификация электрических сетей.
- 2. Стандартный ряд номинальных напряжений и наибольшие рабочие значения напряжений.
- 3. Какие бывают опоры? Их назначение.
- 4. Классификация линейных изоляторов, их конструктивное исполнение.
- 5. Виды линейной арматуры, её назначение.
- 6. Задание нагрузки при расчётах режимов.
- 7. Представление генераторов при расчётах установившихся режимов.
- 8. Схемы замещения ВЛЭП и их параметры.
- 9. Схема замещения двухобмоточного трансформатора и её параметры.
- 10. Схема замещения трансформатора с расщепленной обмоткой и её параметры.
- 11. Схема замещения трёхобмоточного трансформатора, её параметры.
- 12. Схема замещения автотрансформатора, её параметры.
- 13. Определение потерь мощности в двухобмоточном трансформаторе.
- 14. Определение потерь мощности в трёхобмоточном трансформаторе и автотрансформаторе.
- 15. Приведенная и расчётная нагрузка узла.
- 16. Схемы электрических сетей.
- 17. Расчёт режимов разомкнутых сетей по данным «начала».
- 18. Расчёт кольцевых сетей.
- 19. Особенности расчёта режимов в однородных электрических сетях.
- 20. Расчёт режимов сетей с двухсторонним питанием.
- 21. Определение наибольшей потери напряжения.
- 22. Определение напряжения на стороне низшего напряжения подстанции с двухобмоточными трансформаторами.
- 23. Определение напряжения на сторонах среднего и низшего напряжений подстанции с трёхобмоточными трансформаторами и автотрансформаторами.
- 24. Расчёт сетей с различными номинальными напряжениями.
- 25. Регулирование напряжения с помощью РПН трансформаторов и линейных регуляторов.
- 26. Выбор ответвлений РПН в двухобмоточных трансформаторах.
- 27. Выбор ответвлений РПН в трехобмоточных трансформаторах.
- 28. Выбор ответвлений РПН в автотрансформаторах.
- 29. Способы присоединения подстанций к электрической сети.
- 30. Схемы электрических соединений подстанций.
- 31. В чем заключается характеристика района проектирования?
- 32. Какие климатические характеристики нужно знать при проектировании и для чего?
- 33. Расчет электрических нагрузок с помощью вероятностных характеристик.
- 34. Выбор номинального напряжения сети.
- 35. Принципы составления вариантов конфигурации электрической сети.
- 36. Выбор сечений проводов ВЛ методом экономических токовых интервалов.
- 37. Выбор сечений проводников по нагреву длительно-допустимым током.
- 38. Выбор сечений проводников по допустимой потере напряжения.
- 39. Технических анализ вариантов конфигурации сети.
- 40. Чистый дисконтированный доход. Среднегодовые эквивалентные затраты.
- 41. Капитальные вложения.
- 42. Эксплуатационные издержки.
- 43. Расчет потерь электроэнергии.

- 44. Три задачи компенсации реактивной мощности.
- 45. Балансовый расчет компенсации реактивной мощности.
- 46. Выбор компенсирующих устройств методом поперечной компенсации.
- 47. Выбор числа и мощности силовых трансформаторов.
- 48. Схемы распределительных устройств подстанций.
- 49. Подготовка исходной информации для расчета режимов с помощью ПВК СДО-6.
- 50. Подготовка исходной информации для расчета режимов с помощью ПВК RastrWin.
- 51. Характеристика ПВК, используемых для расчета режимов.
- 52. Проверка правильности расчетов режимов с помощью ПВК.
- 53. В чем заключается анализ режимов, и с какой целью его проводят.
- 54. Встречное регулирование напряжения.

Защита курсового проекта может проходить в виде доклада студента и ответов на поставленные вопросы членами комиссии по приему курсового проекта, либо в виде деловой игры.

Контрольные вопросы и задания к экзамену

Вопросы к экзамену:

- 1. Тенденции и перспективы развития электроэнергетических систем.
- 2. Цели и задачи проектирования электроэнергетических систем
- 3. Проект развития электрических сетей
- 4. Методы проектирования энергосистем
- 5. Исходные данные для проектирования электрических сетей, электроэнергетических систем, их достоверность и полнота
- 6. Графики электрических нагрузок (ГЭН) и их анализ при проектировании электрических сетей
- 7. Построение ГЭН подстанций из типовых графиков при различных способах задания информации
- 8. Долгосрочное прогнозирование ГЭН
- 9. Практическое применение формулы сложных процентов при прогнозировании электрических нагрузок
- 10. Переход от реальных ГЭН к ГЭН в относительных единицах и построение прогнозируемого ГЭН
- 11. Влияние режимов работы потребителей на формирование ГЭН подстанций
- 12. Понятие "Число часов использования наибольшей нагрузки" и его определение
- 13. Характеристика района проектирования электрической сети
- 14. Проектирование электрических сетей питающих энергосистем
- 15. Общие требования к схемам электрических сетей. Принципы формирования вариантов конфигурации электрической сети
- 16. Выбор схемных решений
- 17. Принципы технического отбора конкурентоспособных вариантов сетей при проектировании
- 18. Критерии выбора оптимального варианта электрической сети
- 19. Капитальные вложения
- 20. Эксплуатационные издержки
- 21. Чистый дисконтированный доход, эквивалентные годовые расходы (годовые приведенные затраты) и срок окупаемости капитальных затрат.
- 22. Технико-экономическое сравнение вариантов электрической сети. Выбор оптимального варианта схемы электрической сети при проектировании
- 23. Определение потерь электрической энергии при проектировании электрической сети
- 24. Выбор рационального напряжения сети
- 25. Выбор параметров основного электрооборудования

- 26. Выбор числа и мощности силовых трансформаторов на ПС
- 27. Определение сечения проводов и кабелей по экономической плотности тока
- 28. Определение сечения проводов по экономическим токовым интервалам
- 29. Определение сечений линий в распределительных сетях по допустимой потере напряжения
- 30. Выбор сечения линии из условия его равенства на всех участках
- 31. Выбор сечения линии из условия минимума потерь мощности
- 32. Выбор сечения линии из условия минимума расхода проводникового материала на сооружение линии
- 33. Особенности выбора и проверки сечений в замкнутых сетях
- 34. Проверка сечений линий по нагреву длительно допустимым током
- 35. Проектирование схем электрических сетей
- 36. Расчеты основных режимов и регулирование напряжения
- 37. Представление системы уравнений узловых напряжений (УУН) для ее решения на ПЭВМ. Раздельное решение уравнений узловых напряжений
- 38. Сходимость решения уравнений установившегося режима
- 39. Существование решения системы УУН
- 40. Единственность решения нелинейных УУН
- 41. Чувствительность решения нелинейных УУН
- 42. Преобразование сети при расчете режимов электроэнергетических систем большой сложности
- 43. Исключение узлов при расчете режимов электроэнергетических систем большой сложности
- 44. Метод расщепления сети
- 45. Расчет системы УУН при перспективном проектировании схем энергосистем
- 46. Учет слабой заполненности матрицы узловых проводимостей
- 47. Эквивалентирование при расчетах УУН систем большой сложности
- 48. Разделение электроэнергетических систем на подсистемы при расчете режимов
- 49. Методы решения уравнений узловых напряжений
- 50. Матричные и топологические методы расчета режимов электроэнергетических систем
- 51. Способы задания параметров элементов схемы, нагрузочных и генераторных узлов. Балансирующий узел
- 52. Расчет режимов с помощью промышленных программно-вычислительных комплексов СДО 6, RastrWin
- 53. Анализ установившихся режимов
- 54. Особые режимы в ЭЭС и их анализ
- 55. Источники, вызывающие особые режимы в электрической сети
- 56. Уравнения несимметричных режимов в фазных координатах и переход в систему симметричных координат
- 57. Уравнения несимметричных режимов в системе симметричных координат и переход в систему фазных координат
- 58. УУН в сложнонесимметричных режимах
- 59. Симметрирование режима
- 60. Порядок расчета неполнофазного режима
- 61. Условия допустимости работы с длительно неполнофазным режимом
- 62. Применение метода симметричных составляющих при расчете несимметричных режимов
- 63. Представление системы УУН для анализа несинусоидальных режимов
- 64. Балансы активной и реактивной мощности электроэнергетических систем
- 65. Основы компенсации реактивных нагрузок

- 66. Источники и потребители реактивной мощности
- 67. Балансовая задача компенсации реактивной мощности
- 68. Экономическая задача компенсации реактивной мощности
- 69. Регулирование напряжения в сети продольной компенсацией реактивной мощности
- 70. Регулирование напряжения в сети поперечной компенсацией реактивной мощности
- 71. Технические средства компенсации реактивной мощности и регулирования напряжения
- 72. Методы расчета потерь электроэнергии в электрических сетях
- 73. Структурный анализ потерь
- 74. Мероприятия по снижению технических потерь
- 75. Мероприятия по снижению метрологических потерь
- 76. Мероприятия по снижению коммерческих потерь
- 77. Регулирование частоты: первичное, вторичное и третичное регулирование частоты
- 78. Противоаварийные мероприятия при снижении частоты в электроэнергетических системах

Задания для экзамена сформированы в виде инженерных задач, включающих в себя проектирование электрических сетей, регулирование напряжения с помощью компенсирующих устройств, преобразование сложнозамкнутых электрических сетей для расчета режимов, использование практических приемов для ускорения расчетов режимов на ПЭВМ, представление схем электрической сети и ее параметров для расчета на ПЭВМ, анализ особых режимов электрических сетей.

Часть II

Тематика вопросов блиц-опроса на лекциях совпадает с тематикой лекций.

Темы индивидуальных домашних заданий включают в себя комплексные задания по разработке однолинейной схемы подстанции, расчету токов КЗ, выбору и проверке оборудования.

Коллоквиум проводится на тему: «Конструктивное исполнение подстанций электроснабжения». Вопросы к коллоквиуму соответствуют вопросам к экзамену N = 49 - 59.

Промежуточная аттестация осуществляется в виде защиты курсового проекта и сдачи экзамена. Система оценочных средств и технологий для проведения промежуточной аттестации включает вопросы к защите курсового проекта, контрольные вопросы и задания к экзамену.

Вопросы к защите курсового проекта

- 1. Расскажите об организации и методах проектирования энергетических объектов.
- 2. Расскажите о типах электрических станций и их особенностях.
- 3. Какими нормативными материалами пользуются проектировщики?
- 4. Расскажите о стадиях проектирования электрической станции.
- 5. Перечислите критерии, используемые для сравнения различных вариантов электроустановки.
- 6. Перечистите основные требования, предъявляемые к главным схемам электрических соединений станции.
- 7. Перечислите исходные данные, необходимые для выбора главной схемы.
- 8. Какую схему следует выбрать для подключения потребителей первой категории?
- 9. Изложите порядок выбора силовых трансформаторов.
- 10. В каких случаях применяются автотрансформаторы?
- 11. Каковы условия выбора и проверки высоковольтных выключателей и разъединителей?
- 12. В каких случаях используются секционные и линейные реакторы?
- 13. Изложите порядок выбора линейного реактора.

- 14. Изложите порядок выбора и проверки сборных шин генераторного напряжения
- 15. В каких случаях используются комплектные токопроводы?
- 16. Каковы условия и порядок выбора кабеля?
- 17. Изложите основные требования к компоновке и конструкции РУ.
- 18. В каких случаях сооружаются ЗРУ 35—220 кВ?
- 19. Перечислите факторы, определяющие тип и конструкцию РУ.
- 20. Объясните преимущества применения типовых и комплектных РУ.
- 21. Расскажите о принципах компоновки и конструкции кабельных сооружении, аккумуляторного блока.
- 22. Как выполняется защита оборудования от внешних и внутренних перенапряжений?
- 23. Изложите порядок проектирования заземления.
- 24. Изложите основные принципы организации управления на мощных тепловых станциях.
- 25. Перечислите факторы, определяющие структуру управления станцией.
- 26. Как производится выбор источников и схемы оперативного тока?
- 27. В каких случаях целесообразно использование переменного оперативного тока?
- 28. Как осуществляется дистанционное управление высоковольтными выключателями и блокировка от неправильных действий?
- 29. Изложите принципы проектирования измерительной подсистемы?
- 30. Как проектируются щиты управления?

Вопросы к экзамену

- 1. Основные источники питания электроэнергией объектов ТЭЦ, главные понижающие подстанции.
- 2. Структуры и схемы ТЭЦ.
- 3. Основное электрооборудование ТЭЦ
- 4. Режимы работы и конструктивное выполнение.
- 5. Режимы работы нейтралей в установках напряжением < 1 кВ.
- 6. Режимы работы нейтралей в установках напряжением > 1 кВ.
- 7. Выбор числа и мощности трансформаторов на подстанции.
- 8. КРМ на подстанциях.
- 9. Назначение, конструкция, прокладка и область применения токопроводов 6-35 кВ.
- 10. Назначение, конструкция, прокладка и область применения шинопроводов 0,4 кВ.
- 11. Изоляторы и шины РУ напряжением > 1 кВ
- 12. Назначение и конструкция разъединителей.
- 13. Конструкции трансформаторов тока.
- 14. Измерительные трансформаторы тока: назначение, полярность, схема замещения, режим работы, погрешность.
- 15. Измерительные трансформаторы напряжения: назначение, схема замещения, режим работы, погрешность.
- 16. Способы ограничения токов КЗ
- 17. Вакуумные выключатели: гашение дуги, достоинство, недостатки.
- 18. Воздушные выключатели: гашение дуги, достоинства, недостатки.
- 19. Масляные выключатели: гашение дуги, достоинства, недостатки.
- 20. Элегазовые выключатели: гашение дуги, достоинство, недостатки.
- 21. Выключатели нагрузки
- 22. Плавкие предохранители: защитная характеристика, материал плавкой вставки.
- 23. Автоматические выключатели
- 24. Короткие замыкание в системах электроснабжения напряжением выше 1 кВ
- 25. Короткие замыкание в системах электроснабжения напряжением до 1 кВ

- 26. Электродинамическое действие тока к.з.: влияние расположения проводников, их форма, методика проверки на электродинамическую стойкость.
- 27. Нагрев проводников в нормальном режиме и при коротком замыкании.
- 28. Термическая стойкость проводников и аппаратов при коротком замыкании.
- 29. Импульс квадратичного тока, определение конечной температуры нагрева проводников при коротком замыкании.
- 30. Электрическая дуга: факторы, способствующие и препятствующие горению.
- 31. Гашение дуги в выключателях постоянного тока.
- 32. Гашение дуги переменного тока.
- 33. Выбор и проверка выключателей.
- 34. Выбор и проверка предохранителей.
- 35. Выбор и проверка автоматических выключателей
- 36. Выбор и проверка разъединителей.
- 37. Выбор и проверка токоограничивающих реакторов.
- 38. Выбор и проверка трансформаторов напряжения.
- 39. Выбор и проверка трансформаторов тока.
- 40. Выбор и проверка шин и изоляторов
- 41. Выбор и проверка кабелей
- 42. Выбор и проверка проводов
- 43. Выбор и проверка кабелей и проводов до 1 кВ с учетом выбора защиты
- 44. Принципы выбора схем подстанций
- 45. Установка заземляющих ножей и оперативные блокировки
- 46. Структуры и схемы главных понижающих подстанций
- 47. Основное электрооборудование ГПП
- 48. Режимы работы оборудования
- 49. Конструктивное выполнение ГПП
- 50. Схемы ГПП и ПГВ 35-220 кВ.
- 51. Присоединение РУ напряжением 6-10 кВ к понижающим трансформаторам
- 52. Схемы с двумя системами шин.
- 53. Схемы РП напряжением выше 1 кВ
- 54. Схемы ТП 6-10/0.4 кВ.
- 55. Схемы РП напряжением до 1 кВ
- 56. Комплектные РУ напряжением выше 1 кВ
- 57. Комплектные РУ напряжением до 1 кВ
- 58. Конструктивное исполнение РУ напряжением 6-10 кВ
- 59. Конструктивное исполнение РУ напряжением 35-220 кВ
- 60. Схемы эл. сетей напряжением > 1 кВ
- 61. Схемы эл. сетей напряжением < 1 кВ
- 62. Конструктивное выполнение электрических сетей.
- 63. Воздушные линии: общие сведения, провода ВЛ, изоляторы, опоры.
- 64. Кабельные линии: конструкция, способы прокладки.
- 65. Конструктивное исполнение цеховых сетей напряжением до 1 кВ. Общие сведения.
- 66. Электропроводки.
- 67. Силовые трансформаторы.
- 68. Допустимые нагрузки кабелей 6-35 кВ.
- 69. Допустимые нагрузки кабелей 0,4 кВ.
- 70. Выбор сечений жил кабеля напряжением выше 1 кВ.
- 71. Выбор сечений жил кабеля напряжением до 1 кВ
- 72. Допустимые нагрузки на неизолированные провода.
- 73. Выбор сечений изолированных (неизолированных) проводов ВЛ напряжением до 1 кВ.

74. Выбор сечений изолированных (неизолированных) проводов ВЛ напряжением выше 1 кВ

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ «ЭЛЕКТРОПИТАЮЩИЕ СИСТЕМЫ И ЭЛЕКТРИЧЕСКИЕ СЕТИ»

ЧАСТЬ І

- а) основная литература:
- 1. Герасименко А.А. Передача и распределение электрической энергии : учеб. пособие: рек. Мин. обр. РФ/ А. А. Герасименко , В. Т. Федин. -Ростов н/Д: Феникс; Красноярск: Издат. проекты, 2006. -719 с.
- 2. Основы современной энергетики в 2 т : Учеб. : рек. Мин. обр. РФ. : Т2. Современная электроэнергетика/ под ред. Е.В. Аметистова. М.: Издат. дом МЭИ, 2010. 632 с.
- 3. Электропитающие системы и сети : учеб.-метод. комплекс для спец. 140211 Электроснабжение, Ч. 1/ АмГУ, Эн.ф.; сост. Н. В. Савина . Благовещенск: Изд-во Амур. гос. ун-та, 2012. -240 с.
 - б) дополнительная литература:
- 1. Лыкин А.В. Электрические системы и сети : учеб.пособие / А.В.Лыкин . Новосибирск : Изд-во НГТУ, 2002. 247 с.
- 2. Идельчик В.И. Электрические системы и сети [Текст] : учеб./ В. И. Идельчик. -М.: Энергоатомиздат, 1989. 592 с.
- 3. Электрические системы. Электрические сети. : Учеб. для электроэнерг. спец. вузов/ ред. В. А. Веников. -2-е изд., перераб. и доп.. -М.: Высш. шк., 1998. -512 с.
- 4. Кужеков С.Л. Практическое пособие по электрическим сетям и электрооборудованию/ С. Л. Кужеков, С. В. Гончаров. -3-е изд.. -Ростов н/Д: Феникс, 2009. -493 с.
- 5. Пособие к курсовому и дипломному проектированию для электроэнергетических специальностей вузов [Текст] : учеб. пособие / В.М. Блок, Г.К. Обушев, Л.В. Паперно; Ред. В.М. Блок. 2-е изд., перераб. и доп. М. : Высш. шк., 1990. 384 с.
- 6. Электротехнический справочник : В 4 т./ Под общ. ред. В.Г. Герасимов, Под общ. ред. А.Ф. Дьяков, Под общ. ред. Н.Ф. Ильинский, Гл. ред. А.И. Попов Т. 3 : Производство, передача и распределение электрической энергии : справочное издание. -2002. -964 с.
- 7. Справочник по проектированию электрических сетей [Текст] / под ред. Д. Л. Файбисовича. -3-е изд., перераб. и доп. -М.: ЭНАС, 2009. -391 с.
- 8. Поспелов Г.Е. Электрические системы и сети: проектирование [Текст] : учеб. пособие / Г. Е. Поспелов, В. Т. Федин. 2-е изд., испр. и доп. Минск : Высш. шк., 1988. 308 с.
- 9. Шелухина Т.И. Расчеты нормальных и предельных по мощности установившихся режимов сложных энергосистем : учеб. пособие/ Т. И. Шелухина. -М.: Изд-во Моск. энергет. ин-та, 2005. 52 с.
- 10. Савина Н.В. Системный анализ потерь электроэнергии в электрических распределительных сетях [Текст] : моногр. / Н.В. Савина; Отв. ред. Н.И. Воропай. Новосибирск : Наука, 2008. 228 с.
- 11. Кочкин В.И. Применение статических компенсаторов реактивной мощности в электрических сетях энергосистем и предприятий [Текст] : УЧЛ К изучению дисциплины / Кочкин В.И., Нечаев О.П. М. : Изд-во НЦ ЭНАС, 2000. 248с.
 - в) периодические издания (журналы):
- 1. Электричество;
- 2. Известия РАН. Энергетика;
- 3. Электрические станции;
- 4. Энергетик;

- 5. Электрика;
- 6. Вестник МЭИ;
- 7. Промышленная энергетика;
- 8. Энергетика. Сводный том;
- 9. Вестник ИГЭУ;
- 10. IEEE Transaction on Power Systems;
- 11. International Journal of Electrical Power & Energy Systems.

г) программное обеспечение и Интернет-ресурсы

No	Наименование ресурса	Краткая характеристика
1	http://www.iqlib.ru	Интернет-библиотека образовательных изданий, в
		которой собраны электронные учебники,
		справочные и учебные пособия. Удобный поиск
		по ключевым словам, отдельным темам и
		отраслям знания
2	Консультант +	Справочно-правовая система. Содержит
		законодательную базу, нормативно-правовое
		обеспечение, статьи.
3	http://www.twirpx.com/files/tek/	Twirpx.com - это служба, обеспечивающая с
		помощью веб-интерфейса, расположенного только
		по адресу http://www.twirpx.com, и
		специализированного аппаратно-программного
		обеспечения хранение, накопление, передачу и
		обработку материалов Пользователей,
		представленной в электронном виде в публичный
		доступ. Интернет-библиотека, в которой собраны
		электронные учебники, справочные и учебные
		пособия. Удобный поиск по ключевым словам,
		отдельным темам и отраслям знания

На практических занятиях и в самостоятельной работе студентов используется система компьютерной математики Mathcad и графический редактор VISIO.

При работе над курсовым проектом применяются следующие виды программновычислительных комплексов и пакетов прикладных программ: CURS.PM, KRNET, СДО-6, RastrWin, Mathcad, VISIO.

ЧАСТЬ ІІ

- а) основная литература:
- 1. Мясоедов Ю.В. Электрическая часть станций и подстанций [Текст] : учеб. пособие: рек. ДВ РУМЦ / Ю. В. Мясоедов, Н. В. Савина, А. Г. Ротачева, 2007. 192 с.
- 2. Стерман, Л. С. Тепловые и атомные электрические станции [Текст] : учеб. / Л. С. Стерман, В. М. Лавыгин, С. Г. Тишин. 5-е изд., стер. М. : Изд-во Моск. энергет. ин-та, 2010. 464 с.
- 3. Ополева, Г. Н. Схемы и подстанции электроснабжения [Текст] : справ.: учеб. пособие: рек. УМО / Г. Н. Ополева. М. : ФОРУМ : ИНФРА М, 2006. 480 с. : рис., табл. Библиогр.: с. 473 .
 - б) дополнительная литература:

- 1. Мясоедов, Ю. В. Проектирование электрической части электростанций и подстанций: учеб. пособие/ Ю. В. Мясоедов, Н. В. Савина , А. Г. Ротачева; АмГУ, Эн.ф. Благовещенск : Изд-во Амур. гос. ун-та, 2002. 140 с. : табл., рис.
- 2. Балаков, Ю. Н. Проектирование схем электроустановок [Текст] : учеб. пособие: доп. УМО / Ю. Н. Балаков, М. Ш. Мисриханов, А. В. Шунтов. М. : Изд-во Моск. энергет. ин-та, 2004. 288 с. : рис., табл. Библиогр.: с. 286 .
- 3. Балаков, Ю. Н. Схемы выдачи мощности электростанций [Текст] : методологические аспекты формирования / Ю.Н. Балаков, М.Ш. Мисриханов, А.В. Шунтов. М. : Энергоатомиздат, 2002. 286 с. : рис., табл.
- 4. Справочник по энергоснабжению и электрооборудованию предприятий и общественных зданий [Текст] / ред. С. И. Гамазин, Б. И. Кудрин, С. А. Цырук. М. : Изд-во Моск. энергет. ин-та, 2010.
- 5. Электротехнический справочник [Текст] : в 4 т. / Под общ. ред. В.Г. Герасимов, Под общ. ред. А.Ф. Дьяков, Под общ. ред. Н.Ф. Ильинский, Гл. ред. А.И. Попов. 8-е изд., испр. и доп. М. : Изд-во Моск. энергет. ин-та, 2002, 2004 Т. 3 : Производство, передача и распределение электрической энергии
- 6. Козлов А.Н. Графическая часть курсовых и дипломных проектов [Текст] : учеб. метод. пособие: рек. ДВ РУМЦ / А. Н. Козлов, В. А. Козлов, Ю. В. Мясоедов, 2007. 119 с.
- 7. Мясоедов, Ю. В. Повышение точности учета электроэнергии в сетях энергосистем и предприятий [Текст] : моногр. / Ю. В. Мясоедов ; АмГУ, Эн.ф. Благовещенск : Изд-во Амур. гос. ун-та, 2003. 195 с. : табл. Библиогр.: с. 166-183.
- 8. Мясоедов, Ю. В. Повышение качества электроэнергии и компенсация реактивной мощности в системах электроснабжения [Текст] : [моногр.] / Ю. В. Мясоедов ; АмГУ, Эн.ф. Благовещенск : Изд-во Амур. гос. ун-та, 2007. 212 с. : рис., табл. Библиогр.: с. 202 .
- 9. Савина, Н. В. Потери электроэнергии и их анализ в условиях неопределенности [Текст] : моногр. / Н. В. Савина ; АмГУ, Эн.ф. Благовещенск : Изд-во Амур. гос. ун-та, 2006. 244 с. : рис., табл. Библиогр.: с. 228.
- 10. Савина, Н. В. Системный анализ потерь электроэнергии в электрических распределительных сетях [Текст] : моногр. / Н. В. Савина ; отв. ред. Н. И. Воропай. Новосибирск : Наука, 2008. 228 с. Библиогр. : с. 215.
 - в) периодические издания (журналы):
- 12. Электричество;
- 13. Известия РАН. Энергетика;
- 14. Электрические станции;
- 15. Энергетик;
- 16. Электрика;
- 17. Вестник МЭИ;
- 18. Промышленная энергетика;
- 19. Энергетика. Сводный том;
- 20. Вестник ИГЭУ;
- 21. IEEE Transaction on Power Systems;

г) программное обеспечение и Интернет-ресурсы

№	Наименование ресурса	Краткая характеристика
1	http://www.iqlib.ru	Интернет-библиотека образовательных изданий, в
		которой собраны электронные учебники, справочные и
		учебные пособия. Удобный поиск по ключевым словам,
		отдельным темам и отраслям знания
2	http://www.twirpx.com/files/tek/	Twirpx.com - это служба, обеспечивающая с помощью

№	Наименование ресурса	Краткая характеристика
		веб-интерфейса, расположенного только по адресу
		http://www.twirpx.com, и специализированного
		аппаратно-программного обеспечения хранение,
		накопление, передачу и обработку материалов
		Пользователей, представленной в электронном виде в
		публичный доступ. Интернет-библиотека, в которой
		собраны электронные учебники, справочные и учебные
		пособия. Удобный поиск по ключевым словам,
		отдельным темам и отраслям знания
3	Консультант +	Справочно-правовая система. Содержит
	-	законодательную базу, нормативно-правовое
		обеспечение, статьи.

На практических занятиях и в самостоятельной работе студентов используется система компьютерной математики Mathcad и графический редактор VISIO.

При работе над курсовым проектом используются следующие виды программновычислительных комплексов и пакетов прикладных программ: CURS.PM, KRNET, СДО-6, RastrWin, Mathcad, VISIO.

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

В качестве материально-технического обеспечения дисциплины используются мультимедийные средства, интерактивная доска. Материал лекций представлен в виде презентаций в Power Point. Для проведения практических занятий, при выполнении курсового проекта и в самостоятельной работе студентов используются электрические схемы энергетических компаний Дальнего Востока, однолинейные электрические схемы электрических станций и подстанций, расположенных на Дальнем Востоке, компьютерный класс ЭФ.

Лабораторные работы проводятся в специализированной аудитории 107 на физической модели подстанции и в компьютерном классе на тренажерах «Модус» и «Восток».

11. РЕЙТИНГОВАЯ ОЦЕНКА ЗНАНИЙ СТУДЕНТОВ ПО ДИСЦИПЛИНЕ

Рейтинговая оценка деятельности студентов осуществляется в соответствии с технологической картой дисциплины о рейтинговой системе обучения, принятой на заседании кафедры энергетики.

Текущий контроль качества освоения отдельных тем и разделов дисциплины осуществляется на основе рейтинговой системы. Этот контроль проводится ежемесячно в течение семестра и качество усвоения материала (выполнения задания) оценивается в баллах, в соответствии с рейтинг планом дисциплины.

Экзамен проводится в конце семестра и оценивается по 5-ти балльной системе. Допуск к экзамену осуществляется по итоговому рейтингу текущего контроля, который определяется суммированием баллов по всем видам текущего контроля. Максимальный балл составляет 100, в том числе: индивидуальные домашние задания — 60, коллоквиум — 30, другие виды текущего контроля — 10 баллов. Допуск к экзамену соответствует 56...100 баллам.

2. Краткий конспект лекций

2.1. Методические указания по проведению лекций

Лекционный курс по дисциплине «Электроэнергетические системы и сети» - направлен на формирование у студентов специальных знаний в области электроэнергетических систем, их проектирования, расчета и анализа установившихся режимов, особых режимов в сложнозамкнутых схемах, компенсации реактивной мощности, исследования потерь электроэнергии.

Целью данного раздела является оказание методической помощи в оптимальном распределении теоретического материала между лекциями, а также между аудиторными занятиями и самостоятельной работой по изучению дисциплины. Кроме того будет осуществлена систематизация излагаемого материала.

Лекцию нужно строить таким образом, чтобы осуществлять сквозную подготовку студентов, активизировать работу аудитории, поддерживать интерес к излагаемому материалу, развивать инженерное мышление у студентов. Методически лекция должна быть направлена на усвоение студентами излагаемого материала и меть эмоциональную окраску. Материал целесообразно излагать в доступной форме, приводя примеры из реальной жизни как в части эксплуатации, так и проектирования или развития систем, выделяя при этом наиболее насущные проблемы по рассматриваемой тематике общероссийской и региона.

Поставив задачи, которые будут решаться на лекции, преподаватель должен методически подвести аудиторию к их решению, играя при этом роль лидера. Тем самым у студентов развиваются способности логически мыслить и генерировать идеи. Для максимального усвоения материала целесообразно задействовать зрительную, слуховую и моторную память студентов. Для каждой лекции должна быть подготовлена презентация, включающая название лекции, цель и задачи, решаемые на лекции, план лекции, основные теоретические материалы, содержащие математические выкладки, рисунки, схемы, выводы. Презентацию не нужно загромождать текстом, справочным материалом.

В ходе лекции необходимо, опираясь на физическую сущность рассматриваемой задачи или процесса, показать основные теоретические выкладки и довести теоретический материал до инженерных решений и их технической реализации, показать область их применения.

Целесообразно, в процессе лекции использовать передовые образовательные технологии, например, методы активизации обучения, информационные технологии. Технические средства, используемые на лекции: медиапроектор, экран, ноутбук, проектоскоп.

Предлагается следующая структура построения лекции:

- тема;
- цель и задачи;
- план;
- фронтальный блиц-опрос (3-5 минут);
- вступление;
- изложение основного материала;
- закрепление;
- -разделы, выносимые на самостоятельную проработку;
- выводы.

Блиц-опрос должен периодически чередоваться с самостоятельной работой (10-15 минут), проводимой в конце лекции.

При выдаче задания на самостоятельную проработку необходимо назвать учебники предложить найти дополнительные источники, в т.ч. и электронные, помимо указанных в рабочей программе.

Выводы должны быть краткими, но емкими и содержать основную мысль, которую лектор хотел донести до аудитории.

2.2. Краткий конспект лекций

Часть І

Лекция 1.

Характеристика и структура энергетической системы.

Цель лекции: раскрыть современное состояние ЭЭС, проблемы и показать тенденции и направления их развития.

централизованного электроснабжения России Основой является Елиная электроэнергетическая система (ЕЭС) РФ, которая представляет собой объединение электростанций и подстанций электрическими сетями различных напряжений. ЕЭС РФ является технологически единым объектом, функционирование которого подчиняется физическим законам. В то же время ЕЭС – это соответствующим энергообъединение, структура которого в настоящее время изменилась. Организационнопроизводственная структура электроэнергетики представляет собой единую холдинговую компанию, в состав которой входят генерирующих компании, например Гидро ОГК, ДГК (Дальневосточная генерирующая компания), сетевые компании: ФСК (Федеральная сетевая компания), сетевые магистральные компании, сетевые распределительные компании (например, ДРСК – Дальневосточная распределительная сетевая компания), энергосбытовые компании, например ДЭК – Дальневосточная энергетическая компания, ФОРЭМ, оптовые и розничные рынки. Технологическое и диспетчерское управление рассматриваемым холдингом осуществляется СО-УДУ РФ (системный оператор центрального диспетчерского управления РФ) через СО-ОДУ и СО-РДУ.

Дается характеристика современного состояния электроэнергетики России и развитых стран, Дальнего Востока.

Тенденции и направления развития электроэнергетики РФ:

- рост генерирующих мощностей и изменение технологической структуры генерирующих мощностей;
 - внедрение распределительной генерации;
 - развитие системообразующих сетей и усиление межсистемных связей;
 - интеграция энергообъединений;
 - либеризация;
 - ориентация на высокоэффективные технологии;
 - обеспечение надежного энергоснабжения потребителей;
 - развитие рыночных принципов функционирования;
 - повышение эффективности производства, передачи и потребления электроэнергии;
 - создание условий для привлечения инвестиций в электроэнергетику;
 - развитие системы диспетчерского управления ЕЭС в иных условиях;
 - глобализация ЭЭС;
 - диверсификация энергоустановок;
 - децентрализация электроснабжения;
 - модернизация электроустановок.

Цели и задачи курса. Краткая характеристика основных разделов и их связь с другими дисциплинами.

Лекция 2.

Задачи проектирования энергетических систем и сетей.

Цель лекции: рассмотреть основные цели и задачи проектирования энергосистем и электрических сетей, показать их общность и различие.

Цель проектирования ээлектронергосистем – обеспечение балансов электроэнергии и мощности, надежного электроснабжения потребителей.

Задачи проектирования ЭЭС: прогнозирование энергопотребления; развитие генерирующих мощностей; развитие системообразующих сетей и межсистемных связей; развитие питающих сетей, развитие распределительных сетей, проектирование систем диспетчерского управления, противоаварийного управления, релейной защиты, телемеханики.

Распределительные электрические сети - подсистема ЭЭС.

Основные задачи проектирования распределительных электрических сетей;

энерго-экономическая характеристика района проектирования;

прогнозирование электрической нагрузки на основе вероятностного анализа;

балансы активной и реактивной мощности;

разработка конкурентно-способных вариантов электрической сети;

расчет и анализ установившихся режимов;

регулирование напряжения и реактивной мощности. Инвестиционная привлекательность проекта.

Лекция 3.

Исходные данные для проектирования электрических сетей и их анализ.

Цель лекции: показать как в условиях неопределенности правильно выбирать исходные данные для проектирования электрических сетей.

Электрические нагрузки и их представление для проектирования электрических сетей. В качестве электрических нагрузок выбираются вероятностные характеристики активной и реактивной мощности, которые можно получить путем ретроспективного анализа результатов контрольных замеров; электропотребления; путем использования типовых графиков нагрузок. Дается характеристика и область применения каждого их этих способов.

Рассматриваются графики электрических нагрузок (ГЭН). Дается их классификация. Показывается как определить основные показатели ГЭН: коэффициент заполнения графика, коэффициент формы графика, число часов максимальной нагрузки и т.д. Приводится область применения вероятностных характеристик и показывается как их определить.

Средняя мощность нужна для расчета электропотребления и выбора силовых трансформаторов, среднеквадратичная или эффективная – для расчета потерь мощности и энергии, максимальная – для выбора элементов электрической сети, расчета и анализа установившихся режимов.

Приводится методика построения реальных графиков из типовых на основе ретроспективных данных об электропотреблении, либо на основе установленных мощностей проектируемых потребителей электроэнергии.

Дается характеристика методов долгосрочного прогнозирования и их сравнительный анализ. Подробно рассматривается практическое применение формулы сложных процентов. Приводится методика построения прогнозируемых графиков нагрузки.

Лекция 4

Технико-экономическое сопоставление вариантов электрической сети.

Цель лекции: привести современные методы определения технико-экономических параметров используемых при сравнении вариантов сети и выбора оптимального.

В условиях рыночных отношений между производителями и потребителями электроэнергии выбор варианта развития электрической сети должен учитывать множество

факторов как технических, так и экономических. Отсюда критерием выбора оптимального варианта является максимум прибыли, которую может получить энергокомпания от проектируемой сети.

Показатели оценки эффективности инвестиционных проектов делятся на статические и динамические. К статическим относится простая норма прибыли, простой срок окупаемости. К динамическим показателям относятся: удельные дисконтированные затраты; частый дисконтированный доход (ЧДД); дисконтированные (интегральные) затраты; внутренняя норма доходности; дисконтированный срок окупаемости; эквивалентные годовые расходы.

Кратко рассматривается каждый из них, показывается его область применения.

Для расчета ЧДД и эквивалентных годовых расходов нужно знать технико-экономические показатели: капитальные вложения и эксплуатационные издержки.

Капитальные вложения – это расходы, необходимые для сооружения энергетических объектов. Для электрических сетей к ним относятся капитальные вложения на сооружение линий и капитальные вложения на сооружения подстанций. Они определяются по укрупненным показателям.

К эксплуатационным издержкам относятся расходы, необходимые для эксплуатации электрических сетей в течение одного года. Они делятся на амортизационные отчисления, отчисления на обслуживания и ремонты, возмещение затрат на передачу электроэнергии (т.е. стоимость потерь электроэнергии).

Потери электроэнергии определяются в следующих элементах сети: линиях, трансформаторах, компенсирующих устройствах. Потери делятся на нагрузочные и условно-постоянные. Рассматриваются методы определения таких потерь при проектировании электрической сети.

Себестоимость передачи электроэнергии – это отношение эксплуатационных издержек в сети к электроэнергии, полученной потребителями в течение года.

Лекция 5.

Выбор рационального напряжения сети. Выбор числа и мощности силовых трансформаторов.

Цель лекции: показать как номинальное напряжение сети влияет на ее техникоэкономическое показатели, привести методы определения рационального напряжения и область их применения, показать как выбрать число и мощность силовых трансформаторов сетевых подстанций.

Номинальное напряжение электрической сети существенно влияет на ее технические характеристики и технико-экономические покзатели. Так, при повышении номинального напряжения снижаются потери электроэнергии, уменьшаются сечения линий, растут предельные передаваемые мощности, снижаются эксплуатационные расходы, но увеличиваются капитальные вложения на сооружение сети.

Экономически целесообразное номинальное напряжение зависит от многих факторов. Ориентировочно его можно определить по значениям передаваемой мощности и расстоянию, на которое она передается.

Номинальное напряжение приближенно можно определить одним из следующих способов: по эмпирическим выражениям, по номограмме, по пропускной способности и дальности электропередачи.

К эмпирическим выражениям, позволяющим определить рациональные напряжения сети относятся формула Стулла, формула Илларионова, формула Залесского.

Номограммы — это обобщающие зависимости, построенные в результате сравнения приведенных затрат для многочисленных вариантов сети с разными активными мощностями, длиной и номинальным напряжением. Показывается как ими пользоваться.

В справочной литературе приводятся таблицы, характеризующие пропускную способность и дальность передачи линий 110-1150 кВ. Показывается как пользоваться ими при выборе номинального напряжения.

Варианты проектируемой электрической сети или ее отдельные участки могут иметь разные номинальные напряжения. Вначале определяют напряжения готовых участков. В кольцевой сети участки необходимо выполнять на одно номинальное напряжение.

На сетевых подстанциях число трансформаторов определяется категорийностью подключенных потребителей. Даются рекомендации для выбора числа трансформаторов при различных соотношениях потребителей I, II, III категорий.

Мощность силовых трансформаторов выбирается по средней активной нагрузке и нескомпенсированной реактивной мощности, протекающего через него. Она зависит от числа трансформаторов и их загрузки. Приводятся оптимальные коэффициенты загрузки силовых трансформаторов при питании от них потребителей разных категорий по надежности.

Показывается как проверить правильность выбора силового трансформатора в послеаварийном режиме.

Лекция 6 Определение сечений ЛЭП

Цель лекции: изучить метод экономических токовых интервалов, используемый при выборе сечений ВЛ.

Сечения ВЛ выбирают по экономической плотности тока, по экономическим токовым интервалам, по допустимой потере напряжения по нагреву длительно-допустимым током.

Рассматривается выбор оптимального сечения провода линии по минимуму приведенных затрат. При этом используются зависимости удельных капитальных вложений от сечения, и соответственно эксплуатационных издержек от сечения. Из условия минимума функции затрат определяется экономическое сечение и экономическая плотность тока.

Практически для выбора сечения по экономической плотности тока вначале определяют максимальный ток, протекающий по линии, затем из таблиц определяют экономическую плотность тока и по ней рассчитывают экономически целесообразное сечение, округляя его до ближайшего стандартного.

Недостатки метода выбора сечения по экономической плотности тока:

- предположение линейной зависимости капитальных вложений в линию от ее длины сейчас это не так ввиду использования унифицированных опор;
- допущение о непрерывности сечения в выражении приведенных затрат. В действительности сечения меняются дискретно и определять минимум затрат так как предложено в данном методе раздела;
- предположение о том, что наибольший ток постоянен, на самом деле он переменная величина. Следовательно, экономическое сечение должно определяться из условия равенства нулю производной затрат по наибольшему току.

Метод экономических токовых интервалов не содержит указанных недостатков. Экономические интервалы токовых нагрузок для выбора сечений проводов определяются следующим образом. Для различных стандартных сечений строят зависимости приведенных затрат на линию наибольшего тока. Точка пересечения двух кривых $F\left(I_{f\,\acute{A}}\right)$ определяет значение наибольшего тока $I_{f\,\acute{A}I}$, при котором приведенные затраты двух вариантов сечений равны. Если ток меньше $I_{f\,\acute{A}I}$, то экономически целесообразно выбрать сечение меньшее, если больше – то большее.

Значение тока от нуля до $I_{i\,\acute{A}I}$ - экономический интервал для первого сечения и т.д. Порядок применения метода экономических токовых интервалов:

- определяют максимальный ток, протекающий по линии;
- находят расчетный ток через коэффициенты α_i, α_o ;
- в зависимости от напряжения, расчетной токовой нагрузки, района по гололеду, материала опор, числа цепей в ВЛ по таблице находят экономически целесообразные сечения.

Если расчетный ток больше верхней границы интервала использования максимального сечения для данного напряжения. то предусматривают варианты деления сети

Сечения, выбранные по экономическим токовым интервалам не проверяют по допустимой потере напряжения и по условиям возникновения короны.

Сечения ВЛ выбранные данным методом проверяют по нагреву в послеаварийном режиме.

Лекция 7

Определение сечений линий по допустимой потере напряжения.

Цель лекции: На основе особенностей распределительных сетей м понятия допустимой потери напряжения показать как выбираются сечения линий.

Допустимые потери напряжения в распределительной сети — это такие потери напряжения, при которых в результате регулирования напряжения отключения напряжения на зажимах электроприемника не выходят за нормируемые ГОСТ значения.

Допустимая потеря напряжения в сети должна быть больше или равна наибольшей потере напряжения.

Для сетей с несколькими участками для однозначного выбора сечения кроме допустимой потери напряжения должны быть дополнительные условия.

Выбор сечения из условия его равенства на всех участках сети.

Область применения – городские электрические сети. Представляя допустимую потерю напряжения в линии в виде допустимой потери напряжения в активном и реактивном сопротивлениях в линии, записывают выражение для них через мощности. Как известно реактивные удельные сопротивления мало меняются при изменении сечения, поэтому выбор сечения ведется в следующем порядке:

- а) задается X_0 в зависимости от класса номинального напряжения;
- б) определяем допустимую реактивную потерю напряжения;
- в) находим допустимую активную потерю напряжения;
- г) из полученного выражения в предыдущем пункте определяем сечение, которое округляется до ближайшего стандартного.

Выбор сечения их условия минимум потерь мощности.

Если плотность тока на всех участках линии одинакова, то будет обеспечен минимум потерь мощности. Это дополнительное условие используется при выборе сечений линий в промышленных сетях. Порядок выбора аналогичен предыдущему случаю:

- а) принимаем значение X_0 ;
- б) находим допустимую реактивную, затем активную потери напряжения;
- в) находим плотность тока по допустимой потере напряжения;
- г) определяем расчетное сечение и округляем до ближайшего стандартного.

Выбор сечения из условия минимального расхода проводникового материала на сооружение линии.

Область применения – сельские сети.

Порядок выбора сечений следующий:

а) определяется сечение последнего участка сети;

б) из условия равенства отношения квадрата сечения к активной мощности на всех участках определяется сечение остальных участков и округляется до ближайших стандартных.

Лекция 8.

Особенности выбора и проверки сечений линий в замкнутых сетях. Проверка сечений проводников по нагреву длительно допустимым током.

Цель лекции: показать как проверяются сечения линий при проектировании электрический сетей.

Для выбора и проверки сечений в замкнутых сетях их представляют в виде двух разомкнутых. Для этого определяют приближенные потоки мощности на головных участках по длинам линий, затем на остальных участках сети по первому закону Кирхгофа и определяют точку потокораздела, в которой сеть разрезают на две разомкнутые. Далее сечения выбираются рассмотренными ранее методами.

В нормальном и послеаварийных режимах выбранные сечения проверяются по нагреву длительно допустимым током.

Допустимая температура — это наибольшая температура, при которой провод или кабель сохраняет свои электрические или механические свойства. Для обеспечения нормальных условии работы линии под нагрузкой при нагреве проводников током нагрузки температура не должна превышать допустимых значений. Допустимые значения устанавливаются в зависимости от марки проводов и кабелей и материала изоляции.

Затем рассматриваются процессы нагрева и охлаждения проводников и выводится выражение для допустимого тока, т.е. такого тока, при длительном протекании которого проводник нагревается до допустимой температуры.

В практических расчетах пользуются значениями допустимого тока, приведенными в справочных таблица. К этой величине вводят поправку на условия прокладки, температуру окружающей среды.

Условия проверки сечений подогревом.

Допустимый ток должен быть больше или равен наибольшему из средних получасовых токов. Рассматриваются возможности допустимой перегрузки линий в послеаварийных режимах.

Второе условие выбора сечений необходимо для правильной работы аппаратов, защищающих сеть от перегрева.

Лекция 9

Регулирование напряжения в электроэнергетических системах

Цель лекции: рассмотреть методы и принципы регулирования напряжения, технические средства, используемые для регулирования напряжения.

ГОСТ 13109-97 определяет нормальные и предельно допустимые отклонения напряжения у электроприемников. ГОСТ 21128-83 устанавливает наибольшие рабочие напряжения для оборудования ЭЭС.

Нижний уровень напряжения определяется условиями регулирования напряжения в распределительных сетях и устойчивостью работы ЭЭС. Указанные требования обусловливают необходимость регулирования напряжения во всех видах электрических сетей. Различают централизованное и местное регулирование напряжения.

При централизованном регулировании напряжение изменяют в центре питания. Местное регулирование используют в питающих и распределительных сетях для отдельных групп потребителей.

К методам регулирования относят регулирование напряжения на электростанциях, с помощью регулирующих устройств (РПН и ПБВ) силовых трансформаторов, с помощью изменения падений напряжения в сети.

Принципы регулирования напряжения:

- стабилизация напряжения;
- стабилизация по заданному графику напряжения;
- встречное регулирование.

К средствам регулирования относятся регуляторы напряжения на электростанциях, регулирующие устройства на понижающих трансформаторах, специальные регулирующие трансформаторы и КУ.

Рассматриваются характеристики технических средств регулирования напряжения.

Лекция 10

Компенсация реактивной мощности.

Цель лекции: раскрыть сущность компенсации реактивной мощности, показать как определяются мощности компенсирующих устройств при разных видах компенсации реактивной мощности.

Показывается актуальность компенсации реактивной мощности (КРМ). Отсутствие компенсации реактивной мощности приводит к увеличению потоков реактивной мощности, к увеличению потерь электроэнергии, к снижению управляемости режимами работы сети, к снижению устойчивости, надежности электроснабжения и ухудшению качества электроэнергии.

Рассматриваются три задачи КРМ:

балансовая задача КРМ;

поддержание желаемого уровня напряжения в узлах сети;

экономическая задача КРМ.

Нормативные, правовые, организационно-распорядительные, методические и информационные документы по вопросам реактивной мощности и напряжения, снижения потерь электроэнергии.

- 1. «Правила технологического присоединения энергопринимающих устройств (энергетических установок) юридических и физических лиц к электрическим сетям», утвержденные постановлением Правительства Российской Федерации от 27 декабря 2004 года № 861.
- 2. «Правила недискриминационного доступа к услугам по передаче электрической энергии и оказания этих услуг», утвержденные постановлением Правительства Российской Федерации от 27 декабря 2004 года № 861(в редакции Постановления Правительства РФ от 31 августа 2006 года № 530).
- 3. Постановление Правительства РФ от 31 августа 2006 года № 530 «Об утверждении правил функционирования розничных рынков электрической энергии в переходный период реформирования электроэнергетики».
- 4. «Методические указания по проектированию развития энергосистем», утвержденные приказом Минпромэнерго России от 30 июня 2003 года № 281.
- 5. «Инструкция по проектированию городских электрических сетей». РД 34.20.185-94 (CO 153-34.20.185-94, приказ ОАО РАО «ЕЭС России» от 14.08.2003 № 4 22).
- 6. Руководящие материалы по проектированию электроснабжения сельского хозяйства. Указания по выбору средств регулирования напряжения и компенсации реактивной мощности при проектировании сельскохозяйственных объектов и электрических сетей сельскохозяйственного назначения. (СО 153-34.20.112 (РД 34.20.112), приказ ОАО РАО «ЕЭС России» от 14.08.2003 № 4 22).

- 7. Правила технической эксплуатации электрических станций и сетей Российской Федерации, утвержденные приказом Минэнерго России от 19 июня 2003 № 229, зарегистрированные в Минюсте (регистрационный № 4799 от 20 июня 2003 года).
- 8. ГОСТ 13109-97 (Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах энергоснабжения общего назначения).
- 9. ГОСТ 721-77 (Системы электроснабжения, сети, источники, преобразователи и приемники электрической энергии. Номинальное напряжение свыше 1000 вольт).
- 10. ГОСТ 21128-83 (Системы электроснабжения, сети, источники, преобразователи и приемники электрической энергии. Номинальное напряжение до 1000 вольт).
- 11. Приказ ОАО РАО «ЕЭС России» от 25.10.2005 № 703 «О лицензировании деятельности по продаже электрической энергии и обязательной сертификации электрической энергии в сетях общего назначения» (и дополнение к нему от 31.07.2006 № 527).
- 12. Информационное письмо ОАО РАО «ЕЭС России» от 7.07.2006 № ВП-170 «О рекомендациях к разработке программ «Реактивная мощность» и «Повышение надежности распределительных электрических сетей».

Баланс реактивной мощности

$$Q_{\Pi_{HE}} = k_0 \sum_{i=1}^{n} Q_{HE_i} + \Delta Q_{T_{\Sigma}} + \sum_{j=1}^{m} (\Delta Q_j - Q_{C,j})$$

где k_0 – коэффициент одновременности наибольших реактивных нагрузок, $k_0 \approx 0.98$

 $Q_{{\scriptscriptstyle HE}}$ – максимальная реактивная нагрузка i – го узла

 $\Delta Q_{T_{\Sigma}}$ – суммарные потери реактивной мощности в CT, $\Delta Q_{T_{\Sigma}} \approx 0, 1 \cdot S_{max}$

 ΔQ_{j} – потери реактивной мощности в j – ой линии

 $oldsymbol{Q}_{c,j}$ – зарядная мощность, генерируемая $oldsymbol{j}$ – ой линией

сеть 110 кВ сеть 35 кВ сеть 220 кВ
$$x_0 = 0.42 \frac{O_M}{\kappa_M}$$

$$q_C = 0.14 \frac{M6ap}{\kappa_M}$$

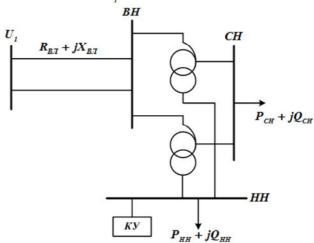
 $Q_{\Pi_{HK}} = Q_{\Gamma_{K}}$ - баланс

Если $Q_{\Pi_{HE}} > Q_{\Gamma_{\Sigma}}$, то $Q_{KY_{\Sigma}} = Q_{\Pi_{HE}} - Q_{\Gamma_{\Sigma}}$

Принципы размещения КУ

- 1. КУ нужно распределять так, чтобы потери мощности в сети были минимальными.
- 2. В электрических сетях двух уровней напряжения следует в первую очередь устанавливать КУ на шинах НН ПС с более низким номинальным напряжением высокой стороны.
- 3. В сети с одним уровнем напряжения целесообразно компенсировать реактивную мощность в первую очередь у наиболее электрически удаленных потребителей.
- 4. При незначительной разнице в электрической удаленности ПС от ИП в сети одного номинального напряжения расстановку КУ следует производить по условию равенства tgф на шинах HH, исходя из баланса реактивной мощности:

$$tg\boldsymbol{\varphi}_{E} = \frac{\sum_{i=1}^{n} Q_{HE_{i}} - Q_{KV_{E}}}{\sum_{i=1}^{n} P_{HE_{i}}}$$


Мощность КУ в каждом узле

$$Q_{KY_i} = P_{max_i} \left(tg \boldsymbol{\varphi}_i - tg \boldsymbol{\varphi}_E \right)$$

 $Q_{\scriptscriptstyle KY_{\scriptscriptstyle daxm}}$ = 1,1 $\cdot Q_{\scriptscriptstyle KY_i}$ - для резервирования

Регулирование напряжения в сети с помощью КРМ

Поперечная КРМ

Условие выбора – поддержание желаемого напряжения на сторонах СН и НН

$$\Delta U = \frac{PR + QX}{U}$$

Суммарные потери напряжения в сети
$$\Delta U_{z} = \frac{\left(P_{CH} + P_{HH}\right)\left(R_{BJ} + R_{TB}\right) + P_{CH}R_{TC} + P_{HH}R_{TH} + \left(Q_{CH} + Q_{HH} - Q_{KY}\right)\left(X_{BJ} + X_{TB}\right) + Q_{CH}X_{TC} + \left(Q_{HH} - Q_{KY}\right)X_{TH}}{U_{I}}$$

$$Q_{KV} = \frac{P_{CH}\left(R_{BJ} + R_{TB} + R_{TC}\right) + P_{HH}\left(R_{BJ} + R_{TB} + R_{TH}\right) + Q_{CH}\left(X_{BJ} + X_{TB} + X_{TC}\right) + Q_{HH}\left(X_{BJ} + X_{TB} + X_{TH}\right) - \Delta U_{\mathcal{L}}U_{I}}{X_{BJ} + X_{TB} + X_{TH}}$$

$$\Delta U_{CH} = U_I - U_{CH}^{BH} = U_I - U_{CH}^{MEH} \frac{U_I}{U_{CH_{HOM}}}$$

$$\Delta U_{HH} = U_I - U_{HH}^{BH} = U_I - U_{HH}^{MEH} \frac{U_I}{U_{HH_{HOM}}}$$

$$\Delta U_{\Sigma} = \Delta U_{CH} + \Delta U_{HH}$$

$$\Delta U_{\Sigma} = 2U_I - \Delta U_{CH}^{BH} - \Delta U_{HH}^{BH} = 2U_I - U_{CH}^{MEH} \frac{U_I}{U_{CH_{HOM}}} - U_{HH}^{MEH} \frac{U_I}{U_{HH_{HOM}}}$$

$$U_I$$

$$R_{EA} + jX_{EA}$$

$$R_T + jX_I$$

$$R_T + jX_I$$

$$R_T + jQ_{HH}$$

$$Q_{KY} = Q_{HH} - \frac{\Delta U_{\Sigma}U_I - P_{HH}(R_{BA} + R_T)}{X_{BA} + X_T}$$

Продольная КРМ

- 1. Потери напряжения в ВЛ без КРМ $\Delta U = \frac{PR_{_{J}} + QX_{_{J}}}{U}$
- 2. Допустимые потери напряжения, кВ $\Delta U_{доп} = \frac{\Delta U_{доп} U_{Hom}}{100}$
- 3. Сопротивление КУ из условия снижения ΔU до $\Delta U_{\mbox{\it JOH}}$

$$egin{aligned} I_{\mathcal{A}O\Pi} & \Delta U_{\mathcal{A}O\Pi} = rac{PR_{\mathcal{A}} + Q\left(X_{\mathcal{A}} - X_{\mathcal{K}\mathcal{Y}}
ight)}{U_{\mathcal{H}OM}} \end{aligned}$$
 откуда $X_{\mathcal{K}\mathcal{Y}} = rac{PR_{\mathcal{A}} + QX_{\mathcal{A}} - \Delta U_{\mathcal{A}O\Pi}U_{\mathcal{H}OM}}{Q}$

4. Ток в линии
$$I_{_{I\!I}} = \frac{\sqrt{P^2 + Q^2}}{\sqrt{3}U_{_{HOM}}}$$

- 5. Выбор серийно выпускаемого однофазного конденсатора для снижения потерь напряжения
- 6. Номинальный ток конденсатора $I_{\kappa_{nom}} = \frac{Q_{\kappa_{nom}}}{U_{\kappa_{mom}}}$
- 7. Число конденсаторов, включенных параллельно в одну фазу (обеспечение расчетного тока линии) $m = \frac{I_{_{J}}}{I_{_{K_{HOM}}}}$

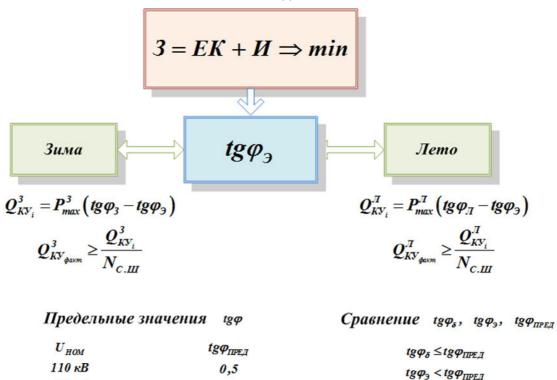
$$X_{K_{HOM}} = \frac{U_{K_{HOM}}}{I_{K_{HOM}}}$$

9. Число конденсаторов, включенных последовательно в одну фазу (обеспечение
$$\Delta U_{жел}$$
) $n = \frac{mX_{KY}}{X_{K_{HOM}}}$

10. Общее число конденсаторов в УПК
$$n_{\Sigma} = 3 \cdot n \cdot m$$

11. Установленная мощность УПК
$$Q_{\kappa y}^{ycT} = n_{\Sigma} Q_{\kappa_{HOM}}$$

12. Номинальное напряжение КУ (УПК)
$$U_{{\scriptscriptstyle KY}_{\scriptscriptstyle HOM}} = nU_{{\scriptscriptstyle K_{\scriptscriptstyle HOM}}}$$


13. Номинальный ток УПК
$$I_{KY_{HOM}} = mI_{K_{HOM}}$$

14. Фактическое сопротивление КУ
$$X_{KY_{\phi asm}} = \frac{nX_{K_{HOM}}}{m}$$

15. Фактические потери напряжения после КРМ
$$\Delta U_{\phi a \kappa m} = \frac{P R_{_{I}} + Q \left(X_{_{I}} - X_{_{KY_{\phi a \kappa m}}} \right)}{U_{HOM_{comu}}}$$

16. Сравнение
$$\Delta U_{\phi a \kappa m}$$
 с ΔU_{JOII} $\Delta U_{\phi a \kappa m} \leq \Delta U_{JOII}$

Экономическая задача КРМ

Оптимальное размещение КУ в распределительной сети

1. Исключение узлов, в которых установка КУ невозможна или нежелательна.

0,4

0,4

0,35

2. Определение граничного значения уменьшения потерь мощности в сети, при котором установка КУ еще выгодна

$$\delta P_{\mathit{IP}} = \frac{3_{\mathit{KV}}}{C_{\mathit{\Delta W}}T} = \frac{\left(E + \alpha_{\scriptscriptstyle{\Sigma}}\right)K_{\mathit{KV}}}{C_{\mathit{\Delta W}}T}$$

3. Вычисление значений снижения потерь мощности после установки КУ

$$\delta P_{K} = \Delta P_{\theta} - \Delta P_{KY}$$

4. Определение целесообразности установки КУ в узле

35 KB

 $6 \div 20 \kappa B$

0,4 κΒ

Если
$$\delta P_{\kappa} \geq \delta P_{rp}$$
, то установка KY оправдана

5. Определение узла сети, при установке КУ в котором будет наибольшее снижение потерь мощности

$$\delta P_{K} = max \left\{ \delta P_{i} \right\}$$
ВЫВОДЫ

- 1. КРМ позволяет снизить потери активной мощности и потери напряжения в сети, обеспечить желаемые уровни напряжения в узлах, повысить пропускную способность элементов и устойчивость электроэнергетической системы, ее надежность
- 2. В условиях рынка экономически целесообразные коэффициенты мощности в часы больших и малых нагрузок энергосистемы определяются путем оптимизационных расчетов и по согласованию с потребителями указываются в Договорах на энергоснабжение
- 3. Мощность КУ и место их установки в сети выбираются на основе системного подхода к КРМ, при этом полученные в результате КРМ коэффициенты мощности не должны превышать предельных значений в часы больших и малых нагрузок энергосистемы
- 4. Системный подход предусматривает решение следующих трех задач КРМ:
 - балансовая задача КРМ;
 - поддержание требуемого уровня напряжения в узлах сети;
 - экономическая задача КРМ.

Лекция 11.

Упрощающие преобразования схем замещения электрических сетей.

Цель лекции: рассмотреть как постепенным преобразованием сложнозамкнутая сеть приводится к магистрали с двухсторонним питанием.

Замена линий одной эквивалентной.

Данное преобразование рассматривается на примере замены трех линий одной, выводится выражение для напряжения эквивалентного узла, эквивалентной проводимости сети.

Порядок расчета:

- по известным проводимостям схемы находят эквивалентную проводимость сети;
- определяют эквивалентное напряжение;
- находят эквивалентный ток;
- определяют напряжения в узле, к которому находят три исходные ветви;
- находят токи ветвей.

Перенос нагрузки или исключение узлов.

Эквивалентность преобразования сохраняется только при переносе заданных токов нагрузки. Следовательно, можно рассматривать перенос мощности в случае, когда заданы постоянные мощности или токи в узлах.

Выводится выражение для эквивалентных нагрузок узлов, в которые разносится нагрузка исключаемого узла. Она равна сумме исходной нагрузки узла и произведения нагрузки исключенного узла на дробь, в числителе которой находится сопряженное сопротивление противоположной линии относительно узла, в который переносится нагрузка, в знаменателе – сумма сопряженных сопротивлений линий, подключенных к исключаемому узлу.

Студентам предлагается вспомнить преобразования звезды в треугольник и обратно и показывается как в этом случае определяются потоки мощности.

Порядок преобразования сложной сети:

- осуществляется последовательное исключение узлов и перенос нагрузки;
- преобразуется звезда в треугольник (если есть такие части схемы);
- в схеме с треугольником можно разрезать сеть по узлам питания и преобразовать две параллельные линии в одну;
- упрощающие преобразования осуществлять до тех пор, пока не получится сеть с двухсторонним питанием.

Рассматривается как осуществить обратный переход при преобразовании сети.

Лекция 12.

Расчет режимов системы большой сложности. Расщепление сети и разделение переменных. Перспективное проектирование схемы сети.

Цель лекции: показать приемы, которыми можно пользоваться при расчете режимов на ЭВМ в системах большой сложности.

Расщепление сети.

Данный метод применим в однородных сетях, где распределение активной, реактивной мощности не зависит друг от друга. Для однородной сети доказано, что система линейных уравнений контурных комплексных мощностей эквивалентна двум системам уравнений: одна из которых содержит только активную мощность Р в контурах и индуктивное сопротивление X, другая — только реактивную мощность Q, и активное сопротивление R. При расщеплении сети составляются две схемы: одна м Р и X, другая с Q и R. В каждой из них находится распределение мощностей, накладывается друг на друга и находится распределение полных мощностей.

Разделение переменных.

При расчете режимов систем большой сложности система уравнений узловых напряжений (УУН) приводится к систем действительных уравнений порядка 2 n, где n — число независимых узлов. Для этого матрицы и векторы-столбцы с комплексными элементами представляются в виде сумм матриц и вектор-столбцов с действительными элементами путем отдельной записи действительных и мнимых слагаемых в УУН. В итоге получается система действительных уравнений:

$$\begin{bmatrix} -G_{\acute{o}} & \hat{A}_{\acute{o}} \\ -\hat{A}_{\acute{o}} & G_{\acute{o}} \end{bmatrix} \begin{bmatrix} U' \\ U'' \end{bmatrix} = \sqrt{3} \begin{bmatrix} I' \\ I'' \end{bmatrix} - \begin{bmatrix} -\ddot{a}_{\acute{a}} & U_{\acute{a}} \\ -\hat{a}_{\acute{a}} & U_{\acute{a}} \end{bmatrix}$$

при решении на ЭВМ нелинейных УУН для сетей напряжением 110 кВ и выше при разделении уравнений получаются 2 системы уравнений, которые решаются раздельно. Одна из них связывает Р в узлах и фазы узловых напряжений (U), другая — Q в узлах и модули узловых U. Такое разделение более эффективно, т.к. учитывает особенности их решения методом Ньютона.

Перспективное проектирование схемы сети.

В этом случае активное потокораспределение определяется по реактивным проводимостям путем решения системы УУН вида

$$\left[\hat{A}_{\delta}\right]\!\left[\boldsymbol{\delta}\right]\!U^{2}_{\ \ell\ell\ell}=\!\left[\boldsymbol{\mathcal{D}}\right].$$

Часть II

Тема 1. ТЭЦ – источники питания систем электроснабжения.

Формирование схем электрических соединений ТЭЦ в связи с режимами их работы в составе электроэнергетических систем и как источников питания систем электроснабжения. Выбор основного электрооборудования. Конструкции и схемы распределительных устройств. Режимы работы ТЭЦ.

Введение

Основными источниками питания большинства предприятий являются электростанции (в том числе шины генераторного напряжения), собственные ТЭЦ и районные подстанции энергосистем. Выбор независимых источников питания осуществляет энергоснабжающая организация, которая в технических условиях на присоединение указывает их характеристики.

В соответствии с нормативными требованиями, определенными в ПУЭ, питание потребителей первой категории допускается производить от двух секций или систем шин одной районной подстанции. В настоящее время это широко используется при

проектировании многих промышленных предприятий, но является недостаточно надежным. Разработчику проекта электроснабжения следует обратить особое внимание на следующие факторы, определяющие бесперебойность питания электроприемников при аварийном отключении одного из независимых источников питания:

- установившееся значение напряжения на оставшемся источнике питания в послеаварийном режиме должно быть не менее 0,9 номинального напряжения;
- при аварийном отключении одного из источников питания и действии релейной защиты и автоматики на оставшемся источнике питания может иметь место кратковременное снижение напряжения. Если значение провала напряжения и его продолжительность таковы, что вызывают отключение электроприемников на оставшемся источнике питания, то эти источники питания не могут считаться независимыми. Значение оставшегося напряжения на резервирующем источнике питания должно быть не менее 0,7 номинального напряжения.

Для повышения надежности электроснабжения предприятий с потребителями первой категории большой мощности необходимо предусматривать два территориально независимых источника питания. Число независимых источников питания, обеспечивающих электроснабжение предприятия с электроприемниками первой и второй категорий, может быть больше двух (при обосновании), например, при протяженных линиях электропередачи, прокладываемых в неблагоприятных условиях, при недостаточной надежности одного из независимых источников питания и т. д.

Электроснабжение потребителей при имеющейся собственной ТЭЦ достаточной мощности чаще всего осуществляется от шин генераторного напряжения 6 или 10 кВ. В некоторых случаях в схемах внешнего электроснабжения предусматриваются связи источников питания с потребителями на генераторном напряжении 10(6) кВ, особенно для предприятий большой мощности с потребителями первой и второй категорий. Это позволяет существенно повысить надежность электроснабжения потребителей. Для того чтобы исключить влияние различных повреждений на работу генераторов, следует шире применять современные микропроцессорные системы релейной защиты и автоматики, обеспечивающие высокочувствительную многофункциональную диагностику повреждений, локализацию повреждений на отдельных участках сети и предотвращение перерастания локальных аварий в системные.

На промышленных предприятиях с потребителями первой и второй категорий, значительно удаленных от ТЭЦ, целесообразно сооружение собственного независимого источника питания. До последнего времени считалось, что создание собственных источников питания на предприятиях экономически нецелесообразно, за исключением источников питания для потребителей особой группы электроприемников первой категории. Но в условиях рыночной экономики, при постоянном росте тарифов на электроэнергию, собственные источники питания — оправданное решение, позволяющее существенно повысить надежность электроснабжения потребителей первой и второй категорий.

С начала 90-х годов в энергосистемах наметилась тенденция питания потребителей с шин районных подстанций на напряжениях 110—220 кВ. Это диктуется стремлением гальванически развязать сети генераторов и потребителей для исключения влияния различного рода повреждений в сети потребителя на работу генераторов. На многих строящихся электростанциях вообще не предусматриваются распределительные устройства 6, 10 и 35 кВ, предназначенные для потребителей электроэнергии, вся мощность передается на напряжениях 110 и 220 кВ к ближайшим районным подстанциям. Строительство собственных ТЭЦ на предприятиях также считается невыгодным. Такие решения экономически оправданы для энергокомпаний, но могут существенно снизить надежность электроснабжения потребителей.

Сооружение собственных электростанций (ТЭЦ, ТЭС) целесообразно при следующих обстоятельствах:

- при значительной потребности предприятия в паре и горячей воде;
- при наличии на предприятии отходного топлива (газа и т. п.) и возможности его использования для электростанции;
 - при значительной удаленности или недостаточной мощности энергосистемы;
- при наличии особых групп электроприемников с повышенными требованиями к бесперебойности питания, когда собственный источник питания необходим для резервирования электроснабжения.

Мощность собственного источника питания зависит от его назначения и может колебаться в очень широких пределах. Размещение собственной электростанции определяется общей схемой электроснабжения и теплоснабжения предприятия. Неудачное ее расположение может привести к удлинению и удорожанию электрических и тепловых сетей. Электростанция, используемая в качестве собственного источника питания, должна быть электрически связана с ближайшими электрическими сетями энергосистемы. Связь может осуществляться либо непосредственно на генераторном напряжении, либо на повышенном напряжении через трансформаторы связи.

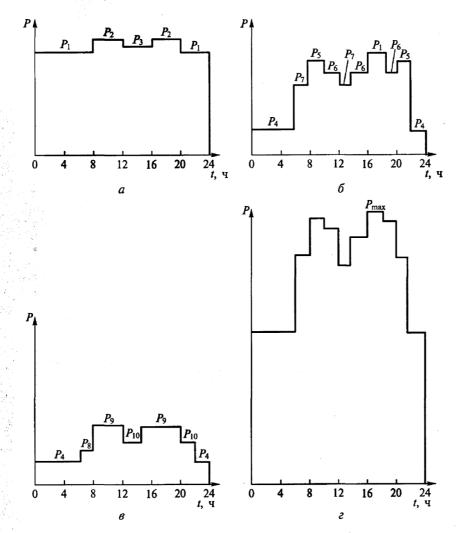
Потребители электрической энергии

Электроустановка — это совокупность машин, аппаратов, линий электропередачи и вспомогательных устройств, предназначенных для производства, преобразования, трансформации, передачи, распределения электрической энергии и преобразования ее в другой вид энергии.

Потребителями электроэнергии являются промышленные предприятия, электрифицированный транспорт, объекты строительства, бытовые потребители, сфера обслуживания городов и поселков, а также потребители собственных нужд электростанций - механизмы, обслуживающие технологический процесс производства электроэнергии.

Режим потребления электроэнергии определяется характером нагрузки, временем суток и года и может быть представлен графиком нагрузки — зависимостью активной, реактивной и полной мощности от времени. На рис. $a-\mathfrak{s}$ представлены суточные графики активной нагрузки рабочих суток трех цехов предприятия. В тех же осях координат по показаниям варметров можно построить суточные графики реактивной нагрузки цехов.

Суммируя нагрузки в соответствующие отрезки времени, строят суточный график предприятия (рис. *г*). Как видно из графика, *Рмах* имеет место в период от 16 до 19 ч:


$$P_{\text{max}} = P_2 + P_1 + P_9$$
.

Определив по графику реактивных нагрузок предприятия $\it Qmax$ (построение аналогично рис.), можно найти полную потребляемую мощность

$$S_{\max} = \sqrt{P_{\max}^2 + Q_{\max}^2},$$

по которой определяется соответствие мощности трансформаторов, установленных на подстанции предприятия.

Графики нагрузок зимних суток отличаются от графиков летних суток и графиков выходных и праздничных дней.

При проектировании пользуются типовыми графиками для различных отраслей промышленности, ординаты которых выражены в процентах максимальной нагрузки Ртах. Последняя определяется следующим образом. Зная номинальную мощность электроприемников $\Sigma P_{\scriptscriptstyle HOM}$, определяют установленную мощность

$$P_{\text{yct}} = \sum P_{\text{hom}}$$
.

Присоединенная мощность на шинах подстанции $P_{\rm пp} = \frac{\sum P_{\rm HoM}}{\eta_{\rm cp.n} \eta_{\rm cp.c}},$

$$P_{\rm np} = \frac{\sum P_{\rm HOM}}{\eta_{\rm cp.n} \eta_{\rm cp.c}},$$

где $\pmb{\eta}_{cp_{_{I\!\!I}}}$ и $\pmb{\eta}_{cp_{_{C\!\!I}}}$ — средние КПД электроустановок потребителей и местной сети при номинальной нагрузке, учитывающие потери активной мощности.

Действительная нагрузка меньше P_{IIP} , так как загрузка потребителей меняется, а работают они не все одновременно. Это учитывается введением $k_{_3}$ — коэффициента загрузки и k_o — коэффициента одновременности:

$$P_{\max} = \frac{k_{\text{o}}k_{\text{3}}}{\eta_{\text{cp.n}}\eta_{\text{cp.c}}} \sum P_{\text{Hom}} = k_{\text{cnp}} \sum P_{\text{Hom}},$$

где k_{cnn} — коэффициент спроса, определяется по справочной литературе для конкретной группы потребителей.

Определив *Рмах*, пересчитывают ординаты типового графика в именованные единицы и пользуются им в дальнейших расчетах при выборе мощности питающих трансформаторов или сечения питающих линий.

Годовой график продолжительности нагрузок

На рис. a построены два характерных суточных графика (зимний и летний). Для построения годового графика по продолжительности (рис. δ) по оси ординат откладывают значение нагрузок, начиная с Pmax, а по оси абсцисс — продолжительность действия этой нагрузки в году. Например, P1 = Pmax действует в течение $T_1 = t_1 \ 183$ (t_1 — время действия в суточном зимнем графике; 183 — число таких графиков в году). Нагрузка P_2 действует в течение $T_2 = t_2 \ 183$ и т.д.

По графику продолжительности нагрузки можно вычислить некоторые технико-экономические показатели установки. Площадь, ограниченная ступенчатой кривой графика активной нагрузки, численно равна энергии, произведенной или потребленной за рассматриваемый период:

$$W_{\rm rr} = \sum P_i T_i$$

где P — мощность i-й ступени; T_i — продолжительность ступени.

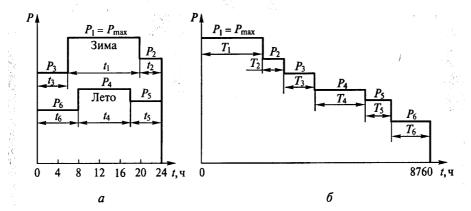


Рис. Построение годового графика продолжительности нагрузок

Средняя нагрузка за рассматриваемый период (сутки, год)

$$P_{\rm cp} = \frac{W_{\rm rr}}{T}$$

где W_{II} — произведенная или потребленная электроэнергия за этот период; T — длительность рассматриваемого периода.

Неравномерность графика работы установки оценивается коэффициентом заполнения

$$k_{\rm 3II} = \frac{W_{\rm II}}{P_{\rm max}T} = \frac{P_{\rm cp}}{P_{\rm max}}.$$

Чем равномернее график, тем ближе к единице k_{3H} . Характерна для графика продолжительность использования максимальной нагрузки

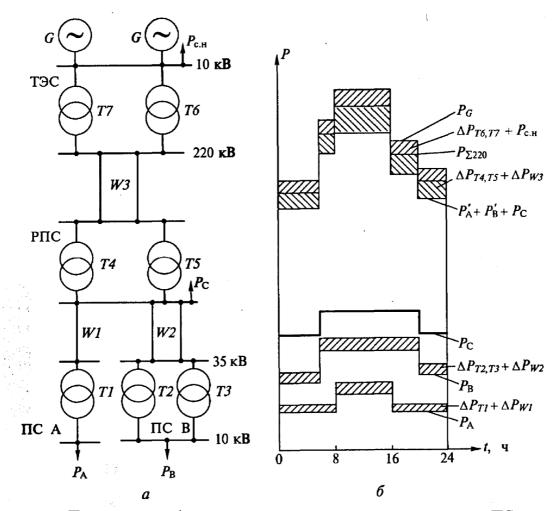
$$T_{\text{max}} = \frac{W_{\pi}}{P_{\text{max}}} = \frac{P_{\text{cp}}T}{P_{\text{max}}} = k_{3\pi}T.$$

Эта величина показывает, сколько часов за рассматриваемый период T (обычно год) установка должна была бы работать с неизменной максимальной нагрузкой, чтобы выработать (потребить) действительное количество электроэнергии W_{π} .

В практике применяют также коэффициент использования установленной мощности

$$k_{\rm H} = \frac{W_{\rm II}}{TP_{\rm vcr}} = \frac{P_{\rm cp}}{P_{\rm vcr}}$$

или продолжительность использования установленной мощности $T_{
m ycr} = W_{
m n}/P_{
m ycr} = k_{
m u} T.$


В формулах под P_{VCT} следует понимать суммарную установленную мощность всех агрегатов, включая резервные.

Коэффициент использования k_H характеризует степень использования установленной мощности агрегатов. Очевидно, что $k_H < 1$, а $T_{VCT} < T$. С учетом соотношения $P_{VCT} \ge P_{Max}$ имеем $k_H \le k_{3H}$.

В среднем для энергосистем России продолжительность использования установленной мощности электростанций составляет около 5000 ч в год.

Суточные графики нагрузки районных подстанций и электростанций

Ранее рассмотрено построение графиков нагрузки потребителей электроэнергии. Зная графики активной и реактивной нагрузок на шинах 6— $10~{\rm kB}$ заводских подстанций (ПС A, ПС B), можно определить потери в трансформаторах и линиях для каждой ступени графика. Для наглядности на рис. a показана схема электроснабжения предприятий A, B: заводские ПС A и B получают электроэнергию от районной ПС (РПС), которая линиями 220 кВ связана с электростанцией.

Построение графиков активной нагрузки на шинах районной ПС и электростанции:

а — схема сети; б — графики нагрузок и потерь мощности

Графики активной нагрузки на шинах 6—10 кВ P_A , P_B показаны на рис. δ . Подсчитывая потери в трансформаторах Т1, Т2 и Т3 и линиях W_1 , W_2 , построим график ($P_A' + P_B'$) на шинах 35 кВ районной ПС

$$P'_{A} = P_{A} + \Delta P_{T1} + \Delta P_{W1}; \quad P'_{B} = P_{B} + \Delta P_{T1,T3} + \Delta P_{W2}.$$

На шинах 35 кВ районной ПС имеется нагрузка P_C (график показан на рис. δ), суммируя его ординаты с графиками P_A^I и P_B^I , получим график нагрузки районной ПС на шинах 35 кВ: $P_A^I + P_B^I + P_C$. По данным нагрузкам находят потери в трансформаторах Т4, Т5 и линиях W_3 и строят график мощности, отпускаемой с шин 220 кВ электростанции $P_{\Sigma 220}$.

Потери мощности в трансформаторах и линиях находят по известным формулам:

$$\Delta P_n = \sum \Delta P_i^{\text{moct}} + \sum \Delta P_{i \max}^{\text{nep}} \left(\frac{S_i}{S_{i \max}} \right)^2;$$

$$\Delta Q_n = \sum \Delta Q_i^{\text{moct}} + \sum \Delta Q_{i \max}^{\text{nep}} \left(\frac{S_i}{S_{i \max}} \right)^2,$$

где S, — нагрузка і-го элемента сети, соответствующая рассматриваемой п-й ступени графика суммарной нагрузки; $S_{i_{MAX}}$ — нагрузка элемента (линии, трансформатора), при которой определены $\Delta P_{MAX}^{\it ПЕР}$ и $\Delta Q_{\it MAX}^{\it ПЕР}$.

График нагрузки генераторов получают, суммируя график $P_{\Sigma 220}$ с графиком расхода электроэнергии на собственные нужды и потерями в трансформаторах T6, T7:

$$P_{\text{c.H}} = \left(0, 4 + 0, 6 \frac{P_i}{P_{\text{yct}}}\right) P_{\text{c.H max}},$$

где P_i — нагрузка і-й ступени графика на шинах 10 кВ; P_{VCT} — установленная мощность генераторов; $P_{C.H.MAX}$ — максимальный расход на собственные нужды; коэффициенты 0,4 и 0,6 характеризуют постоянную и переменную часть расхода на собственные нужды $P_{C.H.MAX}$. Прибавляя к ординатам графика нагрузки на шинах 220 кВ электростанции $P_{\Sigma 220}$ потери в трансформаторах T6, T7 и расход на собственные нужды, получаем график нагрузки на генераторы P_G .

Для повышения надежности электро- и теплоснабжения потребителей электростанции объединяются на параллельную работу в энергосистемы.

Э н е р г о с и с т е м а — это совокупность электростанций, электрических и тепловых сетей, соединенных между собой и связанных общностью режима в непрерывном процессе производства, преобразования и распределения электрической и тепловой энергии при общем управлении этим режимом.

Электрической частью энергосистемы называется совокупность электроустановок электростанций и электрических сетей энергосистемы.

На рис. изображена электрическая схема энергосистемы с четырьмя генерирующими источниками: двумя ТЭЦ, ГЭС и ГРЭС, двумя районными (системными) подстанциями (ПС) А и Б и несколькими потребительскими подстанциями, объединенными на параллельную работу линиями 35, 110, 220 кВ.

Межсистемные связи осуществляются линиями W_1 500 кВ. Местные распределительные сети выполнены на напряжении 6-10 кВ. Подстанция Б с двумя синхронными компенсаторами GC является узловой подстанцией системы. Подстанция А с двумя автотрансформаторами и линиями 500 кВ является системной подстанцией.

Подстанция В — проходная, через шины 110 кВ осуществляются транзит мощности и связь ТЭЦ 1 с ГРЭС. Подстанция Д присоединена отпайками к транзитной линии W_{11} . Однотрансформаторная ПС Ж включена в кольцо линий 35 кВ.

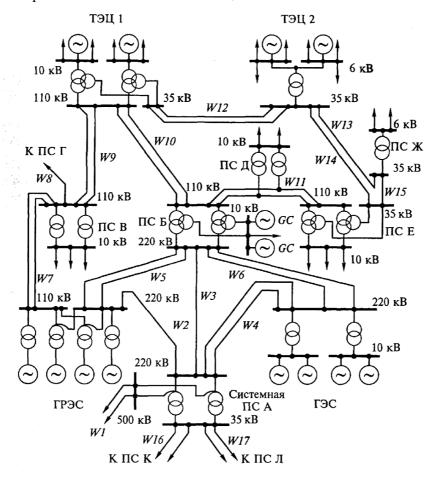


Рис. Принципиальная схема энергосистемы

Создание энергосистем имеет большое значение и дает ряд технических и экономических преимуществ:

позволяет увеличивать темпы развития энергетики и осуществлять это развитие наиболее экономично для современных условий, т. е. за счет преобладающего ввода крупных ТЭС и АЭС с блочными агрегатами большой мощности;

повышает надежность электроснабжения потребителей; обеспечивает повышение экономичности производства и распределения электроэнергии в целом по энергосистеме за счет наиболее рационального распределения нагрузки между электростанциями при наилучшем использовании энергоресурсов (топлива, водной энергии и т.д.);

улучшает качество электроэнергии, т. е. обеспечивает поддержание напряжения и частоты в пределах, нормированных ГОСТ, так как колебания нагрузки воспринимаются большим числом агрегатов;

позволяет снизить суммарный резерв мощности по энергосистеме, который должен составлять 12—20 % общей мощности агрегатов энергосистемы.

Нагрузка энергосистемы в течение суток меняется в зависимости от нагрузки присоединенных потребителей (рис.).

Распределение нагрузок между электростанциями, входящими в систему, должно обеспечить наиболее эффективную работу станций и наименьшие потери от перетоков в сетях. Базовую часть графика ($P < P_{HI\min}$) покрывают: ГЭС в соответствии с пропуском

воды, необходимым по условиям судоходства и санитарным требованиям (во время паводка участие ГЭС в базовой части увеличивают, чтобы не сбрасывать бесполезно воду); АЭС, регулирование мощности которых затруднительно; ТЭЦ, работающие по тепловому графику.

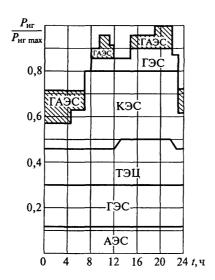


Рис. 1.5. Суточный график нагрузки энергосистемы и графики электростанций, участвующих в выработке электроэнергии

Пиковая часть графика ($P > P_{H\Gamma \min}$) покрывается ГАЭС и ГЭС средней мощности. В провале графика (от 0 до 7 ч) ГАЭС работает в насосном режиме, накапливая воду в напорном водохранилище, а в максимум нагрузки (от 8 до 22 ч) ГАЭС работает в генераторном режиме, покрывая пик нагрузки. Выровненная ГАЭС нагрузка покрывается КЭС, работа которых наиболее экономична при равномерной нагрузке.

Распределение нагрузки системы рассчитывается группой режимов диспетчерского управления.

Теплофикационные электростанции теплоэлектроцентрали (ТЭЦ)

Этот вид электростанций предназначен для централизованного снабжения промышленных предприятий и городов электроэнергией и теплом. Являясь, как и КЭС, тепловыми электростанциями, они отличаются от последних использованием тепла «отработавшего» в турбинах пара для нужд промышленного производства, а также для отопления, кондиционирования воздуха и горячего водоснабжения. При такой комбинированной выработке электроэнергии и тепла достигается значительная экономия топлива по сравнению с раздельным энергоснабжением, т. е. выработкой электроэнергии на КЭС и получением тепла от местных котельных. Поэтому ТЭЦ получили широкое распространение в районах (городах) с большим потреблением тепла и электроэнергии. В целом на ТЭЦ производится около 25 % всей электроэнергии, вырабатываемой в РФ.

Особенности технологической схемы ТЭЦ показаны на рис. а.

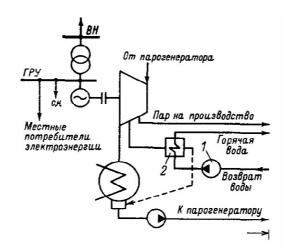


Рис. *а.* Особенности технологической схемы ТЭЦ: 1 — сетевой насос; 2 — сетевой подогреватель

Специфика электрической части ТЭЦ определяется расположением электростанции вблизи центров электрических нагрузок. В этих условиях часть мощности может выдаваться в местную сеть Непосредственно на генераторном напряжении. С этой целью на электростанции создается обычно генераторное распределительное устройство (ГРУ). Избыток мощности выдается в энергосистему на повышенном напряжении.

Существенной особенностью ТЭЦ является также повышенная мощность теплового оборудования по сравнению с электрической мощностью электростанции. Это обстоятельство предопределяет больший относительный расход электроэнергии на собственные нужды, чем на КЭС.

Размещение ТЭЦ преимущественно в крупных промышленных центрах, повышенная мощность теплового оборудования в сравнении с электрическим повышают требования к защите окружающей среды. Так, для уменьшения выбросов ТЭЦ целесообразно, где это возможно, использовать в первую очередь газообразное или жидкое топливо, а также высококачественные угли.

Размещение основного оборудования станций данного типа, особенно для блочных ТЭЦ, соответствует таковому для КЭС. Особенности имеют лишь те станции, у которых предусматривается большая выдача электроэнергии с генераторного распределительного устройства местному потребителю. В этом случае для ГРУ предусматривается специальное здание, размещаемое вдоль стены машинного зала (рис. δ).

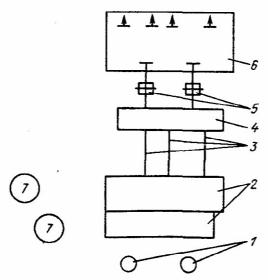


Рис. б. Вариант размещения основного оборудования на площадке ТЭЦ

с отдельным зданием ГРУ:

1 — дымовые трубы; 2—главный корпус; 3 — многоамперные токопроводы; 4 — здание ГРУ; 5 — трансформатор связи; 6 — ОРУ; 7 градирни (склад топлива для ТЭЦ не показан).

На современных электростанциях применяют синхронные генераторы трехфазного переменного тока. Первичными двигателями для них являются паровые турбины или гидротурбины. В первом случае это турбогенератор, а во втором — гидрогенератор.

Паровые турбины, являющиеся первичными двигателями, наиболее экономичны при высоких скоростях, но здесь конструкторов ограничивает строгая связь для синхронных генераторов:

$$n=\frac{60f}{p},$$

где f — частота сети, p — число пар полюсов генератора. При принятой стандартной частоте 50 Γ ц и наименьшем возможном числе пар полюсов p=1 наибольшее число оборотов определяется так:

$$n = 60.50/1 = 3000 \text{ ob/muh.}$$

Большинство турбогенераторов быстроходные, т.е. имеют максимальное число оборотов 3000. Если бы наши электроустановки были рассчитаны на частоту 60 Гц, то номинальное число оборотов соответственно увеличилось бы до 3600.

Генераторы небольших мощностей, соединенные с дизелями и другими поршневыми машинами, изготовляются на 750 - 1500 об/мин.

Номинальный (нормальный) режим работы генераторов — это длительно допустимый режим с параметрами, указанными в паспорте генератора.

Номинальное напряжение — это междуфазное напряжение обмотки статора в номинальном режиме. Согласно ГОСТ 533—85 установлена следующая шкала стандартных напряжений: 3,15; 6,3; 10,5; (13,8); (15,75); (18); 20 и 24 кВ.

Допускается работа генератора с номинальной мощностью при отклонении напряжения 5 %. Длительно допустимое в эксплуатации напряжение не должно превышать 110% номинального, но при том ток ротора не должен превышать номинального значения.

Номинальная активная мощность генератора, МВт,

$$P_{\text{HOM}} = \sqrt{3}U_{\text{HOM}}I_{\text{HOM}}\cos\varphi,$$

полная мощность, МВ А,

$$S_{\text{HOM}} = \sqrt{3}U_{\text{HOM}}I_{\text{HOM}},$$

где U_{HOM} , I_{HOM} - номинальные напряжение и ток; $cos \varphi$ — номинальный коэффициент мощности.

Согласно ГОСТ 533—85Е принята шкала номинальных мощностей турбогенераторов: 2,5; 4; 6; 12; 32; 63; 110; 160; 220; 320; 500; 800; 1000; 1200; 1600; 2000 МВт.

Номинальный сор принят равным: 0.8 -для генераторов до 100 MBт; 0.85 -для турбогенераторов до 500 MBт и гидрогенераторов до 300 MBт; 0.9 -для более мощных генераторов.

Обмотка ротора синхронного генератора питается постоянным током, который создает магнитный поток возбуждения. Обмотка ротора, источник постоянного тока, устройства регулирования и коммутации составляют систему возбуждения генератора.

Системы возбуждения должны:

обеспечивать надежное питание обмотки ротора в нормальных и аварийных режимах; допускать регулирование напряжения возбуждения в достаточных пределах;

обеспечивать быстродействующее регулирование возбуждения с высокими кратностями форсирования в аварийных режимах;

осуществлять быстрое развозбуждение и в случае необходимости производить гашение поля в аварийных режимах.

Важнейшими характеристиками систем возбуждения являются:

быстродействие, определяемое скоростью нарастания напряжения на обмотке ротора при форсировке и отношение потолочного напряжения к номинальному напряжению возбуждения (так называемая кратность форсировки).

В зависимости от источника питания системы возбуждения разделяются на системы независимого возбуждения и самовозбуждения.

Широкое распространение также получила система возбуждения с машинным возбудителем 50 Гц и статическими выпрямителями (статическая тиристорная система независимого возбуждения), а также бесщеточная система возбуждения.

Простейшим устройством регулирования напряжения является схема форсировки возбуждения, которая широко применялась в свое время на генераторах, имеющих электромашинное возбуждение.

Автоматическое регулирование возбуждения (АРВ) устанавливается на всех генераторах мощностью 3 МВт и более.

Режимы работы генераторов

Параллельная работа генераторов. Как правило, генераторы включаются в сеть способом точной синхронизации при введенной блокировке от несинхронного включения.

При ликвидации аварий в энергосистеме турбогенераторы мощностью до 220 МВт включительно и все гидрогенераторы разрешается включать на параллельную работу способом самосинхронизации. Генераторы большей мощности разрешается включать этим

способом, если
$$\frac{I_{II0}}{I_{HOM}} \ge 3$$
 , где I_{II0} — периодическая составляющая тока при включении.

При точной синхронизации соблюдаются условия:

напряжение на выводах генератора должно быть равно напряжению сети;

частота включаемого генератора должна быть равна частоте сети;

включение должно произойти в момент совпадения фаз генератора и сети.

Для соблюдения этих условий на регуляторы напряжения и скорости генераторов воздействуют вручную или автоматически.

Недостатком этого метода является сложность процесса включения и его длительность.

При самосинхронизации синхронный генератор разворачивают до частоты вращения, близкой к синхронной, и невозбужденным включают в сеть. При этом обмотка возбуждения замыкается на разрядный резистор, используемый для гашения поля, либо на специально предусмотренный для этой дели резистор. После включения генератора в сеть подается импульс на включение АГП, и генератор возбуждается.

При включении генератора в нем возникает ток

$$I_{\pi 0} = \frac{U_{\rm c}}{x_d' + x_{\rm cMC}},$$

где U_C — напряжение сети; x_d^\prime — переходное сопротивление генератора; x_{CMC} — сопротивление системы.

Этот ток меньше тока КЗ на выводах генератора, тем не менее, возникающие электродинамические силы воздействуют на обмотки генератора и его конструктивные части. Возникающий асинхронный момент воздействует на ротор, и машина втягивается в сиихронизм за 2—3 с.

Преимущества метода самосинхронизации:

значительное упрощение операции включения;

быстрое включение генератора в сеть, что очень важно при аварии в системе;

возможность включения во время снижения напряжения и частоты сети; отсутствие опасности повреждения машины.

Недостатком метода самосинхронизации является значительная посадка напряжения на шинах генераторного напряжения в момент включения, поэтому этот способ синхронизации не рекомендуется для электростанций с общими сборными шинами генераторного напряжения.

Номинальный режим работы генератора характеризуется номинальными параметрами: активной нагрузкой P_{HOM} , напряжением U_{HOM} , коэффициентом мощности $cos\phi$, частотой f, температурой охлаждающей среды на входе. Работа с номинальными параметрами может продолжаться как угодно длительно.

В реальных условиях нагрузка генератора меняется, а это влечет за собой изменение частоты, напряжения и других параметров. Если эти отклонения не превышают допустимых требований по Правилам технической эксплуатации (ПТЭ), то режим считается нормальным.

Перегрузка генераторов по току статора допускается кратковременно при авариях в энергосистеме. Величина допустимой перегрузки зависит от длительности и типа охлаждения статора. Допустимая перегрузка по току возбуждения генераторов и синхронных компенсаторов с косвенным охлаждением обмоток определяется допустимой перегрузкой статора.

Асинхронный режим может возникнуть при несинхронном вращении одного или нескольких генераторов, появляющемся при потере возбуждения или нарушении устойчивости работы генераторов.

При потере возбуждения генератор переходит из синхронного в устойчивый асинхронный режим с постоянным скольжением и отдачей некоторой активной мощности в систему. При этом возбуждение осуществляется за счет потребления реактивной мощности из системы. В этом случае необходимо восстановить возбуждение генератора или перейти на резервное возбуждение.

Для гидрогенераторов работа в асинхронном режиме без возбуждения запрещается.

Во втором случае при нарушении устойчивости параллельной работы одного или нескольких генераторов возбуждение сохраняется, но нарушается синхронизм работы, возникает переменное скольжение, машины работают то в двигательном, то в генераторном режиме. Это является тяжелой аварией и может привести к полному распаду системы. Такой режим согласно требованиям ПТЭ запрещается.

Несимметричные режимы работы генераторов могут быть вызваны обрывом или отключением одной фазы, однофазной нагрузкой (электротяга, плавильные печи и др.). При несимметричной нагрузке возникают токи обратной последовательности, которые создают дополнительный нагрев обмоток и вибрацию машин. Такой режим допускается длительно, если несимметричные нагрузки по фазам не превышают 15—20 % для гидрогенераторов с косвенным охлаждением, 10% для гидрогенераторов с непосредственной системой охлаждения и для турбогенераторов всех типов.

Силовые трансформаторы и их параметры

Силовые трансформаторы предназначены для преобразования электроэнергии переменного тока с одного напряжения на другое. Наибольшее распространение получили трехфазные трансформаторы, так как потери в них на 12— 15 % ниже, а расход активных материалов и стоимость на 20—25 % меньше, чем в группе трех однофазных трансформаторов такой же суммарной мощности.

Предельная единичная мощность трансформаторов ограничивается массой, размерами, условиями транспортировки.

Трехфазные трансформаторы на напряжение 220 кВ изготовляют мощностью до 1000 МВ на 330 кВ — 1250 МВА, на 500 кВ — 1000 МВА.

Однофазные трансформаторы применяются, если невозможно изготовление трехфазных трансформаторов необходимой мощности или затруднена их транспортировка. Наибольшая мощность группы однофазных трансформаторов напряжением 500 кВ составляет 3х533 МВА, напряжением 750 кВ — 3х417 МВА, напряжением 1150 кВ — 3х667 МВА.

По количеству обмоток различного напряжения на каждую фазу трансформаторы разделяются на двухобмоточные и трехобмоточные. Кроме того, обмотки одного и того же напряжения, обычно низшего, могут состоять из двух и более параллельных ветвей, изолированных друг от друга и от заземленных частей. Такие трансформаторы называют трансформаторами с расщепленными обмотками. Обмотки высшего, среднего и низшего напряжения принято сокращенно обозначать соответственно ВН, СН, НН.

Трансформаторы с расщепленными обмотками НН обеспечивают возможность присоединения нескольких генераторов к одному повышающему трансформатору. Такие укрупненные энергоблоки позволяют упростить схему распределительного устройства (РУ) 330—500 кВ. Трансформаторы с расщепленной обмоткой НН получили широкое распространение в схемах питания собственных нужд крупных ТЭС с блоками 200—1200 МВт, а также на понижающих подстанциях с целью ограничения токов КЗ.

К основным параметрам трансформатора относятся: номинальные мощность, напряжение, ток; напряжение КЗ; ток холостого хода; потери холостого хода и КЗ.

Номинальной мощностью трансформатора называется указанное в заводском паспорте значение полной мощности, на которую непрерывно может быть нагружен трансформатор в номинальных условиях места установки и охлаждающей среды при номинальных частоте и напряжении.

Номинальная мощность для двухобмоточного трансформатора — это мощность каждой из его обмоток. Трехобмоточные трансформаторы могут быть выполнены с обмотками как одинаковой, так и разной мощности. В последнем случае за номинальную принимается наибольшая из номинальных мощностей отдельных обмоток трансформатора.

За номинальную мощность автотрансформатора принимается номинальная мощность каждой из сторон, имеющих между собой автотрансформаторную связь («проходная мощность»).

Номинальные напряжения обмоток — это напряжения первичной и вторичной обмоток при холостом ходе трансформатора. Для трехфазного трансформатора — это его линейное (междуфазное) напряжение. Для однофазного трансформатора, предназначенного для включения в трехфазную группу, соединенную в звезду, — это $U/\sqrt{3}$. При работе трансформатора под нагрузкой и подведении к зажимам его первичной обмотки номинального напряжения на вторичной обмотке напряжение меньше номинального на величину потери напряжения в трансформаторе. Коэффициент трансформации трансформатора n определяется отношением номинальных напряжений обмоток высшего и низшего напряжений. В трехобмоточных трансформаторах определяется коэффициент трансформации каждой пары обмоток: ВН и HH; ВН и CH; CH и HH.

Номинальными токами трансформатора называются указанные в заводском паспорте значения токов в обмотках, при которых допускается длительная нормальная работа трансформатора. Номинальный ток любой обмотки трансформатора определяют по ее номинальной мощности и номинальному напряжению.

Напряжение короткого замыкания — это напряжение, при подведении которого к одной из обмоток трансформатора при замкнутой накоротко другой обмотке в ней проходит ток, равный номинальному.

Ток холостого хода характеризует активные и реактивные потери в стали и зависит от магнитных свойств стали, конструкции и качества сборки магнитопровода и от магнитной индукции. Ток холостого хода выражается в процентах номинального тока трансформатора.

Потери холостого хода и короткого замыкания определяют экономичность работы трансформатора. Потери холостого хода состоят из потерь в стали на перемагничивание и вихревые токи.

Потери короткого замыкания состоят из потерь в обмотках при протекании по ним токов нагрузки и добавочных потерь в обмотках и конструкциях трансформатора. Добавочные потери вызваны магнитными полями рассеяния, создающими вихревые токи в крайних нитках обмотки и конструкциях трансформатора (стенки бака, ярмовые балки и др.). Чем меньше мощность трансформатора, тем больше относительные потери в нем.

В сетях энергосистем установлено большое количество трансформаторов малой и средней мощности, поэтому общие потери электроэнергии во всех трансформаторах страны значительны и очень важно для экономии электроэнергии совершенствовать конструкции трансформаторов с целью дальнейшего уменьшения значений потерь.

Нагрузочная способность силовых трансформаторов

При выборе мощности трансформаторов нельзя руководствоваться только их номинальной мощностью, так как в реальных условиях температура охлаждающей среды, условия установки трансформатора могут быть отличными от принятых. Нагрузка трансформатора меняется в течение суток, и если мощность выбрать по максимальной нагрузке, то в периоды ее спада трансформатор будет не загружен, т. е. недоиспользована его мощность. Опыт эксплуатации показывает, что трансформатор может работать часть суток с перегрузкой, если в другую часть его нагрузка меньше номинальной. Критерием различных режимов является износ изоляции трансформатора.

Нагрузочная способность трансформатора — это совокупность допустимых нагрузок и перегрузок.

Допустимая нагрузка — это длительная нагрузка, при которой расчетный износ изоляции обмоток от нагрева не превосходит износ, соответствующий номинальному режиму работы.

Перегрузка трансформатора — режим, при котором расчетный износ изоляции обмоток превосходит износ, соответствующий номинальному режиму работы. Такой режим возникает, если нагрузка окажется больше номинальной мощности трансформатора или температура охлаждающей среды больше принятой расчетной.

Допустимые систематические нагрузки трансформатора больше его номинальной мощности возможны за счет неравномерности нагрузки в течение суток. На рис. изображен суточный график нагрузки, из которого видно, что в ночные, утренние и дневные часы трансформатор недогружен, а во время вечернего максимума перегружен.

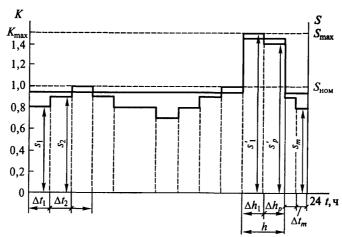


Рис. Построение двухступенчатого графика по суточному графику нагрузки трансформатора

При недогрузке износ изоляции мал, а во время перегрузки значительно увеличивается. Максимально допустимая систематическая нагрузка определяется при условии, что наибольшая температура обмотки 140°С, наибольшая температура масла в верхних слоях 95°С и износ изоляции за время максимальной нагрузки такой же, как при работе трансформатора при постоянной номинальной нагрузке, когда температура наиболее нагретой точки не превышает 98°С (ГОСТ 14209—85). Для подсчета допустимой систематической нагрузки действительный график преобразуется в двухступенчатый (см. рис.).

Коэффициент начальной нагрузки эквивалентного графика определяется по выражению

$$K_{1} = \frac{1}{S_{\text{HOM}}} \sqrt{\frac{s_{1}^{2} \Delta t_{1} + s_{2}^{2} \Delta t_{2} + \ldots + s_{m}^{2} \Delta t_{m}}{\Delta t_{1} + \Delta t_{2} + \ldots + \Delta t_{m}}},$$

где S_1, S_2, S_m - значения нагрузки в интервалах $\Delta t_1, \Delta t_2, \Delta t_m$.

Коэффициент максимальной нагрузки в интервале $\boldsymbol{h} = \Delta \boldsymbol{h}_1 + \Delta \boldsymbol{h}_2 + ... + \Delta \boldsymbol{h}_p$

$$K_2' = \frac{1}{S_{\text{HOM}}} \sqrt{\frac{(s_1')^2 \Delta h_1 + (s_2')^2 \Delta h_2 + ... + (s_p')^2 \Delta h_p}{\Delta h_1 + \Delta h_2 + ... + \Delta h_p}}.$$

Если $K_2' \ge 0,9K_{\max}$, то принимают $K_2' \ge K_2$, если $K_2' < 0,9K_{\max}$, то принимают $K_2 = 0,9K_{\max}$.

Зная среднюю температуру охлаждающей среды за время действия графика систему охлаждения трансформатора (М, Д, ДЦ, Ц), по таблицам, приведенным в ГОСТ 14209—85 (для трансформатора до 100 MBA), определяют допустимость относительной нагрузки *К*2 и ее продолжительность.

Нагрузка более 1,5 номинальной, должна быть согласована с заводом-изготовителем. Нагрузка более 2 номинальной, не допускается.

Аварийная перегрузка разрешается в аварийных случаях, например при выходе из строя параллельно включенного трансформатора.

Допустимая аварийная перегрузка определяется предельно допустимыми температурами обмотки (140° С для трансформаторов напряжением выше 110~kB и 160° С для остальных трансформаторов) и температурой масла в верхних слоях (115° С).

Аварийные перегрузки вызывают повышенный износ витковой изоляции, что может привести к сокращению нормированного срока службы трансформатора, если повышенный износ впоследствии не компенсирован нагрузкой с износом изоляции ниже нормального.

Анализируя приведенные в ГОСТ 14209—85 таблицы допустимых перегрузок, можно сделать вывод, что трансформаторы с системами охлаждения M, Д, ДЦ и Ц при первоначальной нагрузке допускают перегрузку на 40% в течение 6 ч при температуре охлаждающего воздуха не более 20 °C.

Синхронные и статические компенсаторы

Потребители электрической энергии, кроме активной мощности, потребляют от генераторов системы реактивную мощность, которая затрачивается на создание магнитных полей, необходимых для работы асинхронных двигателей, индукционных печей, трансформаторов и других электроприемников.

На создание реактивной мощности топливо практически не расходуется. Однако передача реактивной мощности от генераторов к потребителям связана с дополнительными потерями (мощности и напряжения) в трансформаторах и сетях. Потери активной энергии в сетях оплачиваются потребителями, что ложится на них немалым бременем. Потери напряжения приводят к снижению качества энергии, получаемой электроприемниками.

Поэтому для получения реактивной мощности экономически выгодно устанавливать источники реактивной мощности вблизи потребителей. Такими источниками являются синхронные и статические компенсаторы.

Синхронные компенсаторы

Синхронный компенсатор (СК) - это синхронная машина, работающая в двигательном режиме без нагрузки на валу при изменяющемся токе возбуждения.

В перевозбужденном режиме ЭДС обмотки статора больше напряжения сети. Под действием разности напряжений в статоре СК возникает ток, отстающий от вектора напряжения на 90°. Компенсатор в этом режиме отдает реактивную мощность в сеть. В недовозбужденном режиме ЭДС меньше напряжения сети, в статоре СК возникает ток, опережающий вектор напряжения на 90°, т.е. СК будет потреблять реактивную мощность из сети. Синхронные компенсаторы не несут активной нагрузки на валу, поэтому их конструкция облегчена. Компенсаторы выполняются тихоходными (750— 1000 об/мин) с горизонтальным валом и явнополюсным ротором.

Синхронный компенсатор характеризуется номинальной мощностью, напряжением, током статора, частотой и номинальным током ротора. Шкала мощностей определяется по ГОСТ 609—84. Номинальное напряжение синхронного компенсатора на 5—10 % выше номинального напряжения сети.

В зависимости от тока возбуждения синхронный компенсатор может работать в режимах перевозбуждения и недовозбуждения, генерировать или потреблять реактивную мощность. Регулирование тока возбуждения осуществляется специальными схемами АРВ.

Синхронные генераторы могут работать в режиме синхронного компенсатора, если закрыть доступ пара (или воды) в турбину. В таком режиме перевозбужденный турбогенератор начинает потреблять небольшую активную мощность из сети и отдает реактивную мощность в сеть.

Перевод гидрогенераторов в режим синхронных компенсаторов производится без остановки агрегатов, достаточно освободить камеру гидротурбины от воды.

Статические компенсаторы

Статические компенсаторы — это батареи конденсаторов и другие источники реактивной мощности (ИРМ), не имеющие вращающихся частей.

На подстанциях промышленных предприятий вблизи потребителей реактивной мощности устанавливаются батареи статических конденсаторов (БК). Конденсаторы могут быть масляными или соволовыми на напряжение от 220 В до 10,5 кВ для наружной и внутренней установки. Единичная мощность конденсаторов от 10 до 125 квар, для получения необходимой мощности конденсаторы соединяются параллельно. В энергосистемах БК на напряжение б и 10 кВ устанавливаются в узлах сети, на подстанциях подключаются (через выключатель) к шинам 6 и 10 кВ.

Если к сети подключено одно и то же число банок конденсаторов (нерегулируемая БК), то в режиме минимальных нагрузок возможна перекомпенсация реактивной мощности, которая вызовет повышение напряжения и дополнительные потери в сети. Это приводит к необходимости регулирования количества включенных банок конденсаторов. Такое регулирование может быть одно- и многоступенчатым, когда БК разделена на секции. Включение и отключение части секций производится автоматически или вручную.

Достоинствами БК являются их простота, а недостатками — зависимость реактивной мощности от напряжения, невозможность потребления реактивной мощности, ступенчатое регулирование.

Более совершенными являются установки статических тиристорных компенсаторов, в которых осуществляется плавное регулирование тока. В установке применены нерегулируемые емкости (БК), которые вырабатывают реактивную мощность (емкостную), и регулируемая с помощью тиристорных ключей индуктивность. Управляющие электроды тиристоров присоединены к схеме автоматического регулирования. Достоинствами этой установки являются отсутствие вращающихся частей, быстродействие и плавность регулирования.

Совершенствование тиристоров и уменьшение их стоимости приведет к тому, что ИРМ будет целесообразнее, чем синхронные компенсаторы.

Асинхронизированные турбогенераторы ТАП-110, АСТГ-200, ТЗВА-320 могут применяться в качестве управляемого ИРМ при соответствующем регулировании тока возбуждения.

Общие сведения о схемах электроустановок

Главная схема электрических соединений электростанции (подстанции) — это совокупность основного электрооборудования (генераторы, трансформаторы, линии), сборных шин, коммутационной и другой первичной аппаратуры со всеми выполненными между ними в натуре соединениями.

Выбор главной схемы является определяющим при проектировании электрической части электростанции (подстанции), так как он определяет полный состав элементов и связей между ними. Выбранная главная схема является исходной при составлении принципиальных схем электрических соединений, схем собственных нужд, схем вторичных соединений, монтажных схем и т.д.

На чертеже главные схемы изображаются в однолинейном исполнении при отключенном положении всех элементов установки. В некоторых случаях допускается изображать отдельные элементы схемы в рабочем положении.

Все элементы схемы и связи между ними изображаются в соответствии со стандартами единой системы конструкторской документации (ЕСКД).

В условиях эксплуатации наряду с принципиальной, главной схемой, применяются упрощенные оперативные схемы, в которых указывается только основное оборудование. Дежурный персонал каждой смены заполняет оперативную схему и вносит в нее

необходимые изменения в части положения выключателей и разъединителей, происходящие во время дежурства.

При проектировании электроустановки до разработки главной схемы составляется структурная схема выдачи электроэнергии (мощности), на которой показываются основные функциональные части электроустановки (распределительные устройства, трансформаторы, генераторы) и связи между ними. Структурные схемы служат для дальнейшей разработки более подробных и полных принципиальных схем, а также для общего ознакомления с работой электроустановки.

При выборе схем электроустановок должны учитываться следующие факторы:

- значение и роль электростанции или подстанции для энергосистемы. Электростанции, работающие параллельно в энергосистеме, существенно различаются по своему назначению. Одни из них, базисные, несут основную нагрузку, другие, пиковые, работают неполные сутки во время максимальных нагрузок, третьи несут электрическую нагрузку, определяемую их тепловыми потребителями (ТЭЦ). Разное назначение электростанций определяет целесообразность применения разных схем электрических соединений даже в том случае, когда количество присоединений одно и то же. Подстанции могут предназначаться для питания отдельных потребителей или крупного района, для связи частей энергосистемы или различных энергосистем. Роль подстанций определяет ее схему.
- положение электростанции или подстанции в энергосистеме, схемы и напряжения прилегающих сетей. Шины высшего напряжения электростанций и подстанций могут быть узловыми точками энергосистемы, осуществляя объединение на параллельную работу нескольких электростанций. В этом случае через шины происходит переток мощности из одной части энергосистемы в другую транзит мощности. При выборе схем таких электроустановок в первую очередь учитывается необходимость сохранения транзита мощности. Подстанции могут быть тупиковыми, проходными, отпаечными; схемы таких подстанций будут различными даже при одном и том же числе трансформаторов одинаковой мощности.
- схемы распредустройств 6— $10~{\rm kB}$ зависят от схем электроснабжения потребителей: питания по одиночным или параллельным линиям, наличия резервных вводов у потребителей и т. п.
- перспектива расширения и промежуточные этапы развития электростанции, подстанции и прилегающего участка сети. Схема и компоновка распределительного устройства должны выбираться с учетом возможного увеличения количества присоединений при развитии энергосистемы. Поскольку строительство крупных электростанций ведется очередями, то при выборе схемы электроустановки учитывается количество агрегатов и линий, вводимых в первую, вторую, третью очереди и при окончательном ее развитии. Для выбора схемы важно учесть количество линий высшего и среднего напряжения, степень их ответственности, поэтому на различных этапах развития энергосистемы схема может быть разной. Поэтапное развитие схемы распределительного устройства электростанции или подстанции не должно сопровождаться коренными переделками. Это возможно лишь в том случае, когда при выборе схемы учитываются перспективы ее развития. При выборе схем электроустановок учитывается допустимый уровень токов КЗ. При необходимости решаются вопросы секционирования сетей, деления электроустановки на независимо работающие части, установки специальных токоограничивающих устройств.

Из сложного комплекса предъявляемых условий, влияющих на выбор главной схемы электроустановки, можно выделить основные требования к схемам:

надежность электроснабжения потребителей;

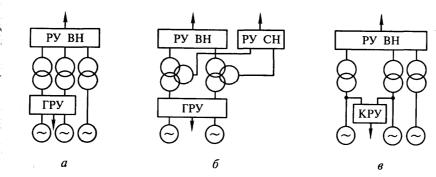
приспособленность к проведению ремонтных работ; оперативная гибкость электрической схемы;

экономическая целесообразность.

Надежность — свойство электроустановки, участка электрической сети или энергосистемы в целом обеспечить бесперебойное электроснабжение потребителей электроэнергией нормировано. Повреждение оборудования в любой части схемы по возможности не должно нарушать электроснабжение, выдачу электроэнергии в энергосистему, транзит мощности через шины. Надежность схемы должна соответствовать характеру (категории) потребителей, получающих питание от данной электроустановки.

Надежность можно оценить частотой и продолжительностью нарушения электроснабжения потребителей и относительным аварийным резервом, который необходим для обеспечения заданного уровня безаварийной работы энергосистемы и ее отдельных узлов.

Приспособленность электроустановки к проведению ремонтов возможностью проведения ремонтов без нарушения или ограничения электроснабжения потребителей. Есть схемы, в которых для ремонта выключателя надо отключать данное присоединение на все время ремонта; в других схемах требуется лишь временное отключение отдельных присоединений для создания специальной ремонтной схемы; в третьих — ремонт выключателя производится без нарушения электроснабжения даже на короткий срок. Таким образом, приспособленность ДЛЯ проведения ремонтов рассматриваемой схемы онжом оценить количественно частотой средней И продолжительностью отключений потребителей и источников питания для ремонтов оборудования.


Оперативная гибкость электрической схемы определяется ее приспособленностью для эксплуатационных режимов проведения необходимых И переключений. Наибольшая оперативная гибкость схемы обеспечивается, если оперативные переключения в ней производятся выключателями или другими коммутационными аппаратами с дистанционным приводом. Если все операции осуществляются дистанционно, а еще лучше средствами автоматики, то ликвидация аварийного состояния значительно Оперативная гибкость оценивается количеством, ускоряется. сложностью продолжительностью оперативных переключений.

Экономическая целесообразность схемы оценивается приведенными затратами, включающими в себя затраты на сооружение установки — капиталовложения, ее эксплуатацию и возможный ущерб от нарушения электроснабжения. Подробно методика подсчета приведенных затрат изложена ниже.

Структурные схемы электростанций и подстанций

Структурная электрическая схема зависит от состава оборудования (числа генераторов, трансформаторов), распределения генераторов и нагрузки между распределительными устройствами разного напряжения и связи между этими РУ.

На рис. показаны структурные схемы ТЭЦ.

Если ТЭЦ сооружается вблизи потребителей электроэнергии 6—10 кВ, то необходимо иметь распределительное устройство генераторного напряжения (ГРУ). Количество генераторов, присоединяемых к ГРУ, зависит от нагрузки 6— 10 кВ. На рис. a два генератора

присоединены к ГРУ, а один, как правило, более мощный, — к распределительному устройству высокого напряжения (РУ ВН). Линии 110—220 кВ, присоединенные к этому РУ, осуществляют связь с энергосистемой.

Если вблизи ТЭЦ предусматривается сооружение энергоемких производств, то питание их может осуществляться по ВЛ 35—110 кВ. В этом случае на ТЭЦ предусматривается распределительное устройство среднего напряжения (РУ СН) (см. рис. δ). Связь между РУ разного напряжения осуществляется с помощью трехобмоточных трансформаторов или автотрансформаторов.

При незначительной нагрузке (6—10 кВ) целесообразно блочное соединение генераторов с повышающими трансформаторами без поперечной связи на генераторном напряжении, что уменьшает токи КЗ и позволяет вместо дорогостоящего ГРУ применить комплектное РУ для присоединения потребителей 6— 10 кВ (см. рис. ϵ). Мощные энергоблоки 100—250 МВт присоединяются к РУ ВН без отпайки для питания потребителей.

Выбор числа и мощности трансформаторов связи на ТЭЦ

На электростанциях, имеющих шины генераторного напряжения, предусматривается установка трансформаторов для связи этих шин с шинами повышенного напряжения. Такая связь необходима для выдачи избыточной мощности в энергосистему в нормальном режиме, когда работают все генераторы, и для резервирования питания нагрузок на напряжении 6-10 кВ при плановом или аварийном отключении одного генератора.

Число трансформаторов связи обычно не превышает двух и выбирается из следующих соображений. При трех или более секциях сборных шин ГРУ устанавливаются два трансформатора связи. Это позволяет создать симметричную схему и уменьшить перетоки мощности между секциями при отключении одного генератора. При выдаче в энергосистему от ТЭЦ значительной мощности, соизмеримой с мощностью вращающегося резерва энергосистемы (10-12% общей установленной мощности энергосистемы), также необходима установка двух трансформаторов. В этом случае обеспечивается надежная выдача избыточной мощности в энергосистему.

В остальных случаях, когда ГРУ состоит из одной (двух) секций и выдаваемая в энергосистему мощность невелика, допустима установка одного трансформатора связи. Один трансформатор связи ГРУ с РУ высокого напряжения также может быть установлен, если на ТЭЦ один или два генератора, например для первой очереди станции.

Трансформаторы связи должны обеспечить выдачу в энергосистему всей активной и реактивной мощности генераторов за вычетом нагрузок собственных нужд и нагрузок распределительного устройства генераторного напряжения в период минимума нагрузки, а также выдачу в сеть активной мощности, вырабатываемой по тепловому графику в нерабочие дни.

Мощность трансформаторов связи выбирается с учетом возможности питания потребителей в летний период, когда при снижении тепловых нагрузок может потребоваться остановка теплофикационных агрегатов. Также учитывается необходимость резервирования питания нагрузок в период максимума при выходе из строя наиболее мощного генератора, присоединенного к ГРУ.

Мощность, передаваемая через трансформатор, определяется с учетом различных значений $\cos \varphi$ генераторов, нагрузки и потребителей собственных нужд:

$$S_{pacy} = \sqrt{(\Sigma P_{\Gamma} - P_{H} - P_{CH})^{2} + (\Sigma Q_{\Gamma} - Q_{H} - Q_{CH})^{2}},$$

где $\Sigma P_{\Gamma}, \Sigma Q_{\Gamma}$ – активная суммарная и реактивная мощность генераторов, присоединенных к сборным шинам;

 $\Sigma P_{n}, \Sigma Q_{n}$ – активная и реактивная нагрузка на генераторном напряжении;

 $\Sigma P_{\mathit{CH}}, \Sigma Q_{\mathit{CH}}$ – активная и реактивная нагрузка для собственных нужд.

Передаваемая через трансформатор связи мощность изменяется в зависимости от режима работы генераторов и графика нагрузки потребителей.

Эту мощность можно определить на основании суточного графика выработки мощности генераторами и графиков нагрузки потребителей и собственных нужд ТЭЦ. При отсутствии таких графиков определяют мощность, передаваемую через трансформатор, в трех режимах: минимальных нагрузок $P_{n,min}$, $Q_{n,min}$ находят S_{1pacq} , максимальных нагрузок $P_{n,max}$, $Q_{n,max}$ находят S_{2pacq} и в аварийном режиме, при отключении самого мощного генератора (изменяется величина ΣP_{Γ} , ΣQ_{Γ}), находят S_{3pacq} .

По наибольшей расчетной нагрузке определяется мощность трансформаторов связи. При установке двух трансформаторов

$$S_T \ge \frac{S_{pacu,max}}{K_n},$$

где $\boldsymbol{K_n}$ – коэффициент допустимой перегрузки трансформатора.

Как было отмечено выше, трансформаторы связи могут работать как повышающие в режиме выдачи мощности в энергосистему и как понижающие при передаче мощности из энергосистемы. Реверсивная работа вызывает необходимость применения трансформаторов с регулированием напряжения под нагрузкой.

На рис. приведена схема выдачи электроэнергии ТЭЦ, где условно показаны сборные шины генераторного и высшего напряжения.

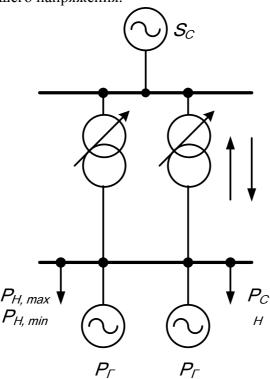


Рис. Схема выдачи электроэнергии ТЭЦ

Трансформаторы могут быть трехобмоточными, если на ТЭЦ кроме нагрузок 6-10 кВ имеются нагрузки на 35 кВ, составляющие не менее 15% общей нагрузки трансформатора, а связь с энергосистемой осуществляется на напряжении 110 кВ.

При нагрузке на 35 кВ менее 15 % устанавливаются двухобмоточные трансформаторы $35/6-10~\mathrm{kB}.$

Выбор трансформаторов производится по загрузке обмоток низшего напряжения, которая определяется в трех указанных выше режимах.

На ТЭЦ с блочным соединением генераторов мощность блочного трансформатора выбирается по расчетной мощности:

$$S_{pacu} = \sqrt{(P_{\Gamma} - P_{H} - P_{C,H})^{2} + (Q_{\Gamma} - Q_{H} - Q_{C,H})^{2}},$$

где P_H - нагрузка, присоединенная к ответвлению от энергоблока.

Если нагрузка присоединена к двум энергоблокам, при определении $\boldsymbol{S}_{\textit{pac4}}$ следует принять PH/2.

Если от энергоблока получают питание только собственные нужды, то

$$S_{pacu} = \sqrt{(P_{\Gamma} - P_{C,H})^2 + (Q_{\Gamma} - Q_{C,H})^2}$$
.

Для каждого сочетания напряжений устанавливается, как правило, два трехобмоточных трансформатора или автотрансформатора.

При выборе мощности автотрансформаторов, к обмотке НИ которых присоединены синхронные компенсаторы, необходимо проверить загрузку общей обмотки автотрансформатора.

Трансформаторы и автотрансформаторы с ВИ до 500 кВ включительно по возможности выбираются трехфазными.

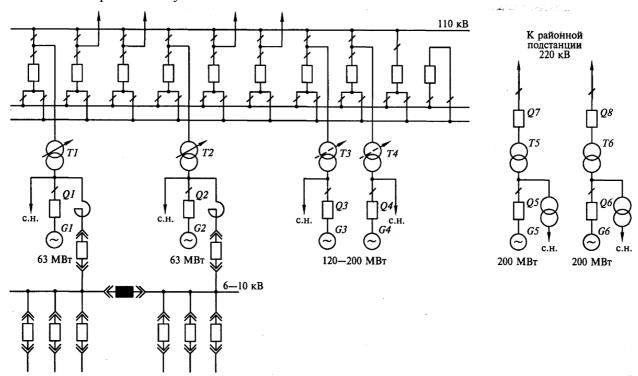
Группы из однофазных трансформаторов устанавливаются при отсутствии трехфазных трансформаторов соответствующей мощности. При установке одной группы однофазных трансформаторов предусматривается одна резервная фаза. В ряде случаев может оказаться экономичнее применить спаренные трехфазные трансформаторы (автотрансформаторы).

Главные схемы ТЭЦ

Схемы ТЭЦ со сборными шинами генераторного напряжения

На ТЭЦ с генераторами 63 МВт потребители электроэнергии, расположенные на расстоянии 3—5 км, могут получать электроэнергию на генераторном напряжении. В этом случае на ТЭЦ сооружается РУ 6—10 кВ, как правило, с одной системой шин, секционированной и реактированной. Число и мощность генераторов, присоединенных к ГРУ, определяются на основании проекта электроснабжения потребителей и должны быть такими, чтобы при останове одного генератора оставшиеся полностью обеспечивали питание потребителей.

Связь с энергосистемой и выдача избыточной мощности осуществляются по линиям 110 и 220 кВ. Если предусматривается присоединение большого числа линий 110, 220 кВ, то на ТЭЦ сооружается РУ с двумя рабочими и обходной системами шин.


При росте тепловых нагрузок на ТЭЦ могут быть установлены турбогенераторы мощностью 120 МВт и более. Такие турбогенераторы не присоединяются к сборным шинам генераторного напряжения (6—10 кВ), так как, во-первых, это резко увеличит токи КЗ, а вовторых, номинальные напряжения этих генераторов (15,75, 18 кВ) отличаются от напряжения распределительных сетей. Мощные генераторы соединяются в блоки, работающие на шины 110—220 кВ.

Схемы блочных ТЭЦ

Рост единичной мощности турбогенераторов, применяемых на ТЭЦ (120, 250 МВт), привел к широкому распространению блочных схем. В схеме, изображенной на рис., потребители 6—10 кВ получают питание реактированными отпайками от генераторов 1, 2; более удаленные потребители питаются через подстанции глубокого ввода от шин 110 кВ. Параллельная работа генераторов осуществляется на высшем напряжении, что уменьшает ток КЗ на стороне 6—10 кВ. Как и всякая блочная схема, такая схема дает экономию

оборудования, а отсутствие громоздкого ГРУ позволяет ускорить монтаж электрической части. Потребительское КРУ имеет две секции с ABP на секционном выключателе. В цепях генераторов для большей надежности электроснабжения устанавливаются выключатели 1, 2. Трансформаторы связи Т1, Т2должны быть рассчитаны на выдачу всей избыточной активной и реактивной мощности и обязательно снабжаются РПН.

На трансформаторах блоков 3, 4 также может быть предусмотрено устройство РПН (на рис. показано пунктиром), позволяющее обеспечить соответствующий уровень напряжения на шинах 110 кВ при выдаче резервной реактивной мощности ТЭЦ, работающей по тепловому графику. Наличие РПН у этих трансформаторов позволяет уменьшить колебания напряжения в установках с. н.

При дальнейшем расширении ТЭЦ устанавливают турбогенераторы 5, 6, соединенные в блоки. Линии 220 кВ этих блоков присоединяются к близлежащей районной подстанции. При недостаточной чувствительности релейной защиты подстанции к повреждениям в трансформаторах Т5, Т6 предусматривают передачу телеотключающего импульса или устанавливают выключатели 220 кВ 7, 8. Отключение генераторов производится выключателями 5, 6.

Связи между РУ 110 и 220 кВ не предусмотрено, что значительно упрощает схему РУ 220 кВ. Как было отмечено выше, это допустимо в том случае, если связь сетей 110 и 220 кВ осуществляется на ближайшей районной подстанции.

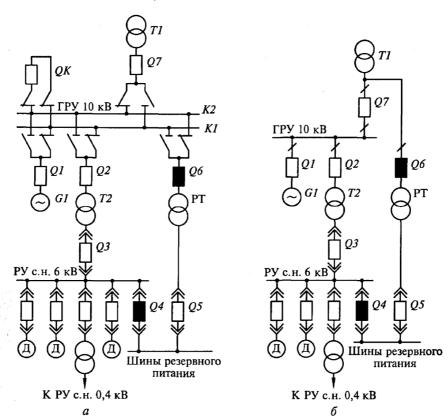
Современные мощные ТЭЦ (500—1000 МВт) сооружаются по блочному типу. В блоках генератор — трансформатор устанавливается генераторный выключатель, что повышает надежность питания с. н. и РУ высокого напряжения, так как при этом исключаются многочисленные операции в РУ с. н. по переводу питания с рабочего на резервный трансформатор с. н. при каждом останове и пуске энергоблока и исключаются операции выключателями высокого напряжения. Не следует забывать, что на ТЭЦ отключение и включение энергоблоков производятся значительно чаще, чем на КЭС или АЭС.

Схемы собственных нужд ТЭЦ

Рабочие трансформаторы с.н. неблочной части ТЭЦ присоединяются к шинам генераторного напряжения. Число секций с.н. 6 кВ выбирается равным числу котлов. В некоторых случаях выделяют секции для питания общестанционных потребителей.

Мощность рабочих ТСН выбирают по условию

$$S_{\text{HOM}} \geq \frac{S_{\text{c.H}}}{n}$$


где мощность $S_{c.н.}$ неблочной части ТЭЦ; n — число секций 6 кВ в неблочной части ТЭЦ.

Мощность ТСН и количество секций с. н. в блочной части ТЭЦ выбираются так же, как и для КЭС.

Резервный ТСН присоединяется к шинам ГРУ (при схеме с двумя системами шин) или отпайкой к трансформатору связи (при схеме с одной системой шин).

На рис. a показано присоединение рабочего и резервного трансформаторов с. н. к двойной системе шин ГРУ: рабочий трансформатор Т2 присоединен к первой системе шин К1, а резервный РТ — ко второй системе шин К2. Шиносоединительный выключатель QK нормально включен, трансформатор связи присоединен к шинам K2. При повреждении в рабочем трансформаторе Т2 отключаются выключатели 2, 3 и автоматически включаются 6, 4. При повреждении на рабочей системе шин K1 отключаются выключатели 1, QK и 3. Напряжение на резервной системе шин K2 сохраняется благодаря трансформатору связи, соединенному с шинами ВН, поэтому автоматически включаются выключатели 6, 4, восстанавливал питание секции с. н.

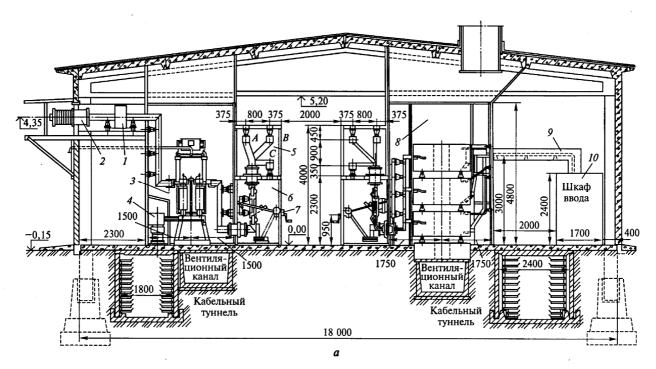
На рис. δ показано присоединение рабочего и резервного трансформаторов с. н. к ГРУ с одной системой шин.

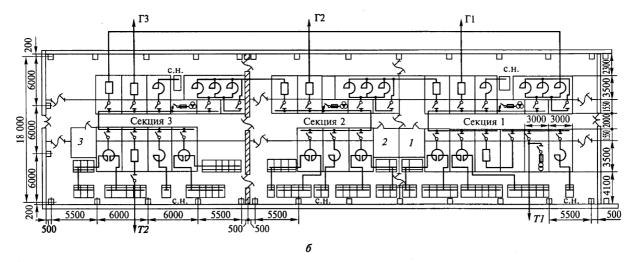
При аварии в ТСН отключаются выключатели 2, 3 и автоматически включаются 6, 4, подавая питание от резервного трансформатора РТ. При аварии на шинах ГРУ отключаются выключатели 1, 7, после чего автоматически включаются выключатели 6, 4, восстанавливая питание с. н. от шин ВН через трансформатор связи Т1 и резервный РТ.

Обычно к одной секции ГРУ присоединяется один трансформатор с. н. или одна реактированная линия с. н. В этом случае мощность резервного источника должна быть не меньше любого из рабочих.

Если к одной из секций ГРУ присоединены два рабочих источника с.н., то мощность резервного трансформатора или резервной линии выбирается на 50% больше наиболее мощного рабочего источника.

На блочных ТЭЦ резервный трансформатор должен обеспечить замену наиболее крупного рабочего источника и одновременно пуск или аварийный останов одного котла или турбины. Если в блоках генератор — трансформатор установлен выключатель, то резервный трансформатор выбирается такой же мощности, как и рабочий. Мощность резервного трансформатора проверяется по условиям самозапуска.


На ТЭЦ неблочного типа (с поперечными связями по пару) выбирается один резервный источник 6 кВ на каждые шесть рабочих трансформаторов или линий. На блочных ТЭЦ число резервных трансформаторов выбирается так же, как и на КЭС.


Схемы питания с. н. 0,4 кВ строятся по такому же принципу, как и на КЭС. Мощность с. н. 0,4 кВ ТЭЦ можно принять равной 15% общей мощности с. н.

Конструкции ЗРУ 6—10 кВ с одной системой шин

РУ 6— 10 кВ с одной системой шин без реакторов на отходящих линиях широко применяются в промышленных установках и городских сетях. В таких РУ устанавливаются маломасляные или безмасляные выключатели небольших габаритов, что позволяет все оборудование одного присоединения разместить в одной камере — ячейке комплектного распределительного устройства (КРУ).

Генераторное распределительное устройство (ГРУ) 6— $10~{\rm kB}~{\rm c}$ одной системой сборных шин, разделенных на три секции и групповыми сдвоенными реакторами на линиях, показано на рис.

На рис. показаны a-pазрез по цепям генератора и группового реактора: 1- трансформатор тока; 2-проходной изолятор; 3-камера генераторного выключателя; 4-привод выключателя; 5- блок сборных шин; 6- блок шинных разъединителей; 7- привод шинных разъединителей; 8-камера сдвоенного реактора; 9- шинопровод; 10- ячейки KPY; 6-план-схема заполнения: 1,2,3- вентиляционные камеры.

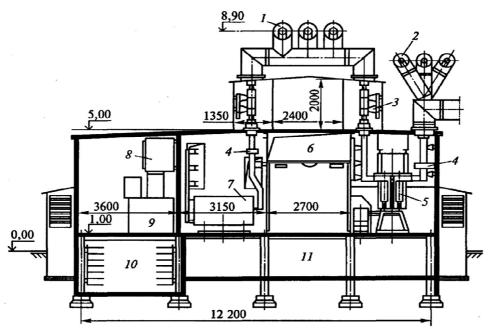
При конструировании РУ необходимо знать размещение оборудования по камерам, для чего вначале вычерчивается схема заполнения.

Схема заполнения — это электрическая схема включения основного оборудования и аппаратуры, отражающая их действительное взаимное размещение.

В схеме заполнения условно, без соблюдения масштаба показывается контур здания и камер, расположение оборудования и делаются необходимые поясняющие надписи. Схема заполнения облегчает составление спецификации на оборудование, облегчает понимание конструкции распределительного устройства, но не заменяет конструктивных чертежей распределительного устройства. В некоторых случаях вычерчивается план распределительного устройства, и на нем условными обозначениями показывается размещение оборудования. Такой план-схема заполнения показан на рис. δ .

В ГРУ предусмотрены три секции сборных шин, к каждой из которых присоединен генератор 63 МВт. К первой и третьей секциям присоединены трехобмоточные трансформаторы связи. На каждой секции установлены два групповых сдвоенных реактора А и четыре сборки КРУ с выключателями ВМПЭ-10. Генераторное распределительное устройство рассчитано на ударный ток до 300 кА. Здание ГРУ одноэтажное, с пролетом 18 м, выполняется из стандартных железобетонных конструкций, которые применяются для сооружения и других зданий тепловых электростанций. В центральной части здания в два ряда расположены блоки сборных шин и шинных разъединителей, далее следуют ячейки генераторных, трансформаторных и секционных выключателей, групповых и секционных реакторов и шинных трансформаторов напряжения. Шаг ячейки 3 м. У стен здания расположены шкафы комплектного распределительного устройства. Все кабели проходят в двух кабельных туннелях.

Охлаждающий воздух к реакторам подводится из двух вентиляционных каналов, нагретый воздух выбрасывается наружу через вытяжную шахту. В каналы воздух подается специальными вентиляторами, установленными в трех камерах $(1, 2, 3 \text{ на } \delta)$.

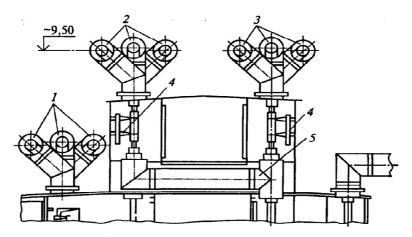

Обслуживание оборудования осуществляется из трех коридоров: центральный коридор управления шириной 2000 мм, коридор вдоль шкафов КРУ, рассчитанный на выкатку тележек с выключателями, и коридор обслуживания вдоль ряда генераторных выключателей. Следует обратить внимание на то, что все ячейки генераторных выключателей расположены со стороны генераторного распределительного устройства,

обращенной к турбинному отделению, а ячейки трансформаторов связи — со стороны открытого распределительного устройства (план-схема заполнения на рис. δ).

Такое расположение позволяет осуществить соединение генераторов и трансформаторов связи с ячейками генераторного распределительного устройства с помощью подвесных гибких токопроводов. Соединение секций сборных шин 6 кВ в кольцо производится снаружи здания гибкой связью.

Крупноблочное распределительное устройство генераторного напряжения КГРУ

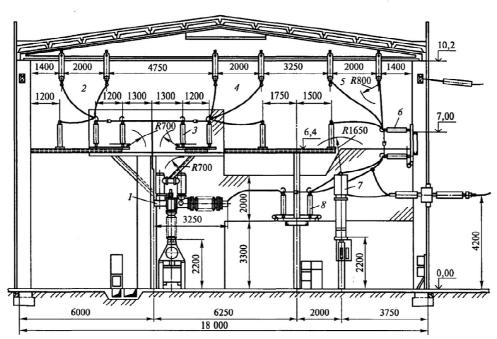
Конструкция ГРУ, рассмотренная ранее, имеет ряд недостатков: тяжелое каркасное здание, ячейки с металлическими каркасами, большой объем монтажных работ, производимых вручную с применением малой механизации. Этих недостатков не имеет крупноблочное главное распределительное устройство (КГРУ) 6—10 кВ на номинальный ток 8000 А и ударный ток 330 кА, разработанное проектным институтом "Атомэнергопроект". На рис. показан разрез по цепям генератора и сдвоенного реактора КГРУ для схемы с одной системой сборных шин, состоящих из четырех секций, соединенных в кольцо. Ячейки выключателей, реакторов, разъединителей расположены в два ряда, сборные шины — в один ряд. КГРУ рассчитано на присоединение к каждой секции одного генератора 120 МВт или двух по 60 MBт при напряжении 10 кВ и одного генератора 60 MBт при U= 6 кВ. Отходящие кабельные линии присоединяются с помощью шкафов КРУ 9 к ветвям сдвоенных реакторов 7. На каждую секцию могут быть присоединены две группы сдвоенных реакторов по 2х2500 А или три группы по 2х1600 А и по одной секции с. н. Сборные шины 1, ответвления от них, секционная перемычка 2 между первой и четвертой секциями, а также выводы из ячеек генераторов, трансформаторов связи и линий с. н. выполнены пофазно-экранированными токопроводами.


Крупноблочное главное распределительное устройство (КГРУ) с одной системой шин. Разрез по цепям генераторного присоединения и группового реактора:

1 — токопроводы сборных шин; 2 — токопроводы секционной перемычки; 3 — шинный разъединитель; 4 — трансформатор тока; 5 — выключатель; 6 — вентиляционный короб; 7 — реактор; 8 — шкаф разъединителя; 9 — КРУ отходящих линий; 10 — кабельный туннель; 11 — вентиляционный подвал

Шинные разъединители 3 установлены в металлических ячейках с междуфазными перегородками. Ошиновка в ячейках выключателей и реакторов выполняется укрупненными монтажными блоками. Охлаждение ячеек осуществляется с помощью искусственной

автоматической вентиляции. Применение КГРУ повышает надежность работы и упрощает эксплуатацию РУ, сокращает затраты на его сооружение. Сооружение КГРУ с одной системой шин на четыре секции уменьшает затраты на 10%, расход металла на 40 %, железобетонных конструкций на 21% по сравнению с типовыми ГРУ.


Крупноблочное главное распределительное устройство $6-10~\mathrm{kB}$ по схеме с двумя системами шин сооружается по тому же принципу, что и с одной системой шин, но, в отличие от него, внесен дополнительный элемент развилки разъединителей от двух систем шин (второй этаж). Все строительные конструкции первого этажа одинаковы для обоих КГРУ (рис.).

КГРУ 6—10 кВ с двумя системами шин (второй этаж):

1 — секционная перемычка; 2 — резервная система шин; 3 — рабочая система шин; 4 — шинные разъединители; 5 — развилка

Конструкции закрытых РУ 35—220 кВ

ЗРУ 110 кВ зального типа. Разрез по ячейке воздушной линии:

1 — выключатель ВНВ-110;
 2 — первая система шин;
 3 — шинные разъединители;
 4 — вторая система шин;
 5 — обходная система шин;
 6 — обходной разъединитель;
 7 — конденсатор связи;
 8 — линейный разъединитель

В особых условиях (ограниченность площади, загрязненная атмосфера, суровые климатические условия) распределительные устройства 35—220 кВ сооружаются

закрытыми. ЗРУ 35—220 кВ дороже ОРУ на то же напряжение, так как стоимость здания значительно больше стоимости металлоконструкций и фундаментов, необходимых для открытой установки аппаратуры. В ЗРУ 35—220 кВ применяют только воздушные, вакуумные или маломасляные выключатели.

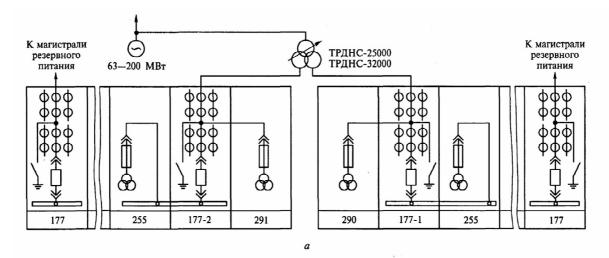
Установка баковых масляных выключателей привела бы к значительному увеличению стоимости РУ за счет сооружения специальных камер и маслосборных устройств.

На рис. выше показано закрытое РУ 110 кВ с двумя рабочими и обходной системами шин. Здание зального типа высотой 10,2 м, одноэтажное. Сборные шины выполнены гибкими проводами и закреплены на гирляндах изоляторов (фазы A, B) и стержневых опорных изоляторах (фаза C). Обслуживание изоляторов, ошиновки, шинных разъединителей производится с помощью передвижных телескопических подъемников. В ЭРУ 110 кВ могут устанавливаться выключатели ВВБ-110, ВНВ-110.

В работающих электроустановках имеются другие конструкции ЗРУ 110 кВ, например двухэтажное с вынесенной наружу обходной системой шин. Последнее обстоятельство является серьезным недостатком, так как значительно увеличивает занимаемую площадь и снижает надежность работы при возможности загрязнения изоляции обходной системы шин.

Так же как и для Γ РУ 6—10 кВ, наиболее прогрессивным является применение комплектных РУ 35—220 кВ.

Комплектные распределительные устройства высокого напряжения


Комплектные распределительные устройства внутренней установки

Комплектное распределительное устройство (КРУ) — это распределительное устройство, состоящее из закрытых шкафов со встроенными в них аппаратами, измерительными и защитными приборами и вспомогательными устройствами. Шкафы КРУ изготовляются на заводах, что позволяет добиться тщательной сборки всех узлов и обеспечения надежной работы электрооборудования. Шкафы с полностью собранным и готовым к работе оборудованием поступают на место монтажа, где их устанавливают, соединяют сборные шины на стыках шкафов, подводят силовые и контрольные кабели. Применение КРУ позволяет ускорить монтаж распределительного устройства. КРУ безопасно в обслуживании, так как все части, находящиеся под напряжением, закрыты металлическим кожухом.

В качестве изоляции между токоведущими частями в КРУ могут быть использованы воздух, масло, пирален, твердая изоляция, инертные газы. КРУ с масляной и газовой изоляцией могут изготовляться на высокие напряжения 220, 400 и 500 кВ. В КРУ могут применяться обычные аппараты или специально предназначенные для них, могут сочетаться и те и другие. Например, для КРУ 6—10 кВ применяются выключатели обычной конструкции, а вместо разъединителей — втычные контакты.

Наша промышленность выпускает КРУ 3—35 кВ с воздушной изоляцией и 110— 220 кВ с изоляцией из элегаза. Применение КРУ приводит к сокращению объема и сроков проектирования.

Шкаф КРУ несгораемыми перегородками разделен на отсеки: выключателя на выдвижной тележке; сборных шин; линейного ввода; релейного шкафа (рис.).

Компоновка шкафов КРУ серий K-104M и K-104MC1 для собственных нужд 6 кВ ТЭС с блоками 63—300 МВт:

а — вводы на секции РУСН от рабочих ТСН и от резервной магистрали (см. также с. 403)

Конструкция шкафов КРУ предусматривает возможность установки тележек с выключателем, трансформатором напряжения или с разъединяющими контактами с перемычкой в рабочем, контрольном положении и выкатывание из шкафа для ревизии и ремонта. Шкафы КРУ имеют блокировочные устройства, не позволяющие вкатывать или выкатывать тележку при включенном выключателе, а также включать заземляющий разъединитель при рабочем положении тележки и вкатывать тележку при включенном заземляющем разъединителе. Вторичные цепи релейного шкафа соединяются с вторичными цепями выкатного элемента с помощью штепсельных разъемов и гибких шлангов.

Изготовители КРУ в каталогах приводят сетку типовых схем главных цепей шкафов, ориентируясь на которую подбирают типы шкафов и комплектуют распределительное устройство конкретной электроустановки.

Обычный вариант компоновки КРУ для собственных нужд электростанции шкафами серии К-104М и К-104С. Шкафы К-104М и К-104С рассчитаны на токи 630—1600 А и комплектуются выключателями: маломасляными ВКЭ-М-10, ВКЭ-10; вакуумными ВВЭ-М-10, ВБПЭ-10, ВБМЭ-10; элегазовыми УЕО7. 12.50, 07.16.50; 12.08.31; 12.12.31; 12.12.40; 12.16.40. На большие токи этим же предприятием «Мосэлектрощит» производятся КРУ К-105 на токи 2000—3150 А. Особенностью серий К-104 и К-105 является размещение сборных шин в нижнем отсеке шкафа и необходимость двустороннего обслуживания, поэтому шкафы устанавливаются на расстоянии не менее 800 мм от стены. Шкафы КРУ К-ХХУІ с односторонним обслуживанием позволяют уменьшить ширину помещения. Они рассчитаны на 6— 10 кВ, номинальный ток главных цепей до 1600 А, сборных шин — до 3200 А, ток отключения 31,5 кА. В них применяются выключатели ВМПЭ-10, ВВТЭ-М, ВБЧЭ-20 и элегазовые.

В зависимости от номинального напряжения и тока, типов применяемых выключателей, трансформаторов тока и напряжения, размещения их в шкафу в электроустановках применяются различные типы КРУ, выбор которых производится по каталогам.

<u>Размещение распределительных устройств на территории электростанций и</u> подстанций

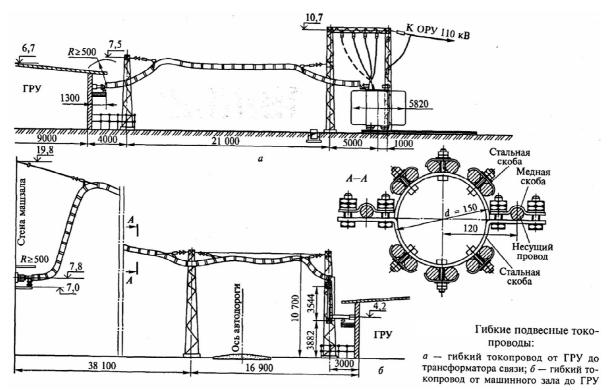
Размещение РУ на территории электростанции

Следует лишь отметить, что на ТЭЦ ГРУ 6 (10) кВ обычно находится перед фасадом главного корпуса со стороны турбинного отделения, за ним — открытое РУ. На блочных тепловых электростанциях открытые РУ размещаются за водоподводящим каналом перед фасадом главного корпуса или со стороны котельного отделения. В последнем случае

необходима перекидка линий от повышающих трансформаторов через главный корпус. Если на электростанции используются два повышенных напряжения, то автотрансформатор связи обычно устанавливается около РУ высшего напряжения. План размещения ОРУ для ГРЭС 4800 МВт дан на рис. 6.16. к 35 кВ кабелем присоединен резервный трансформатор с. н. На территориях ОРУ 220 и 500 кВ предусматривают помещения для панелей релейной защиты и аккумуляторных батарей. Шунтовые реакторы 500 кВ, если они предусмотрены, устанавливают вдоль железнодорожной колеи.

Размещение РУ на территориях районных и узловых подстанций

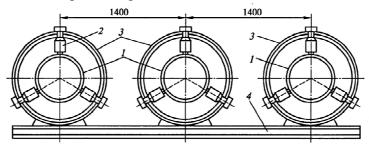
Все сооружения на площадке подстанции должны размещаться так, чтобы при строительстве и монтаже, а также при ремонтах оборудования можно было использовать различные передвижные и стационарные грузоподъемные устройства.


Для КТПБ 35/10 кВ подъезд транспорта возможен к блокам ввода, блокам выключателей, к трансформаторам и КРУН. Площадка подстанции подготовлена для перемещения грузов и монтажа блоков. На подстанциях более высокого напряжения во всех ОРУ предусматриваются дороги вдоль рядов выключателей и вдоль трансформаторов.

Контрольные и силовые кабели с. н. прокладывают в наземных лотках. В общеподстанционном пункте управления (ОПУ) расположены панели управления собственных нужд и релейной защиты, устройство связи, мастерская для приезжих ремонтных бригад, служебная комната и др.

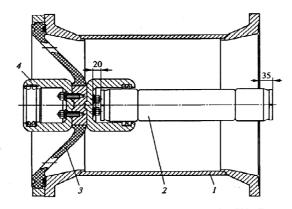
Для ревизии трансформаторов напряжением до 220 кВ предусматривается площадка около трансформаторов с возможностью использования автокранов. На подстанциях с мощными трансформаторами (автотрансформаторами) напряжением 220 кВ и выше ревизия производится с помощью совмещенного портала, к которому прикреплена ошиновка трансформатора, а усиленная траверса портала рассчитана на подъем кожуха или магнитопровода с обмотками.

<u>Конструкции соединений между генераторами, силовыми трансформаторами и ЗРУ 6-</u> 10 кВ


Открытые токопроводы. Электрическое соединение генераторов и трансформаторов с распределительным устройством 6— 10 кВ может быть выполнено гибким токопроводом (рис.). Такие токопроводы состоят из пучков алюминиевых проводов, равномерно распределенных по окружности, для чего их закрепляют в кольцах-обоймах. Кольца с токоведущими проводами крепятся к сталеалюминиевым проводам, воспринимающим механическую нагрузку. Число проводов определяется расчетом с учетом экономической плотности тока. Несущие провода подвешены на натяжных гирляндах к стене главного корпуса и к опорам. Расстояние между кольцами-обоймами принимается 1 м. Переход от гибких проводов к линейным выводам в стене главного корпуса и ГРУ выполняется с помощью специальной концевой разделки. Расстояние между фазами гибкого токопровода составляет 3 м. Гибкие токопроводы надежны в работе, просты в изготовлении и имеют небольшую стоимость. Это привело к широкому применению их на ТЭЦ.

На подстанциях соединение силового трансформатора с РУ 6—10 кВ может выполняться шинным мостом. Жесткие шины крепятся на штыревых изоляторах, установленных на металлических или железобетонных конструкциях. Расстояния между фазами и изоляторами принимаются по расчету, обычно для установок 6—10 кВ расстояния между фазами составляет 0,6—0,8 м, между изоляторами 1—1,5 м. На выводе из РУ и около трансформатора предусмотрены шинные компенсаторы. Достоинство такого соединения—простота, а при небольшой длине— надежность и экономичность. С увеличением длины шинного моста увеличивается количество изоляторов, возрастает стоимость и снижается надежность, так как более вероятно перекрытие по изоляторам, особенно при их загрязнении. Это привело к тому, что на тепловых электростанциях открытые шинные мосты обычно не применяют. На гидроэлектростанциях соединение генераторов с повышающим трансформатором может выполняться шинным мостом.

Комплектные токопроводы


На мощных тепловых электростанциях для соединения генераторов с повышающими трансформаторами широко применяются комплектные пофазно-экранированные токопроводы. Токоведущие шины каждой фазы закреплены в заземленном кожухе (экране) с помощью изоляторов. Кожух выполнен из алюминия во избежание сильного нагрева вихревыми токами, которые возникают при воздействии магнитного потока, созданного током нагрузки. Закрытое исполнение токопроводов каждой фазы обеспечивает высокую надежность, так как практически исключаются междуфазные КЗ на участке от генератора до повышающего трансформатора. Несмотря на более высокую стоимость по сравнению с гибкими связями, комплектные токопроводы рекомендуется применять для соединения генераторов 60 МВт и выше с трансформаторами. Для генераторов до 200 МВт комплектные токопроводы применяют, если блочный трансформатор удален от стены турбинного отделения не более чем на 30 м. При больших расстояниях соединение вне машинного зала выполняется гибким подвесным токопроводом. Комплектный пофазный токопровод применяется также для генераторов 60 и 100 МВт, работающих на сборные шины, в пределах турбинного отделения. Между турбинным отделением и ГРУ соединение выполняется гибким токопроводом. Пофазно-экранированные токопроводы с непрерывным кожухом имеют выемные изоляторы, с помощью которых крепится токоведущая алюминиевая шина цилиндрической формы. Кожух обеспечивает безопасность обслуживания, защищает проводники и изоляторы от пыли, влаги, случайного попадания посторонних предметов, исключает возможность междуфазных замыканий в пределах токопровода. Три фазы токопровода крепят на стальной балке.

Пофазный экранированный токопровод: 1 — токоведущая шина; 2 — изоляторы выемные; 3 — кожух; 4 — стальная балка

Первоначально комплектные токопроводы выполняли с секционированием кожуха типа ТЭК. Отдельные секции соединяли с помощью резиновых прокладок, поэтому каждая секция токопровода заземлялась шиной. В таких токопроводах внешнее магнитное поле не компенсируется и окружающие стальные конструкции чрезмерно нагреваются вихревыми токами. Усложняет эксплуатацию большое количество резиновых уплотнений и сложная система заземления. Более совершенной конструкцией является токопровод с непрерывной замкнутой системой кожухов типа ТЭН. В таком токопроводе секции кожухов каждой фазы соединены сваркой. По концам токопровода кожухи трех фаз соединены между собой. В такой системе образуются токи, циркулирующие вдоль кожухов и создающие магнитный поток, который почти полностью компенсирует внешний магнитный поток токопровода. В окружающих металлических конструкциях нагрева от вихревых токов не возникает. При КЗ экранирующее действие кожухов приводит к снижению электродинамических сил на проводники в несколько раз. Токопроводы ТЭН выпускаются на напряжение 20—24 кВ, ток до 24 кА, электродинамическую стойкость до 570 кА.

Дальнейшим совершенствованием токопроводов является переход от воздушной изоляции внутри токопровода к элегазовой. В КРУЭ применяются токопроводы элегазовые на 110-500кВ для соединения элегазового оборудования между собой. Линейный токопровод состоит из алюминиевых цилиндрических оболочек 1, в которых с помощью изоляционных элементов 3 установлена токоведущая шина 2. Секции имеют фланцевые соединения, при этом токоведущая система одной секции соединяется с токоведущей системой другой секции штепсельным разъемом 4. Такой же разъем применяется для присоединений вводов линий в здание КРУЭ и последующим соединением его с элегазовым токопроводом, а также для присоединения кабельных вводов.

Токопровод элегазовый на $110-500~\mathrm{kB}$: ! — алюминиевая оболочка; 2 — токоведущая шина; 3 — изоляционные элементы; 4 — штепсельный разъем

Тема 2. Понижающие подстанции электрических сетей 35-220 кВ – источники питания систем электроснабжения. (6 час.)

Принципы выбора схем подстанций. Установка заземляющих ножей и оперативные блокировки. Выбор схем понижающих подстанций 35-220/6-20 кВ, питающих потребителей системы электроснабжения. Схемы ГПП и ПГВ 35-220 кВ. Присоединение РУ напряжением 6-10 кВ к понижающим трансформаторам. Схемы с двумя системами шин. Схемы РП напряжением выше 1 кВ. Схемы ТП 6-10/0,4 кВ. Схемы РП напряжением до 1 кВ.

Классификация подстанций

Функционально подстанции делятся на трансформаторные, преобразовательные и распределительные.

Трансформаторные подстанции предназначены для приема, преобразования (тока и напряжения), распределения электрической энергии.

Преобразовательные подстанции предназначены для приема, преобразования (частоты, рода тока) и распределения электрической энергии.

Распределительные подстанции предназначены для приема и распределения электрической энергии без ее преобразования.

Трансформаторные подстанции по значению в системе электроснабжения делятся на главные понизительные подстанции, подстанции глубокого ввода, трансформаторные подстанции $10(6)~\mathrm{kB}$ (ТП). Последние называются цеховыми подстанциями в промышленных сетях, городскими — в городских сетях.

Распределительные подстанции делятся на узловые распределительные подстанции напряжением ПО кВ и выше; центральные распределительные подстанции (пункты) напряжением 10(6) кВ; распределительные подстанции (пункты) напряжением 10(6) кВ.

В зависимости от способа присоединения подстанции к питающей линии трансформаторные подстанции делятся на тупиковые, проходные, ответвительные.

Если линия питает только одну подстанцию, то подстанция называется тупиковой рис. a. К тупиковым подстанциям относятся подстанции, получающие питание по радиальным схемам, и последние подстанции в магистральной схеме с односторонним питанием. Проходная подстанция включается в рассечку питающей магистральной линии, т. е. имеется вход и выход питающей линии (рис. 6).

Если подстанция подключается через ответвление от питающей линии, она называется ответвительной (рис. ε).

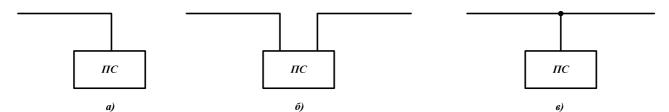


Рис. Схемы присоединения подстанций к питающей линии: a - тупиковая; δ - проходная; ϵ - ответвительная

По типу подстанции делятся на открытые и закрытые. Открытой подстанцией называется подстанция с открытой установкой трансформаторов, закрытой — подстанция, все элементы которой (распределительные устройства и трансформаторы) устанавливаются в специальном помещении.

B зависимости от места установки и размещения оборудования подстанции напряжением 10(6) кB делятся на внутрицеховые, встроенные, пристроенные, отдельно стоящие.

Внутрицеховой подстанцией называется подстанция, расположенная внутри здания (открыто или в отдельном закрытом помещении).

Встроенной подстанцией называется подстанция, вписанная в контур основного здания.

Пристроенная подстанция непосредственно примыкает к основному зданию.

Отвельно стоящая подстанция располагается отдельно от производственных и общественных зданий.

В зависимости от числа обмоток трансформатора подстанции могут быть с двух- и трехобмоточными (автотрансформаторами) трансформаторами, с расщепленными обмотками низшего напряжения.

Структурные схемы трансформаторных подстанций

Подстанция с двухобмоточными трансформаторами состоит из трех основных узлов: распределительного устройства высшего напряжения (РУВН); силового трансформатора или автотрансформатора (одного или нескольких), распределительного устройства низшего напряжения (РУНН) (рис. в), вспомогательных устройств (компрессорных, a, аккумуляторных и т. п.), устройств релейной защиты, автоматики, измерения. В подстанциях с трехобмоточными трансформаторами добавляется четвертый узел — распределительное устройство среднего напряжения (РУСН) (рис. б). В схемах электроснабжения могут применяться трансформаторы с расщепленной обмоткой низшего напряжения (рис. в. д), что приводит к увеличению секций сборных шин в РУНН. Применение трансформаторов с расшепленной обмоткой низшего напряжения позволяет уменьшить токи короткого замыкания за трансформаторами. С этой же целью на подстанциях могут устанавливаться сдвоенные реакторы (рис. ε , ∂).

-

 $^{^{1}}$ В дальнейшем, сели не требуется уточнении, под термином «трансформатор» будет подразумеваться и автотрансформатор.

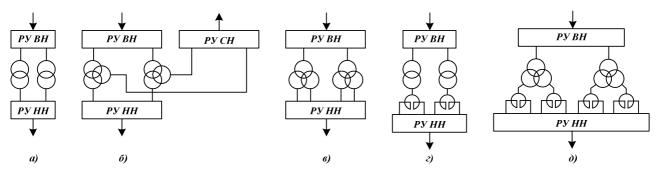


Рис. Структурные схемы трансформаторные подстанции

Распределительное устройство высокого напряжения подстанции чаще всего выполняет функции приема электрической энергии от линии электропередачи к трансформатору. В отдельных случаях РУВН может выполнять функции приема и распределения электроэнергии (по требованию энергоснабжающей организации или при целесообразности питания от главной понизительной подстанции нескольких подстанций глубокого ввода на напряжениях 110—330 кВ).

Распределительные устройства средних и низших напряжений всегда выполняют функции приема и распределения электроэнергии. Аналогичные функции выполняют и распределительные подстанции. Идентичность функций определяет идентичность схем и конструкций распределительных устройств и распределительных подстанций, поэтому в дальнейшем под термином «распределительное устройство» может подразумеваться и распределительная подстанция.

Распределительные устройства могут быть комплектными, сборными, открытыми и закрытыми. При стесненной городской и промышленной застройке в распределительных устройствах может быть применено электрооборудование е элегазовой изоляцией.

Общие вопросы проектирования подстанций

Проектирование подстанций регламентируется нормативными документами, разработанными институтами Энергосетьпроект и Тяжпромэлектропроект. Основные рекомендации для решения вышеперечисленных вопросов приведены в изданных Министерством энергетики РФ «Рекомендациях по технологическому проектированию подстанций переменного тока с высшим напряжением 35—750 кВ» (Издательство НЦ ЭНАС, 2004 г.).

Проект подстанции разрабатывается на 5 лет с момента предполагаемого ввода ее в эксплуатацию и с перспективой развития на последующее время (не менее 5 лет).

Проектирование подстанций ведется на основе следующих утвержденных схем:

- схемы развития энергосистемы или электрических сетей города;
- схемы внешнего электроснабжения объекта (промышленного предприятия, микрорайона города и т. д.);
- схемы организации ремонта, технического и оперативного обслуживания;
 - схемы развития средств управления общесистемного назначения (СУОН), включающие в себя релейную защиту и автоматику аварийного режима (РЗА), противоаварийную автоматику, а также схемы развития автоматизированных систем диспетчерского управления.

Исходными данными для проектирования служат:

- район размещения подстанции;
- нагрузки на расчетный период и их перспективное развитие с указанием распределения по напряжениям и категориям;
- число присоединяемых линий напряжением 35 кВ и выше, их нагрузки;
- число линий 10(6) кВ и их нагрузки;
- расчетные значения токов однофазного и трехфазного короткого замыкания с учетом развития сетей и генерирующих источников на срок не менее пяти лет, считая от предполагаемого ввода в эксплуатацию;
- уровни и пределы регулирования напряжения на шинах подстанции и необходимость дополнительных регулирующих устройств с учетом требований к качеству электрической энергии;
- режимы заземления нейтралей трансформаторов;
- границы раздела обслуживания объектов различными энергообъединениями и энергопредприятиями и т. д.

При проектировании подстанций решаются следующие задачи:

- выбор площадки для строительства подстанции;
- выбор типа и исполнения подстанций и распределительных устройств (закрытого или открытого типа, комплектная, сборная и т. д.);
- определение схемы электрических соединений распределительных устройств высокого, среднего и низшего напряжений;
- ограничение токов короткого замыкания;
- выбор основного электротехнического оборудования и токоведущих частей;
- ограничение перенапряжений, выбор места установки, числа ограничителей перенапряжений или вентильных разрядников и других защитных средств для ограничения перенапряжений;
- заземление подстанций;
- выбор источников оперативного тока и источников питания собственных нужд подстанции;
- управление, релейная защита, автоматика, сигнализация.
 - Для трансформаторных подстанций дополнительно решаются следующие задачи:
- выбор числа трансформаторов, определение их мощности, номинальных напряжений,

соотношения мощностей обмоток трехобмоточных трансформаторов;

- выбор режимов заземления нейтралей трансформаторов; при необходимости решается вопрос компенсации емкостных токов в электрических сетях 6—35 кВ (выбор места установки, числа и мощности дугогасящих реакторов);
- определение уровней и пределов регулирования напряжения на шинах подстанции, необходимости установки дополнительных регулирующих устройств с учетом требований к качеству электрической энергии.

Основные элементы распределительных устройств

Распределительные устройства всех напряжений, осуществляющие прием и распределение электрической энергии, выполняются со сборными шинами. Распределительные устройства ВН трансформаторных подстанций, предназначенные только для приема электрической энергии (без ее распределения), выполняются без сборных шин по блочным, мостиковым и другим схемам.

Распределительное устройство со сборными шинами состоит из сборных шин, к которым через ответвительные шины подключаются различные присоединения:

- питающие линии (ввод);
- отходящие линии;
- секционирование;
- трансформаторы напряжения;
- трансформаторы для собственного обслуживания;
- заземляющие разъединители сборных шин и др.

<u>Сборными шинами</u> называются короткие участки шин жесткой или гибкой конструкции, обладающие малым электрическим сопротивлением, предназначенные для подключения присоединений.

По своему назначению сборные шины делятся на рабочие, резервные и обходные. Рабочая система шин в нормальном режиме находится под напряжением и осуществляет питание всех подключенных к ней присоединений. Резервная система шин служит для питания присоединений подстанции в случае ремонта или ревизии рабочей системы шин. В нормальном режиме резервная система шин находится не под напряжением. Обходная система шин применяется при повышенных требованиях к надежности электроснабжения и позволяет осуществлять контроль и ремонт любого коммутационного аппарата без отключения потребителей. В нормальном режиме обходная система шин не пол напряжением.

На всех присоединениях на участках от сборных шип до выключателей, предохранителей, трансформаторов напряжения и т. п., а также на участках, где возможна подача напряжения от других источников напряжения, обязательно устанавливаются разъединители, обеспечивающие видимый разрыв цепи. Указанное требование не распространяется на шкафы КРУ и КРУН с выкатными тележками, высокочастотные заградители и конденсаторы связи, трансформаторы напряжения, устанавливаемые на отходящих линиях, разрядники, устанавливаемые на вводах трансформаторов и на отходящих линиях.

Питающие и отходящие линии подключаются к сборным шинам через разъединители и выключатели. На каждую линию необходим один выключатель, один или два шинных разъединителя (в зависимости от применяемой системы сборных шин) и один линейный разъединитель. Выключатель служит для включения и отключения линии в нормальных и аварийных режимах. Шинный разъединитель предназначен для создания видимого отключения сети и создания безопасных условий для проведения контроля и ремонта выключателя, а также при двух системах шин — для переключения присоединений с одной системы шин на другую без перерыва в работе. Линейный разъединитель предусматривается

в присоединениях, где при отключенном выключателе линия может оказаться под напряжением и необходимо видимое отключение линии для безопасного ремонта выключателя.

При использовании комплектных распределительных устройств выкати ого исполнения выключатели, трансформаторы напряжения и другое оборудование устанавливаются на выкатных тележках. В этом случае на схеме указываются штепсельные разъемы.

В распределительных устройствах обязательно предусматриваются стационарные заземляющие ножи, обеспечивающие заземление аппаратов и ошиновки без применения переносных заземлителей. Распределительные устройства должны быть оборудованы оперативной блокировкой, исключающей ошибочные действия с разъединителями, выключателями, заземляющими ножами и т. д.

На присоединениях питающих и отходящих линий кроме коммутационных аппаратов устанавливаются трансформаторы тока, на воздушных линиях напряжением 35 кВ и выше - высокочастотные заградители и конденсаторы связи.

Трансформаторы напряжения устанавливаются на каждую систему шин, а если система шин делится на части (секции), то на каждую секцию шин. Трансформаторы напряжения подключаются к сборным шинам через разъединители и предохранители в РУ 6—35 кВ и через разъединители в РУ 110 кВ и выше.

При необходимости в распределительном устройстве предусматриваются трансформаторы для собственного обслуживания, которые служат для питания оперативных цепей, а также освещения технологических и вспомогательных зданий и сооружений подстанции. Трансформаторы для собственного назначения подключаются через предохранители до выключателей ввода, если ТСН используются для питания оперативных цепей, и на сборные шины, если ТСН не используются для питания оперативных цепей.

Принципы выбора схем электроподстанций

Схемы подстанций выбираются с учетом общей схемы электроснабжения, т.е. вид схемы сетей (радиальной или магистральной) значительно влияет на вид схем подстанций, входящих в общую систему электроснабжения.

Схемы подстанций всех напряжений разрабатываются исходя из следующих основных положений: применение простейших схем с минимальным числом выключателей; преимущественного применения одной системы сборных шин на ГПП и РП с разделением ее на секции; применения, как правило, раздельной работы линий и раздельной работы трансформаторов; применения блочных схем и бесшинных подстанций глубоких вводов напряжением 110...220 кВ.

На вводах напряжением 6...10 кВ распределительных подстанций и на выводах вторичного напряжения ГПП и ПГВ, как правило, следует устанавливать выключатели для автоматического включения резерва.

При секционировании разъединителями шин на напряжении 6...10 кВ рекомендуется устанавливать два разъединителя последовательно для безопасной работы персонала на отключенной секции, а также на самом секционном разъединителе при работающей другой секции.

Для уменьшения токов КЗ в сетях напряжением 6...10 кВ следует применять трансформаторы с расщепленными вторичными обмотками. При реагировании наиболее целесообразны схемы с групповыми реакторами в цепях вторичного напряжения трансформаторов или на вводах питающих линий. Трансформаторы тока и реакторы следует устанавливать после выключателя.

Установка заземляющих ножей. Установка заземляющих ножей (3H) у разъединителей дня заземления элементов электроустановки при их ревизии и ремонте выполняется следующим образом:

выключатель при ревизии должен быть заземлен с двух сторон, поэтому у расположенных по обе его стороны разъединителей устанавливаются ЗН со стороны, обращенной к выключателю;

для ревизии линии устанавливаются ЗН у линейного разъединителя со стороны линии:

для ревизии сборных шин устанавливаются ЗН на разъединителях трансформаторов напряжения со стороны сборных шин, с противоположной стороны этих разъединителей также устанавливаются ЗН для ревизии трансформатора напряжения.

Следовательно, часть разъединителей снабжается ЗН с двух сторон (это линейные разъединители и шинные разъединители в цепях трансформатора напряжения), а часть разъединителей - с одной стороны (это шинные разъединители на стороне, обращенной к выключателю).

Предусматривается полная блокировка, предотвращающая ошибочные операции как с разъединителями, так и с 3H, т. е. блокировка исключает возможность подачи напряжения выключателями или разъединителями на шины или участки шин, заземленные посредством 3H, а также блокировка разрешает включение 3H только на участки шин, отключенные разъединителями со всех сторон от токоведущих частей, находящихся под напряжением.

Схемы распределительных устройств напряжением 6-220 кВ со сборными шинами

Применяются следующие схемы распределительных устройств:

- с одной несекционированной системой шин;
- с одной секционированной системой шин;
- с двумя одиночными секционированными системами шин;
- с четырьмя одиночными секционированными системами шин;
- с одной секционированной и обходной системами шин;
- с двумя системами шин;
- с двумя секционированными системами шин;
- с двумя системами шин и обходной;
- с двумя секционированными системами шин и обходной.

Схема с одной несекционированной системой шин — самая простая схема, которая применяется в сетях 6—35 кВ (рис.). В сетях 10(6) кВ схему называют одиночной системой шин. На отходящих и питающих линиях устанавливается один выключатель, один шинный и один линейный разъединители.

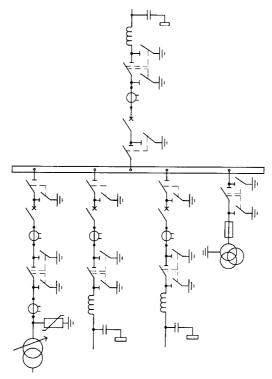


Рис. Схема с одной системой шин

Недостатки данной схемы:

- в схеме используется один источник питания;
- профилактический ремонт сборных шин и шинных разъединителей связан с отключением распределительного устройства, что приводит к перерыву электроснабжения всех потребителей на время ремонта;
- повреждения в зоне сборных шин приводят к отключению распределительного устройства;
- ремонт выключателей связан с отключением соответствующих присоединений.

Схема с одной секционированной выключателем системой шин (рис.) позволяет частично устранить перечисленные выше недостатки предыдущей схемы путем секционирования системы шин, т. е. разделения системы шин на части с установкой в точках деления секционных выключателей. Секционирование, как правило, выполняется так, чтобы каждая секция шин получала питание от разных источников питания. Число присоединений и нагрузка на секциях шин должны быть по возможности равными.

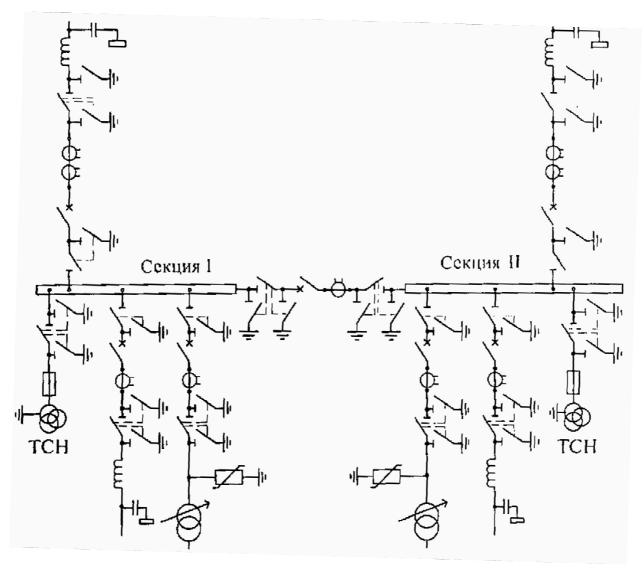


Рис. Схема с одной секционированной системой шин

В нормальном режиме секционный выключатель может быть включен (параллельная работа секций шин) или отключен (раздельная работа секций шин). В системах электроснабжения промышленных предприятий и городов предусматривается обычно раздельная работа секций шин. Данная схема проста, наглядна, экономична, обладает достаточно высокой надежностью, широко применяется в промышленных и городских сетях для электроснабжения потребителей любой категории на напряжениях до 35 кВ включительно. Допускается применять данную схему при пяти и более присоединениях в РУ 110—220 кВ из герметизированных ячеек с элегазовой изоляцией, а также в РУ ПО кВ с выкатными выключателями при условии возможности замены выключателей в эксплуатационный период. В сетях 10(6) кВ эта схема имеет преимущество. По сравнению с одиночной несекционированной системой шин данная схема имеет более высокую надежность, так как при коротком замыкании на сборных шинах отключается только одна секция шин, вторая остается в работе.

Недостатки схемы с одной секционированной выключателем системы шин:

- на все время проведения контроля или ремонта секции сборных шин один источник питания отключается;
- профилактический ремонт секции сборных шин и шинных разъединителей связан с отключением всех линий, подключенных к этой секции шин;

- повреждения в зоне секции сборных шин приводят к отключению всех линий соответствующей секции шип;
 - ремонт выключателей связан с отключением соответствующих присоединений.

Вышеперечисленные недостатки частично устраняются при использовании схем с большим числом секций. На рис. представлена схема РУ 10(6) кВ подстанции с двумя трансформаторами с расщепленной обмоткой или с двумя сдвоенными реакторами. Схема имеет четыре секции шин и называется **«две одиночные секционированные выключателями системы шин».**

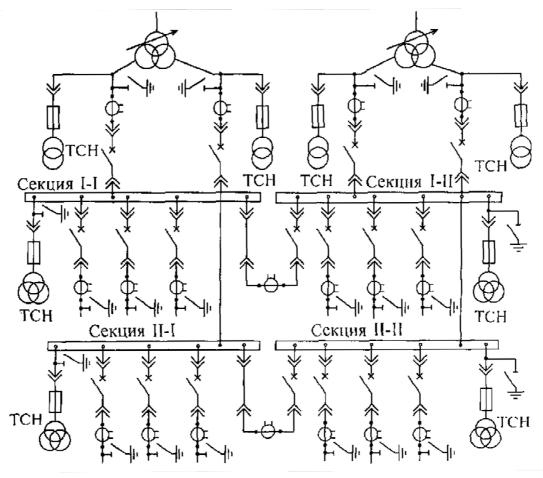


Схема с двумя одиночными секционированными системами шин (ТСН при постоянном оперативном токе подключаются к сборным шинам)

При наличии одновременно двух трансформаторов с расщепленной обмоткой и двух сдвоенных реакторов применяется схема, состоящая из восьми секций шин, которая называется **«четыре одиночные секционированные выключателями системы шин »**(рис.).

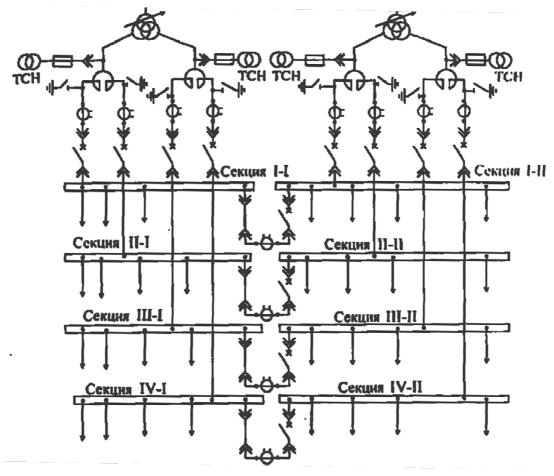
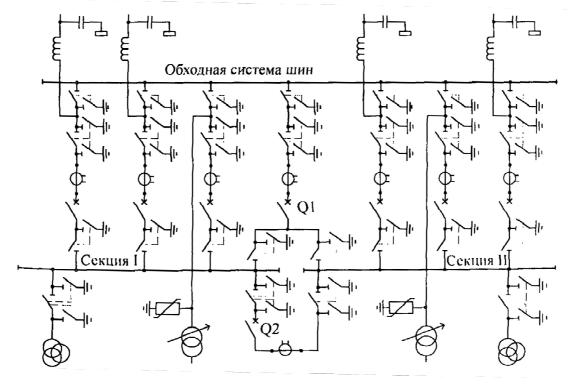



Рис. Схема с четырьмя одиночными секционированными системами шин

Схема с одной секционированной выключателем и обходной системами шин (рис.) позволяет проводить ревизию и ремонт выключателей без отключения присоединения.

Схема с одной секционированной и обходной системами шин с обходным (1) и секционным (2) выключателями

В нормальном режиме обходная система шин находится без напряжения, разъединители, соединяющие линии и трансформаторы с обходной системой шин, отключены. В схеме могут быть установлены два обходных выключателя, осуществляющие связь каждой секции шин с обходной. В целях экономии средств ограничиваются одним обходным выключателем с двумя шинными разъединителями, с помощью которых обходной выключатель может быть присоединен к первой или второй секциям шин. Именно эта схема предлагается в качестве типовой для распределительных устройств напряжением 110—220 кВ при пяти и более присоединениях.

В схеме с двумя системами сборных шин каждое присоединение содержит выключатель, два шинных разъединителя и линейный разъединитель. Системы шин связываются между собой через шиносоединительный выключатель (рис.).

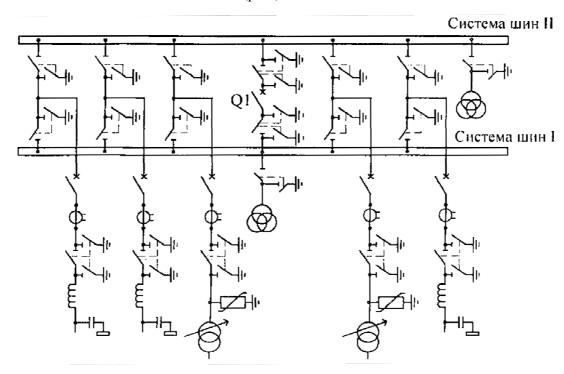


Рис. Схема с двумя системами шин с шиносоединительным выключателем Q1.

Возможны два принципиально разных варианта работы этой схемы. В первом варианте одна система шин является рабочей, вторая — резервной. В нормальном режиме работы все присоединения подключены к рабочей системе шин через соответствующие шинные разъединители. Напряжение на резервной системе шин в нормальном режиме отсутствует, шиносоединительный выключатель отключен. Во втором варианте, который в настоящее время получил наибольшее применение, вторую систему сборных шин используют постоянно в качестве рабочей в целях повышения надежности электроустановки. При этом все присоединения к источникам питания и к отходящим линиям распределяют между обеими системами шин. Шиносоединительный выключатель в нормальном режиме работы замкнут. Схема называется «две рабочие системы шин».

Схема с двумя системами шин позволяет производить ремонт одной системы шин, сохраняя в рабочем состоянии все присоединения. Для этого все присоединения переводят на одну систему шин путем соответствующих переключений коммутационных аппаратов. Данная схема является гибкой и достаточно надежной.

Недостатки схемы с двумя системами шин:

- при ремонте одной из систем шин на это время снижается надежность схемы;
 - при замыкании в шиносоединительном выключателе отключаются обе системы шин;
 - ремонт выключателей и линейных разъединителей связан с отключением на время ремонта соответствующих присоединений;
 - сложность схемы, большое число разъединителей и выключателей.

Частые переключения с помощью разъединителей увеличивают вероятность повреждений в зоне сборных шин. Большое число операций с разъединителями и сложная блокировка между выключателями и разъединителями приводят к возможности ошибочных действий обслуживающего персонала. Схему «две рабочие системы шин» допускается применять в РУ 110—220 кВ при числе присоединений от 5 до 15, если РУ выполнено из герметизированных ячеек с элегазовой изоляцией, а также в РУ 110 кВ с выкатными выключателями при условии замены выключателя в удовлетворяющее эксплуатацию время.

В РУ 110—220 кВ при числе присоединений более 15 делят сборные шины на секции с установкой в точках деления секционных выключателей (рис.). При этом должно предусматриваться два шиносоединительных выключателя. Таким образом, распределительное устройство делится на четыре части, связанные между собой двумя секционными и двумя шиносоединительными выключателями.

Данная схема называется **«две рабочие, секционированные выключателями системы шин».** Она используется при тех же условиях, что и схема «две рабочие системы шин».

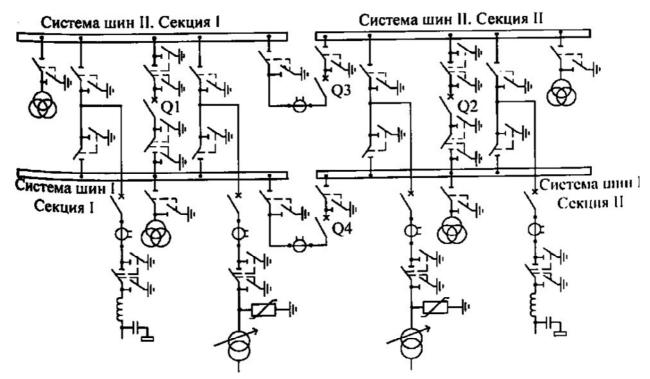


Рис. Схема с двумя секционированными системами шип с двумя шиносоединительными (Ql, Q2) и двумя секционными (Q3, 04) выключателями

Схема с двумя системами шин и обходной с шиносоединительным и обходным выключателями обеспечивает возможность поочередного ремонта выключателей без перерыва в работе соответствующих присоединений (рис.). Схема рекомендуется к применению в РУ 110—220 кВ при числе присоединений от 5 до 15. В нормальном режиме

работы обе системы шин являются рабочими, шиносоединительный выключатель находится во включенном положении.

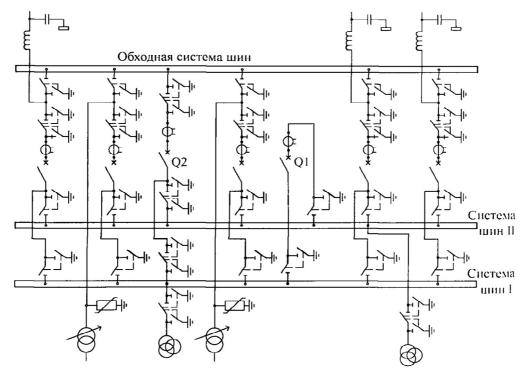


Рис. Схема с двумя системами шин и обходной с шиносоединительным (Q1) и обходным (Q2) выключателями

При числе присоединений более 15 или более 12 и при установке на подстанции трех трансформаторов мощностью 125 МВА и более рекомендуется к применению схема «две рабочие, секционированные выключателями и обходная системы шин» с двумя шиносоединительными выключателями и двумя обходными выключателями. Связь между секциями шин обеспечивается через секционные выключатели, которые в нормальном режиме отключены (рис.).

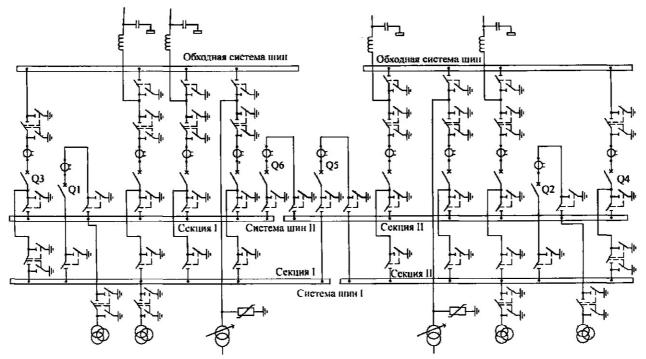


Рис. Схема с двумя системами шин и обходной с двумя шиносоединительными (Q1, Q2) и двумя обходными (Q3, Q4) выключателями (Q5, Q6 — секционные выключатели) Рекомендации по применению данной схемы распределительных устройств 6—220

кВ приведены в табл.

Таблица. Рекомендации по применению схем распределительных устройств напряжением до 220 кВ включительно

DRJIIO INTEJIDIIO			
Система сборных шин	Of Harry Have Covering	Номинальное	
	Область применения	напряжение-индекс	
		схемы	
	В РП, РУ 10(6) кВ при отсутствии присоединений		
Одиночная система шин	с электроприемниками первой категории или при	_	
	наличии резервирования их от других РП, РУ		
	В РП, РУ 10(6) кВ		
	В РП 35 кВ; в РУ ВН и СН 35 кВ.		
	Допускается применять в РУ 110—220 кВ при		
Одна рабочая секциониро-	пяти и более присоединениях, если РУ выполнено	10(6)-1; 35-9	
ванная выключателем сис-	из герметизированных ячеек с элегазовой		
тема шин	изоляцией, а также в РУ 110 кВ с выкатными		
	выключателями при условии замены выключателя		
	в удовлетворяющее эксплуатацию время		
Пто оттементо оттементо	В РУ 10(6) кВ с двумя трансформаторами с		
Две одиночные секциони-	расщепленной обмоткой или с двухобмоточными	10(6) 0	
рованные выключателями	трансформаторами и двумя сдвоенными	10(6)-2	
системы шин	реакторами		
Четыре одиночные сек-	В РУ 10(6) кВ с двумя трансформаторами с		
ционированные системы	расщепленной обмоткой и с двумя сдвоенными	10(6)-3	
шин	реакторами	10(0) 0	
Одна рабочая секциониро-	pountopumi		
-	В РУ 110—220 кВ при пяти и более	12	
ванная выключателем и	присоединениях	12	
обходная системы шин	-		
Две рабочие системы шин	Допускается применять при числе присоединений		

	от 5 до 15 в РУ 110—220 кВ из герметизи-	
	рованных ячеек с элегазовой изоляцией, а также в	
	РУ 110 кВ с выкатными выключателями при	
	условии замены выключателя в удовлетворяющее	
	эксплуатацию время	
Две рабочие и обходная	1. В РУ 10 кВ для энергоемких предприятий с	
	электроприемниками I категории (например, для	12
	предприятий цветной металлургии).	13
системы шин	2. В РУ 110—220 кВ при числе присоединений от	
	5 до 15	
Две рабочие, секционированные выключателями системы шин	Допускается применять при числе присоединений	
	более 15 в РУ 110—220 кВ из герметизированных	
	ячеек с элегазовой изоляцией, а также в РУ 110 кВ	
	с выкатными выключателями при условии замены	-
	выключателя в удовлетворяющее эксплуатацию	
	время	
Две рабочие, секциониро-		
ванные выключателем и	1. В РУ 110—220 кВ при числе присоединений	
обходная системы шин с	более 15.	
двумя	2. В РУ 220 кВ при трех, четырех трансформаторах	14
шиносоединительными и	мощностью 125 MB-A и более при общем числе	
двумя обходными	присоединений от 12 и более	
выключателями		

^{*} Первая цифра означает номинальное напряжение, вторая — индекс схемы.

Схемы распределительных устройств напряжением 35 кВ и выше без сборных шин.

Применяются следующие схемы распределительных устройств: блочные; мостиковые; заход—выход; четырехугольник.

Блочные схемы. Блочной схемой называется схема **«блок линия—трансформатор»** без сборных шин и связей с выключателями между двумя блоками на двухтрансформаторных подстанциях (между двумя блоками может устанавливаться неавтоматическая перемычка из разъединителей). Блочные схемы применяются на стороне ВН тупиковых подстанций напряжением до 500 кВ включительно, ответвительных и проходных подстанций, присоединяемых к одной или к двум линиям, до 220 кВ включительно.

Схемы «блок линия—трансформатор» могут выполняться:

- без коммутационных аппаратов (схема глухого присоединения) или только с разъединителем;
- с отделителем;
- с выключателем.

Схема **«блок линия—трансформатор без коммутационных аппаратов»** применяется при напряжениях 35—330 кВ и питании подстанции по радиальной схеме. Использование данной схемы целесообразно в случаях, когда подстанция размещается в зоне сильного промышленного загрязнения (рис. *а*). Для питания трансформаторов следует использовать кабельные линии высокого напряжения, что позволяет исключить воздействие окружающей среды на изоляцию вводов даже при открытой установке трансформаторов.

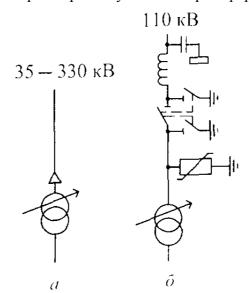


Рис. Схема «блок линия—трансформатор»: a — без коммутационных аппаратов с кабельным вводом (схема глухого присоединения); δ — с разъединителем

Для защиты трансформатора напряжением 330 кВ любой мощности, а также трансформатора напряжением 110, 220 кВ мощностью более 25 МВА предусматривается передача отключающего сигнала на головной выключатель, который обеспечивает отключение питающей линии в случае повреждения трансформатора. Выбор способа передачи сигнала зависит от длины питающей линии, мощности трансформатора, требований по надежности отключения. При мощности трансформатора 25 МВА и менее, а также при кабельном вводе на трансформатор передача отключающего сигнала может не предусматриваться.

Схема **«блок линия—трансформатор с разъединителем»** применяется в тех же случаях, что и предыдущая (рис. б).

На схемах, приведенных на рис., для упрощения показан один блок, в случае двухтрансформаторных подстанций число таких блоков удваивается. Перемычка между блоками не предусматривается. Это рекомендуется использовать в условиях интенсивного загрязнения и при ограниченной площади застройки.

Схему **«блок линия—трансформатор с отделителем»** допустимо применять на напряжении 110 кВ и трансформаторах мощностью до 25 МВА при необходимости автоматического отключения поврежденного трансформатора от линии, питающей несколько подстанций (рис. *а*). Отделители на стороне ВН подстанций могут применяться как с короткозамыкателями, так и с передачей отключающего сигнала на выключатель головного участка магистрали.

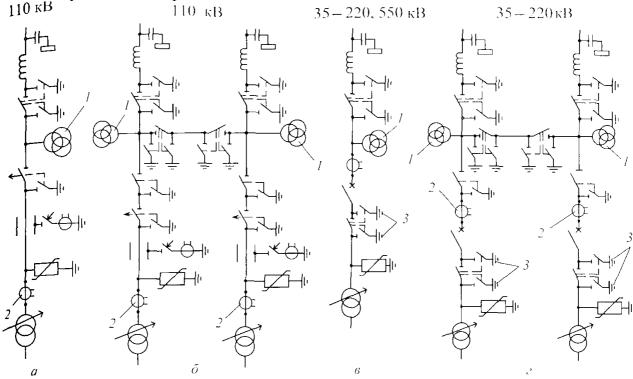


Рис. Схема «блок линия—трансформатор»: a — с отделителем; δ — два блока с отделителями и неавтоматической перемычкой со стороны линии; ϵ — с выключателем; ϵ — два блока с выключателями и неавтоматической перемычкой со стороны линии; 1, 2 — трансформаторы тока и напряжения, установка которых должна быть обоснована; 3 — разъединители, которые устанавливаются при напряжениях 110, 220 кB и наличии собственного питания

На двухтрансформаторных подстанциях используется схема «два блока линия—трансформатор» с отделителем и неавтоматической перемычкой со стороны линий (рис. δ). В нормальном режиме работы один из разъединителей в перемычке должен быть разомкнут.

Запрещается применять схему с отделителем в случае:

- распределительных устройств, расположенных в районах холодного климата по ГОСТ 15150—69, а также в районах, где часто наблюдается гололед;
- сейсмичности более 6 баллов;

• воздействия отделителя и короткозамыкателя, которое приводит к выпадению из

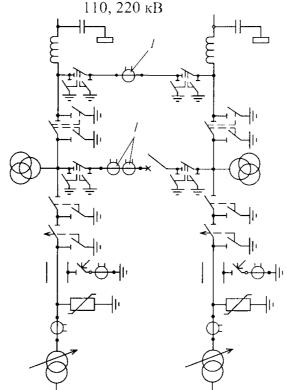
² В соответствии с «Рекомендациями по технологическому проектированию подстанций переменного тока с высшим напряжением 35—750 кВ» (Издательство НЦ ЭНАС, 2004 г.) при проектировании применять схему с отделителем и короткозамыкателем не рекомендуется, а при реконструкции и техническом перевооружении подстанций предусматривать замену этих аппаратов па выключатели.

синхронизма синхронных двигателей пли нарушению технологического процесса;

- использования подстанции на транспорте и в нефте- и газодобывающей промышленности;
- применения трансформаторов, присоединенных к линиям, имеющим ОАПВ.

Схема **«блок линия—трансформатор с выключателем»** применяется на подстанциях напряжением 35—220 и 500 кВ в тех случаях, когда нельзя использовать более простые и дешевые схемы первичной коммутации подстанций (рис. *в*). На двухтрансформаторных подстанциях напряжением 35—220 кВ применяется схема «блок линия—трансформатор» с выключателем и неавтоматической перемычкой со стороны линии (рис. *г*). Блочные схемы просты, экономичны, но при повреждениях в линии или в трансформаторе автоматически отключаются линия и трансформатор.

В схеме **«мостик»** линии или трансформаторы на двух-, трехтрансформаторных подстанциях соединяются между собой с помощью выключателя. Данная схема применяется на стороне ВН 35—220 кВ подстанций при необходимости секционирования выключателем линий или трансформаторов мощностью до 63 МВА включительно. На напряжениях 110 и 220 кВ схема мостика применяется, как правило, с ремонтной перемычкой, которая при соответствующем обосновании может не предусматриваться. Ремонтная перемычка позволяет выполнять ревизию любого выключателя со стороны линий или трансформаторов при сохранении в работе линий и трансформаторов. Перемычка обычно не предусматривается при электрификации сельских сетей напряжением 35 кВ. Схема **«мостик** с выключателем в перемычке и отделителями в цепях трансформаторов» применяется в тех же случаях, что и блочные схемы с «отделителями» (рис.).



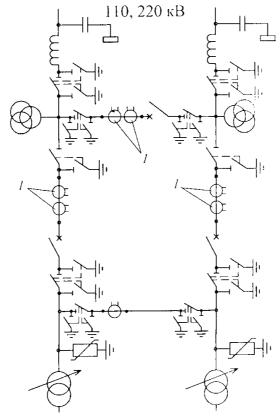

Рис. Схема «мостик с выключателем в перемычке и отделителями в цепях трансформаторов»

Схема **«мостик с выключателями в цепях линий и ремонтной перемычкой со стороны линий»** может применяться на тупиковых, ответвительных и проходных подстанциях напряжением 35—220 кВ (рис.). На тупиковых и ответвительных подстанциях ремонтная перемычка и перемычка с выключателем нормально разомкнуты. При аварии на одной из линий автоматически отключается выключатель со стороны поврежденной линии и

включается выключатель в перемычке, оба трансформатора остаются работающими. В случае аварии на одном из трансформаторов отключение выключателя приводит к отключению трансформатора и питающей линии. Отключение линии при повреждении трансформатора является недостатком данной схемы. На проходных подстанциях перемычка с выключателем нормально замкнута, через нее осуществляется транзит мощности.

Рис. Схема «мостик с выключателями в цепях линий и ремонтной перемычкой со стороны линий»

Схема **«мостик с выключателями в цепях трансформаторов и ремонтной перемычкой со стороны трансформаторов»** (рис.) применяется в тех же случаях, что и предыдущая схема.

Особенность данной схемы состоит в том, что при аварии в линии автоматически отключается поврежденная линия и трансформатор. При аварии в трансформаторе после автоматических переключений в работе остаются две линии и два источника питания.

Учитывая, что аварийное отключение трансформаторов происходит сравнительно редко, то более предпочтительна схема, приведенная ранее.

Схема **«заход—выход»** применяется на проходных подстанциях напряжением 110—220 кВ (рис.). В схеме устанавливается два выключателя со стороны линии, которые позволяют отключать по преклонный участок линии.

Данная схема может применяться как с ремонтной перемычкой, так и без нее.

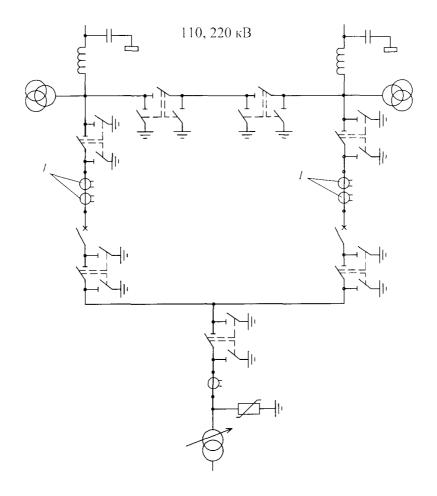


Рис. Схема «заход—выход»

Схема **«четырехугольник»** применяется в РУ 110—750 кВ при четырех присоединениях (две линии и два трансформатора) и необходимости секционирования транзитной линии при мощности трансформаторов от 125 МВА и более при напряжениях 110—220 кВ и любой мощности при напряжениях 330 кВ и выше (рис.).

В схеме со стороны линии установлены через развилку два выключателя, подключаемых к разным трансформаторам. Данная схема обладает более высокой сложностью по сравнению со схемой «мостика», так как авария в линии или в трансформаторе приводит к отключению только повреждение элемента. Недостаток схемы при отключении одной из линий трансформаторы получают питание по одной линии от одного источника питания.

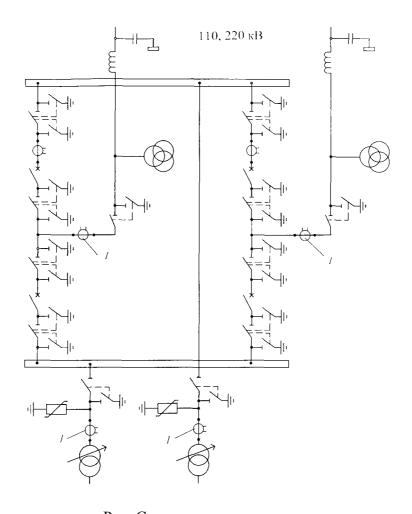


Рис. Схема четырехугольника

Рекомендации по применению схем приведены в табл.

Таблица. Рекомендации по применению схем распределительных устройств без сборных шин

напряжением 35 кВ и выше трансформаторных подстанций

Схема	Область применения	Индекс	
		схемы	
	Блочные схемы		
Блок линия -трансформатор	При напряжениях 35—330 кВ и радиальной		
без коммутационных	схеме питания подстанции в условиях сильного	1	
аппаратов	промышленного загрязнения окружающей среды		
Блок линия - трансформатор с	При напряжениях 35—330 кВ и радиальной схеме	1	
разъединителем	питания подстанции	1	
Блок линия - трансформатор с	При напряжении 110 кВ и магистральной схеме		
1 1 1	питания полстанции (кроме проходных) с		
отделителем	трансформаторами мощностью до 25 МВА		
Два блока линия - трансформа-			
тор с отделителем и неавтома-	То же	4	
тизированной перемычкой			
Блок линия—трансформатор с	При напряжении 35—220, 500 кВ на тупиковых	3H	
выключателем	и ответвительных подстанциях	эп	
Два блока линия - трансформа-	При напряжении 35—220 кВ на тупиковых и	4H	
тор с выключателем и неавто-	ответвительных подстанциях	411	

матизированной перемычкой			
со стороны линий			
со стороны лини	Мостиковые схемы		
Мостик с выключателем в	При магистральной схеме питания и напряжении		
перемычке и отделителями в	110 кВ на подстанциях с трансформаторами	5	
цепях трансформаторов	мощностью до 25 МВА		
	При напряжениях 35—220 кВ на тупиковых,		
Мостик с выключателями в	ответвительных и проходных подстанциях при		
цепях линий и ремонтной	необходимости секционирования линий и	5H	
перемычкой со стороны линий	мощности трансформаторов до 63 МВА		
	включительно		
Мостик с выключателями в	При напряжении 35—220 кВ на тупиковых,		
	ответвительных и проходных подстанциях при		
цепях трансформаторов и ремонтной перемычкой в	необходимости секционирования	5AH	
цепях трансформаторов	трансформаторов при мощности		
ценях транеформаторов	трансформаторов до 63 МВА включительно		
	Схемы «заход—выход» и четырехугольника		
Заход—выход	На проходных подстанциях при напряжении 110, 220 кВ	6	
	В РУ подстанций при четырех присоединениях и		
	необходимости секционирования транзитных		
Четырехугольник	линий и мощности трансформаторов or 125 MB-	7	
	А при напряжении 110, 220 кВ и любой		
	мощности при напряжении 330—750 кВ		

Распределительные подстанции и распределительные устройства напряжением 10(6) кВ.

<u>Присоединение распределительных устройств напряжением 6... 10 кВ к понижающим трансформаторам.</u>

Для понижающих подстанций, на которых распределительные устройства напряжением 6...10 кВ присоединяются к обмотке вторичного напряжения трансформатора, практически все схемы (табл.) могут быть выполнены с использованием комбинаций из схем, приведенных ниже.

РУ 10(6) кВ трансформаторных подстанций выполняются с одиночной секционированной, двумя или четырьмя одиночными секционированными системами шин. На крупных энергоемких предприятиях с электроприемниками высокой категорийности могут применяться распределительные устройства с двумя рабочими системами шин и двумя рабочими системами шин с обходной.

Распределительные устройства с одиночной системой шин с любым числом секций и распределительные пункты выполняются комплектными. Секции сборных шин работают раздельно.

Схемы с двумя системами шин.

Схема с двумя системами сборных шин обладает гибкостью и универсальностью, она позволяет:

ремонтировать сборные шины без перерыва питания потребителей;

быстро восстанавливать питание потребителей при повреждении одной из систем шин;

выделять одну из систем шип для проведения испытаний оборудования и линий; осуществлять различные группировки цепей и присоединений.

Схемы присоединения секций сборных шин к обмотке трансформатора напряжением 6... 10 кВ

Схема	Описание схемы	Характеристика схемы
-0-1-0-0-	секции сборных шин к об- мотке трансформатора или к параллельно соеди- ненным ветвям трансфор-	В качестве вводных, меж- секционных и линейных выключателей использу- ются выключатели с оди- наковым током отключе- ния силой 20 или 31,5 кА
	ций сборных шин к транс- форматору с расщеплен- ной обмоткой напряжени- ем 6 10 кВ без реактиро-	Схема позволяет умень- шить отрицательное влия- ние нагрузок одной ветви на колебания напряжения в другой при резкопере- менных нагрузках
	секции сборных шин к об- мотке трансформатора или к параллельно соеди- ненным ветвям трансфор-	На отходящих линиях от сборных шин РУ устанав- ливают групповые реак- торы, к каждому из кото- рых присосдиняют от одной до четырех-пяти ли- ний
	ций сборных шин к	При наличии электропри- емников, ухудшающих ка- чество электроэнергии в питающей сети, их влия- ние уменьшается

Каждый выключатель может быть присоединен шинными разъединителями к любой системе шин. Схема с двумя системами шин на промышленных предприятиях применяется на мощных подстанциях ответственного назначения, например на крупных узловых подстанциях больших заводов с развитой электрической сетью, с большим числом присоединений и наличием связей и транзитных линий.

Также она применяется в тех случаях, когда это требуется по режиму эксплуатации, например при необходимости разделения источников питания или выделения отдельных потребителей. При применении двойной системы шин при напряжении 6... 10 кВ одна из них обычно разделяется на секции по числу вводов или понизительных трансформаторов, а другая выполняется несекционированной.

На рис. приведена схема мощной ГПП с двойной системой шин на вторичном напряжении. На схеме показаны индивидуальные реакторы на линиях напряжением 6 кВ.

Распределительные устройства с двумя системами шин дороги, сложны в эксплуатации и требуют сложных блокировок. При широком применении комплектных распределительных устройств (КРУ) также ограничивается целесообразность применения двойной системы шин, так как заводские КРУ изготавливаются преимущественно с одной системой шин. Поэтому даже на крупных подстанциях применяется одиночная секционированная система с автоматикой.

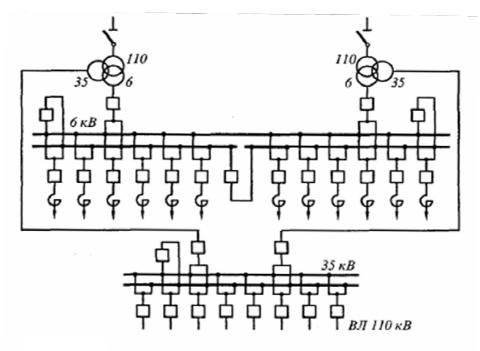


Схема мощной ГПП с двойной системой шин на вторичном напряжении

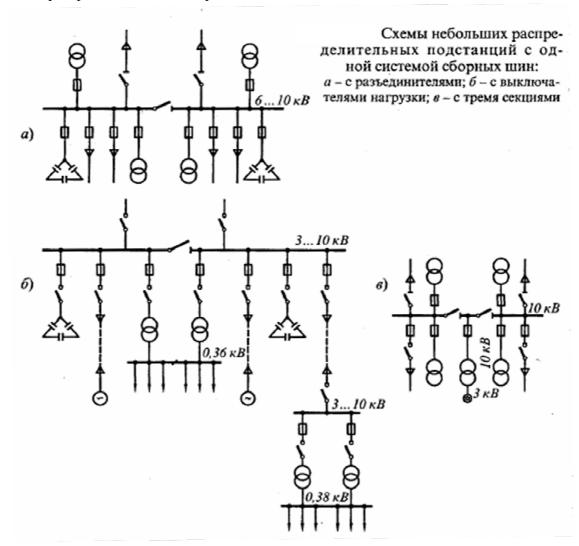
Схемы распределительных подстанций напряжением выше 1 кВ

Распределительные подстанции напряжением 10(6) кВ в соответствии с ПУЭ называются распределительными пунктами (РП). Последние широко применяются в системах электроснабжения промышленных предприятий, городов, поселков, агропромышленных комплексов. Распределительные пункты, как правило, выполняются с одиночной секционированной или несекционированной системой шин.

Распределительные пункты в системах электроснабжения промышленных предприятий рекомендуется сооружать для удаленных от ГПП потребителей [компрессорных, насосных станций, производственного корпуса с несколькими трансформаторными подстанциями 10(6) кВ]. При числе отходящих линий 10(6) кВ менее восьми целесообразность сооружения РП должна быть обоснована.

Для городских сетей целесообразность сооружения РП определяется следующим: нагрузка РП на расчетный срок должна составлять на шинах $10~\mathrm{kB}$ не менее $7~\mathrm{MBT}$, на шинах $6~\mathrm{kB}$ — не менее $4~\mathrm{MBT}$.

На распределительных подстанциях РП напряжением 6...10 кВ наибольшее распространение получили схемы коммутации с одной системой шин. От РП получают питание трансформаторы, электродвигатели напряжением выше 1 кВ, электропечи и другие установки с электроприемниками напряжением выше 1 кВ.


При одиночной системе шин надежность питания повышается вследствие сокращения числа коммутационных операций и возможных ошибок. Разъединители здесь не являются оперативными и служат для снятия напряжения с выключателя на время его ревизии и ремонта. Поэтому серьезных последствий от ошибок при оперировании с ними не бывает, т.к. они снабжены надежной и простой механической блокировкой с выключателями. Одиночные системы шин бывают секционированные и несекционированные.

Для потребителей первой и второй категории применяются только секционированные схемы при помощи разъединителя или выключателя. Число секций определяется схемой электроснабжения, с одной стороны, и характером подключенных электроприемников, с другой стороны. Каждая секция РП питается отдельной линией, Если одна из питающих линий отключается и питаемая ее секция обесточивается, то ее питание восстанавливается

путем включения секционного аппарата. Параллельная работа линий применяется в виде редкого исключения.

На рис. приведены схемы небольших $P\Pi$, секционированных при помощи разъединителей. Крупный ответственный двигатель на рис. ϵ выделен на среднюю секцию, что обеспечивает его бесперебойное питание при любых режимах работы $P\Pi$.

При применении секционных выключателей можно осуществить автоматическое включение резерва. Иногда АВР применяется на вводных выключателях.

Ниже на рис. даны примеры выполнения схем распределительных подстанций с одной системой шин, секционированной при помощи выключателей:

- 1) схема ответственной распределительной подстанции средней мощности, секционированной при помощи выключателя, с ABP на секционном выключателе напряжением $6...\ 10\ kB$ и на секционном автомате напряжением $0.4\ kB$ вторичной стороны двухтрансформаторной подстанции, питаемой от разных секций данной $P\Pi$;
- 2) схема крупной подстанции с ABP на секционном выключателе с применением KPУ с выдвижными выключателями. РП предназначена для питания электродвигателей на напряжение выше $1~\mathrm{kB}$.
- 3) схемы узловых распределительных подстанций на напряжение 110...330 кВ. Эти подстанции получают электроэнергию от энергосистемы и распределяют ее при помощи глубоких вводов по предприятию. Питающие линии, а также линии, проходящие вне загрязненных зон предприятия, воздушные; линии же, питающие подстанции глубоких вводов, расположенные в загрязненных зонах, кабельные. Подстанция, схема которой

приведена на рис. δ , предназначена для очень крупного предприятия. Она имеет автотрансформатор.

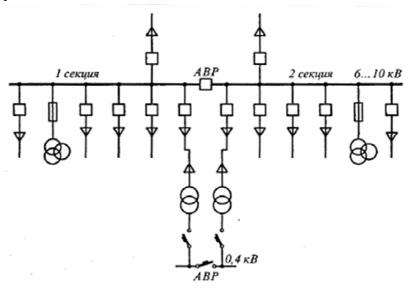
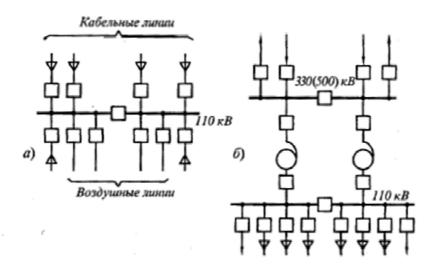



Схема ответственной распределительной подстанции средней мощности, секционированной выключателем

Схема крупной распределительной подстанции с ABP на секционном выключателе с применением KPУ

Схемы узловых распределительных подстанций, питаемых от электрической системы:

 а – небольшой мощности, чисто распределительная; б – крупная со сборными шинами на первичном напряжении

Трансформаторные подстанции напряжением 10(6) кВ.

В промышленных электрических сетях трансформаторные подстанции 10(6) кВ называются цеховыми. Подстанции могут быть отдельно стоящими, пристроенными, встроенными и внутрицеховыми.

Ответьно стоящие подстанции располагаются на территории предприятия на некотором расстоянии от цеха и предназначены для питания одного или нескольких цехов предприятия. Такие подстанции обычно применяются в тех случаях, когда по условиям среды или специфики технологического процесса подстанцию нельзя приблизить к цеху. Например, на некоторых взрывоопасных производствах и химических предприятиях, а также в случаях, когда подстанция применяется для питания нескольких цехов небольшой мошности.

Пристроенные подстанции применяются в тех случаях, когда по состоянию окружающей среды или специфики технологического процесса подстанцию нельзя расположить внутри цеха.

Пристроенные и внутрицеховые подстанции можно максимально приблизить к центру электрических нагрузок. Для таких подстанций обычно применяют комплектные

трансформаторные подстанции промышленного типа внутренней установки, которые устанавливаются в цехах открыто с использованием простейших сетчатых ограждений.

Цеховые трансформаторные подстанции предназначены для питания силовых и осветительных электроприемников. В случаях, когда первичное напряжение трансформатора составляет 0,69 кВ, питание осветительных сетей осуществляется от отдельных трансформаторов.

Число трансформаторов цеховой ТП зависит от требований надежности питания потребителей. Питание электроприемников первой категории следует предусматривать от двух- и трехтрансформаторных подстанций. Трехтрансформаторные подстанции рекомендуется применять в случаях, когда возможно равномерное распределение подключаемой нагрузки по секциям РУНН подстанции.

Двух- и трехтрансформаторные подстанции рекомендуется также применять для питания электроприемников второй категории. При сосредоточенной нагрузке предпочтение следует отдавать трехтрансформаторным подстанциям. Однотрансформаторные подстанции могут быть применены для питания электроприемников второй категории, если требуемая степень резервирования потребителей обеспечивается линиями низкого напряжения от другого трансформатора и время смены вышедшего из строя трансформатора не превышает сутки.

При сосредоточенной нагрузке электроприемников второй категории значительной мощности может оказаться целесообразным сооружение цеховой ТП, на которой устанавливается несколько полностью загруженных трансформаторов и один резервный трансформатор, способный заменить любой из трансформаторов группы с помощью трансферной системы шин. Использование данной подстанции целесообразно, если число полностью загруженных трансформаторов 6 и более.

Питание отдельно стоящих объектов общезаводского назначения (компрессорных, насосных станций и т. п.) рекомендуется выполнять от двухтрансформаторных подстанций.

Для питания электроприемников третьей категории рекомендуется применять однотрансформаторные подстанции, если перерыв электроснабжения, необходимый для замены поврежденного трансформатора, не превышает сутки. При значительной сосредоточенной нагрузке электроприемников третьей категории вместо двух однотрансформаторных подстанций может быть установлена одна двухтрансформаторная подстанция без устройства ABP с полной загрузкой трансформатора.

Мощность трансформаторов двух- и трехтрансформаторных подстанций определяется таким образом, чтобы при отключении одного трансформатора было обеспечено питание требующих резервирования электроприемников в послеаварийном режиме с учетом перегрузочной способности трансформатора.

Если нагрузка равномерно распределена по площади цеха, то выбор единичной мощности трансформатора при напряжении питающей сети 0,4 кВ определяется следующим образом:

- при плотности нагрузки до 0,2 (кВА)/м² 1000, 1600 кВА;
- при плотности нагрузки $0.2 0.5 \text{ (кВА)/м}^2 1600 \text{ кВА};$
- при плотности нагрузки более 0,5 (кВА)/м² 2500, 1600 кВА.

Для энергоемких производств при значительном количестве цеховых ТП рекомендуется унифицировать единичные мощности трансформаторов.

Схемы соединения обмоток трансформаторов. Трансформаторы цеховых ТП мощностью 400—2500 кВА выпускаются со схемами соединения обмоток «звезда—звезда» с допустимым током нулевого вывода, равным 25 % номинального тока трансформатора, или со схемой «треугольник—звезда» — 75 % номинального тока трансформатора. По условиям надежности действия защиты от однофазных коротких замыканий в сетях напряжением до 1 кВ и возможности подключения несимметричных нагрузок

предпочтительным является трансформатор со схемой соединения обмоток «треугольник—звезда».

Выбор исполнения трансформатора по способу охлаждения обмоток (масляный, сухой, заполненный негорючим жидким диэлектриком) зависит от условий окружающей среды, противопожарных требований, объемно-планировочных решений производственного злания.

Распределительное устройство со стороны высокого напряжения подстанции для КТП промышленного типа выполняется обычно в виде высоковольтного шкафа без сборных шин со встроенными в шкаф коммутационными аппаратами или без них (глухой ввод). Высоковольтный шкаф называется устройством со стороны высшего напряжения подстанции (УВН).

<u>Присоединение цеховых трансформаторных подстанций к линиям напряжением 6...</u> 10 кВ

На цеховых трансформаторных подстанциях напряжением 6...10/0,4 кВ применяются схемы без сборных шин.

При радиальном питании по схеме блока линия - трансформатор обычно применяется глухое присоединение трансформаторов на стороне высшего напряжения.

При питании по магистрали на вводе к трансформатору в большинстве случаев устанавливаются выключатели нагрузки или разъединители.

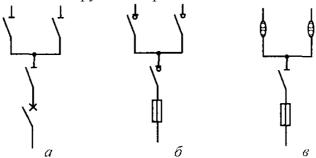
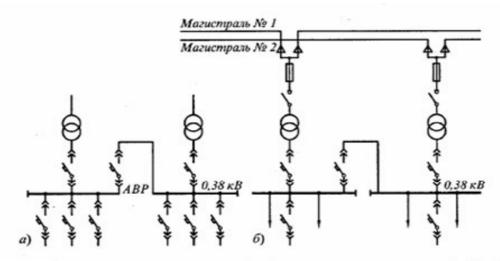


Рис. Схемы УВН цеховых подстанций при магистральной схеме питания ТП: a — с разъединителями на вводе и выводе, разъединителем и выключателем в цепи трансформатора; δ — с выключателями нагрузки на вводе и выводе, выключателем нагрузки и предохранителями в цепи трансформатора; ϵ — ϵ шинными накладками на вводе и выводе, разъединителем и предохранителями в цепи трансформатора

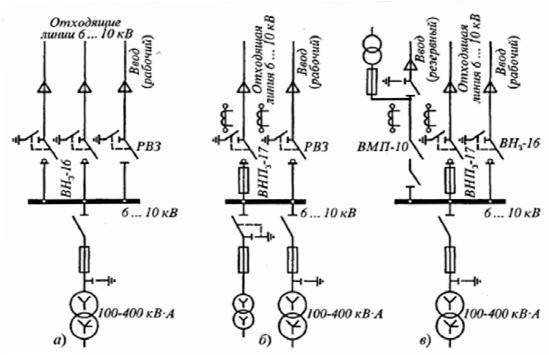

Установка отключающего аппарата перед цеховым трансформатором при магистральной схеме питания обязательна. В качестве отключающих аппаратов могут применяться разъединители с предохранителями, выключатели нагрузки, выключатели нагрузки с предохранителями. В последнее время появились УВН с вакуумными выключателями.

Глухое присоединение цехового трансформатора может применяться при радиальной реме питания трансформатора кабельными линиями по схеме блока «линия— трансформатор», за исключением питания от пункта, находящегося в ведении другой эксплуатирующей организации, а также при необходимости установки отключающего аппарата по условиям защиты (см. рис. *а*). Если же необходимо обеспечить селективное отключение трансформатора при его повреждении или недопустимой перегрузке, то последовательно с выключателем нагрузки или разъединителем устанавливается предохранитель.

При магистральной схеме питания применяются схемы, изображенные на рис. (см. рис. б), где на входе и выходе магистрали устанавливаются разъединители, выключатели нагрузки или шинные накладки, а в цепи трансформатора — разъединители с предохранителями, выключатели нагрузки с предохранителями или разъединители с вакуумными выключателями.

Схемы комплектных трансформаторных подстанций состоят из следующих основных элементов: вводов первичного напряжения, трансформаторов, выводов вторичного напряжения от трансформаторов, отходящих линий вторичного напряжения в различных модификациях, секционных аппаратов на шинах вторичного напряжения.

Вводы в КТП напряжением 6...10 кВ выполняются в основном по схемам, приведенным на рис. a и б, в зависимости от схемы электроснабжения.


Схемы цеховой подстанции без сборных шин напряжением 6... 10 кВ: a – при радиальном питании; δ – при магистральном питании

При магистральном питании $T\Pi$ на вводе к трансформатору с номинальной мощностью $S_{H0M,T}$ устанавливаются аппараты в следующем порядке по направлению тока: предохранитель и выключатель нагрузки (при $S_{H0M,T} > 630$ кBA); разъединитель и предохранитель (при $S_{H0M,T} < 400$ кBA).

<u>Присоединение трансформаторных подстанции к линиям напряжением 6... 10 кВ для</u> питания городских потребителей

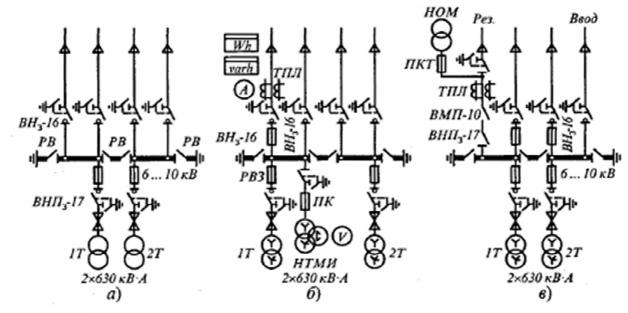
Схемы электрических соединений однотрансформаторных подстанций с трансформатором мощностью до 630 к ВА являются наиболее простыми и содержат минимальное число несложных коммутирующих и защитных аппаратов.

На рис. приведены схемы электрических соединений трансформаторных подстанций с трансформаторами мощностью до $400~\mathrm{kBA}$ с кабельным вводом. Выбор схемы подстанции определяется схемой построения распределительной сети напряжением $6...10~\mathrm{kB}$. Подстанция, схема которой приведена на рис. a, используется в петлевых схемах; подстанция, схема которой приведена на рис. δ , δ , - при питании от одной радиальной линии, а отходящая радиальная лилия питает отдельные потребители.

Схемы электрических соединений подстанций с одним трансформатором мощностью до 400 кВ·А

На следующем рис. приведены схемы соединений двухтрансформаторных подстанций с трансформаторами мощностью до 630 кВА каждый с кабельными вводами. Подстанция имеет одинарную систему сборных шин, которые секционированы на дне секции с помощью разъединителей.

К каждой секции шин предусматривается присоединение одной-двух линий и по одному трансформатору. На каждой секции шин предусмотрены заземляющие разъединители.


В распределительном устройстве напряжением 6... 10 кВ устанавливаются выключатели нагрузки ВНЗ-16 и ВНПЗ-17 и масляный выключатель ВМП-10 только для резервного ввода.

В схеме a отсутствуют автоматика и измерение. В схеме, приведенной на рис. b, предусматривается коммерческий учет энергии с установкой измерительных трансформаторов (тока - ТПЛ и напряжения - НТМИ) и приборов учета: амперметра, счетчиков активной и реактивной энергии. В схеме, приведенной на рис. b, установлен ABP на резервном вводе с выключателем ВМП-10.

Распределительным устройством со стороны низшего напряжения подстанции называется устройство для распределения электроэнергии напряжением до 690 В, состоящее из одного или нескольких шкафов со встроенными в них аппаратами для коммутации, управления, измерения и защиты.

РУНН двухтрансформаторной подстанции выполняется с одиночной секционированной системой шин с фиксированным подключением каждого трансформатора к своей секции шин через коммутационный аппарат.

В промышленных электрических сетях применяются комплектные трансформаторные подстанции: для внутренней установки — КТП промышленного типа; для наружной установки — КТП промышленного типа в модульном здании, КТП модульного типа; КТП в бетонной оболочке: КТП городского типа и др.

Схемы электрических соединений подстанций с двумя трансформаторами мощностью до 630 кВ · А каждый

В городских электрических сетях используют: отдельно стоящие подстанции; подстанции, совмещенные с РП 10(6) кВ; встроенные и пристроенные подстанции, которые могут быть установлены в общественных зданиях при условии соблюдения требований ПУЭ, санитарных норм.

Не допускается применение встроенных и пристроенных подстанций в спальных корпусах общественно-образовательных школ, школах-интернатах, учреждениях по подготовке кадров, дошкольных детских учреждениях и др., где уровень звука ограничен санитарными нормами.

Применяются одно- и двухтрансформаторные подстанции с мощностью трансформатора не более 1000 кВА. На встроенных и пристроенных подстанциях при применении сухих трансформаторов число трансформаторов не ограничивается.

Выбор мощности силовых трансформаторов должен производиться с учетом нагрузочной и перегрузочной способности трансформаторов.

Для двухтрансформаторных подстанций с масляными трансформаторами допустимая аварийная перегрузка трансформатора должна приниматься в соответствии с требованиями ГОСТ 14209-97.

Рекомендуемые схемы соединения обмоток трансформаторов:

«звезда-зигзаг» для трансформаторов до 250 кВА;

«треугольник-звезда» при мощности 400 кВА и более.

В настоящее время чаще всего применяются подстанции закрытого типа в кирпичных или бетонных зданиях, с силовыми трансформаторами марки ТМ. РУВН выполняется со сборными шинами с камерами КСО-366M, РУНН — с панелями ЩО-70.

Принципиальная схема данной подстанции и план подстанции типа K-42 — показаны на рис.

Секционные разъединители и заземляющие ножи установлены на шинном мосту

При радиальной схеме питания подстанций применяются более простые схемы на стороне ВН подстанции. В последнее время российские предприятия освоили выпуск комплектных трансформаторных подстанций разных типов, которые могут быть установлены в

городских электрических сетях: КТП городского типа; КТП модульного типа; КТП в бетонной оболочке; КТП наружного типа и др.

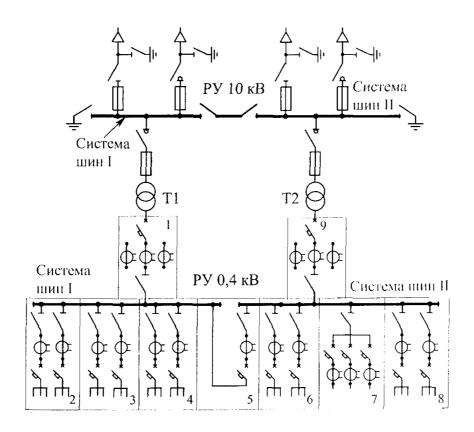


Рис. Принципиальная схема подстанции РУ 10 кВ с камерами КСО-366М (РУ 0,4 кВ с панелями ЩО 70), тонкими линиями выделены панели 0,4 кВ: 1, 9 — вводные панели; 2—4, 6— 8 — линейные панели; 5— секционная панель

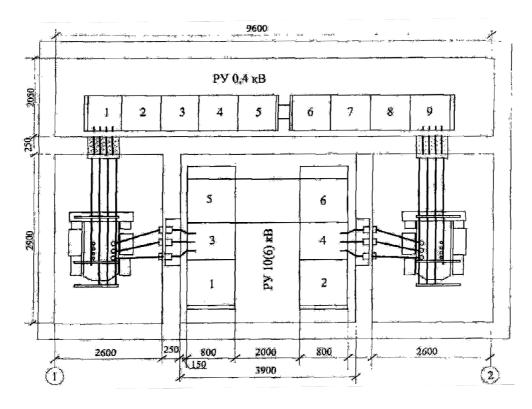


Рис. План подстанции 10(6)/0,4 кВ типа K-42-630 М5

Схемы распределительных подстанций на напряжении до 1 кВ

Схема распределительной подстанции (распределительного пункта, силового пункта, распределительного щита, шкафа и т.д.) определяется ее назначением, числом и мощностью отходящих линий, уровнем токов короткого замыкания. Для ввода питания в жилые и общественные здания применяют вводные распределительные устройства (ВРУ). Схема панели ВРУ в однолинейном изображении дана на рис.

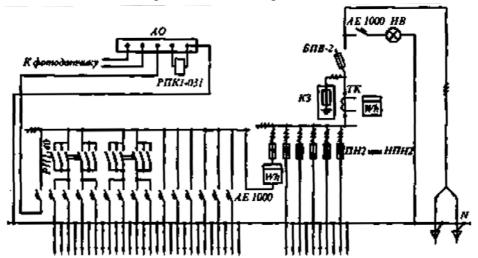
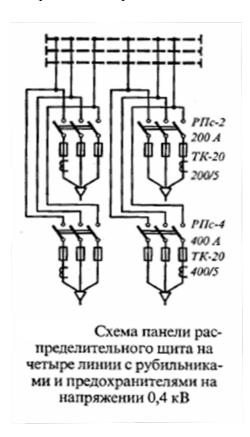



Схема панели вводного распределительного устройства на напражении 0.4 кВ

При выполнении РП на напряжении до 1 кВ используют стандартные панели, на которых устанавливаются комплекты из рубильников с предохранителями или рубильников с автоматами, иногда с контакторами. Схема панели распределительного щита с рубильниками и предохранителями РПс-2 и трансформаторами тока ТК-20 дана в трехфазном изображении на рис.

При составлении схемы распределительной подстанции необходимо так подбирать нагрузки и отходящие линии, чтобы РП не получилась громоздкой и дорогостоящей, но в то же время была устойчива к токам короткого замыкания. Если есть необходимость в отходящих линиях небольших сечений, следует группировать нагрузки по мелким магистралям. В случае применения рубильников пропускную предохранителями способность отходящих линий для силовой нагрузки рекомендуется принимать силой тока 250 и 400 А. Сечения проводов и кабелей выше 150 мм² применять не рекомендуется. В схемах распределительных подстанций для силовых и осветительных сетей должно быть обеспечено отключение всей РП без нарушения работы остальных РП, питающихся от одной магистрали. Для силовых РП это достигается применением общих рубильников на вводе, причем при питании группы РП «цепочкой» каждая РП может быть отключена без нарушения работы самой цепочки. Для потребителей, 1ребующих более надежного электроснабжения, применяются РП с двумя рубильниками или контакторами на вводе для подключения к независимым источникам питания. Ответвления от РП защищаются предохранителями или автоматами.

Тема 3. Расчеты и выбор основного электрооборудования подстанций.

Выбор и проверка выключателей. Выбор и проверка предохранителей. Выбор и проверка разъединителей. Выбор и проверка токоограничивающих реакторов. Выбор и проверка трансформаторов напряжения. Выбор и проверка автоматических выключателей. Выбор и проверка трансформаторов тока. Выбор и проверка шин и изоляторов. Выбор и проверка кабелей. Выбор и проверка проводов. Выбор и проверка кабелей и проводов до 1 кВ с учетом выбора защиты.

Расчет токов короткого замыкания

Расчетными точками короткого замыкания принимаются сборные шины РУ-6(10) кВ и РУ-220-110(35) кВ проектируемой подстанции или шины всех РУ электростанции.

Расчетный вид K3 - трехфазное короткое замыкание, по которому проверяются электродинамическая устойчивость выключателей, а также термическая устойчивость токоведущих частей электроустановок и аппаратов.

Тепловой импульс при двухфазном коротком замыкании может оказаться большим, чем при трехфазном замыкании, особенно при продолжительном коротком замыкании. Однако при быстродействующих защитах основных цепей РУ $B_k^{(3)} > B_k^{(2)}$, поэтому расчетным при проверке термической устойчивости будет ток трехфазного короткого замыкания.

В результате расчета токов короткого замыкания необходимо выявить следующие их значения:

 I_{II0} — периодическую составляющую тока короткого замыкания в начальный момент времени;

 i_{ao} — апериодическую составляющую тока короткого замыкания в начальный момент времени;

 $I_{\Pi t}$ — ток короткого замыкания в момент расхождения контактов выключателя;

 i_{at} — апериодическую составляющую тока короткого замыкания в момент расхождения контактов выключателя;

 I_{∞} — установившийся ток короткого замыкания;

 i_{v} — ударный ток короткого замыкания;

 I_{y} — действующее значение тока короткого замыкания за первый период после момента короткого замыкания;

Расчет токов короткого замыкания следует производить с учетом индивидуального затухания периодической составляющей тока короткого замыкания от отдельных источников, находящихся на различном удалении от места короткого замыкания. Расчет желательно выполнить в относительных единицах.

От источников бесконечной мощности токи короткого замыкания необходимо определять аналитическим методом по величинам базисного тока и относительного результирующего сопротивления до места короткого замыкания, т.е.:

$$I_{\Pi\theta} = I_{\infty} = \frac{I_{\delta}}{x_{*pes}},$$

где

$$I_{\delta} = \frac{S_{\delta}}{\sqrt{3} \cdot U_{\delta}}.$$

Здесь за базисную мощность принимается 100~MBA~uли 1000~MBA, а за базисное напряжение U_{δ} - среднее номинальное напряжение той ступени напряжения, на которой рассчитываются значения токов короткого замыкания.

От источников конечной мощности токи короткого замыкания определяются по типовым кривым.

Составление схемы замещения

Расчеты токов коротких замыканий выполняются, как правило, без учета активных сопротивлений и проводимостей элементов сети, входящих в схему замещения, а также фазовых сдвигов между векторами э.д.с. источников. Поэтому для составления схем замещения заданной электрической схемы необходимо определить лишь индуктивные сопротивления всех элементов сети и э.д.с. источников, подпитывающих точку короткого замыкания. Сопротивлениям, определяемым в результате преобразования схем замещения, присваиваются порядковые номера.

При определении сопротивлений отдельных элементов (воздушных линий, реакторов) необходимо использовать значение среднего номинального напряжения в месте установки элемента, выбранное из ряда: 515; 340; 230; 115; 37; 24; 20; 18; 15,75; 13,8; 10,5; 6,3 кВ.

При переходе от расчета сверхпереходного режима к расчету установившегося режима схема замещения изменяется. Поэтому составление и упрощение схемы замещения нужно выполнить как для сверхпереходного, так и для установившегося режима к.з.

Каждая схема должна быть преобразована до одного результирующего сопротивления соответствующей последовательности относительно точки к.з. При преобразованиях следует использовать основные приемы эквивалентных преобразований, известные из теории линейных цепей (параллельное и последовательное соединение сопротивлений, преобразование звезды в треугольник и обратно).

Определение параметров элементов при составлении схем замещения

Параметры элементов для схемы прямой последовательности определяются в соответствии с заданием, в котором они даны в относительных единицах при номинальных условиях, либо в именованных единицах (воздушные линии, реакторы). Расчет параметров отдельных последовательностей для различных элементов выполняется следующим образом:

<u>Генераторы</u>. В сверхпереходном режиме генераторы замещаются сверхпереходными э.д.с. $E_{\Gamma*}''$ за сверхпереходными сопротивлениями X_d'' , а в установившемся режиме к.з. – синхронной э.д.с. $E_{\Gamma*}$ и сопротивлением X_d . Э.Д.С. генераторов определяется по формуле:

$$E_* = \sqrt{(x_{\Gamma}\cos\varphi_H)^2 + (1 + X_{\Gamma}\sin\varphi_H)^2}$$

где $X_{\varGamma}=X_{d}^{\prime\prime}$ - при определении $E_{\varGamma*}^{\prime\prime};\;\;X_{\varGamma}=X_{d}$ - при определении $E_{\varGamma*}.$

Определение сопротивлений генераторов в относительных единицах при базисных условиях выполняется по формуле: $X_{*(\delta)} = X_{\Gamma} \frac{S_{\delta} \cos \phi_{H}}{P_{H}}$.

<u>Нагрузки</u>. Нагрузки в схему замещения для сверхпереходного режима входят как источники с параметрами $E_{H*}'' = 0.85$, $X_{H*}'' = 0.35$.

Приведение сопротивлений нагрузки к базисным условиям выполняется по формуле:

$$X_{*(\tilde{o})} = X_H \frac{S_{\delta}}{S_H}.$$

 $\frac{\text{Трансформаторы.}}{\text{Выражению: }} X_{IT*(\delta)} = \frac{U_{K\%} \cdot S_{\delta}}{100 \cdot S_{H}}.$

<u>Система.</u> Сопротивление прямой последовательности системы конечной мощности, отнесенное к базисным условиям: $X_{IC*(\delta)} = \frac{S_{\delta}}{S_C}$. Для системы бесконечной мощности -

 $X_{1C} = {f 0}$. За этим сопротивление считается подключенным источник с $E_{C*} = {f 1}$.

<u>Воздушные линии.</u> Сопротивление прямой последовательности линий электропередачи, приведенное к базисным условиям, равно:

$$X_{IJI*(\delta)} = X_{YJ} L \frac{S_{\delta}}{U_{CP}^2},$$

где $X_{y\!/\!\!\!/}$ - индуктивное сопротивление линии на 1 км длины, Ом/км; L - длина линии, км; U_{CP} - среднее напряжение в месте установки элемента (в данном случае ЛЭП), кВ.

Реакторы. Сопротивление прямой последовательности реакторов равно:

$$X_{P*(\delta)} = X_P \frac{S_{\delta}}{U_{CP}^2}.$$

Расчет трехфазного короткого замыкания

Определение периодической составляющей тока трехфазного к.з. в начальный момент возникновения повреждения было показано ранее.

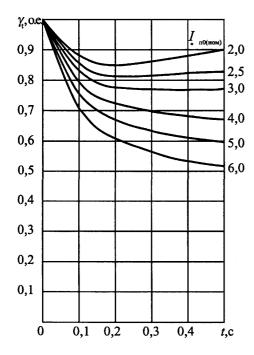
При приближенных расчетах токов КЗ для определения действующего значения периодической составляющей тока КЗ от синхронных генераторов в произвольный момент времени при радиальной расчетной схеме следует применять метод типовых кривых. Он основан на использовании кривых изменения во времени отношения действующих значений периодической составляющей тока КЗ от генератора в произвольный и начальный моменты времени, т.е. $\gamma_t = I_{\rm nt}/I_{\rm no} = f(t)$, построенных для разных удаленностей точки КЗ. При этом электрическая удаленность точки КЗ от синхронной машины характеризуется отношением действующего значения периодической составляющей тока генератора в начальный момент КЗ к его номинальному току, т.е.

$$I_{* n0(\text{HOM})} = \frac{I_{n0}}{I_{\text{HOM}}} = I_{* n0(\delta)} \frac{S_{\delta}}{S_{\text{HOM}}},$$

где $_{*}^{I}$ $_{10}$ - начальное значение периодической составляющей тока КЗ от машины в относительных единицах при выбранных базисных условиях;

 S_6 - базисная мощность, MB·A;

 $S_{\text{ном}}$ - номинальная мощность (полная) синхронной машины, MB·A.


На рис. 4.1-4.4 приведены типовые кривые $\gamma_t = f(t)$ для различных групп турбогенераторов с учетом современной тенденции оснащения генераторов разных типов определенными системами возбуждения.

На рис. 4.1 представлены типовые кривые для турбогенераторов с тиристорной независимой системой возбуждения (СТН)-генераторов типов ТВВ-300-2ЕУЗ, ТВВ-500-2ЕУЗ, ТВВ-800-2ЕУЗ, ТГВ-300-2ЕУЗ, ТГВ-800-2УЗ; при построении кривых приняты кратность предельного напряжения возбуждения $K_{\rm Uf}=2,0$ и постоянная времени нарастания напряжения возбуждения $T_{\rm e}=0,02$ с.

На рис. 4.2 представлены типовые кривые для турбогенераторов с тиристорной системой параллельного самовозбуждения (СТС)-генераторов типов ТВФ-100-2УЗ, ТВФ-110-2ЕУЗ, ТВФ-120-2УЗ, ТВВ-160-2ЕУЗ, ТВВ-167-2УЗ, ТВВ-200-2АУЗ, ТВВ-220-2ЕУЗ, ТГВ-200-2УЗ, ТЗВ-220-2ЕУЗ, ТЗВ-320-2ЕУЗ; при построении этих кривых приняты $K_{\rm Uf} = 2.5$ и $T_{\rm e} = 0.02$ с.

На рис. 4.3 представлены типовые кривые для турбогенераторов с диодной независимой (высокочастотной) системой возбуждения (СДН) - генераторов типов ТВФ-63-2ЕУЗ, ТВФ-63-2УЗ, ТВФ-110-2ЕУЗ; при построении кривых приняты $K_{\rm Uf}=2.0$ и $T_{\rm e}=0.2$ с.

На рис. 4.4 представлены типовые кривые для турбогенераторов с диодной бесщеточной системой возбуждения (СДБ) - генераторов типов ТВВ-1000-2УЗ и ТВВ-1200-2УЗ; при построении кривых приняты $K_{\rm Uf}=2.0$ и $T_{\rm e}=0.15$ с.

γ,o.e. 0.9 по(ном) 2.0 0,8 2,5 0,7 3,0 0,6 0,5 4,0 0,4 5,0 0,3 6,0 0,2 0,1 0.1 0,2 0,4 t,c

Рис. 4.1. Типовые кривые изменения периодической составляющей тока K3 от турбогенераторов с тиристорной независимой системой возбуждения

Рис. 4.2. Типовые кривые изменения периодической составляющей тока K3 от турбогенераторов с тиристорной системой самовозбуждения

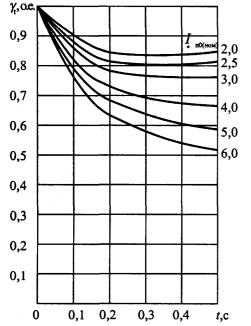


Рис. 5.3. Типовые кривые изменения периодической составляющей тока КЗ от

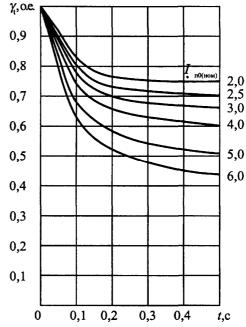


Рис. 5.4. Типовые кривые изменения периодической составляющей тока КЗ от

турбогенераторов с диодной независимой турбогенераторов типов ТВВ-1000-2УЗ и (высокочастотной) системой возбуждения

ТВВ-1200-2УЗ с диодной бесщеточной системой возбуждения

Типовые кривые учитывают изменение действующего значения периодической составляющей тока КЗ, если отношение действующего значения периодической составляющей тока генератора в начальный момент КЗ к его номинальному току равно или больше двух. При меньших значениях этого отношения следует считать, что действующее значение периодической составляющей тока K3 не изменяется во времени, т.е. $I_{\rm nt} = I_{\rm n0} =$ const.

Расчет действующего значения периодической составляющей тока КЗ от синхронного генератора в произвольный (фиксированный) момент времени с использованием метода типовых кривых рекомендуется вести в следующем порядке:

- 1) по исходной расчетной схеме составить эквивалентную схему замещения для определения начального значения периодической составляющей тока КЗ, в которой синхронную машину следует учесть предварительно приведенными к базисной ступени напряжения или выраженными в относительных единицах при выбранных базисных условиях сверхпереходным сопротивлением и сверхпереходной ЭДС, с помощью преобразований привести схему к простейшему виду и определить действующее значение периодической составляющей тока в начальный момент КЗ;
- 2) определить значение величины $I_{\text{п0(ном)}}$, характеризующей электрическую удаленность расчетной точки КЗ от синхронной машины;
- 3) исходя из типа генератора и его системы возбуждения, выбрать соответствующие этом допустима линейная экстраполяция в области смежных кривых);
 - 4) по выбранной кривой для заданного момента времени определить коэффициент ү;
- 5) определить искомое значение периодической составляющей тока КЗ от синхронной машины в заданный момент времени

$$I_{\rm nt} = \gamma_t I_{\rm n0(6)} I_{\rm 6}$$

где I_6 - базисный ток ступени напряжения сети, на которой находится расчетная точка K3.

Если исходная расчетная схема содержит несколько однотипных синхронных генераторов, находящихся в одинаковых условиях по отношению к расчетной точке КЗ, то порядок расчета периодической составляющей тока КЗ в произвольный момент времени аналогичен вышеизложенному, только при определении значения I_{*} п0(ном) вместо $S_{\text{ном}}$ следует подставлять сумму номинальных мощностей всех этих генераторов.

В тех случаях, когда расчетная продолжительность КЗ превышает 0,5 с, для расчета периодической составляющей тока в произвольный момент времени при КЗ на выводах турбогенераторов допустимо использовать кривые $\gamma_t = f(t)$, приведенные на рис. 4.5, а при КЗ на стороне высшего напряжения блочных трансформаторов - кривые, приведенные на рис. 4.6.

Как на рис. 4.5, так и на рис. 4.6 кривая 1 относится к турбогенераторам с диодной бесщеточной системой возбуждения, кривая 2 - с тиристорной независимой системой возбуждения, кривая 3 - с диодной независимой (высокочастотной) системой возбуждения и кривая 4 - с тиристорной системой самовозбуждения.

приближенного определения действующего значения составляющей тока КЗ в произвольный момент времени от синхронных генераторов напряжением 6-10 кВ в автономных системах электроснабжения следует использовать типовые кривые, представленные на рис. 4.7.

При разработке кривых были использованы параметры генераторов напряжением 6-10 кВ различных серий, а именно: СГДС 15.54.8 - 1000 кВт, 10,5 кВ; СГДС 15.74.8 - 1600 кВт, 10,5 кВ; СГДС 15.94.8-2000 кВт, 10,5 кВ; СГДС 15.74.8-2000 кВт, 6,3 кВ; СГДС 15.54.8 - 1600 кВт, 6,3 кВ; СБГД 6300 - 6300 кВт, 6,3 кВ.

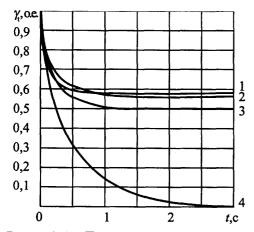


Рис. 4.5. Типовые кривые изменения периодической составляющей тока K3 от турбогенераторов с различными системами возбуждения при трехфазных K3 на выводах генераторов

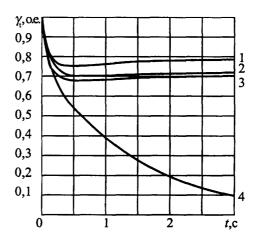


Рис. 4.6. Типовые кривые изменения периодической составляющей тока КЗ от турбогенераторов с различными системами возбуждения при трехфазных КЗ на стороне высшего напряжения блочных трансформаторов

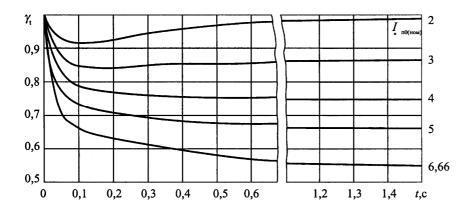


Рис. 4.7. Типовые кривые изменения периодической составляющей тока K3 от синхронного генератора напряжением 6-10 кВ автономной системы электроснабжения

Учет синхронных и асинхронных электродвигателей при расчете токов короткого замыкания

Степень влияния синхронных и асинхронных электродвигателей на ток K3 зависит от характера исходной расчетной схемы, положения расчетной точки K3, удаленности последней от электродвигателей и многих других факторов.

Периодическую составляющую тока K3 от синхронных или асинхронных электродвигателей в произвольный момент времени следует рассчитывать путем решения соответствующей системы дифференциальных уравнений переходных процессов и выделения из найденного тока его периодической составляющей, используя ЭВМ.

В приближенных расчетах для определения действующего значения периодической составляющей тока КЗ от синхронных или асинхронных электродвигателей в произвольный момент времени при радиальной схеме следует применять метод типовых кривых, который основан на использовании кривых изменения во времени отношений $\gamma_{\text{tCД}} = I_{\text{пtCД}}/I_{\text{п0CД}}$ и $\gamma_{\text{tAД}} = I_{\text{пtAД}}/I_{\text{п0AД}}$ при разных удаленностях точки КЗ.

Типовые кривые для синхронного электродвигателя приведены на рис. 4.8, а для асинхронного электродвигателя — на рис. 4.9.

Значение периодической составляющей тока в килоамперах в момент времени t равно

$$I_{\Pi t C \Pi} = \gamma_{t C \Pi} I_{* \Pi 0 (HOM)} I_{HOM C \Pi} = \gamma_{t C \Pi} I_{* \Pi 0 (6)} I_{6};$$

$$I_{\Pi t A \Pi} = \gamma_{t A \Pi} I_{* \Pi 0 (HOM)} I_{HOM A \Pi} = \gamma_{t A \Pi} I_{* \Pi 0 (6)} I_{6},$$

где $I_{\text{номСД}}$ и $I_{\text{номАД}}$ - номинальные токи соответственно синхронного электродвигателей;

 I_6 - базисный ток той ступени напряжения сети, на которой находятся точка КЗ и электродвигатель.

Если в каком-либо узле мощность подключенных неявнополюсных синхронных электродвигателей (серии СТД, СТМ и др.) превышает 30% суммарной мощности всех электродвигателей, то использование типовых кривых, приведенных на рис. 4.8, приводит к погрешности, превышающей допустимую. Поэтому в указанном случае при расчете периодической составляющей тока КЗ неявнополюсные синхронные электродвигатели следует учитывать индивидуально, используя кривые зависимости $\gamma_{\text{СД}} = f(t)$, приведенные на рис. 4.10.

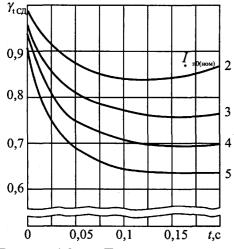


Рис. 4.8. Типовые кривые синхронного электродвигателя

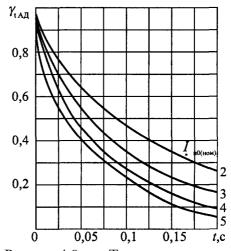


Рис. 4.9. Типовые кривые для асинхронного электродвигателя

ДЛЯ

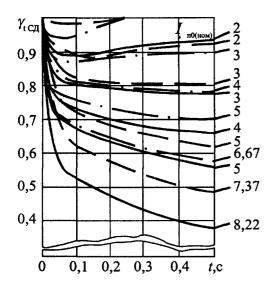


Рис. 4.10. Типовые кривые изменения тока K3 от синхронных электродвигателей серии СДН (сплошные линии), серии СД с частотой вращения 1500 об/мин (штрихпунктирные линии) и серии СТД (пунктирные линии со звездочками)

Ударный ток в месте к.з. определяется по значению сверхпереходной периодической составляющей тока к.з. $\boldsymbol{i}_{v\delta} = \sqrt{2} \cdot \boldsymbol{K}_{v\delta} \cdot \boldsymbol{I}_{H\theta}$, где $\boldsymbol{K}_{v\delta} = \boldsymbol{I} + e^{\frac{-\theta,\theta\boldsymbol{I}}{T_s}}$.

Эквивалентная постоянная времени T_9 при расчете в относительных единицах определяется как: $T_{*9} = \frac{X_{\sum}}{R_{\sum}}$, где X_{\sum} , R_{\sum} - результирующие индуктивное и активное

сопротивления схемы относительно точки к.з. для сверхпереходного режима.

Действующее значение полного тока к.з. за первый период его изменения определяется в соответствии с выражением: $I_y = I_n^{''} \sqrt{1 + 2(K_y - 1)^2}$.

Мощность к.з. в месте повреждения является условной величиной, определяемой по формуле: $S_{IIt} = \sqrt{3} I_{IIt} \cdot U_{\delta}$.

Таблица 4.1. Значение ударного коэффициента Куд и постоянной времени Та для характерных ветвей схемы

Элементы или части энергосистемы	Ta, c	Куд
Турбогенераторы мощностью, МВт:		
12 – 60	0,16-0,25	1,94 – 1,955
100 - 1000	0,4-0,54	1,975 – 1,98
Блоки, состоящие из турбогенератора мощностью 60 МВт и		
трансформатора на стороне ВН), при номинальном напряжении		
генератора, кВ:		
6,3	0,2	1,95
10	0,15	1,935
Блоки, состоящие из турбогенератора и повышающего		
трансформатора, при мощности генераторов, МВт:		
100 - 200	0,26	1,965
300	0,32	1,97

500	0,35	1,973
	0,3	1,967
2.7.7	0,3	1,907
Система, связанная со сборными шинами, где рассматривается КЗ,		
воздушными линиями напряжением, кВ:		
35	0,02	1,608
110 – 150	0.02 - 0.03	1,608 - 1,717
220 - 330	0.03 - 0.04	1,717 - 1,78
500 - 750	0.06 - 0.08	1,85 - 1,895
Система, связанная со сборными шинами 6–10 кВ, где		
рассматривается КЗ, через трансформаторы мощностью, МВА:		
5,6 – 32	0.06 - 0.05	1,85 - 1,935
32 - 80	0.05 - 0.1	1,82 - 1,904
80 и выше	0.02 - 0.05	1,6-1,82
Ветви, защищенные реактором с номинальным током, А:		
1000 и выше	0,23	1,956
630 и ниже	0,1	1,904
Распределительная сеть 6 – 10 кB (на шинах РП)	0,01	1,369
Система совместно с воздушными линиями электропередач	0,05	1,8
Ветвь асинхронного двигателя мощностью до 1 МВт	0,05	1,8

Коммутационная аппаратура напряжением выше 1 кВ

Выключатели напряжением выше 1 кВ

Выключатель предназначен для коммутации рабочих и аварийных токов. При разрыве цепи разомкнувшимися контактами выключателя возникает электрическая дуга, которая должна гаситься в специальных устройствах. Контакты выключателя находятся внутри камеры в разомкнутом состоянии. Дугогасительные устройства выключателей используют следующие принципы быстрого гашения дуги: охлаждение дуги посредством перемещения се в окружающей среде; обдувание дуги воздухом или холодными неионизированными газами; расщепление дуги на несколько параллельных дуг малого сечения; удлинение, дробление и соприкосновение дуги с твердым диэлектриком; размещение контактов в интенсивно деионизирующей среде; создание высокого давления в дуговом промежутке и т. п.

В зависимости от применяемой дугогасительной среды выключатели бывают жидкостные и газовые, из них наиболее распространены масляные и воздушные. В масляных выключателях дугогасительной средой является трансформаторное масло, в воздушных - сжатый воздух. Кроме воздушных и масляных имеется много других видов выключателей. Так, в автогазовых выключателях используется дутье газов, образующихся под действием высокой температуры дуги. В элегазовых выключателях гашение дуги осуществляется в среде элегаза.

Выпускаемые отечественной промышленностью масляные выключатели имеют две конструктивные разновидности: много- и малообъемные. В выключателях с большим объемом масла трансформаторное масло используется для гашения дуги и изоляции токоведущих частей друг от друга и от земли. Эти выключатели применяются на напряжении 35 кВ и выше с номинальными токами 630... 2000 Л. Многообъемные масляные выключатели предназначены для наружной установки.

В малообъемных масляных выключателях трансформаторное масло используется только как средство гашения дуги; бачки (или горшки, или колонки) этих выключателей во время работы находятся под напряжением, поэтому они изолируются от заземленных частей

посредством наружных изоляторов. Маломасляные выключатели применяются на напряжении 10 (6)...35 кВ.

В воздушных выключателях гашение дуги производится сжатым воздухом. В большинстве конструкций воздушных выключателей гасительные камеры размещаются в фарфоровых изоляторах. Эти выключатели применяются на напряжении 35 кВ и выше, в основном для наружной установки.

Для сетей напряжением 6 и 10 кВ выпускаются выключатели с электромагнитным дутьем, а также вакуумные выключатели.

Управление выключателем, т.е. его включение и отключение, может производиться вручную, дистанционно или автоматически. Механизм для включения и отключения выключателя называется *приводом*. У большинства выключателей он представляет собой отдельный аппарат - электромагнитный, пружинный, грузовой или пневматический, соединяемый с приводным валом выключателя.

Выключатели нагрузки напряжением выше 1 кВ

В установках напряжением 6... 10 кВ, особенно в распределительных пунктах, на цеховых подстанциях предприятий, в городских сетях, широко используются выключатели нагрузки с небольшой дугогасительной камерой, в которой может быть отключен ток только рабочего режима, но они не рассчитаны на отключение тока короткого замыкания. При размыкании контактов выключателя нагрузки создается видимый разрыв цепи.

Выключатели нагрузки в сочетании с высоковольтными предохранителями (ВНП) в известной мере заменяют силовой выключатель. Выключатели нагрузки выполняются на номинальные токи 200 и 400A, наибольший рабочий ток отключения 400 и 800 A.

Плавкие предохранители напряжением выше 1 кВ

Плавкие предохранители выполняют операцию автоматического отключения цепи при превышении определенного значения тока. После срабатывания предохранителя необходимо сменить плавкую вставку или патрон, чтобы подготовить аппарат для дальнейшей работы. Ценными свойствами плавких предохранителей являются простота устройства, относительно малая стоимость, быстрое отключение цепи при коротком замыкании (меньше одного периода), способность предохранителей типа ПК ограничивать ток в цепи при КЗ.

К недостаткам плавких предохранителей относятся следующие: предохранители срабатывают при токе, значительно превышающем номинальный ток плавкой вставки, и поэтому избирательность (селективность) отключения не обеспечивает безопасность отдельных участков сети; отключение цепи плавкими предохранителями связано обычно с перенапряжением; возможно однофазное отключение и последующая ненормальная работа установок.

Несмотря на указанные недостатки, плавкие предохранители широко применяются для зашиты силовых трансформаторов мощностью до 2500 кВ-А на напряжении 10 кВ, электродвигателей, распределительных сетей и измерительных трансформаторов напряжения.

Наибольшее распространение получили кварцевые и газогенерирующие предохранители.

В кварцевых предохранителях (ПК) патрон заполнен кварцевым песком, и дуга гасится путем удлинения, дробления и соприкосновения с твердым диэлектриком.

В газогенерирующих предохранителях для гашения дуги используются твердые газогенерирующие материалы (фибра, винипласт и др.). Газогенерирующие предохранители выполняются с выхлопом и без выхлопа газа из патрона при срабатывании. Предохранители с выхлопом газа из патрона называют также *стреляющими* (ПСН - 10 и ПС - 35), поскольку срабатывание их сопровождается звуком, похожим на ружейный выстрел. Предохранители напряжением выше 1 кВ выполняются как для внутренней, так и для наружной установки.

Разъединители, отделители и короткозамыкатели напряжением выше 1 кВ

Разъединителем называется электрический аппарат для оперативного переключения под напряжением участков сети с малыми токами замыкания на землю и создания видимого разрыва. По условиям техники безопасности при производстве работ в установках необходимо иметь видимые разрывы цени, откуда может быть подано напряжение. Указанное требование обеспечивается разъединителями, которые не имеют устройств для гашения дуги и не допускают переключений под нагрузкой. Поэтому их оснащают блокировкой, предотвращающей отключение нагрузочного тока. Правилами устройства электроустановок допускается отключать разъединителями холостой ток открыто установленных трансформаторов: напряжением 10 кВ - мощностью до 630 кВА; напряжением 20 кВ - мощностью до 6300 кВА; напряжением 35 кВ - мощностью до 20000 кВА; напряжением 110 кВ - мощностью до 40500 кВА; уравнительный ток линий при разности напряжений не более 2%, заземление нейтралей трансформаторов и дугогасящих катушек, токи замыкания на землю (не превышающие 5 А при напряжении 35 кВ и 10 А при напряжении 10 кВ), а также небольшие зарядные токи линий.

Конструктивно разъединители могут быть внутренней и наружной установок.

Разъединители управляются приводами вручную или дистанционно (но не автоматически).

Ответителями называются аппараты напряжением от 35 кВ и выше, имеющие надежную конструкцию контактов и снабженные специальным приводом, позволяющим осуществлять автоматическое отключение подвижной части отделителя. Отделители напряжением 35...220 кВ допускают отключение тока холостого хода трансформаторов и зарядного тока воздушных линий электропередач любой протяженности при бестоковой паузе, обусловленной действием защиты и автоматического повторного включения. Включение отделителей производится вручную.

Короткозамыкателями называются аппараты напряжением от 35 кВ и выше, имеющие надежную конструкцию контактов и снабженные специальным приводом, позволяющим осуществлять автоматическое включение ножа короткозамыкателя. При включении ножа короткозамыкателя создается металлическое короткое замыкание на подстанциях без выключателей. В сетях с заземленной нейтралью короткозамыкатели однополюсные и создают однофазное КЗ на землю. В сетях с изолированной нейтралью короткозамыкатели имеют два полюса и создают двухфазное КЗ.

Изоляторы и типы распределительных устройств напряжением выше 1 кВ

Токоведущие части электроустановок крепятся и изолируются друг от друга и по отношению к земле при помощи изоляторов. Изоляторы для электроустановок напряжением выше 1 кВ изготовляются из фарфора.

Изоляторы делятся на линейные, станционные и аппаратные.

Линейные изоляторы предназначаются для крепления проводов воздушных линий; аппаратные - для крепления токоведущей части аппаратов; станционные - для крепления шин в распределительных устройствах.

Станционные изоляторы в свою очередь подразделяются на опорные и проходные.

Опорные изоляторы ОА, ОБ, ОВ, ОГ, ОД, ОЕ (с механической прочностью А, Б, В, Г, Д, Е) для внутренних установок на напряжение 6... 35 кВ служат для крепления шин и аппаратуры распределительных устройств. Изготовляются они с овальным, круглым или квадратным основанием; металлические части (арматура) для крепления изоляторов заделываются снаружи фарфорового корпуса.

Опорные изоляторы для наружных установок изготовляются штыревыми (ШТ-35) и стержневыми (СО-35, СТ-110). Для повышения электрической прочности эти изоляторы выполняются с более развитой, чем внутренней установки, поверхностью (ребристые).

Проходные изоляторы (для внутренних и наружных установок) предназначены для вывода токоведущих частей из зданий и прокладки шин через стены и перекрытия.

Наибольшее применение находят проходные изоляторы ПА и ПБ с токоведущими стержнями прямоугольного сечения на напряжение 6... 10 кВ и силу тока 600... 1500 А.

Для установок напряжением 35 кВ и выше проходные изоляторы выполняются обычно с круглыми токоведущими стержнями.

Шины в распределительных устройствах напряжением выше 1 кВ изготовляются из меди и алюминия и имеют круглое, прямоугольное и коробчатое сечение.

В закрытых установках медные шины применяются только в особых случаях, в открытых установках - в агрессивной среде (морское побережье, территория химических заводов).

Как правило, в распределительных устройствах применяются алюминиевые шины. В закрытых установках напряжением до 35 кВ устанавливаются шины прямоугольного (плоского) сечения. В открытых установках шины выполняются круглыми многопроволочными сталеалюминиевыми проводами.

В зависимости от значения тока шины собирают по одной, две, три и больше полосы в одном пакете на фазу.

Для силы тока больше 3000 А применяют шины коробчатого сечения.

Шина фазы A окрашивается в желтый цвет, B - в зеленый. С- в красный.

При монтаже жестких плоских и коробчатых шин (если длина циновки для алюминия больше 15 м) шины каждой фазы делятся на отдельные участки, соединяемые гибкими перемычками - компенсаторами. Среднюю точку каждого пролета шин глухо закрепляют на соответствующем изоляторе. На других изоляторах ставят приспособления для продольного перемещения шин, вызываемого изменением их температуры. Для предохранения контактных соединений от окисления шины не должны работать при температуре, выше 70 °C.

Коммутационные аппараты напряжением до 1 кВ

Предохранители напряжением до 1 кВ

Предохранители применяются для защиты электроустановок от токов КЗ. Защита от перегрузок с помощью предохранителей возможна только при условии, что защищаемые элементы установки будут выбраны с запасом по пропускной способности, превышающим примерно на 25% номинальный ток плавкой вставки. Плавкие вставки предохранителей выдерживают токи, превышающие на 30...50% их номинальные токи в течение одного часа и более. При токах, превышающих номинальный ток плавких вставок на 60... 100%, они плавятся за время менее одного часа. Наиболее распространенными предохранителями, применяемыми для защиты электроустановок напряжением до 1 кВ, являются:

ПР - предохранитель разборный;

НПН - насыпной предохранитель, неразборный;

ПНР-2 - предохранитель насыпной, разборный.

Шкала номинальных токов предохранителей 15... 1000 А.

Наполнителем является кварцевый мелкозернистый песок.

Плавкие предохранители делят на инерционные - с большой тепловой инерцией, т. е. способностью выдерживать значительные кратковременные перегрузки током; безынерционные - с малой тепловой инерцией, т.е. с ограниченной способностью к перегрузкам. К первым относятся предохранители с винтовой резьбой и свинцовым токопроводящим мостиком, ко вторым - трубчатые предохранители с медным токопроводящим мостиком.

Автоматические выключатели

Автоматические выключатели (автоматы), не обладая недостатками Предохранителей, обеспечивают быструю и надежную защиту проводов и кабелей сетей как от токов перегрузки, так и от токов короткого замыкания. Кроме того, они используются и для управления при нечастых включениях и отключениях. Таким образом, автоматические выключатели совмещают в себе одновременно функции защиты и управления.

Для выполнения защитных функций автоматы снабжаются либо только тепловыми, либо только электромагнитными расцепителями, либо комбинированными расцепителями (тепловыми и электромагнитными). Тепловые расцепители осуществляют защиту от токов перегрузки, а электромагнитные - от токов короткого замыкания.

Действие тепловых расцепителей автоматов основано на использовании нагрева биметаллической пластинки, изготовленной из спая двух металлов с различными коэффициентами теплового расширения. В расцепителе при токе, превышающем тот, на который они выбраны, одна из пластин при нагреве удлиняется больше и вследствие большего ее удлинения воздействует на отключающий пружинный механизм. В результате чего коммутирующее устройство автомата размыкается. Тепловой расцепитель автомата не защищает питающую линию или асинхронный двигатель от токов короткого замыкания. Это объясняется тем, что тепловой расцепитель, обладая большой тепловой инерцией, не успевает нагреться за малое время существования тока КЗ.

Электромагнитный расцепитель представляет собой электромагнит, который воздействует на отключающий пружинный механизм. Если ток в катушке превышает определенное, заранее установленное значение (ток трогания или ток срабатывания), то электромагнитный расцепитель отключает линию мгновенно. Настройку расцепителя на заданный ток срабатывания называют уставкой тока. Уставку тока электромагнитного расцепителя на мгновенное срабатывание называют отсечкой. Электромагнитные расцепители не реагируют на токи перегрузки, если они меньше уставки срабатывания.

В зависимости от наличия механизмов, регулирующих время срабатывания расцепителей, автоматы разделяются на неселективные с временем срабатывания 0,02...0,1 с, селективные с регулируемой выдержкой времени и токоограничивающие с временем срабатывания не более 0,005 с.

Контакторы и магнитные пускатели

Контактор - это аппарат дистанционного действия, предназначенный для частых включений и отключений под нагрузкой силовых электрических цепей. Контакторы не защищают электрические цепи от ненормальных режимов, поскольку у них отсутствуют защитные элементы. Контактор состоит из электромагнитной системы, обеспечивающей дистанционное управление; главных контактов силовой цепи; дугогасительного устройства; блок-контактов, включаемых в цепь автоматики и сигнализации. Контакторы нашли широкое применение в силовых цепях переменного и постоянного тока.

В цепях переменного тока применяют преимущественно трехполюсные контакторы серии КТ с номинальными токами 63... 1000 А. Контакторы при числе полюсов два или три допускают 600... 1200 включений в час.

В сетях постоянного тока применяют контакторы серии КТП с номинальными токами 80 ...630 А.

Магнитный пускатель - это трехполюсный контактор переменного тока, в котором дополнительно встроены два тепловых реле защиты, включенных последовательно в две фазы главной цепи двигателя. Магнитные пускатели предназначены для управления (пуска, останова, реверса) трехфазных асинхронных двигателей с короткозамкнутым ротором мощностью до 75 кВт, а также для защиты их от перегрузки. В отдельных случаях магнитные пускатели используют для включения и отключения некоторых электроустановок, требующих дистанционного управления (наружное и внутреннее освещение, автоматизированные электроприводы и т. п.). Защита электродвигателя от

перегрузок осуществляется тепловым реле РТ. Тепловое реле надежно защищает электродвигатель от перегрузки, но не обеспечивает защиты от коротких замыканий.

Объясняется это тем, что тепловое реле имеет большую тепловую инерцию. При коротком замыкании ток может повредить цепи раньше, чем сработает тепловое реле. Кроме того, контакты магнитных пускателей не рассчитаны на отключение токов короткого замыкания. Поэтому в случае применения магнитных пускателей (с тепловыми реле для защиты от перегрузок) для защиты от токов коротких замыканий необходимо устанавливать последовательно с тепловыми реле плавкие предохранители или автоматы с электромагнитными расцепителями.

Магнитный пускатель отключает двигатель от сети при исчезновении напряжения или его понижении до 50...70% от номинального значения.

До последнего времени наибольшее применение в электрических сетях имели магнитные пускатели серий ПМЕ, ПАЕ, ПМА, однако в настоящее время они заменяются пускателями серий ПМЛ и ИКЛ на номинальные рабочие токи от 4 до 200 А.

Кроме указанных аппаратов в сетях напряжением до $1~{\rm kB}$ используются для коммутации кнопки управления, командоаппараты, переключатели и кнопочные посты управления.

ВЫБОР ЭЛЕКТРИЧЕСКИХ АППАРАТОВ

Электрические аппараты выбираются по номинальному напряжению, номинальному току, роду установки (наружной или внутренней) и проверяются на действие токов короткого замыкания.

При выборе по номинальному напряжению должно выполняться условие

 $U_{an.\text{HOM}} \geq U_{\text{VCM.HOM}}$,

где $U_{an. \, HOM}$ - номинальное напряжение аппарата;

 $U_{ycm.ном}$ - номинальное напряжение установки (среднее номинальное напряжение сети).

Значение напряжений у выбираемых аппаратов не должны быть меньше напряжений цепей, в которых эти аппараты устанавливаются.

Все выключатели могут применяться в сетях более низкого напряжения, чем напряжение U_H , но тогда их предельная отключаемая мощность (ток) уменьшается пропорционально уменьшению напряжения (при применении выключателей 10 кВ в сетях 6 кВ - в 1.67 раза, выключателей 35 кВ в сетях 20 кВ - в 1.75 раза и т.д.).

При выборе по номинальному току требуется соблюсти условие

 $I_{pa6.max} \leq I_{an.hom}$,

где $I_{pa6,max}$ - максимально возможный рабочий ток присоединения.

Ток нагрузки, протекающий через аппарат, $I_{\text{раб.max}}$ не должен превышать значение тока, указанного в каталожных данных аппарата.

Следует, однако, различать нормальный и форсированный рабочие режимы. Форсированный режим возникает при использовании перегрузочной способности трансформаторов и кабелей, отключении одной из параллельных линий, неблагоприятном распределении нагрузки в цепях секционных и междушинных выключателей, неравномерной нагрузке плеч сдвоенного реактора, наконец, при понижении напряжения на зажимах генератора и одновременной необходимости сохранения его номинальной мощности.

Выбранные предварительно аппараты проверяются на электродинамическую и термическую устойчивость токам короткого замыкания. При проверке аппарата и токоведущих частей РУ на термическую и динамическую стойкость за расчетный вид короткого замыкания принимают трехфазное короткое замыкание.

Для большинства аппаратов должно выполняться следующее условие динамической устойчивости:

$$i_{y} \leq i_{max}$$
 или $I_{y} \leq I_{y}$.

Здесь i_{max} и I_{max} - соответственно максимально допускаемое амплитудное и действующее значения сквозного тока аппарата.

Проверка аппаратов на термическую стойкость сводится к определению наибольшей температуры нагрева их токами к.з., для чего необходимо знать длительность к.з., $t_{\text{откл}}$ или расчетное время действия тока к.з. Это время определяется суммой двух времен собственным временем отключения выключателя $t_{\rm B}$ и собственным временем срабатывания защиты, которое по большей части можно принимать равным 0,01 с. Собственное время отключения выключателя с приводом должно находиться в пределах (в секундах):

Для проверки аппаратов на термическую стойкость нужно определить величину B_{κ} теплового импульса к.з., характеризующего количество тепла, выделяющегося в аппарате и проводнике за время $t_{\text{отк}}$

$$\boldsymbol{B}_{k} = \int_{0}^{t_{omkn}} i_{kt}^{2} dt = \boldsymbol{B}_{kn} + \boldsymbol{B}_{ka} ,$$

где i_{kt} - мгновенное значение тока к.з. в момент t; B_{kn} и B_{ka} - тепловой импульс периодического и апериодического токов соответственно.

При удаленном к.з.
$$B_k = I_{n\theta}^2 \left(t_{om\kappa\tau} + T_a \right)$$
.

При к.з. вблизи генераторов и наличии системы величины B_{kn} и B_{ka} определяются отдельно $B_{kn} = B_{nc} + B_{nr} + B_{nrc}$.

Отдельно определяется тепловой импульс от периодического тока системы: $B_{nc} = I_c^2 t_{om\kappa n}$:

от периодического тока генераторов: $B_{nz} = B_{nz}^* I_{z\theta}^2 t_{om\kappa n}$,

где
$$B_{nz}^* = \frac{\int\limits_{0}^{t_{omkn}} i_{nzt}^2 dt}{I_{z0}^2 t_{omkn}}$$
; от совместного действия токов системы и генераторов:

$$B_{nzc}=2I_cI_*I_{z0}t_{om\kappa\eta},$$
 где $I_*=rac{\int\limits_0^{t_{om\kappa\eta}}i_{nzt}dt}{I_{z0}t_{om\kappa\eta}}.$

Здесь $B_{n_2}^*$ и I_* - относительные тепловой и токовый импульсы периодического тока генератора, определяемые по кривым.

Тепловой импульс от апериодического тока генераторов и системы определяют как

$$B_{az} = I_{c}^{2} T_{ac} + I_{z\theta}^{2} T_{az} + \frac{4I_{c}I_{z\theta}}{\frac{1}{T_{ac}} + \frac{1}{T_{az}}},$$

где T_{ac} - постоянная времени для апериодического тока в цепи системы;

 T_{az} - постоянная времени для апериодического тока в цепи генераторов станции. Условием термической устойчивости аппаратов является

$$B_k \leq I_t^2 t$$
,

- где I_t ток термической устойчивости аппарата для определенного времени действия его (односекундный, трехсекундный, пятисекундный или десятисекундный ток термической устойчивости);
 - t время, соответствующее току термической устойчивости.

Согласно ПУЭ не проверяют на термическую устойчивость аппараты и оборудование, защищенное плавкими предохранителями, и провода воздушных линий.

На динамическую устойчивость не проверяют аппараты и проводники в ячейках трансформаторов напряжения и оборудование, защищенное плавкими предохранителями с малым номинальным током, т.к. такие предохранители являются токоограничивающими.

Выбор выключателей и плавких предохранителей

Выключатели высокого напряжения при одних и тех же параметрах могут быть выбраны масляные малообъемные или многообъемные, воздушные, элегазовые, вакуумные, электромагнитные и т.д.

Выключатель выбирается по номинальному напряжению, длительному номинальному току и проверяется по отключающей способности, а также динамической и термической устойчивости к токам коротких замыканий. Для выбранного выключателя указывается тип привода.

Отключающую способность выключателя характеризуют номинальный симметричный ток отключения $I_{\text{откл.н}}$ (приведен в каталогах) и номинальное относительное содержание апериодической составляющей β_H (определяется по кривой β_H =f(t) для времени t от момента возникновения к.з. до начала размыкания контактов).

Для проверки на отключающую способность необходимо знать I_{nt} и I_{at} из расчетов токов к.з.

Если расчет производится для небыстродействующих выключателей, собственное время которых превышает 0,08 с, апериодическим током вообще можно пренебречь, т.к. его относительное содержание в полном токе при таком времени становится меньше 0,15.

Условия выбора выключателей следующие:

1) По номинальному напряжению выключателя установки

$$U_{vcm} \leq U_{HOM}$$
.

2) По номинальному току выключателя установки с учетом возможного увеличения тока в ближайшие годы

$$I_{\text{норм}} \leq I_{\text{ном}}; I_{\text{max}} \leq I_{\text{ном}}.$$

3) По отключающей способности. Расчет I_{n0} проводится для наиболее тяжелого случая при трехфазном КЗ

$$I_{n0} \leq I_{0.{\scriptscriptstyle HOM}}$$
 .

4) По апериодической составляющей тока КЗ в момент расхождения контактов, которая должна быть равна или меньше допустимого значения апериодической составляющей по данным, гарантируемым заводом-изготовителем

$$i_{at} \le i_{at.3a600} = \sqrt{2} \frac{\beta_{hom\%}}{100} I_{0.hom},$$

где $\beta_{_{\!HOM}\%}$ - номинальное содержание апериодической составляющей, %, определяемое как отношение апериодической составляющей к действующему значению периодической

составляющей тока КЗ в момент прекращения соприкосновения дугогасительных контактов выключателя. Принимается по кривой.

5) По электродинамической стойкости. Амплитудное значение ударного тока при включении на КЗ должно быть равно или меньше наибольшего пика тока включения выключателя

$$i_{v} \leq i_{_{\mathit{BKJ.Hau}}}$$
.

6) По термической стойкости

$$B_{\kappa} \leq I_{mep}^2 t_{mep}.$$

Для проверки выключателя на термическую стойкость необходимо рассчитать тепловой импульс:

$$B_{\kappa} = I_{n0}^2 t_{om\kappa},$$

где B_{κ} - тепловой импульс, $\kappa A^2 c$;

 I_{n0} - действующее значение периодической составляющей начального тока K3, κA ;

 $t_{om\kappa}$ - время отключения, c.

Время отключения находится из выражения:

$$t_{om\kappa n}=t_{p3}+t_{o6},$$

где t_{p_3} - время действия релейной защиты, c;

 t_{ob} - время отключения выключателя, c.

Принимают $t_{p_3} = 0.1c$ для $U_H = 6-20 \kappa B$;

7) По требованию ПВН (кривая переходного восстанавливающегося напряжения (ПВН) не должна пересекаться с нормированными кривыми ПВН.

Значения нормированных характеристик собственного переходного восстанавливающегося напряжения, а также значения нормированных (предельных) скоростей восстанавливающегося напряжения для выключателей с $U_{\text{ном}}$ до 35 кВ включительно для различных значений отключаемого тока КЗ в сети.

В электрических сетях промпредприятий при проверке отключающей способности выключателей по условиям восстанавливающегося напряжения требуется, чтобы скорость восстанавливающегося напряжения в цепи установки выключателя не превышала предельных нормированных значений, допустимых для данного выключателя.

Скорость восстанавливающегося напряжения может быть определена по формуле:

$$S = \sqrt{2}I_{n0}\omega_0 \frac{Z_n}{n} K_c 10^{-6},$$

где I_{n0} - периодическая составляющая отключаемого тока K3, κA ;

 Z_n - волновое сопротивление линии, O_M , при одном проводе в фазе равное 450 O_M ;

n - число линий, остающихся в работе после отключения К3;

 K_c – коэффициент, учитывающий влияние емкости в рассматриваемой сети. Зависит от параметра A равного

$$A = \frac{2Z_{\pi}}{n} \sqrt{\frac{C\omega_0}{X}},$$

где C - емкость сети, Φ , определяется по формуле:

$$C = 4.5n_m + 1.5n_n + C_0 10^{-9}$$
,

где n_m - число подключенных трансформаторов;

 C_o - емкость кабельных линий, не учитываемых в числе n_π ;

X- индуктивное сопротивление, принимаемое при расчете К3, O_M .

Результаты выбора сводятся в следующую таблицу.

Выбор выключателей		
Расчетные данные	Справочные данные	Условия выбора
$I_{no} = \frac{E_{\Sigma}}{X_{\Sigma} + \Delta X^{(n)}}$	$oldsymbol{U}_{\scriptscriptstyle HOM} \ oldsymbol{I}_{\scriptscriptstyle HOM}$	$U_{_{HOM}} \ge U_{_{yCM}}$ $I_{_{HOM}} \ge I_{_{max}}$
$i_{y\partial} = \sqrt{2} I_{no} \cdot K_{y\partial}$	$I_{_{6\mathcal{K}\mathcal{I}}}$	$I_{_{\mathit{GKI}}} \geq I_{no}$
$I_{max} = \frac{S}{\sqrt{3}U_{hom}}$	$oldsymbol{i_{_{oldsymbol{gKI}}}}{oldsymbol{I_{np.ck6}}}$	$egin{aligned} I_{np.c\kappa 6} &\geq I_{no} \ i_{np.c\kappa 6} &\geq i_{y\delta} \ I_{mep}^2 t_{om\kappa} &\geq B_K \end{aligned}$
$i_{a\tau} = \sqrt{2} I_{no} e^{\frac{-t}{T_a}}$ $i_{a.\text{HOM}} = \frac{\sqrt{2} \cdot \boldsymbol{\beta}_{\text{HOPM}}}{100} I_{\text{OMKT.HOM}}$	$egin{aligned} oldsymbol{i_{np.cks}} \ oldsymbol{I_{mep}^2} oldsymbol{t_{omk}} \end{aligned}$	$I_{mep}^{2}t_{om\kappa} \geq B_{K}$ $I_{om\kappa,hom} > I_{no}$
$i_{a.\text{HOM}} = \frac{\sqrt{2 \cdot \beta_{\text{HOPM}}}}{100} I_{\text{OMKT.HOM}}$		$i_{a.{\scriptscriptstyle HOM}} \geq i_{a au}$
$i_{om\kappa.hom} = \sqrt{2}I_{om\kappa\eta.hom}(1 + \frac{\beta_{hopm}}{100})$		
$\boldsymbol{B}_{K} = \boldsymbol{I}_{no}^{2} (\boldsymbol{B}_{k}^{*} \boldsymbol{t}_{om\kappa} + \boldsymbol{T}_{a})$		

Автоматический выключатель (автомат) - это коммутационный электрический аппарат, предназначенный для проведения тока цепи в нормальных режимах и для автоматического отключения электроустановок при перегрузках и токах КЗ, чрезмерных понижениях напряжения и других аварийных режимах. Возможно использование автоматов для нечастых (6-30 раз в сутки) оперативных включений и отключений цепей.

Автоматические выключатели изготовляют для цепей переменного и постоянного тока одно-, двух-, трех- и четырехполюсными.

Выбор автоматических выключателей производится по:

- 1) напряжению установки: $U_{HOM} = U_{Cem,HOM}$;
- 2) роду тока и его величине: $I_{{\scriptscriptstyle HOM}} \geq I_{{\scriptscriptstyle HOPM},{\scriptstyle pacu}}\,;\; k_{{\scriptscriptstyle nr}}I_{{\scriptscriptstyle HOM}} \geq I_{{\scriptscriptstyle npod},{\scriptstyle pacu}}\,;$
- 3) конструктивному исполнению;
- 4) коммутационной способности $I_{omkn,hom} \ge I_{n\tau} \approx I_{no}$,

где $I_{\it откл. hom}$ - ток предельной коммутационной способности автомата;

- $I_{n\tau}$ ток КЗ в момент расхождения контактов (если в расчете отсутствует, то принимают $I_{n\tau} \approx I_{no}$);
 - 5) включаемому току $i_{\scriptscriptstyle \mathcal{BKI}} \geq i_{\scriptscriptstyle \mathcal{VA}}$,

где $i_{v\partial}$ - ударный ток КЗ;

 $i_{\scriptscriptstyle \mathit{GKL}}$ - амплитудное значение номинального тока включения;

- 6) термической стойкости $I_{\mathit{mep}}^2 t_{\mathit{mep}} \geq B_{\scriptscriptstyle \kappa}$,
- где $I_{\it mep}$ ток термической стойкости автомата (если не задан, то принимают $I_{\it mep} = I_{\it откл. hom});$
 - $t_{\it mep}$ время термической стойкости, можно принять равным 1 с;
- 7) постоянной времени затухания апериодической составляющей тока КЗ $T_{a,\text{ном}} \geq T_a$, где $T_{a,\text{ном}}$ значение по каталогу (0,005-0,015 c).

Перенапряжения, возникающие при коммутации индуктивных токов вакуумными выключателями

При коммутациях индуктивных токов вакуумных выключателей могут возникать перенапряжения, обусловленные: срезом тока, многократными повторными зажиганиями и трехфазным одновременным отключением. Перенапряжения эти, вследствие вероятностного характера процессов в выключателе, определяются статистическими соотношениями, зависящими от схемы и параметров коммутируемой сети.

Наибольшую опасность представляют собой коммутационные перенапряжения для электродвигателей, имеющих пониженные, по сравнению с трансформаторами, уровни изоляции и в особенности пониженную импульсную прочность обмотки при воздействии волн с крутым фронтом.

Волновые сопротивления двигателей примерно на два порядка ниже, чем у трансформаторов, поэтому уровни перенапряжений при обычном срезе тока также значительно ниже. Однако включение двигателя или отключение его пускового тока, как правило, сопровождается многократными повторными зажиганиями и воздействиями волн перенапряжений с крутым фронтом. При определенном сочетании параметров схемы и начальных условий наблюдается постепенное нарастание максимумов волн (эскалация напряжений), при котором они могут достигать 5-кратных значений по отношению к фазному напряжению двигателя.

Для защиты электрооборудования от коммутационных перенапряжений применяются нелинейные ограничители перенапряжений (ОПН), которые состоят из нелинейных резисторов, заключенных в изоляционную покрышку. Резисторы выполнены из последовательно-параллельно включенных керамических резисторов на основе окиси цинка.

Защитное действие ограничителя обусловлено тем, что при появлении опасного для изоляции перенапряжения вследствие высокой нелинейности резисторов через ОПН протекает значительный импульсный ток, в результате чего перенапряжение снижается до уровня, безопасного для изоляции защищаемого оборудования.

В настоящее время предложены следующие технические решения по схемам защиты от перенапряжений электрооборудования 6-10 кВ, коммутируемого вакуумными выключателями, в установках промышленных предприятий:

- 1) Для защиты трансформаторов общего назначения с облегченной изоляцией (сухие, литые) у вводов трансформатора между каждой фазой и землей должен быть подсоединен ОПН для соответствующего класса напряжения.
- 2) Для защиты электродвигателей между зажимами каждой фазы двигателя и землей должны устанавливаться последовательные RC цепочки с параметрами R=50~Om и $C=0.25~m\kappa\Phi$. Между зажимами и землей у электродвигателей выше 1000 кВт дополнительно к RC цепочке должны устанавливаться ОПН для соответствующего класса напряжения.
- 3) Для электрооборудования напряжением 6 10 кВ с нормальной изоляцией (маслонаполненные трансформаторы) никаких дополнительных средств защиты не требуется.

Преимуществами ОПН являются возможность глубокого ограничения перенапряжений, в том числе междуфазных, малые габариты, позволяющие использовать их в качестве опорных изоляционных колонн, большая пропускная способность. Уровень ограничения коммутационных перенапряжений с помощью ОПН составляет $(1,65 \div 1,8)U_{\phi}$.

Ограничители перенапряжений выбираются по номинальному напряжению, которое должно быть равно номинальному напряжению сети.

Для защиты асинхронных электродвигателей от коммутационных перенапряжений принимается ограничитель типа ОПН-6/7,2-10(1), где 6 - класс напряжения сети, кВ; 7,2 - максимальное действующее длительное рабочее напряжение ограничителя, кВ; 10 -

номинальный разрядный ток, кA; (I) - группа разрядного тока (по устойчивости к импульсу большой длительности).

Выбор ОПН

Наибольшее длительно допустимое рабочее напряжение ОПН Uнр должно быть не ниже наибольшего рабочего напряжения сети Uн.paб.c или защищаемого оборудования Uн.p.o. Uнp > Uн.pa δ .c.

Повышения напряжения, возникающие при оперативных переключениях или аварийных режимах, учитываются в соответствии с условиями работы ОПН в квазиустановившихся режимах.

Критерием оценки энергоемкости ОПН является его способность пропускать нормируемые импульсы тока коммутационного перенапряжения без потери рабочих качеств. При установке ограничителя на шунтовых конденсаторных батареях или кабельных присоединениях энергия, поглощаемая ОПН, может быть рассчитана по выражению:

$$W_{O\Pi H} = (C/2) \cdot [(3 \cdot \sqrt{-2} \cdot Upa \delta. hau \delta. \phi) 2 \cdot (1,25 \cdot \sqrt{-2} \cdot Uhp._{O\Pi H}) 2],$$
 где C - емкость батареи или кабеля, Φ .

Поглощаемая энергия не должна превосходить допустимую энергоемкость ОПН $Wdon=Wyd\cdot Uhp$; W < Wdon.

Защитный уровень ограничителя при коммутационных перенапряжениях

$$A\kappa o M = (U \partial o n - U o c m) / U u c n > (0,15-0,2),$$

где Udon - допустимый уровень внутренних перенапряжений; Uocm - остающееся напряжение на ОПН при коммутационном импульсе; Uucn - значение грозового испытательного импульса;

Защитный уровень ограничителя при грозовых перенапряжениях

 $Azp = (U\partial on - Uocm)/U\partial on > (0,2-0,25),$

где Uocm - остающееся напряжение на ОПН при номинальном разрядном токе; (0,2-0,25) - координационный интервал.

Выбор предохранителей производится по:

- 1) напряжению $U_{HOM} = U_{Cemu}$;
- 2) току предохранителя (основания) $I_{\text{ном}} \ge I_{\text{норм. расч}}$; $k_{\text{пг}} I_{\text{ном}} \ge I_{\text{норм. расч}}$;
- 3) номинальному току плавкой вставки.

Номинальный ток плавкой вставки выбирается так, чтобы в нормальном режиме и при допустимых перегрузках отключения не происходило, а при длительных перегрузках и КЗ цепь отключалась возможно быстрее. При этом соблюдаются условия избирательности защиты.

Номинальный ток предохранителя согласуется с выбранным номинальным током плавкой вставки.

Предохранители, выбранные по нормальному режиму, проверяются по предельно отключаемому току: $I_{\tiny{omkn. Hom}} \geq I_{\tiny{no}}$.

Предохранители также проверяются на соответствие времятоковых характеристик заданным условиям защищаемой цепи.

Выбор плавких предохранителей		
Расчетные данные	Справочные данные	Условия выбора

$I = \frac{S}{S}$	$U_{\scriptscriptstyle HOM}$	$U_{nom} \ge U_{ycm}$
$\sqrt{3}U_{_{HOM}}$	$I_{\scriptscriptstyle HOM}$	$I_{_{HOM}} \geq I_{_{max}}$
$I = \frac{E_{\Sigma}}{I}$	І отк.ном	$I_{om\kappa.hom} \geq I_{no}$
$X_{\Sigma} + \Delta X$		

Выбор разъединителей, отделителей и короткозамыкателей

Выбор разъединителей, отделителей и короткозамыкателей производится так же, как и выключателей, но без проверок на отключающую способность, т.к. они не предназначены для отключения цепей, находящихся под током. Кроме того, короткозамыкатели принимаются без выбора по длительному номинальному току. Выбор выключателей, отделителей, короткозамыкателей и разъединителей необходимо производить подробно для одного из присоединений и результаты выбора сводить в таблицы сопоставлений паспортных и расчетных данных. По остальным присоединениям достаточно привести только таблицы сопоставлений паспортных и расчетных данных.

Выбор разъединителя		
Расчетные данные	Справочные данные	Условия выбора
$i_{y\partial} = \sqrt{2} I_{no} \cdot K_{y\partial}$	$oldsymbol{U}_{\scriptscriptstyle{oldsymbol{HOM}}}$	$U_{\scriptscriptstyle HOM} \geq U_{\scriptscriptstyle ycm}$
I = S	I _{HOM}	$I_{_{HOM}} \ge I_{_{max}}$
$I_{max} = \frac{1}{\sqrt{3}U_{hom}}$	$i_{\partial u H}$	$I_{\partial uH} \geq I_{y\partial}$
$\boldsymbol{B}_{K} = \boldsymbol{I}_{no}^{2}(\boldsymbol{B}_{k}^{*}\boldsymbol{t}_{om\kappa} + \boldsymbol{T}_{a})$		$I_T^2 t_T \ge B_K$

Выбор трансформаторов тока

Трансформаторы тока следует выбирать с двумя вторичными обмотками, одна из которых предназначается для включения электроизмерительных приборов, другая — для приборов защиты. Выбор трансформаторов тока производится по номинальному напряжению (в соответствии с классом изоляции), току первичной цепи, току вторичных обмоток при выбранном классе точности, электродинамической и термической стойкости при коротких замыканиях.

Класс точности трансформаторов тока при включении в них цепи электрических счетчиков должен быть 0,5.

Трансформаторы тока выбираются со вторичным током 5A или 1A и двумя сердечниками с соответствующими классами точности по требованиям ПУЭ.

Прежде чем приступить к выбору трансформаторов тока, необходимо определить число и тип измерительных приборов, включенных во вторичную цепь, и иметь данные о длине l соединительных проводов. Их минимальные сечения должны быть 2,5 мм 2 для медных и 4 мм 2 для алюминиевых проводов. Максимальные сечения соответственно составляют 6 и 10 мм 2 .

После этого приборы распределяются по фазам A и C при наличии на присоединении двух трансформаторов тока или по фазам A, B и C при наличии на присоединении трех трансформаторов тока.

Затем определяется сопротивление наиболее нагруженной фазы, в соответствии со схемой соединения приборов контроля и учета, считая, что $z_{npos} = r_{npos}$.

Для обеспечения заданного класса точности должно соблюдаться условие:

$$z_{2\partial on} \ge \sum z_{npu\delta} + z_{npo\delta} + z_{\kappa o + m}$$
,

где *z_{пров.}*- сопротивление соединительных проводов;

 $z_{npu\delta}$ - сопротивление приборов;

 $z_{\kappa o \mu m}$ - сопротивление контактов.

Сопротивление контактов принимается 0,05 Ом при двух-трех приборах и 0,1 Ом при большем числе приборов.

Сопротивление приборов определяется по выражению

$$r_{npu\delta} = \frac{S_{npu\delta}}{I_2^2},$$

где $S_{npu\delta}$ – мощность, потребляемая приборами;

 I_2 - вторичный номинальный ток прибора.

Сопротивление проводов не должно превышать

 $r_{npo6} \leq z_{2\partial on.} - (\sum z_{npu6.} + z_{\kappa o + m.}).$

Минимальное сечение проводов можно определить из соотношения

$$S_{min} = \frac{l_{pacu}}{\gamma r_{npos}}$$

или

$$S_{min} = \frac{\rho \cdot l_{pacu}}{r_{npos}},$$

где $\gamma = 54 \text{ м/Oм} \cdot \text{мм}^2 - \text{для меди};$

 $\gamma = 32 \text{ м/Oм} \cdot \text{мм}^2 -$ для алюминия.

 $l_{pacy.} = \sqrt{3} \, l -$ для схемы «неполная звезда»;

 $l_{pacy.} = l$ — для схемы «полная звезда»;

 $l_{pac ext{-}u.} = 2 \cdot l$ — для схемы с трансформатором тока в одной фазе и для схемы с включением трансформаторов тока на разность двух фаз.

При проверке на динамическую и термическую устойчивость используются приведенные в каталогах значения коэффициентов электродинамической и термической устойчивости κ_{∂} и κ_t . При этом условия динамической и термической устойчивости запишутся в виде:

$$i_{y} \leq \sqrt{2}k_{\partial}I_{1H};$$

$$B_{k} \leq (k_{t}I_{1H})^{2}t.$$

Здесь $\, I_{1\text{\tiny H}} - \,$ номинальный первичный ток трансформатора тока.

При выборе трансформаторов тока с фарфоровой изоляцией (типа ТПФ, ТПОФ и др.) необходимо выявить силу, действующую на колпачок изолятора трансформатора тока в

соответствии с уравнением $F = 0.5 \cdot 1.76 i_q^2 \frac{l}{a} \cdot 10^{-2}$ и сравнить ее с допускаемой,

приведенной в паспортных данных. При этом должно выполняться условие $F \leq F_{\partial on}$.

Выбор трансформаторов тока заканчивается составлением таблицы сопоставлений паспортных и расчетных данных:

Выбор трансформаторов тока		
Расчетные данные	Справочные данные	Условия выбора

$i_{y\partial} = \sqrt{2} I_{no} K_{y\partial}$	$oldsymbol{U}_{\scriptscriptstyle HOM}$	$U_{\scriptscriptstyle HOM} \geq U_{\scriptscriptstyle ycm}$
$r_2 = r_{npu\delta} + r_{np} + r_k$	$I_{1_{HOM}}$	$I_{\mathit{Ihom}} \ge I_{\mathit{max}}$
$r_{npu\delta} = \frac{S_{npu\delta}}{I_2^2}$		$Z_{2_{HOM}} \ge Z_2$ $i_{y\partial} \le i_{\partial uH}$
$r_{np} = Z_{2 \mu o m} - r_{n p u \delta} - r_{k}$		

Выбор трансформаторов напряжения

Трансформаторы напряжения устанавливаются в распределительных устройствах трансформаторных подстанций для питания обмоток напряжения приборов учета и контроля, аппаратов релейной защиты и подстанционной автоматики.

Класс точности для питания счетчиков принимается равным 0,5.

Для измерения линейных напряжений возможна установка двух однофазных трансформаторов напряжения типа НОМ, соединенных по схеме "открытый треугольник".

Для измерения напряжений и контроля изоляции фаз относительно земли в сетях с малыми токами замыкания на землю (6, 10 кВ) устанавливают трехобмоточные пятистержневые трансформаторы напряжения типа НТМИ с обязательным заземлением нулевой точки.

По аналогии с выбором трансформаторов тока для проверки на соответствующие классу точности необходимо составить таблицу нагрузок и определить расчетную нагрузку во вторичной цепи $S_{2\text{pac-u}}$.

Приближенно, без учета схемы включения приборов, $S_{2\text{pac-u}}$ можно определить по выражению: $S_{2\text{pac-u}} = \sqrt{\left(\sum S_{npu\delta}\cos\varphi_{npu\delta}\right)^2 + \left(\sum S_{npu\delta}\sin\varphi_{npu\delta}\right)^2}$.

При этом должно соблюдаться условие $S_{2pacq.} \leq S_{\partial on.}$

За $S_{\text{доп.}}$ принимается для трехфазного трансформатора мощность всех трех фаз, приведенная в паспортных данных при работе в соответствующем классе точности; для схемы с двумя HOM- удвоенная мощность одного HOM.

Результаты выбора сводятся в таблицу:

Выбор трансформаторов напряжения		
Расчетные данные	Справочные данные	Условия выбора
$r = \frac{S_{npu\delta}}{}$	$U_{\scriptscriptstyle HOM}$	$U_{\scriptscriptstyle HOM} \geq U_{\scriptscriptstyle ycm}$
$r_{npu\delta} = \frac{1}{I_2^2}$	$S_{\scriptscriptstyle HOM}$	$S_{2hom} \geq S_{2\Sigma}$
$r_{np} = Z_{2 \text{ HOM}} - r_{npu\delta} - r_k$		
$S_{2\Sigma} = \sqrt{P_{npu\delta}^2 + Q_{npu\delta}^2}$		

Ограничение токов короткого замыкания и выбор токоограничивающих реакторов

Значение токов короткого замыкания влияет на стоимость аппаратуры, устанавливаемой в РУ. В сетях 6–10 кВ токи короткого замыкания особенно влияют на термическую устойчивость кабелей, поэтому при выборе главной схемы электрических соединений подстанции необходимо предусматривать меры по ограничению токов короткого замыкания до значения, позволяющей применить экономически выгодные аппараты и сечения токоведущих частей, повысить при этом надежность электроснабжения.

Одним из основных мероприятий по ограничению токов короткого замыкания является использование раздельной работы секций шин трансформаторной подстанции при наличии средств подстанционной автоматики (ABP на секционном выключателе).

Другим мероприятием по ограничению токов короткого замыкания является использование линейных реакторов на отходящих присоединениях или в цепи трансформатор - сборные шины подстанции.

Во всех случаях следует выбирать реакторы, допускающие вертикальную установку фаз, т.к. это уменьшает стоимость строительной части распределительного устройства.

Номинальный ток реактора выбирается по условию $I_{p.н.} \ge I_{pa6.max}$.

Сопротивление реактора можно определить по уравнению:

$$x_{p,\%} = \left(\frac{I_{\delta}}{I_{\kappa}} - x_{*\delta pe^{3}}\right) \cdot \frac{I_{ph}}{I_{\delta}} \cdot \frac{U_{h}}{U_{ph}} \cdot 100\%,$$

где $x_{*\delta\!pe3}$ — относительное результирующее базисное сопротивление от источников до места короткого замыкания; $U_{\scriptscriptstyle H}$ — среднее номинальное напряжение ступени напряжения; $I_{\scriptscriptstyle K}$ — значение тока короткого замыкания, которое мы хотим получить при коротком замыкании за реактором; I_{δ} — базисный ток; $I_{\scriptscriptstyle H,p.}$ и $U_{\scriptscriptstyle H,p.}$ — номинальный ток и напряжение реактора.

Значение I_{κ} должна быть равна или меньше номинального тока отключения $I_{\kappa} \leq I_{\text{откл.н.}}$ наиболее дешевого выключателя.

Определив $x_{p\%}$ по приведенному выше выражению, выбирают по каталогу реактор с ближайшим большим сопротивлением, выраженном в процентах $x_{\text{н.р.}\%}$ (или в Омах).

Значение $X_{\text{н.р.,\%}}$ выбранного реактора ограничивается допускаемой потерей напряжения в рабочем режиме ΔU_p %, которая должна быть не более 4-5% от $U_{\text{н}}$.

$$\Delta U_{p_{\%}} = x_{\text{H.G.p.}_{\%}} \frac{I_{\text{pab.max}}}{I_{\text{H.p.}}} \cdot \sin \varphi ,$$

где ф – фазный угол нагрузки.

Для сдвоенных реакторов при одинаковом токе в ветвях

$$\Delta U_{p_{\%}} = x_{\text{\tiny H.6.p.\%}} \frac{I_{\text{\tiny pa\acute{o}.max.sems.}}}{I_{\text{\tiny H.p.}}} (1 - k_{c_{6}}) \cdot \sin \varphi ,$$

где κ_{ce} – коэффициент связи (0,4 ÷0,6);

 $x_{\text{н.в.р.}}$ – сопротивление ветви реактора в %;

 $I_{pa6.max\ bemb}$ — максимальный рабочий ток ветви реактора.

Групповые реакторы на отходящих присоединениях применяют во всех случаях, когда присоединения можно объединить, и если на них $\Delta U_{p\%} < 4 \div 5$ %.

Если $\Delta U_{p\%}>5\%$, то для снижения $\Delta U_{p\%}$ используют индивидуальные простые или сдвоенные реакторы. Остаточное напряжение на шинах 6-10 кВ при КЗ за реактором на отходящей линии определяется из соотношения

$$U_{ocm\%} = x_{H.p.\%} \frac{I_{\kappa}}{I_{H.p.}} \ge 0.6U_{H},$$

где U_н равняется 6 кВ или 10 кВ.

Если реакторы устанавливаются на линиях, питающих двигатели ответственных механизмов, необходимо производить проверку по условиям обеспечения самозапуска.

После выбора реактора по номинальным параметрам, проверки на значение остаточного напряжения на шинах при к.з. за реактором и проверки на величину допускаемой потери напряжения в нормальном режиме производится проверка реактора на действие токов к.з. Реактор должен быть термически и динамически устойчивым к токам к.з.

Выбор реактора		
Расчетные данные	Справочные данные	Условия выбора
$i_{y\partial} = \sqrt{2} I_{no} \cdot K_{y\partial}$	$oldsymbol{U}_{\scriptscriptstyle{oldsymbol{HOM}}}$	$U_{\scriptscriptstyle HOM} \geq U_{\scriptscriptstyle ycm}$
$I_{max} = \frac{S}{\sqrt{3}U_{hom}}$	I _{nom}	$I_{_{HOM}} \geq I_{_{max}}$
$\sqrt{3U}_{_{oldsymbol{HOM}}}$	$i_{\partial u H}$	$\iota_{\partial u H} \geq \iota_{y \partial}$
$X_{pes} = \frac{U_{cp}}{\sqrt{3}I}$		$egin{aligned} \dot{i}_{\partial uH} & \geq i_{y\partial} \ I_t^2 t_t & \geq B_K \ I_{HOM} & \geq 0.7 I_{HOM,\Gamma} \end{aligned}$
\sqrt{c} $\frac{1}{no}$		$I_{_{HOM}} \ge 0.7 I_{_{HOM},\Gamma}$
$X_{pes}^{mpe\delta} = \frac{U_{cp}}{\sqrt{3}I_{no.mpe\delta}}$		
$X_p^{mpe\delta} = X_{pes}^{mpe\delta} - X_{pes}$		
$X_{pe3}' = X_{pe3} + X_p$		
$I_{no} = \frac{U_{cp}}{\sqrt{3}X_{pes}'}$		
$B_K = I_{no}^2 (B_k^* t_{om\kappa} + T_a)$		

Выбор шинных конструкций, опорных и проходных изоляторов

Выбор опорных изоляторов		
Для одиночных изоляторов		
$F_{\partial on} = 0.6 F_{pasp}$	$oldsymbol{U}_{\scriptscriptstyle HOM}$	$egin{aligned} U_{_{HOM}} & \geq U_{_{ycm}} \ F_{_{\partial On}} & \geq F_{_{pacu}} \end{aligned}$
$F_{pacu} = \sqrt{3} \frac{i_{y\theta}^2}{a} lK_h \cdot 10^{-7} = f_{\phi} lK_h$		$F_{\partial on} \geq F_{pac4}$
$K_h = \frac{H}{H_{u_3}}$		
$H = H_{u3} + b + \frac{h}{2}$		
Для спаренных изоляторов		
$F_{\partial on} = F_{pasp}$		

Выбор проходных изоляторов		
Расчетные данные	Справочные данные	Условия выбора

$I = \frac{S}{S}$	$oldsymbol{U}_{\scriptscriptstyle{HOM}}$	$U_{\scriptscriptstyle HOM} \geq U_{\scriptscriptstyle ycm}$
$\sqrt{3}U_{_{HOM}}$	$I_{\scriptscriptstyle HOM}$	$F_{\partial on} \geq F_{pac4}$
$F_{\partial on} = 0.6 F_{pasp}$		$I_{_{HOM}} \geq I_{_{max}}$
$F_{pacu} = 0.5 f_{\phi} l$		

Выбор шин					
Расчетные данные	Справочные данные	Условия выбора			
$I = \frac{S}{S}$	q	$q \ge q_{min}$			
$\int_{-\infty}^{\infty} dt = \sqrt{3}U_{_{HOM}}$	$I_{\partial num,\partial on}$	$\sigma_{\partial on} \geq \sigma_{pac4}$			
$\sigma_{max} = \sqrt{3} \cdot 10^{-8} \frac{i_{yo}^2 l^2}{Wa}$		$I_{\partial \Lambda um,\partial on} \geq I_{max}$			
$q_{min} = \frac{\sqrt{B_K}}{C}$					

Выбор кабелей

Кабели широко применяются в электроустановках. Потребители 6-10 кВ, как правило, получают питание по кабельным линиям, которые сначала прокладываются в кабельных туннелях в распределительном устройстве, а затем в земле (в траншеях).

Для присоединения потребителей собственных нужд электростанций и подстанций к соответствующим шинам также используются кабели 6 и 0,4 кВ.

Эти кабели прокладываются в кабельных полуэтажах, кабельных туннелях, на металлических лотках, укрепленных на стенах и конструкциях здания или открытого распределительного устройства.

Чтобы обеспечить пожарную безопасность в производственных помещениях ТЭС и АЭС, рекомендуется применять кабели, у которых изоляция, оболочка и покрытия выполнены из невоспламеняющихся материалов, например из самозатухающего полиэтилена или поливинилхлоридного пластиката.

В зависимости от места прокладки, свойств среды, механических усилий, воздействующих на кабель, рекомендуются различные марки кабелей (табл.).

Таблица. Кабели, рекомендуемые для прокладки в земле и воздухе

таолица. Каосли, рекомендуемые для прокладки в земле и воздухе			
Область применения	С бумажной пропитанной	С пластмассовой и	
	изоляцией	резиновой изоляцией	
В земле (в траншеях)			
со средней коррозионной активностью:	ААШв, ААШп, ААПл	АПвБ6Шв, АПВГ,	
без блуждающих токов	ААШп, ААБ2л,	АВБ6Шв	
с наличием блуждающих токов	ААП2л ААШпсУ	АПАШв, АПАШп,	
		АВАШв	
Прокладка в туннелях,			
каналах, кабельных полуэтажах,			
производственных помещениях:			
сухих	ААГ, ААШв, ААБлГ	АВВГ, АВРГ, АПВГ	
сырых	ААШв, ААБлГ, ААБв	АВВБГ, АВРБГ	
сырых с высокой	ААШв, ААБвГ,	АВБ6Шв, АПАШв	
коррозионной активностью	ААБ2лШв, ЦААШпсУ		

	ААГ, ААШв, ААБвГ		
Прокладка в пожароопасных помещениях		, , , , , , , , , , , , , , , , , , ,	АВРГ,
		АПсВГ,	
		АВВБГ, АВВБ	6Γ,
		АВБ6Шв, ПвБІ	Знг

Кабели выбирают по:

- 1) по напряжению установки $U_{\scriptscriptstyle HOM} \geq U_{\scriptscriptstyle Cem.HOM}$;
- 2) по конструкции (см. табл. 5.3);
- 3) по экономической плотности тока $q_9 = \frac{I_{\text{норм}}}{J_9}$;
- 4) по допустимому току $I_{\text{мак}} \leq I_{\partial on}$,

где $I_{\partial on}$ - длительно допустимый ток с учетом поправки на число рядом положенных в земле кабелей k_1 и на температуру окружающей среды k_2 : $I_{\partial on} = k_1 k_2 I_{\partial on. Hom}$.

Здесь $I_{\partial on. Hom}$ - допустимый ток при нормированной температуре жил, °C; согласно ПУЭ для кабелей с резиновой и пластмассовой изоляцией равен $\mathcal{O}_{\partial on}$ =+65°C, для кабелей до 35 кВ с изоляцией из пропитанной кабельной бумаги в свинцовой, алюминиевой или поливинилхлоридной оболочке приняты:

Поправочные коэффициенты k_1 и k_2 , допустимый ток находят по справочникам или ПУЭ.

При выборе сечения кабелей следует учитывать их допустимую перегрузку, определяемую по п. 1.3.5 и 1.3.6 ПУЭ в зависимости от вида прокладки, длительности максимума и предварительной нагрузки.

Выбранные по нормальному режиму кабели проверяют на термическую стойкость по условию $\vartheta_{\kappa} \leq \vartheta_{\kappa,\partial on}$ или $q_{\min} \leq q$.

При этом кабели небольшой длины проверяют по току при КЗ в начале кабеля; одиночные кабели со ступенчатым сечением по длине проверяют по току при КЗ в начале каждого участка. Два параллельных кабеля и более проверяют по токам при КЗ непосредственно за пучком кабелей, т. е. с учетом разветвления тока КЗ.

Таблица. Экономическая плотность тока

Проводник	При Т _{тах} , ч		
Проводник	1000 – 3000	3000 - 5000	Более 5000
Неизолированные провода и шины:			
медные	2,5	2,1	1,8
алюминиевые	1,3	1,1	1
Кабели с бумажной и провода с			
резиновой и поливинилхлоридной			
изоляцией с жилами:			
медными	3	2,5	2
алюминиевыми	1,6	1,4	1,2

Кабели пластмасс	с овой и	резиновой золяцией с жила	и ими:			
медными			3.5	3.1	2.7	
алюминие	выми		1,9	1,7	1.6	

ВЫБОР ШИННЫХ КОНСТРУКЦИЙ

Выбор шин сводится к определению сечения и их проверке на электродинамическую и термическую устойчивость к токам к.з. Сечение шин выбирается по длительному току нагрузки $I_{\partial on} \not\supseteq_{pa\delta.max}$. К расчету принимается большее сечение. По экономической плотности тока не выбираются сборные шины РУ, цепи резервного питания, цепи шиносоединительного и секционного выключателей.

Основное электрическое оборудование электростанций и подстанций (генераторы, трансформаторы, синхронные компенсаторы) и аппараты в этих цепях (выключатели, разъединители и др.) соединены между собой различными проводниками, образующими токоведущие части электроустановки. На рис. упрощенно показаны элементы схем ТЭЦ, КЭС и подстанции.

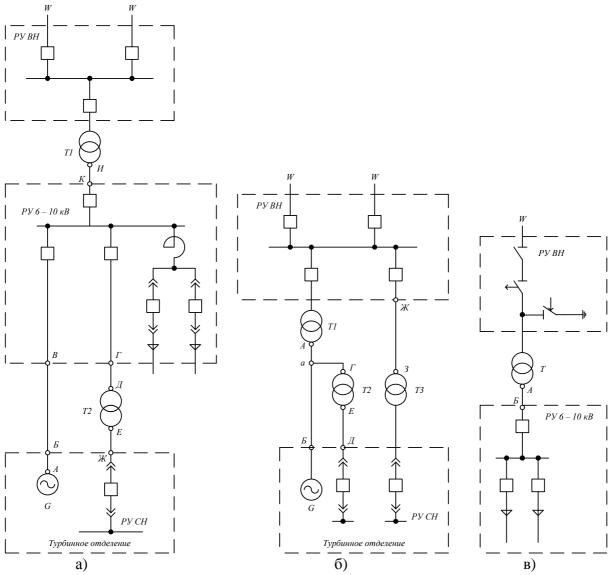


Рис. К выбору проводников в основных электрических цепях: элементы схем ТЭЦ (а);

В пределах турбинного отделения от выводов генератора G до фасадной стены (участок AB) токоведущие части выполняются шинным мостом из жестких голых алюминиевых шин или комплектным пофазно-экранированным токопроводом (в цепях генераторов мощностью $60~\mathrm{MBt}$ и выше).

На участке BB между турбинным отделением и главным распределительным устройством (ГРУ) соединение выполняется шинным мостом или гибким подвесным токопроводом. Все соединения внутри закрытого РУ 6-10 кВ, включая сборные шины, выполняются жесткими голыми алюминиевыми шинами прямоугольного или коробчатого сечения. Соединение от ГРУ до выводов трансформатора связи Т1 (участок NE) осуществляется шинным мостом или гибким подвесным токопроводом.

Токоведущие части в РУ 35 кВ и выше обычно выполняются сталеалюминиевыми проводами. В некоторых конструкциях ОРУ часть или вся ошиновка может выполняться алюминиевыми трубами.

Цепь трансформатора собственных нужд показана на рис.а. От стены ГРУ до выводов Т2, установленного вблизи ГРУ, соединение выполняется жесткими алюминиевыми шинами. Если трансформатор собственных нужд устанавливается у фасадной стены главного корпуса, то участок $\Gamma \mathcal{I}$ выполняется гибким токопроводом. От трансформатора до распределительного устройства собственных нужд (участок $E\mathcal{K}$) применяется кабельное соединение.

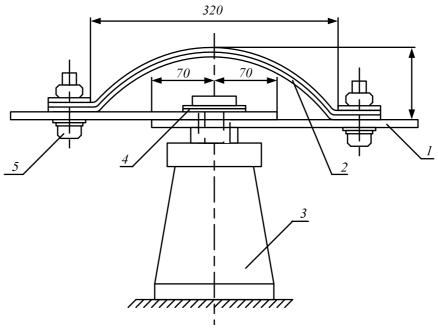
В цепях линий 6-10 кВ вся ошиновка до реактора и за ним, а также в шкафах КРУ выполнена прямоугольными алюминиевыми шинами. Непосредственно к потребителю отходят кабельные линии.

В блоке генератор-трансформатор на КЭС участок AB и отпайка к трансформатору собственных нужд $B\Gamma$ (рис. б) выполняются комплектным пофазно-экранированным токопроводом.

Для участка $E\!\mathcal{I}$ от T2 до распределительного устройства собственных нужд применяется закрытый токопровод 6 кВ.

В цепи резервного трансформатора собственных нужд участок $\mathcal{K}3$ может быть выполнен кабелем или гибким проводом. Выбор того или другого способа соединения зависит от взаимного расположения ОРУ, главного корпуса и резервного T3. Так же как на ТЭЦ, вся ошиновка в РУ 35 кВ и выше выполняется проводами АС.

На подстанциях, в открытой части, могут применяться провода АС или жесткая ошиновка алюминиевыми трубами.


Соединение трансформатора с закрытым РУ 6-10 кВ или с КРУ 6-10 кВ осуществляется гибким подвесным токопроводом, шинным мостом или закрытым комплектным токопроводом. В РУ 6-10 кВ применяется жесткая ошиновка.

Выбор жестких шин

Как сказано выше, в закрытых РУ 6-10 кВ ошиновка и сборные шины выполняются жесткими алюминиевыми шинами. Медные шины из-за высокой их стоимости не применяются даже при больших токовых нагрузках. При токах до 3000 А применяются одно-и двухполосные шины. При больших токах рекомендуются шины коробчатого сечения, так как они обеспечивают меньшие потери от эффекта близости и поверхностного эффекта, а также лучшие условия охлаждения. Например, при токе 2650 А необходимы трехполосные алюминиевые шины размером 60х10 мм или коробчатые 2х695 мм² с допустимым током 2670 А. В первом случае общее сечение шин составляет 1800 мм², во втором - 1390 мм². Как видно, допустимая плотность тока в коробчатых шинах значительно больше (1,92 вместо 1,47 А/мм²).

Сборные шины и ответвления от них к электрическим аппаратам (ошиновка) 6-10 кВ из проводников прямоугольного или коробчатого профиля крепятся на опорных фарфоровых изоляторах. Шинодержатели, с помощью которых шины закреплены на изоляторах, допускают продольное смещение шин при их удлинении вследствие нагрева. При большой длине шин устанавливаются компенсаторы из тонких полосок того же материала, что и шины (рис.).

Концы шин на изоляторе имеют скользящее крепление через продольные овальные отверстия и шпильку с пружинящей шайбой. В местах присоединения к аппаратам изгибают шины или устанавливают компенсаторы, чтобы усилие, возникающее при температурных удлинениях шин, не передавалось на аппарат. Эскизы различных способов расположения шин на изоляторах показаны на рис.

1- шина; 2 - компенсатор; 3 - опорный изолятор; 4 - пружинящая шайба; 5 - болт.

Рис. Компенсатор для однополосных шин.

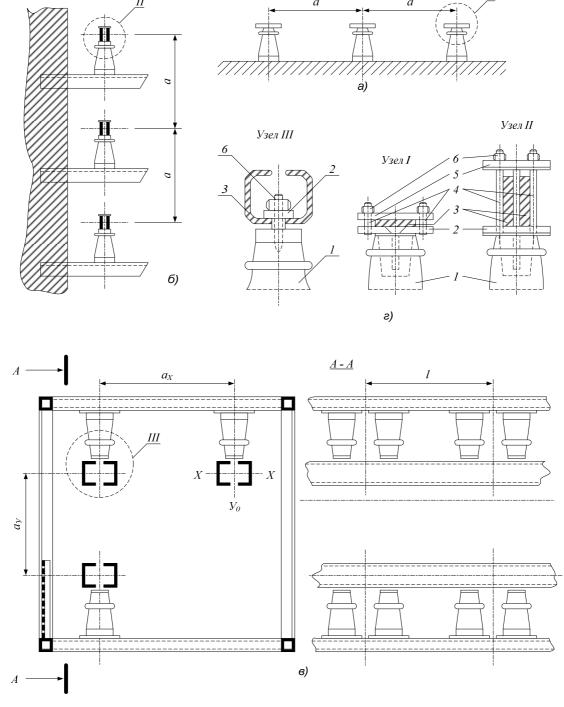
Соединение шин по длине обычно осуществляется сваркой. Присоединение алюминиевых шин к медным (латунным) зажимам аппаратов производится с помощью переходных зажимов, предотвращающих образование электролитической пары медь - алюминий.

Для лучшей теплоотдачи и удобства эксплуатации шины окрашивают при переменном токе: фаза A - в желтый, фаза B - в зеленый и фаза C - в красный цвета; при постоянном токе положительная шина - в красный, отрицательная — в синий цвета.

Согласно §1.3.28 ПУЭ сборные шины электроустановок и ошиновка в пределах открытых и закрытых РУ всех напряжений по экономической плотности тока не проверяются.

Выбор сечения шин производится по нагреву (по допустимому току). При этом учитываются не только нормальные, но и послеаварийные режимы, а также режимы в период ремонтов и возможность неравномерного распределения токов между секциями шин.

Условие выбора - сравнение $I_{max} \leq I_{\partial on}$,


где $I_{\partial on}$ - допустимый ток на шины выбранного сечения с учетом поправки при расположении шин плашмя или температуре воздуха, отличной от принятой в таблицах ($\Theta_{o, non} = 25^{\circ}C$).

Тогда
$$\boldsymbol{I}_{\partial on} = \boldsymbol{I}_{\partial on, hom} \quad \sqrt{\frac{\boldsymbol{\varTheta}_{\partial on} - \boldsymbol{\varTheta}_{0}}{\boldsymbol{\varTheta}_{\partial on} - \boldsymbol{\varTheta}_{0, hom}}}$$
 .

Для неизолированных проводов и окрашенных шин принято $\Theta_{\textit{don}}$ =70°C, в этом случае

$$I_{\partial on} = I_{\partial on, HOM} \sqrt{\frac{70 - \Theta_0}{45}}$$

где $I_{\partial on, hom}$ - допустимый ток, определяемый по таблицам, при температуре воздуха $\Theta_{0,hom}=25$ °C; Θ_{0} - действительная температура воздуха; $\Theta_{\partial on}$ - допустимая температура нагрева продолжительного режима (по §1.3.22 ПУЭ для шин принято +70°C).

а) горизонтальное; б) вертикальное; в) по вершинам треугольника; г) крепление шин в узлах *I.II.III*:

1 – опорный изолятор; 2 – стальная планка; 3 – шина; 4 – стальная распорная трубка; 5 – алюминиевая планка; 6 – шпилька. Рис. Эскизы расположения шин

Проверка шин на термическую стойкость производится по условию:

$$\Theta_{\kappa} \leq \Theta_{\kappa,\partial on}$$
 или $q_{min} \leq q$,

где Θ_{κ} - температура шин при нагреве током КЗ; $\Theta_{\kappa,\partial on}$ - допустимая температура нагрева шин при КЗ; q_{min} - минимальное сечение по термической стойкости; q - выбранное сечение.

Более подробно проверка токоведущих частей по термической устойчивости показана далее.

Необходима проверка шин на электродинамическую стойкость. Жесткие шины, укрепленные на изоляторах, представляют собой динамическую колебательную систему, находящуюся под воздействием электродинамических сил. В такой системе возникают частота которых зависит OT массы И жесткости Электродинамические силы, возникающие при к.з., имеют составляющие, которые изменяются с частотой 50 и 100 Гц. Если собственные частоты колебательной системы шины-изоляторы совпадут с этими значениями, то нагрузки на шины и изоляторы возрастут. Если собственные частоты меньше 30 и больше 200 Гц, то механический резонанс не возникает. В большинстве практически применяемых конструкций шин эти условия соблюдаются, поэтому ПУЭ не требуют проверки на электродинамическую стойкость с учетом механических колебаний.

В частных случаях, например, при проектировании новых конструкций РУ с жесткими шинами, производится определение частоты собственных колебаний для

алюминиевых и медных шин соответственно
$$f_\theta = \frac{173,2}{l^2} \sqrt{\frac{J}{q}}$$
; $f_\theta = \frac{125,2}{l^2} \sqrt{\frac{J}{q}}$,

- где l длина пролета между изоляторами, м;
 - ${m J}$ момент инерции поперечного сечения шины относительно оси, перпендикулярной направлению изгибающей силы, см 4 ;
 - q поперечное сечение шины, см².

Изменяя пролет и форму сечения шин, добиваются исключения механического резонанса, т.е. f_0 <200 Γ ц. Тогда проверка на электродинамическую стойкость производится в предположении, что шины и изоляторы - статическая система с нагрузкой, равной максимальной электродинамической силе, возникающей при КЗ.

Если $f_0 < 200$ Гц, то производится специальный расчет шин с учетом дополнительных динамических усилий, возникающих при механических колебаниях шинной конструкции.

Механический расчет однополосных шин

Наибольшее удельное усилие при трехфазном КЗ, Н/м определяется по выражению

$$f^{(3)} = \sqrt{3} \times 10^{-7} \frac{i_y^{(3)^2}}{\alpha}$$

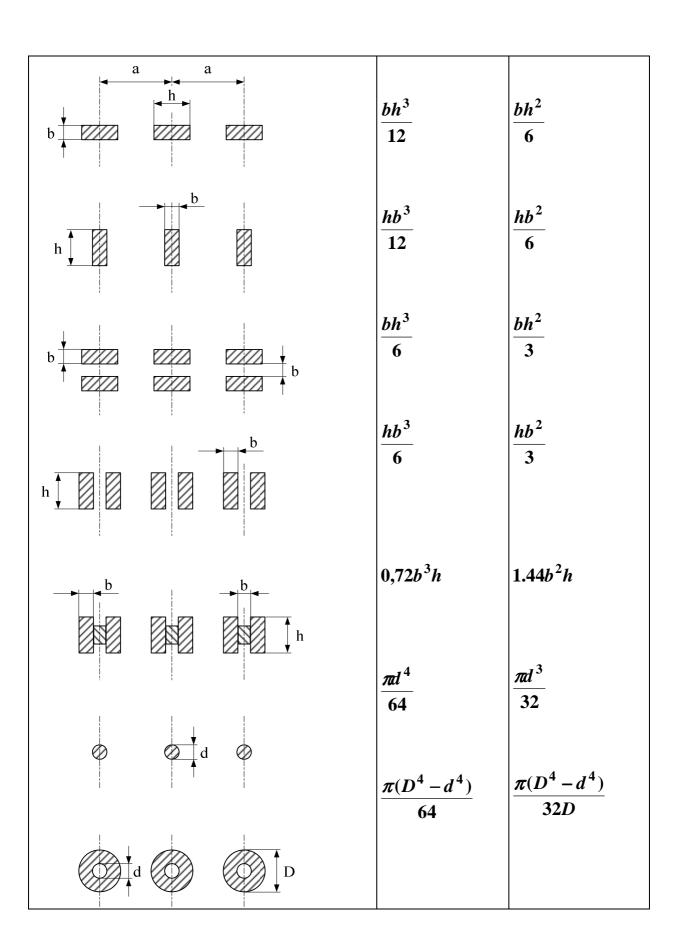
Т.к. расстояние между фазами значительно больше периметра шин $\alpha>>2(b+h)$, то коэффициент формы - k_{ϕ} =1.

Наибольшие электродинамические усилия возникают при трехфазном коротком замыкании, поэтому в дальнейших расчетах учитывается величина ударного тока трехфазного к.з. Индексы (3) в формулах для упрощения опускаются.

Равномерно распределенная сила f создает изгибающий момент H·м (шина рассматривается как многопролетная балка, свободно лежащая на опорах) $M = \frac{f \times l^2}{10}$, где l - пролет между опорными изоляторами шинной конструкции, м.

Напряжение в материале шины, возникающее при воздействии изгибающего момента, МПа

$$\sigma_{pacu} = \frac{M}{W} = \frac{f \times l^2}{10W} = \sqrt{3} \times 10^{-8} \frac{i_y^2 l^2}{W_a},$$


где W - момент сопротивления шины относительно оси, перпендикулярной действию усилия, см³ (табл.). Шины механически прочны, если $\sigma_{pacy} \leq \sigma_{don}$.

Здесь σ_{lon} - допустимое механическое напряжение в материале шин.

В электроустановках широко применяют прессованные шины (ГОСТ 15176-84) из алюминиевого сплава, закаленные и естественно состаренные (марка АДЗ1Т) или закаленные и искусственно состаренные (марка АДЗ1Т1). Согласно § 1.4.15 ПУЭ $\sigma_{don} \leq 0.7 \, \sigma_{pagp}$.

Таблица 6.1. Моменты сопротивления и инерции

Tuesmique ett. Memerinis componiusment in intepaint		
Расположение шин	Момент инерции	Момент
		сопротивления

В табл. приведены ориентировочные значения допустимых напряжений с учетом снижения прочности шин в местах сварки.

Таблица. Механические характеристики материала шин

Материал	Марка	I pusp,	напряжение	Модуль упругости	
		МПа	$\delta_{\text{доп}}$, МПа	Е, Па	
Алюминий	АДО	60-70	40	$7 \cdot 10^{10}$	
Алюминиевый сплав	АД31Т	130	75	-	
	АД31Т1	200	90	-	
Медь	МГТ	250-300	140	$10 \cdot 10^{10}$	
Сталь	СтЗ	370-500	160	20 · 10 ¹⁰	

Механический расчет двухполосных шин.

Если каждая фаза выполняется из двух полос (рис.), то возникают усилия между полосами и между фазами.

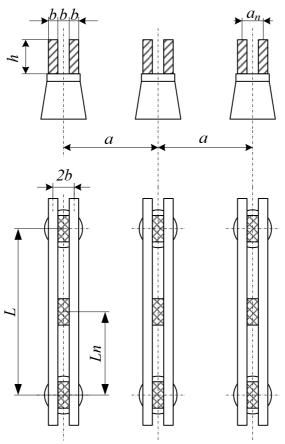


Рис. Эскиз расположения двухполосных шин.

Усилие между полосами не должно приводить к их соприкосновению. Чтобы уменьшить это усилие, в пролете между полосами устанавливают прокладки. Пролет между прокладками $l_{\rm n}$ выбирается таким образом, чтобы электродинамические силы, возникающие при КЗ, не вызывали соприкосновения полос:

$$l_n < 0.216 \sqrt{\frac{a_n}{i_v^{(3)}}} \sqrt[4]{\frac{EJ_n}{k_{\phi}}}.$$

Механическая система две полосы-изоляторы должна иметь частоту собственных колебаний больше 200 Γ ц, чтобы не произошло резкого увеличения усилия в результате механического резонанса. Исходя из этого, величина $l_{\rm n}$ выбирается еще по одному условию:

$$l_n < 0.133 \times 10^{-2} \sqrt[4]{\frac{EJ_n}{m_n}},$$

где a_n - расстояние между осями полос, см;

 $J_n = hb^3/12$ - момент инерции полосы, см⁴;

 k_{ϕ} - коэффициент формы (рис.6.5);

 m_n - масса полосы на единицу длины, кг/м;

E - модуль упругости материала шин (табл.6.2).

В расчет принимается меньшая из двух величин, определенных по (6.9) и (6.10).

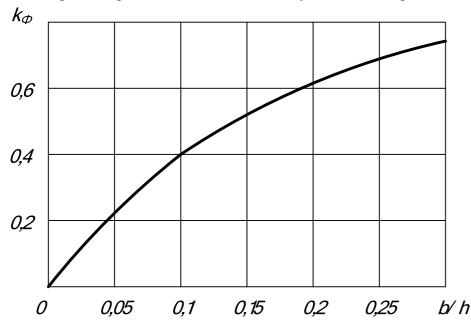


Рис. Кривые для определения коэффициента формы для двухполосных шин при $\mathbf{a} = 2\mathbf{b}$

Силу взаимодействия между полосами в пакете из двух полос можно определить с учетом того, что $i_1=i_2=i_v/2$; $a=a_n=2b$

$$f_n = 2 \cdot 10^{-7} k_{\phi} \left(\frac{i_y}{2}\right)^2 \frac{1}{2b} = \frac{k_{\phi}}{4} \frac{i_y^2}{b} 10^{-7}.$$

Напряжение в материале шин от взаимодействия полос (шины рассматриваются как балки с равномерно распределенной нагрузкой и защемленными концами), МПа

$$\sigma_n = \frac{f_n l_n^2}{12W_n},$$

где W_n - момент сопротивления одной полосы, см³;

 l_n - расстояние между прокладками, м.

Напряжение в материале шин от взаимодействия фаз определяется по выражению

$$\sigma_{\phi} = \sqrt{3} \cdot 10^{-8} \, \frac{l^2}{a W_{\phi}} i_y^2,$$

где l - длина пролета между изоляторами, м;

 W_{ϕ} - момент сопротивления пакета шин (табл.), см³.

Механический расчет шин коробчатого сечения

Шины коробчатого сечения имеют значительно больший момент инерции, чем шины прямоугольного сечения.

Например, шина сечением 100x10 мм² при расположении на ребро имеет момент

инерции, равный $J = \frac{hb^3}{12} = \frac{10 \cdot 1^3}{12} = 0,83 \text{ cm}^4$, а одна шина швеллерного профиля сечением 1010 мм² имеет $J_{y-y}=18,5$ см⁴.

Соответственно при расположении прямоугольной шины плашмя

$$J = \frac{hb^3}{12} = \frac{10^3 \cdot 1}{12} = 83 \text{ cm}^4$$
, а для швеллерной шины $J_{x-x} = 135 \text{ cm}^4$.

Следовательно, в шинах коробчатого сечения частота собственных колебаний f_0 значительно больше, чем для шин прямоугольного сечения. Это позволяет производить расчет без учета механических колебаний.

Напряжение в материале шин от взаимодействия фаз определяется с учетом расположения шин: если шины расположены в горизонтальной плоскости (рис.6.6, а) и швеллеры соединены жестко между собой, то $W=W_{y\theta-y\theta}$; при отсутствии жесткого соединения $W=2W_{y-y}$; если шины расположены в вертикальной плоскости (рис.6.6, б), то $W=2W_{x-x}$.

Сила взаимодействия между швеллерами (рис.6.6,в), составляющими шину коробчатого профиля, определяется при условии k_{ϕ} = 1, a=h, i_1 = i_2 = i_{ϕ} /2:

$$f_n = 0.5 \frac{i_y^2}{h} 10^{-7}$$
.

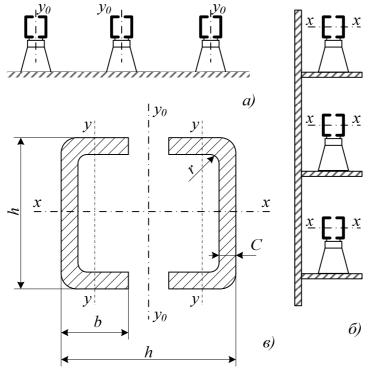


Рис. К расчету шин коробчатого сечения Напряжение в материале шин от действия силы $f_{\scriptscriptstyle \Pi}$ определяется по выражению

$$\sigma_n = \frac{f_n l_n^2}{12W_n},$$

где $W_n = W_{y-y}$.

Если шины соединены жестко по всей длине, то $\sigma_{\rm n} = 0$. Шины механически прочны, если соблюдается условие $\sigma_{pacu} = \sigma_{\phi} + \sigma_{n} \leq \sigma_{\partial on}$.

Механический расчет шин, расположенных по вершинам равностороннего треугольника

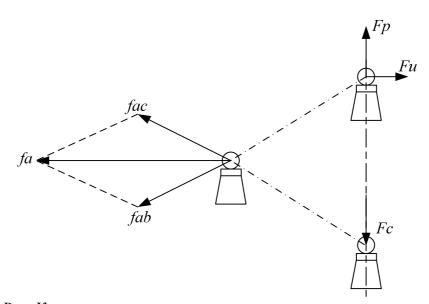


Рис. К расчету шин, расположенных в вершинах треугольника

Шины всех фаз находятся в одинаковых условиях. На шину фазы A действуют силы f_{ac} и f_{ab} , которые определяются по (6.7), но, в отличие от горизонтального расположения, векторы сил сдвинуты в пространстве на угол 60°. Результирующая сила f_a меняется не только по значению с частотой $2\omega t$, но и по направлению, создавая растягивающие F_p , изгибающие F_u и сжимающие F_c усилия на изоляторы (конец вектора f_a скользит по окружности).

Не приводя здесь вывода, следует сказать, что максимальная сила взаимодействия оказывается равной силе, действующей на фазу B при горизонтальном расположении шин, H/M

$$f_{\phi} = \sqrt{3} \cdot 10^{-7} \frac{i_y^2}{a}$$
.

Если шины расположены по вершинам прямоугольного треугольника, то определение возникающих усилий усложняется, так как фазы находятся в различных условиях.

В табл.6.3 приведены расчетные формулы для определения $\sigma_{\phi,max}$ и сил, действующих на изоляторы трубчатых и коробчатых шин, расположенных в вершинах треугольника.

Определение σ_n или $l_{n.max}$ в коробчатых шинах производится так же, как при горизонтальном или вертикальном расположении шин.

Таблица 6.3. Расчетные формулы для определения $\sigma_{\phi,max}$ и сил, действующих на изоляторы

Расположение шин	Напряжение в материале шин от взаимодействия между фазами, МПа	Силы, действующие на изолятор, Н
B 60° C C	$\sigma_{\phi max} = \sqrt{3} \frac{i_y^2 l^2}{aW} 10^{-8}$	$F_{p} = \sqrt{3} \frac{i_{y}^{2} l}{a} 10^{-7}$ $F_{u} = 1.62 \frac{i_{y}^{2} l}{a} 10^{-7}$ $F_{c} = 1.3 \frac{i_{y}^{2} l}{a} 10^{-7}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\sigma_{\phi max} = 2.5 \frac{i_y^2 l^2}{a W_{y\theta - y\theta}} 10^{-8}$	$F_c = 1.3 \frac{i_y^2 l}{a} 10^{-7}$
C (-) (-) A 45° B	$\sigma_{\phi max} = 1,64 \frac{i_{y}^2 l^2}{aW} 10^{-8}$	$F_p = 1.5 \frac{i_y^2 l}{a} 10^{-7}$ $F_u = 1.62 \frac{i_y^2 l}{a} 10^{-7}$
C [-]A 45° B	$\sigma_{\phi max} = 2.2 \frac{i_y^2 l^2}{a W_{y\theta - y\theta}} 10^{-8}$	$F_u = 1,62 \frac{10}{a}$ $F_c = 1,62 \frac{i_y^2 l}{a} 10^{-7}$

Примечание. В расчетных формулах i - в амперах; l и a - в метрах; W - в кубических сантиметрах.

Выбор изоляторов.

В распределительных устройствах шины крепятся на опорных, проходных и подвесных изоляторах.

Опорные изоляторы

Жесткие шины крепятся на опорных изоляторах, выбор которых производится по следующим условиям:

по номинальному напряжению $U_{ycm} \leq U_{hom}$;

по допустимой нагрузке $F_{pacy} \leq F_{\partial on}$,

где F_{pacy} - сила, действующая на изолятор;

 $F_{\it don}$ - допустимая нагрузка на головку изолятора: $F_{\it don}$ =0,6 $F_{\it pasp}$;

 $F_{\it pasp}$ - разрушающая нагрузка на изгиб.

При горизонтальном или вертикальном расположении изоляторов всех фаз расчетная сила H определяется по выражению:

$$F_{pacu} = \sqrt{3} \frac{i_y^2}{a} lk_h \cdot 10^{-7} = f_{\phi} lk_h,$$

где k_h - поправочный коэффициент на высоту шины, если она расположена на ребро (рис.):

$$k_h = \frac{H}{H_{u3}}; H = H_{u3} + b + \frac{h}{2}.$$

Здесь H_{us} - высота изолятора.

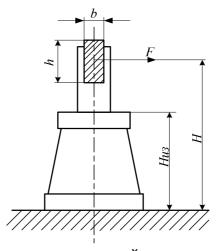


Рис. К определению расчетной нагрузки на изолятор

При расположении шин в вершинах треугольника расчетная сила равна $F_{pacu} = k_h F_u$ (см.табл.).

Проходные изоляторы

Проходные изоляторы выбираются по следующим условиям:

по напряжению $U_{vcm} \leq U_{hom}$;

по номинальному току $I_{max} \leq I_{hom}$;

по допустимой нагрузке $F_{pacy} \leq F_{don}$.

Для проходных изоляторов расчетная сила Н:

$$F_{pacu} = 0.5 f_{\phi} l.$$

Выбор гибких шин и токопроводов

В РУ 35 кВ и выше применяются гибкие шины, выполненные проводами АС. Гибкие токопроводы для соединения генераторов и трансформаторов с РУ 6-10 кВ выполняются пучком проводов, закрепленных по окружности в кольцах-обоймах. Два провода из пучка - сталеалюминевые- несут в основном механическую нагрузку от собственного веса, гололеда и ветра. Остальные провода - алюминиевые - являются только токоведущими. Сечения отдельных проводов в пучке рекомендуется выбирать возможно большими (500, 600 мм²), т.к. это уменьшает число проводов и стоимость токопровода.

Гибкие провода применяются для соединения блочных трансформаторов с ОРУ. Проверка сечения на нагрев (по допустимому току) производится по $I_{max} \leq I_{\partial on}$. Выбранное сечение проверяется на термическое действие тока к.з.

$$\vartheta_k \leq \vartheta_{k,\partial on}; q_{min} = \frac{\sqrt{B_k}}{C} \leq q.$$

При проверке на термическую стойкость проводников линий, оборудованных устройствами быстродействующего АПВ, должно учитываться повышение нагрева из-за увеличения продолжительности прохождения тока к.з. Расщепленные провода ВЛ при проверке на нагрев в условиях к.з. рассматриваются как один провод суммарного сечения.

На электродинамическое действие тока КЗ проверяются гибкие шины РУ при $I_k^{(3)} \ge 20~\kappa A$ и провода ВЛ при $i_v \ge 50~\kappa A$.

При больших токах к.з. провода в фазах в результате динамического взаимодействия могут настолько сблизиться, что произойдет схлестывание или пробой между фазами.

Наибольшее сближение фаз наблюдается при двухфазном к.з. между соседними фазами, когда провода сначала отбрасываются в противоположные стороны, а затем после отключения тока к.з. движутся навстречу друг другу. Их сближение будет тем больше, чем меньше расстояние между фазами, чем больше стрела провеса и чем больше длительность протекания и значение тока к.з.

Определяется усилие от длительного протекания тока двухфазного КЗ, Н/м

$$f = 2 \cdot 10^{-7} \frac{I^{(2)2}}{a},$$

- где a расстояние между фазами, м. (Для ОРУ расстояние между фазами принято обозначать буквой D);
 - $I^{(2)}$ среднеквадратичное значение (за время прохождения) тока двухфазного КЗ.

С достаточной точностью для расчетов можно принять

$$I^{(2)} = I_{n,0}^{(2)} = \frac{\sqrt{3}}{2} I_{n,0}^{3}$$
.

Подставляя эти величины, получаем усилие Н/м:

$$f = \frac{1.5 I_{n,0}^{(3)2}}{D} \cdot 10^{-7}.$$

Определяем силу тяжести 1 м токопровода с учетом внутрифазных распорок, H/M: g=1,1.9,8m, где m - масса 1 м токопровода, кг.

Определяем отношение

$$\sqrt{h}/t_{_{2K}}$$
,

где **h** - максимальная расчетная стрела провеса провода в каждом пролете при максимальной расчетной температуре, м;

 ${\bf t}_{{\sf эк}}$ - эквивалентное по импульсу время действия быстродействующей защиты, с.

Для цепей генераторов и трансформаторов в среднем $t_{3\kappa}$ = t_3 + 0,05, где t_3 - действительная выдержка времени защиты от токов к.з.; 0,05 - учитывает влияние апериодической составляющей.

По диаграмме (рис.) в зависимости **f/g** и $\sqrt{h}/t_{_{9K}}$ определяем отклонение провода b, м, и угол α .

Найденное значение сравниваем с максимально допустимым: $b_{\partial on} = \frac{D - d - a_{\partial on}}{2}$,

где ${\bf d}$ - диаметр токопровода; ${\bf a}_{{\sf доп}}$ - наименьшее допустимое расстояние в свету между соседними фазами в момент их наибольшего сближения.

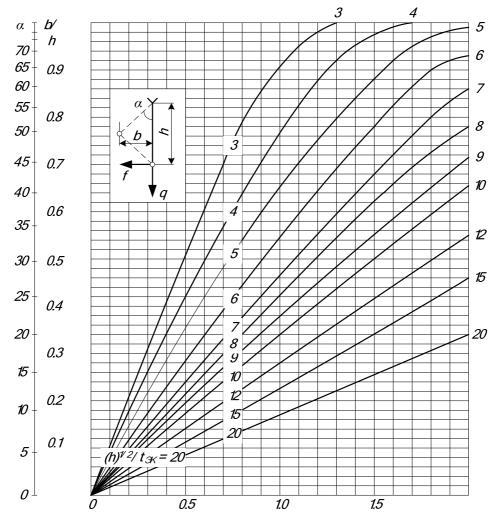


Рис. Диаграмма определения отклонения гибкого токопровода с горизонтальным расположением фаз под действием токов к.з.

Для токопроводов генераторного напряжения $a_{\text{доп}}$ =0,2м, для ОРУ, согласно ПУЭ: при напряжении 110 кВ - 0,45 м; 150 кВ - 0,6 м; 220 кВ - 0,95м, 330 кВ - 1,4 м; 500 кВ - 2 м.

Если окажется, что $b>b_{\text{доп}}$, то необходимо уменьшить стрелу провеса или увеличить расстояние между фазами. В гибких подвесных токопроводах уменьшение стрелы провеса может привести к значительному увеличению механических напряжений в проводе, а увеличение расстояния между фазами ведет к увеличению размеров ОРУ. Поэтому в некоторых случаях устанавливают поперечные распорки, присоединяемые к фазам через

изоляторы, что позволяет не увеличивать расстояние между фазами и не уменьшать стрелу провеса. Когда все же необходимо уменьшить стрелу провеса, устанавливают дополнительные опоры, т. е. фактически уменьшают пролет, чтобы сохранить механическое напряжение в проводах в допустимых пределах.

Гибкие токопроводы с расщепленными фазами проверяются также по электродинамическому взаимодействию проводников одной фазы. Расчет производится в следующем порядке.

Усилие на каждый провод от взаимодействия со всеми остальными n-1 проводами составляет H/м:

$$f_{u} = \frac{n-1}{n^{2}} \cdot 2 \cdot 10^{-7} \frac{I_{n,0}^{(3)2}}{d},$$

где n - число проводов в фазе;

d - диаметр фазы, м;

 $I_{n,0}^{(3)}$ - действующее значение тока трехфазного к.з., А.

Под действием импульсных усилий $f_{\rm u}$ проводники фазы стремятся приблизиться к центру. Для фиксации проводов и уменьшения импульсных усилий в них устанавливают внутрифазовые (дистанционные) распорки. Расстояние между распорками должно быть, м

$$l_p = k\sigma_{max}10^3 \times \sqrt{\frac{(k-1)\sigma_{max}24\beta}{(\gamma_k + k\gamma_1)(\gamma_k - k\gamma_1)}},$$

где k=1,8 - коэффициент допустимого увеличения механического напряжения в проводе при К3;

 σ_{max} - максимальное напряжение в проводе при нормальном режиме, МПа (при температуре 40°C или при гололеде и температуре -5° C) равняется

$$\sigma_{max} = \frac{T_{\phi,max}}{nq}$$
; здесь $T_{\phi,max}$ - максимальное тяжение на фазу в нормальном

режиме, Н;

 $m{\beta}$ - коэффициент упругого удлинения материала провода (для алюминия $m{\beta}=159\cdot 10^{-13}~\text{m}^2/\text{H}$);

у - удельная нагрузка от собственной массы провода, МПа /м;

 γ_k - удельная нагрузка от сил взаимодействия при КЗ, МПа/м равная $\gamma_k = \frac{f_u}{q}$; здесь q - сечение провода, мм².

Максимальное тяжение на фазу определяется при механическом расчете проводов гибкой связи одновременно с определением максимальной стрелы провеса.

На участках токопровода вблизи источников питания расстояние между дистанционными распорками может составлять всего 3-5 м, а на удаленных пролетах по мере уменьшения токов к.з. это расстояние возрастает. Если по условию электродинамической стойкости дистанционных распорок не требуется, их устанавливают через 15 м для фиксации проводов расщепленной фазы.

Проверка по условиям короны необходима для гибких проводников при напряжении 35 кВ и выше. Разряд в виде короны возникает около провода при высоких напряженностях электрического поля и сопровождается потрескиванием и свечением. Процессы ионизации воздуха вокруг провода приводят к дополнительным потерям энергии, к возникновению электромагнитных колебаний, создающих радиопомехи, и к образованию озона, вредно

влияющего на поверхности контактных соединений. Правильный выбор проводников должен обеспечить уменьшение действия короны до допустимых значений.

Рассмотрим порядок расчета для выбора сечения проводов по условиям короны.

Разряд в виде короны возникает при максимальном значении начальной критической напряженности электрического поля, $\kappa B/\epsilon m$:

$$E_0 = 30,3m(1 + \frac{0,299}{\sqrt{r_0}}),$$

где m - коэффициент, учитывающий шероховатость поверхности провода (для много проволочных проводов m=0,82);

 r_o - радиус провода, см.

Напряженность электрического поля около поверхности нерасщепленного провода определяется по выражению

$$E = \frac{0.354U}{r_0 \lg \frac{D_{cp}}{r_0}},$$

где U - линейное напряжение, кВ;

 D_{cp} - среднее геометрическое расстояние между проводами фаз, см.

При горизонтальном расположении фаз

$$D_{cp} = 1,26D,$$

здесь D - расстояние между соседними фазами, см.

В распределительных устройствах 330 кВ и выше каждая фаза для уменьшения коронирования выполняется двумя, тремя или четырьмя проводами, т. е. применяются расщепленные провода (рис.).

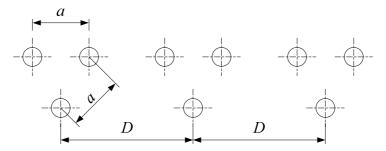


Рис. Расположение расщепленных проводов

В отдельных случаях расщепленные провода применяются также на линиях 220 кВ. Напряженность электрического поля (максимальное значение) вокруг расщепленных проводов, кВ/см:

$$E = k \frac{0.354U}{nr_0 lg \frac{D_{cp}}{r_{2\kappa}}},$$

где k - коэффициент, учитывающий число проводов n в фазе;

Таблица. Значения k и r

1 W 0 M 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1					
Данные	Число проводов в фазе				
	2	3	4		
Коэффициент <i>k</i>	$1+2\frac{r_0}{a}$	$1 + 2\sqrt{3} \frac{r_0}{a}$	$1 + 3\sqrt{2} \frac{r_0}{a}$		
Эквивалентный радиус г _{эк} , см	$\sqrt{r_0 a}$	$\sqrt[3]{r_0a^2}$	$\sqrt[4]{\sqrt{2}r_0a^3}$		

Расстояние между проводами в расщепленной фазе a принимается в установках 220 кВ – 20-30 см, в установках 330-750 кВ – 40 см.

Провода не будут коронировать, если наибольшая напряженность поля у поверхности любого провода не более $0.9E_{o}$. Таким образом, условие образования короны можно записать в виде: **1.07E** \leq **0.9E**₀.

Проверка шин на термическую устойчивость токам короткого замыкания При проверке шин на термическую устойчивость должно выполняться условие $B_k \leq I_t^2 t$.

Минимально допускаемое сечение шин по условию термической устойчивости определяется выражением

$$q_{min} = \frac{\sqrt{B_k}}{C}.$$

При от сутствии точных данных допускается принимать C равным: для медных шин и кабелей -165; для алюминиевых шин и кабелей -88; для стальных шин -70.

При сопоставлении значений q_{\min} и $q_{{\rm Ta}\delta_{\rm II}}$ должно быть выполнено соотношение $q_{\min} \leq q_{{\rm ma}\delta_{\rm II}}$

 $\it Ecли$ имеются точные данные о проводниках, то величина $\it C$ определяется по выражению

$$C = \sqrt{A_k - A_{_H}} = const ,$$

где A_k и $A_{\scriptscriptstyle H}$ - соответственно абсциссы зависимости, определяемые по кривым, для начальной температуры проводника до к.з. и для допустимой предельной температуры, характеризующей допустимое состояние проводников в конце короткого замыкания.

В справочной литературе имеются зависимости $A = f(\theta)$ для проводников из различных материалов.

Зная температуру в доаварийном режиме θ_H , определяют A_H (величина A_H обычно определяется при θ_H = 70^0 C).

Значение A_k определяют также по этим кривым по значению $\theta_{K,QO\Pi} = 200^{\circ}$ С для алюминиевых шин, 300° С для медных, 400° С для стальных).

Затем по выражению (6.26) определяется величина q_{min} и сравнивается с табличной по выражению (6.27).

Если ток нагрузки выбранного сечения жилы проводника $I_{\text{доп}}$ значительно меньше $I_{\text{расч}}$, то целесообразно будет определить действительную рабочую температуру проводника $\Theta_{\text{н}}$ с целью уточнения величины q_{min} :

$$\Theta_{H} = \Theta_{o} + (\Theta_{\partial on} - \Theta_{o}) \frac{I_{pa\delta.max}^{2}}{I_{\partial on}^{2}},$$

где **6**0 - расчетная температура окружающей среды;

 $\theta_{ma\delta n}$ - длительно допускаемая рабочая температура.

Далее действия выполняются по вышеприведенному алгоритму.

Тема 4. Современные конструкции распределительных устройств подстанций.

Конструктивное исполнение РУ напряжением 0,4 кВ. Конструктивное исполнение РУ напряжением 6-10 кВ. Конструктивное исполнение РУ напряжением 35-220 кВ. Комплектные РУ напряжением до 1 кВ. Комплектные РУ напряжением выше 1 кВ

Принципы компоновки и размещения трансформаторных и распределительных подстанций

Компоновка и конструктивное выполнение трансформаторных и распределительных подстанций производятся на основании главной схемы электрических соединений.

Компоновка подстанции должна быть увязана с генеральным планом объекта электроснабжения, необходимо учитывать действующие строительные нормы, стандарты и размеры типовых элементов зданий.

Расположение подстанций напряжением выше 1 кВ должно учитывать и предусматривать удобный подвод автомобильной и, если требуется, железной дорог, удобные подходы и выходы воздушных линий электропередач и кабельных сооружений в требуемых направлениях.

Компоновка электрооборудования, конструктивное выполнение, монтаж токоведущих частей, выбор несущих конструкций, изоляционные и другие минимальные расстояния выбираются таким образом, чтобы обеспечить:

безопасное обслуживание оборудования в нормальном режиме работы установки;

удобное наблюдение за указателями положения выключателей и разъединителей, уровнем масла в трансформаторах и аппаратах;

необходимую степень локализации повреждений при нарушении нормальных условий работы установки, обусловленных действиями дугового короткого замыкания;

безопасный осмотр, смену и ремонт аппаратов и конструкции любой цепи при снятом с нее напряжении без нарушения нормальной работы соседних цепей, находящихся под напряжением;

необходимую механическую стойкость опорных конструкций электрооборудования; возможность удобного транспортирования оборудования;

максимальную экономию площади подстанции.

Территория подстанции должна иметь внешнее ограждение, однако ограждение может не предусматриваться для закрытых подстанций.

При проектировании электроустановок, содержащих маслонаполненное оборудование с количеством масла более 60 кг, должны обеспечиваться требования пожарной безопасности в соответствии с нормативными документами.

Каждая трансформаторная подстанция имеет три основных блока: распределительные устройства высшего напряжения, трансформатор, распределительные устройства низшего напряжения.

Распределительные устройства содержат коммутационные аппараты, устройства защиты и автоматики, измерительные приборы, сборные и соединительные шины, вспомогательные устройства.

По конструктивному исполнению РУ трансформаторных и распределительных подстанций могут быть внутренними - закрытыми (ЗРУ) - с размещением электрооборудования в зданиях и наружными - открытыми (ОРУ) - с установкой электрооборудования на открытом воздухе.

Подстанции могут быть комплектными или сборными.

Комплектные подстанции изготовляются на заводах и транспортируются к месту установки узлами и блоками без демонтажа оборудования. На месте монтажа производят установку узлов и блоков и присоединения между ними и к сетям электроснабжения.

Комплектное распределительное устройство - распределительное устройство, состоящее из шкафов, закрытых полностью или частично, или блоков с встроенными в них аппаратами, устройствами защиты и автоматики, измерительными приборами и вспомогательными устройствами, поставляемое в собранном или полностью подготовленном для сборки виде и предназначенное для внутренней установки.

Комплектное распределительное устройство наружной установки (КРУН) - это КРУ, предназначенное для наружной (открытой) установки.

Комплектная трансформаторная подстанция (КТП - для внутренней и КТПН - для наружной установки) - подстанция, состоящая из трансформаторов и блоков КРУ или КРУН, поставляемых в собранном или полностью подготовленном для сборки виде.

На сборных подстанциях отдельные элементы изготавливаются на заводах и в электромонтажных организациях, доставляются к месту монтажа для сборки.

Камера (ячейка) - помещение, предназначенное для установки аппаратов и шин. Закрытая камера закрыта со всех сторон и имеет сплошные (несетчатые) двери. Огражденная камера имеет проемы, защищенные полностью или частично несплошными (сетчатыми или смешанными) ограждениями.

Размещение подстанций

По месту нахождения на территории объекта различают следующие подстанции: отдельно стоящие на расстоянии от зданий;

пристроенные, непосредственно примыкающие к основному зданию снаружи;

встроенные, находящиеся в отдельных помещениях внутри здания, но с выкаткой трансформаторов наружу;

внутрицеховые, расположенные внутри производственных зданий с размещением электрооборудования непосредственно в производственном или отдельном закрытом помещении с выкаткой электрооборудования в цехи.

В городских сетях напряжением 6...10 кВ применяют закрытые подстанции, оборудованные одним или двумя трансформаторами мощностью 100...630 кВА каждый с первичным напряжением 6...10 кВ и вторичным напряжением 0,4/0,23 кВ с воздушными или кабельными вводами. В небольших поселках и в сельской местности часто подстанции с одним трансформатором мощностью до 400 кВА устанавливают открыто на деревянных или бетонных конструкциях. В городах с небольшой плотностью застройки широко применяют отдельно стоящие подстанции. В городах с большой плотностью застройки применяю двухтрансформаторные подстанции. Строительная часть подстанций выполняется из железобетона и кирпича.

В промышленных сетях напряжением 6...10 кВ в целях наибольшего приближения к электроприемникам рекомендуется применять внутренние, встроенные в здания или пристроенные к ним подстанции. Встроенные и пристроенные подстанции обычно располагаются вдоль одной из длинных сторон цеха, желательно ближайшей к источнику питания, или же при небольшой ширине цеха в шахматном порядке вдоль двух его сторон. Минимальное расстояние между соседними камерами разных внутрицеховых подстанций, а также между КТП допускается 10 м.

Внутрицеховые подстанции могут размещаться только в зданиях с первой и второй степенями огнестойкости и с производствами, отнесенными к категориям Γ и $\mathcal L$ согласно противопожарным нормам. Число масляных трансформаторов на внутрицеховых подстанциях не должно быть более трех.

Эти ограничения не распространяются на трансформаторы сухие или заполненные негорючей жидкостью.

Отдельно стоящие ТП применяются, например, при питании от одной подстанции нескольких цехов, при невозможности размещения подстанций внутри цехов или у наружных их стен по соображениям производственного или архитектурного характера при наличии в цехах пожароопасных или взрывоопасных производств.

Выбор местоположения, типа, мощности и других параметров главной понижающей подстанции в основном обуславливается величиной и характером электрических нагрузок и размещением их на генплане и в производственных, архитектурно-строительных и эксплуатационных требованиях. Важно, чтобы ГПП располагалась возможно ближе к центру питаемых его нагрузок. Намеченное место расположения уточняется по условиям планировки предприятия, ориентировочных габаритов и типа (отдельно стоящая, пристроенная, внутренняя, закрытая, комплектная) подстанции и возможности подвода высоковольтных линий от места ввода ЛЭП от энергосистемы к ГПП.

При выборе места расположения подстанции следует учитывать продолжительность работы приемников. Очевидно, что при одинаковой расчетной нагрузке, но различном числе часов работы подразделений завода подстанция должна быть расположена ближе к группе потребителей с большей продолжительностью работы (с большим коэффициентом использования).

Допускается смещение подстанций на некоторое расстояние от геометрического центра питаемых ею нагрузок в сторону ввода от энергосистемы.

Распределительные подстанции напряжением 6...10 кВ также рекомендуется пристраивать или встраивать в производственные здания и совмещать с ближайшими трансформаторными подстанциями во всех случаях, когда это не вызывает значительного смещения ТП от центра их нагрузок. Выбор места РП в первую очередь определяется наличием двигателей напряжением выше 1 кВ или электропечей с трансформаторами. Если на объекте электроснабжения имеются потребители только напряжением до 1 кВ, питаемые от ТП, то место главной распределительной подстанции выбирается на генплане смещенным от центра нагрузки ближе к источнику питания. Если по условиям среды нельзя сделать встроенную или пристроенную РП, например из-за взрывоопасности, то сооружается отдельное здание РП.

Комплектные распределительные устройства напряжением до 1 кВ

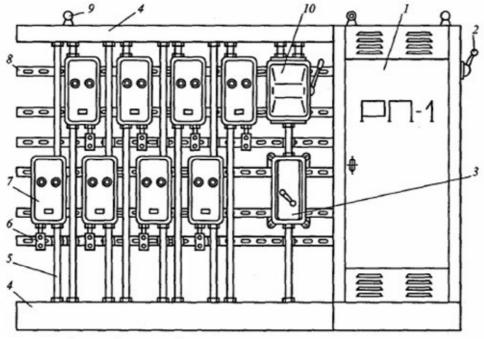
Комплектные распределительные устройства напряжением до 1 кВ состоят из полностью или частично закрытых шкафов или блоков со встроенными в них аппаратами, устройствами зашиты и автоматики, измерительными приборами и вспомогательными устройствами.

Принцип комплектных электротехнических устройств с выдвижными блоками улучшает эксплуатацию электрооборудования. Вместо ревизии и ремонта электрического аппарата на месте установки в стесненных и неудобных условиях стало возможным быстрое отсоединение аппарата от схемы и ремонт его в условиях мастерских. Создание комплектных устройств с выдвижными блоками повысило эксплуатационную надежность: благодаря замене ремонтируемого блока на запасной появилась возможность работать во время ремонта блока на данном присоединении. При наличии штепсельных разъемов такая замена производится в течение короткого времени без снятия напряжения с данного узла при полной безопасности обслуживающего персонала.

К комплектным распределительным устройствам напряжением до 1 кВ относятся распределительные щиты, посты управления, силовые пункты, щиты станций управления и т.п.

Распределительные щиты. Распределительные щиты предназначены для приема и распределения электроэнергии переменного и постоянного тока напряжением до 1 кВ. Устанавливают их на трансформаторных и преобразовательных подстанциях, в машинных залах и на электростанциях. Щиты изготовляют в открытом и закрытом (шкафном) исполнении.

Щиты открытого исполнения состоят из панелей, устанавливаемых в специальных электротехнических помещениях. Щиты закрытого исполнения устанавливают в шкафах в цехах промышленных предприятий.


По условиям обслуживания щиты бывают с двусторонним обслуживанием и односторонним. Щиты с двусторонним обслуживанием часто именуют свободно стоящими, поскольку они требуют для обслуживания устройства проходов с двух сторон - с лицевой и задней, и, таким образом, их устанавливают в отдалении от стен. Щиты с односторонним обслуживанием принято называть прислонными, так как обычно их устанавливают непосредственно у стен помещения, обслуживают с лицевой стороны. Каркасы панелей в современных конструкциях щитов выполняют с применением различных профилей из листовой стали.

В качестве коммутационных и защитных аппаратов на щитах устанавливают рубильники, предохранители, блоки выключатель - предохранитель, выключатели. Для обеспечения автоматической работы по схеме ABP на щитах устанавливают релейную аппаратуру.

Распределительные щиты серии ЩО-70 предназначены для распределения электроэнергии трехфазного тока напряжением 380 В. Щиты рассчитаны на одностороннее обслуживание, защитных ограждений сверху и сзади не имеют. Щиты комплектуются из вводных, линейных, секционных и торцовых моделей. Для смены предохранителей, осмотра и ремонта аппаратуры на каждой панели, кроме секционных, на фасадной стороне предусмотрена одностворчатая дверь, на которой установлены приводы рубильников или кнопки управления выключателей. Для присоединения трех или четырех кабелей к аппаратам на номинальные токи 630 и 1000 А в панелях предусмотрены шинные сборки.

Посты управления предназначены для управления электроприводами группы механизмов, связанных между собой общим технологическим процессом. Посты обычно устанавливают непосредственно в цехе так, чтобы управляемые с них объекты находились в поле зрения оператора. На таких постах устанавливают командную аппаратуру ручного и автоматического управления.

Пункты и шкафы силовые. Пункты силовые распределительные предназначены для распределения электрической энергии и защиты электрических установок постоянного тока напряжением до 220 В или переменного тока напряжением до 660 В при перегрузках и коротких замыканиях. Пункты (рис.) изготовляют в виде шкафов или устройств, собираемых из отдельных стандартных элементов: ящиков с соединительными шинами и ящиков с разными аппаратами. Преимущество этого устройства заключается в возможности получения разных схем из небольшого набора стандартных ящиков.

Силовой пункт в блоке с магнитными пускателями, кнопочными станциями и ящиками:

I – шкаф силовой; 2 – рукоятка вводного рубильника шкафа; 3 – ящик с автоматом; 4 – короба для проводов; 5 – трубы (или короба) для проводов силовой сети; 6 – кнопочная станция; 7 – магнитный пускатель; 8 – швеллер перфорированный; 9 – рым; 10 – ящик с рубильниками и предохранителями

Шкафы силовые распределительные IIIP-11 применяют для приема и распределения электроэнергии в промышленных установках на номинальный ток до 400 А. В зависимости от типа шкафа на вводе устанавливают рубильник, два рубильника при питании шкафа от двух источников или рубильник с предохранителями. Шкафы имеют 5...8 отходящих групп, укомплектованных предохранителями серии ПН2 или НПН2 на номинальные токи 60,100, 250 А. Шкафы представляют собой металлический корпус с дверью, внутри которого установлена съемная сборка, представляющая собой раму с вводным рубильником, и предохранители отходящих линий.

Пункты распределительные серии ПР изготовляют в виде шкафов утопленного, навесного и напольного исполнения со встроенными автоматическими выключателями типа A3700 на силу тока до 700 A и типа AE на силу тока до 100 A.

Шкафы распределительные силовые СПМ-75 применяют цеховых электроустановках промышленных предприятий ДЛЯ приема распределения электроэнергии трехфазного переменного тока частотой 50 Гц при номинальном напряжении 380 В с защитой отходящих линий предохранителями. Шкафы имеют вводной рубильник и предохранители, расположенные один под другим по вертикали, образуя трехфазную группу.

Шкафы распределительные СПА-77 применяют в тех же случаях, что и СПМ-75. Шкафы имеют вводной рубильник и автоматические выключатели на отходящих линиях. Силовые распределительные устройства серии СУ-9500 со встроенными в них устройствами автоматики применяют в силовых установках с трех- и четырехпроводными системами распределения трехфазного тока частотой 50 Гц напряжением 380 В, а также в двухпроводной системе постоянного тока напряжением 220 В. Максимальная нагрузка на главные шины - 4000 А, на нулевую шину - 2000 А.

Вводные распределительные устройства серии ВРУ предназначены для приема, распределения и учета электроэнергии и защиты отходящих линий в сетях трехфазного тока напряжением 380/220 В в сетях с глухозаземленной нейтралью. ВРУ применяют в

общественных зданиях и жилых домах повышенной этажности. В серию ВРУ входят вводные и распределительные панели. Распределительные панели имеют аппаратуру для автоматического управления наружным освещением лестничных клеток. Максимальное число и сечение жил проводов и кабелей, присоединяемых к вводному зажиму: на 400 A - 4 x 150 мм²; на 250 A - 4 x 95 мм²; на 200 A - 2 x 95 мм². ВРУ выполнены в защищенном исполнении. Габаритные размеры 1700 x 800 x 450 мм. Устройство шкафов серии ВРУ представляет собой сборку из панелей шкафного типа одностороннего обслуживания. Их корпуса не имеют боковых стенок, торцы крайних панелей сборки закрываются съемными металлическими листами. На съемной раме внутри корпуса установлены защитно-коммутационные аппараты. Аппараты, размешенные на одной панели, но питающиеся от разных вводов, разделены перегородками. Счетчики и трансформаторы тока установлены в отдельном отсеке. Ввод проводов и кабелей делают снизу, а вывод - как снизу, так и сверху через верхнюю съемную крышку.

Корпуса панелей заземляют присоединением нулевых жил питающих кабелей к нулевой шине, общей для всех панелей.

Щиты станций управления. Современные системы электропривода производственных машин и механизмов имеют сложные системы управления **с** большим числом контакторных аппаратов регулирующих элементов.

Требования режимов пуска, разгона, регулирования частот вращения, торможения и установки электропривода, многообразие форм защиты и контроля за работой двигателя и установок) определили довольно широкую номенклатуру станций управления; электроприводами.

Щиты станций управления устанавливают на крупных трансформаторных подстанциях в машинных залах промышленных предприятий. Щиты выполняют одно- и двухрядными. ЩСУ комплектуют из блоков и панелей управления.

Комплектные распределительные устройства напряжением выше 1 кВ

Отечественные электроаппаратные заводы изготовляют КРУ для напряжений 6...10 и 35 кВ с одной системой сборных шин для внутренней и наружной установки. Они получили широкое распространение в электроустановках различного назначения.

Применение КРУ дает значительное упрощение строительной части электроустановок. Практика эксплуатации КРУ показала более надежную их работу по сравнению с обычными сборными распределительными устройствами.

Комплектные распределительные устройства напряжением до 35 кВ имеют воздушную изоляцию; КРУ напряжением 110 кВ и выше выполняют с изоляцией элегазом.

Комплектные распределительные устройства на напряжение 6...10 кВ имеют два принципиально различных конструктивных исполнения в зависимости от способа установки аппаратов: выкатные (тина КРУ, КРУН), в которых аппарат напряжением выше 1 кВ с приводом располагается на выкатной тележке, и стационарные (типа КСО, КРУН), в которых аппарат, привод и все приборы устанавливаются стационарно.

Основными достоинствами выкатных КРУ являются:

возможность быстрой замены выключателя резервным выключателем, установленным на тележке;

компактность устройств, так как вместо разъединителей применяются специальные скользящие контакты штепсельного типа;

надежное закрытие токоведущих частей для защиты от прикосновения и чрезмерного запыления.

Конструкция стационарных комплектных распределительных устройств обеспечивает достаточную и безопасную обозреваемость и доступность оборудования без снятия напряжения со сборных шин. Стационарные камеры КСО более просты и дешевы по

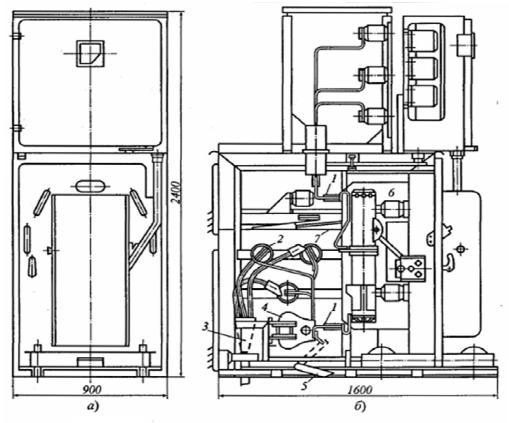
сравнению с выкатными камерами КРУ. По условию обслуживания комплектные распределительные устройства могут быть:

одностороннего обслуживания (прислонного типа) - устанавливаются прислоненно к стене с обслуживанием с фасадной стороны;

двустороннего обслуживания (свободностоящие) - устанавливаются свободно с проходами с фасадной и задней стороны.

Стационарные камеры КСО следует устанавливать, как правило, с односторонним обслуживанием, а КРУН и выкатные КРУ - с двусторонним обслуживанием.

Выкатные комплектные распределительные устройства. На рис. показана линейная камера серии К-ХП для внутренней установки с выключателем ВМП-10 и разъединителями штепсельного типа с втычными контактами. Она состоит из следующих частей: неподвижного корпуса, в задней части которого размещены верхние и нижние неподвижные контакты I разъединителей, кабельная сборка 2 с концевыми заделками 3, трансформаторы тока 4 и заземляющие ножи 5; выкатной тележки с выключателем 6 и приводом; отсека сборных шин; отсека приборов для измерений, релейной зашиты, управления и сигнализации.


Корпус камеры разделен горизонтальной стальной перегородкой 7 на два отсека; верхний - с контактами шинных разъединителей и нижний - с трансформаторами тока и кабельной сборкой. Предусмотрены также вертикальные подвижные металлические шторы, закрывающие при выкатывании тележки заднюю часть камеры с аппаратами, находящимися под напряжением, во избежание случайного прикосновения к ним.

Тележка с выключателем может занимать три положения:

рабочее, когда тележка находится в камере, а втычные разъединители и контакты вторичных цепей сигнализации и напряжения разомкнуты;

испытательное, когда тележка выдвинута настолько, что втычные разъединители разомкнуты, а контакты цепей управления еще замкнуты;

ремонтное, когда тележка находится вне камеры.

Ячейка КРУ с выдвижным выключателем: a – вид спереди; δ – поперечный разрез

Для опробования привода выключателя достаточно поставить тележку в испытательное положение. Для ремонта выключателя тележка должна быть полностью выдвинута из камеры. Необходимо также отсоединить цепи управления сигнализации от релейного отсека, с которым они соединены гибким шлангом и многоконтактным штепсельным соединением. Предусмотрена блокировка, не допускающая выкатывания тележки при включенном выключателе, а также вкатывание при включенном заземляющем разъединителе. Последний не может быть включен в рабочем положении тележки.

Стационарные комплектные распределительные устройства. Основными стационарными типами комплектных распределительных устройств являются камеры типа КСО, они имеют открытое исполнение и предназначены для одностороннего обслуживания. Камеры разделяются на три отсека. В верхнем отсеке камеры открыто размещены сборные шины и шинный разъединитель, в среднем отсеке - выключатель или выключатель нагрузки, или предохранители и разъединители, в нижнем - линейный разъединитель, кабельная воронка и ТТ типа ТЗ. На фасаде камеры имеются верхняя и нижняя двери.

Выкатные и стационарные комплектные распределительные устройства наружного исполнения. Шкафы ввода отходящих линий, трансформаторов напряжения и разрядников выкатных КРУН состоят из двух основных частей: корпуса и тележки. Корпус шкафа представляет собой каркасную металлоконструкцию, выполненную из специальных штампованных профилей листовой стали. Он разделен металлическими перегородками на пять отсеков: сборных шин, тележки, приборов защиты и измерения, трансформаторов тока с кабельным или воздушным вводом и верхних неподвижных разъединяющих контактов. Отсек сборных шин отделен от остальных отсеков шкафа металлическими перегородками и проходными изоляторами, что обеспечивает более высокую степень надежности и локализацию возникших аварий в пределах одного электрического присоединения. Они комплектуются выключателями типа ВМП-10К или ВМП-10П на силу тока 600, 1000 и 1500 А. Стационарные КРУН предназначены для ввода и секционирования в распределительных

устройствах при нагрузках, превышающих силу тока 1500 А. Они комплектуются выключателями на ток 3200 А.

Внутренние распределительные устройства

При напряжении 6... 10 кВ габаритные размеры электрических аппаратов таковы, что объем здания и его стоимость невелики. В этих условиях целесообразны внутренние распределительные устройства, в которых аппараты защищены от непогоды и пыли, а облуживание удобно. По мере повышения напряжения объем здания и стоимость строительной части быстро увеличиваются. При напряжении 110...220 кВ внутренние РУ сооружают только в естественных условиях, при наличии в воздухе пыли вредных химических загрязнений, в суровых климатических условиях.

Для РУ обычно сооружают особые здания, размеры которых выбирают в соответствии с электрической схемой и габаритами оборудования. При определенных условиях РУ могут быть размещены в отсеках производственных помещений.

Здания РУ сооружают сборными из готовых типовых железобетонных элементов, размеры которых стандартизованы. Поэтому длина здания должна быть кратной 6 м, ширина - 3 м, высота -6 м.

Естественное освещение внутренних РУ нежелательно, так как устройство окон осложняет конструкцию здания, окна требуют периодической очистки, через них может проникать пыль и т.п. Здания РУ не отапливаются, но нуждаются в вентиляции, поскольку аппараты и проводники выделяют значительное количество теплоты. Обычно применяют естественную вентиляцию, но в камерах с токоограничивающими реакторами и силовыми трансформаторами прибегают к установке вентиляторов.

Руководствуясь требованиями удобства и безопасности обслуживания, аппараты присоединений размещают в огражденных камерах, расположенных вдоль коридоров обслуживания. *Ограждений камерой* называют камеру, ограниченную со всех сторон стенами и перекрытиями, кроме стороны, обращенной в коридор обслуживания. С этой стороны предусматривают лишь сетчатое ограждение не ниже 1,9 м с дверями для доступа в камеру при снятом напряжении. При таком размещении оборудования обеспечиваются хорошая обозреваемость аппаратов, удобный и безопасный ремонт, а также локализация повреждений, т.е. ограничение зоны их распространения.

Закрытой камерой называют камеру, ограниченную со всех сторон стенами и перекрытиями, с доступом из коридора обслуживания или снаружи через сплошные двери. Размеры камеры определяются габаритными размерами электрических аппаратов, условиями доступа к ним при ремонте, а также минимально допустимыми изоляционными расстояниями для каждого класса номинальных напряжений.

В зависимости от числа присоединений камеры размещают в один, два и большее число рядов с коридорами для обслуживания между ними. В РУ напряжением 6...10 кВ с одной системой сборных шин и малогабаритными аппаратами в одну камеру могут быть помещены все аппараты одного присоединения. В устройствах с двумя системами сборных шин и аппаратами большого габарита для размещения аппаратов одного присоединения необходимы две или три камеры, расположенные в одном или двух этажах.

Распределительные устройства напряжением 6...10 кВ мощных станций с выключателями больших размеров и реакторами выполняют обычно сборными. В присоединениях с меньшими токами и, следовательно, меньшими аппаратами, применяются комплектные камеры заводского изготовления - КРУ.

Ширина коридора обслуживания должна обеспечивать безопасное, удобное обслуживание установки и перемещение оборудования. Расстояние в свету между ограждениями должно составлять не менее 1 м. Число, выходов из помещения РУ должно выполняться в соответствии со следующими требованиями: при длине РУ до 7 м допускается один выход, при длине 7...60 м - два выхода по концам.

Наименьшие изоляционные расстояния в воздухе для внутренних РУ напряжением от 6 до 220 кВ, обеспечивающие условия безопасности и удобного обслуживания, установлены ПУЭ (табл.).

Наименьшие изоляционные расстояния в воздухе для внутренних РУ напряжением 6...220 кВ

Наименование расстояний	Обозна- чение	Наименьшие расстояния, мм, при напряжении				
		6 кВ	10 kB	35 kB	110 кВ	220 кВ
От токоведущих частей до заземленных конст- рукций и стен зданий	А _{ф-3}	90	120	290	700	1700
Между проводниками разных фаз	Афф	100	130	320	800	1800

Основными из них являются минимальные расстояния от токоведущих частей до заземленных конструкций $A_{\varphi - 3}$, а также минимальные расстояния между токоведущими частями разноименных фаз $A_{\varphi - \varphi}$.

В ПУЭ также нормируются наименьшие расстояния от токоведущих частей до сплошных и сетчатых ограждений, между награжденными токоведущими частями разных испей, от неогражденных токоведущих частей до отметки пола и др.

Открытые распределительные устройства напряжением до 220 кВ

Наиболее рациональной компоновкой открытого распределительного устройства на подстанциях является компоновка с расположением оборудования в одной плоскости, когда электрооборудование располагается на нулевой отметке.

Любое ОРУ состоит из подходящих и отходящих присоединений, подключаемых к общим шинам.

При компоновке подстанций необходимо учитывать направление подходящих к ОРУ воздушных и кабельных линий, расположение подъездных дорог к подстанции и возможности доставки по ним оборудования с большой массой, климатические условия, рельеф и геологию местности, состояние окружающей среды (степень ее загрязнения).

Конструкция опор под ошиновку и оборудование служит для крепления и установки на них гибкой и жесткой ошиновок и оборудования.

Портальные конструкции для подвески ошиновки могут быть металлическими или из сборного железобетона. Опоры под оборудование выполняются из унифицированных железобетонных стоек и свай с металлическими конструкциями сверху для крепления аппаратов. При однорядном расположении выключателей ОРУ напряжением 35...220 кВ по блочным и мостиковым схемам ее основные показатели по габаритам приведены в табл.

В ПУЭ нормируются наименьшие допустимые расстояния от масляных трансформаторов до стены производственных зданий в зависимости от степени огнестойкости. При расстоянии более 10 м специальных требований к огнестойкости зданий не предъявляется.

Комплектные трансформаторные подстанции

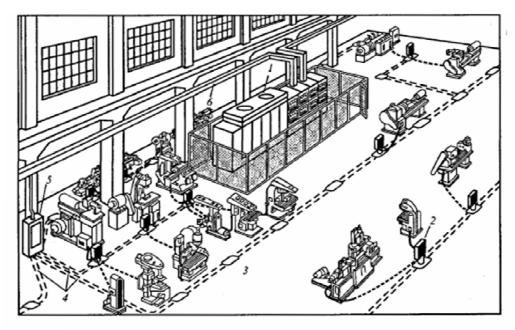
Комплектные трансформаторные подстанции применяют для приема, распределения и преобразования электрической энергии трехфазного тока частотой 50 Гц.

По числу трансформаторов КТП могут быть однотрансформаторными, двухтрансформаторными и трехтрансформаторными.

По роду установки КТП могут быть:

внутренней установки с масляными, сухими или заполненными негорючей жидкостью трансформаторами;

наружной установки (только с масляными трансформаторами);


смешанной установки с расположением РУ высшего напряжения и трансформатора снаружи, а РУ низшего напряжения внутри помещения.

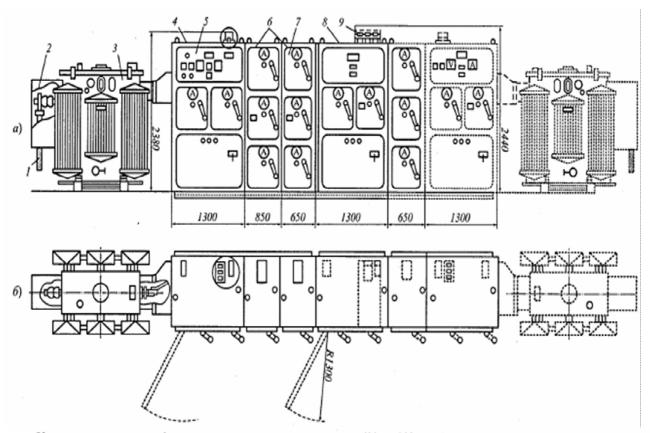
КТП можно разделить на четыре основные группы.

- 1. КТП наружной установки мощностью 25...400 кВА, напряжением 6...35/0,4 кВ, применяемые для электроснабжения объектов сельскохозяйственного назначения. Это в основном мачтовые подстанции. КТП данной группы состоят из шкафа ввода ВН, трансформатора и шкафа НН, укомплектованного на отходящих линиях автоматическими выключателями.
- 2. КТП внутренней и наружной установки напряжением до 10 кВ включительно мощностью 160...2500 кВА, которые в основном используются для электроснабжения промышленных предприятий. КТП этой группы состоят из шкафов ввода на напряжение 10 кВ и РУ напряжением до 1 кВ. Для КТП применяют как масляные, так и заполненные негорючей жидкостью или сухие трансформаторы специального исполнения с боковыми выводами, для КТП наружной установки только масляные.
- 3. Сборные и комплектные трансформаторные подстанции напряжением 35...110/6...10 кВ. Со стороны высокого напряжения подстанции комплектуются открытыми распределительными устройствами напряжением 35...110 кВ, со стороны 6...10 кВ шкафами КРУН наружной установки.
- 4. КТП специального назначения, перевозимые на салазках, напряжением 6...10 кВ, мощностью 160...630 кВА, которые выпускаются для электроснабжения стройплощадок, рудников, шахт, карьеров.

Конструктивное исполнение комплектных трансформаторных подстанций

Комплектные трансформаторные подстанции напряжением 6...10 к В. В целях наибольшего приближения к потребителям рекомендуется применять внутренние, встроенные в здание или пристроенные к нему, трансформаторные подстанции. Встроенные в здание или пристроенные трансформаторные подстанции имеют выход из камер с масляными трансформаторами и высоковольтными аппаратами непосредственно наружу. Внутрицеховые подстанции могут размешаться на первом и втором этажах производств, которые согласно противопожарным требованиям отнесены к категориям Г и Д первой и второй степеням огнестойкости. Внутрицеховые подстанции размещаются как открыто, так и в отдельных помещениях. Размещение внутрицеховых подстанций в помещениях пыльных и с химически активной средой допускается при условии принятия мер, обеспечивающих надежную работу электрооборудования.

Модульная разводка силовой электросети к электроприемникам механического цеха:


I — комплектная трансформаторная подстанция; 2 — колонка с автоматическим выключателем; 3 — ответвительная коробка; 4 — модульная магистраль; 5 — силовой шкаф; 6 — магистральный шинопровод

В производственных помещениях трансформаторы и РУ могут устанавливаться как открыто, так и в камерах и отдельных помещениях. На каждой открыто установленной цеховой подстанции и КТП могут быть применены масляные трансформаторы мощностью до 1600 кВА. Расстояние в свету между масляными трансформаторами должно быть не менее 10 м. Для внутрицеховых подстанций и КТП с сухими трансформаторами или с негорючим диэлектриком их мощность и расстояние между ними не ограничиваются,

КРУ и КТП следует, как правило, размещать в пределах «мертвой зоны» подъемнотранспортных механизмов. В цехах с интенсивным движением внутризаводского транспорта КРУ и КТП следует ограждать. Ширина прохода для управления и ремонта КРУ выкатного типа и КТП должна обеспечивать удобство обслуживания и ремонта (0,6...0,8 м).

Ввод от трансформатора на щит может быть выполнен двумя способами: кабелями снизу на вводных панелях, предназначенных для кабельных вводов; шинами сверху с помощью вводных панелей или же непосредственно к сборным шинам через разъединитель, установленный на стене.

На рис. представлена комплектная двухтрансформаторная подстанция мощностью 630...1000 кВА для внутренней установки с однорядным расположением оборудования. Автоматические выключатели выдвижного исполнения служат защитно-коммутационной аппаратурой, каждый автомат закрыт дверью, управление производится рукоятками и ключами, расположенными на дверях шкафов, а для дистанционного управления концы проводов подведены к рейке с зажимами. Присоединение вводов высшего напряжения глухое.

Комплектная двухтрансформаторная подстанция мощностью 630 ... 1000 кВ· А для внутренней установки с однорядным расположением оборудования:

a – вид спереди; b – план; I – кабель ВН; 2 – шкаф ввода ВН; b – силовой трансформатор; b – шкаф ввода НН; b – отсек приборов; b – шкаф отходящих линий НН; b – окно для вывода кабеля вверх

Комплектные трансформаторные подстанции напряжением 35/6...10 кВ. КТП напряжением 35/6...10 кВ применяют для электроснабжения небольших промышленных предприятий и сельскохозяйственных районов. КТП (рис.) состоит из ОРУ напряжением 35 кВ, силового трансформатора и КРУН напряжением 6...10 кВ наружной установки, металлического ограждения подстанции, совмещенного с контуром заземления.

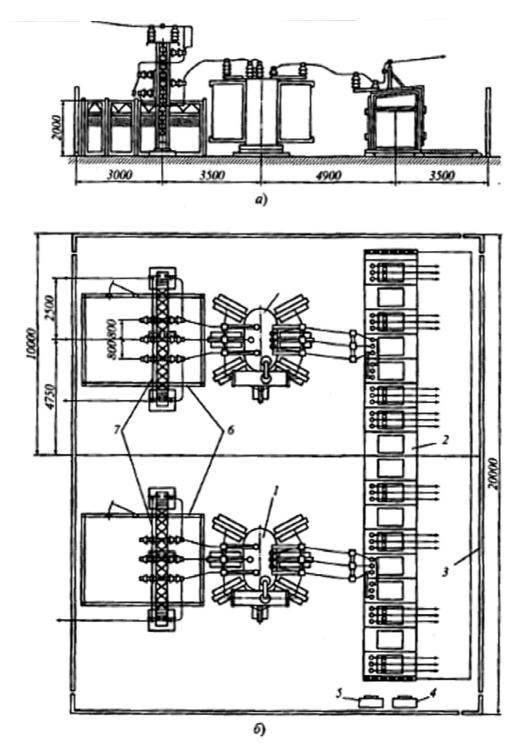


Рис. 7.6. Комплектная трансформаторная подстанция напряжением 35 кВ типа 2КТП-35/6-10П кВ с трансформаторами мощностью 3200 кВ·А:

а – вид спереди; 6 – план: I – трансформатор; 2 – КРУН напряжением 6... 10 кВ; 3 – внешнее ограждение; 4 – шкаф противопожарного оборудования; 5 – шкаф инвентарный; 6 –
внутрениее ограждение предохранителей; 7 – ОРУ напряжением 35 кВ

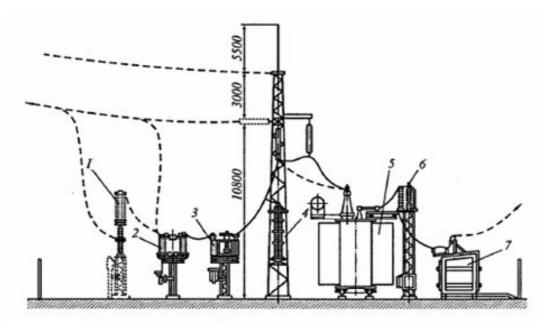
Конструкция комплектной подстанции допускает возможность установки одного или двух силовых трансформаторов мощностью 630...3200 кВА.

ОРУ однотрансформаторной подстанции напряжением 35 кВ представляет собой портал, на котором смонтированы со стороны подстанции линейный разъединитель с двумя заземляющими ножами, а со стороны линии - стреляющие предохранители высокого напряжения, разрядники и резонансные заградители высокочастотной связи.

На стороне 35 кВ применяются следующие основные схемы: тупиковые, проходные, узловые, «мостик».

Ячейка ввода ОРУ имеет дополнительное внутреннее ограждение высотой 2 м, определяемой зоной выхлопа стреляющих предохранителей ПСН-35 и допустимыми расстояниями от аппаратуры, установленной в нижней части портала.

Двухтрансформаторная подстанция представляет собой сочетание двух комплектных однотрансформаторных подстанций, комплектуемых секционным шкафом напряжением 6...10 кВ. Ввод со стороны 35 кВ выполнен как для однотрансформаторной подстанции, но включает в себя два портала с линейными предохранителями, разъединителями и разрядниками.

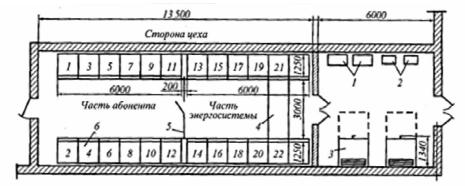

Комплектные трансформаторные полстанции напряжением 110/6...10 к В. КТП напряжением 110/6...10 кВ (рис.) состоят из ОРУ напряжением 110 кВ, силового трансформатора 5 и КРУН 7 наружной установки напряжением 6...10 кВ.

ОРУ напряжением 110 кВ однотрансформаторной подстанции состоит из линейного разъединителя, отделителя, короткозамыкателя, заземляющего разъединителя, линейного портала, металлоконструкции под установку высокочастотной связи. Узел линейного разъединителя 2 представляет собой металлоконструкцию портального типа, на которой установлены полюсы разъединителя типа РЛНД-2-110/600. Полюсы соединяют между собой тягами. С приводом ПРН разъединитель соединен валами, привод ПРН устанавливается под центральным полюсом разъединителя на траверсе и снабжается внутренней блокировкой, не допускающей включения заземляющих ножей при включенных главных ножах разъединителя.

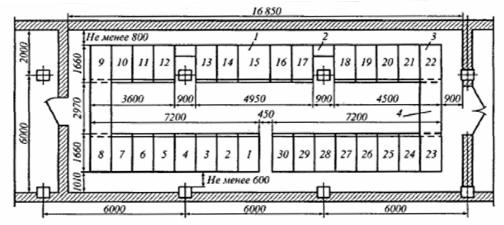
Узел отделителя и короткозамыкателя *3* - трехстоечная металлоконструкция, на которой установлены три полюса отделителя ОД-110 и короткозамыкатель КЗ-11О. Отделитель управляется приводом ШПО, который устанавливается на одной из стоек. Короткозамыкатель изолируется от металлоконструкций четырьмя изоляторами.

Заземление короткозамыкателя производится шиной, которая проходит через трансформатор тока ТШЛ-0,5 проходного типа.

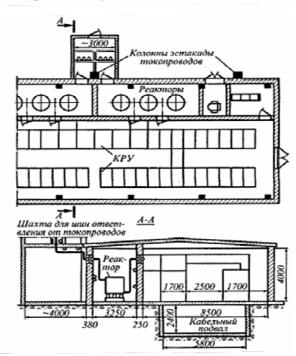
Узел заземляющего разъедини геля 6 - одностоечная металлоконструкция, на которой установлен заземляющий разъединитель ЗОН. В зависимости от высоты силового трансформатора заводом поставляется установка заземляющего разъединителя высотой 3 и 5 м. На металлоконструкции заземляющего разъединителя устанавливается ящик с зажимами цепей управления.

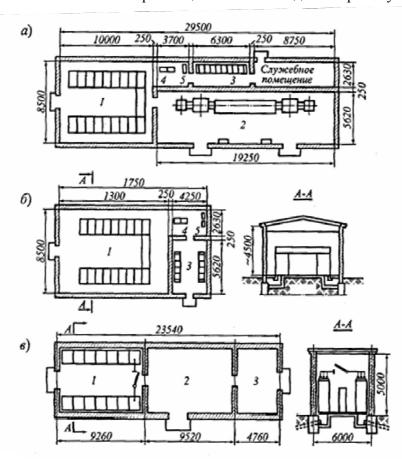

Комплектная трансформаторная подстанция наружной установки напряжением 110/6...10 кВ с ОРУ напряжением 110 кВ

Линейный портал 4 - одностоечная портальная конструкция с двумя траверсами. Портал служит для приема линии, к стойкам портала подсоединяются грозозащитные тросы, на одной из стоек портала устанавливается молниеотвод. Расстояние между проводами 2500 мм, а между грозозащитными тросами - 8000 мм. Верхняя траверса служит для подвески гирлянд изоляторов. На нижней траверсе устанавливаются разрядники РВС-110 с регистраторами разрядов. Узел высокочастотной связи *I* рассчитан на совместную установку заградителя и конденсатора связи. КРУН напряжением 6...10 кВ 7 - металлическая конструкция, состоящая из соединенных между собой шкафов, в которых смонтированы аппаратура силовых и вспомогательных цепей. У силового трансформатора вблизи выводов напряжением 6...10 кВ устанавливаются вентильные разрядники РВП напряжением 6...10 кВ.


Источником питания оперативных испей и устройств релейной защиты и автоматики является трансформатор собственных нужд.

Конструктивное исполнение РП напряжением 6-10 кВ


На рис. a приведена компоновка распределительной подстанции, пристроенной к зданию цеха с двумя выходами наружу. Часть РП, находящаяся в ведении энергоснабжающей организации, отделена перегородкой с дверью, запираемой на замок. На рис. δ приведена компоновка распределительной подстанции при размещении в отдельном помещении между колоннами в цеху. На рис. ϵ показана компоновка распределительной подстанции с выкатными КРУ с подводом питания через специальную шахту и с установкой в специальных ячейках токоограничивающих реакторов.

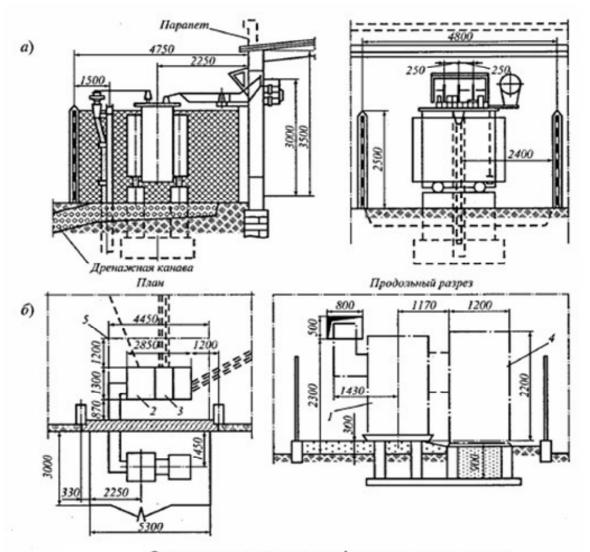

а) Расположение оборудования распределительной подстанции напряжением 10 кВ при двухрядном расположении камер КСО при разделении распределительной подстанции на части абонента и энергосистемы:
 I – блоки питания;
 Z – щитки защиты;
 З – шкаф оперативного тока типа ШУОТ;
 4 – мост шинный длиной 3000 мм;
 5 – ограждение сетчатое с дверью;
 6 – камера типа КСО-272

 Бариант компоновки распределительной подстанции напряжением 10 кВ в отдельном помещении между колоннами в цеху:
 1 – шкаф КРУ размером 1350 мм; 2 – токопровод между шкафами; 3 – шкаф КРУ размером 900 мм; 4 – токопровод между секциями КРУ

 Компоновка распределительной подстанции с выкатными КРУ и реакторами с подводом питания через специальную шахту от гибких токопроводов На рис. показано несколько примеров выполнения распределительных подстанций, некоторые из которых совмещены с трансформаторными подстанциями. Компоновки РП предусматривают также возможность размещения в них конденсаторных установок (УК).

Выполнение распределительных подстанций напряжением 6 ... 10 кВ: а – отдельно стоящая РП с камерами КРУ, совмещенная с КТП и комплектной конденсаторной установкой (ККУ); б – отдельно стоящая РП с камерами КРУ, совмещенная с ККУ; в – отдельно стоящая РП с камерами КСО, совмещенная с КТП и ККУ; I – камеры КРУ или КСО; 2 – КТП; 3 – ККУ; 4 – электропитание приводов; 5 – вводное устройство силового питания

Примеры выполнения подстанций напряжением 6...10/0,4 ...0,66 кВ


Типы выполнения подстанций напряжением 6...10/0,4...0,66 кВ достаточно многообразны, поэтому рассмотрим лишь некоторые из них.

Широко применяются компоновки подстанций с установкой трансформаторов открыто возле производственных зданий предприятия и с размещением распределительных устройств вторичного напряжения внутри этих зданий. При этом необходимо соблюдать ряд условий, так как пожар в трансформаторе может вывести из работы производственный корпус. Кроме того, должен предусматриваться проезд шириной не менее 3 м вдоль всех трансформаторов или пожарный подъезд к каждому из них.

На рис. a показана цеховая подстанция с открытой установкой трансформатора мощностью 1000 кВА возле цеха и с размещением распределительного щита напряжением до 1 кВ непосредственно в цехе.

На рис. δ показана установка однотрансформаторной КТП и вводного шкафа напряжением выше 1 кВ снаружи, непосредственно возле стены здания, а комплектного устройства напряжением до 1 кВ внутри цеха.

Шины, соединяющие выводы напряжением до 1 кВ с комплектным распределительным устройством, заключены в короба из листовой стали.

Открытая установка трансформаторов возле цеха: a – цеховая подстанция с открыто установленным трансформатором мощностью $1000 \, \mathrm{kB} \cdot \mathrm{A}$; b – цеховая однотрансформаторная КТП с наружной установкой трансформатора мощностью $630 \, \mathrm{kB} \cdot \mathrm{A}$; b – трансформатор; b – шкаф ввода напряжением до b кВ; b – шкаф отходящих линий; b – шкаф ввода напряжением выше b кВ с выключателем нагрузки; b – зона обслуживания

Тема 5. Режимы питающих электроэнергетических систем и управление качеством электроэнергии.

Режимы работы электрооборудования и обеспечение нормативного качества напряжения. Баланс активной и реактивной мощности в питающих электроэнергетических системах. Выбор мощности и размещение компенсирующих устройств. Основы регулирования частоты. Методы и средства регулирования напряжения.

При анализе работы сети следует различать параметры элементов сети и параметры ее рабочего режима. Параметрами элементов сети являются: сопротивления и проводимости, коэффициенты трансформации. К параметрам сети иногда можно отнести также э.д.с. и задающие токи и мощности нагрузок. К параметрам рабочего режима относятся: значения частоты, токов в ветвях, напряжений в узлах, полной, активной и реактивной мощностей электропередачи, а также значения, характеризующие несимметрию трехфазной системы напряжений и токов и несинусоидальность изменения напряжений и токов в течение периода основной частоты.

Под рабочим режимом сети понимается ее электрическое состояние. Практически оно непрерывно изменяется в связи с отключением и включением электроприемников, изменением режима их работы и т.п. Обычно при расчетах сетей рассматриваются некоторые идеализированные характерные режимы ее работы. При этом имеются в виду установившиеся режимы работы, т.е. длительные, с почти постоянными параметрами, медленно изменяющимися. Характер их изменения во времени часто является случайным.

Параметры режима практически не могут быть допущены произвольными. Каждый элемент имеет номинальные данные, которые определяют допустимые параметры рабочего нормального режима. Кроме нормальных режимов приходится рассматривать вынужденные послеаварийные режимы, которые имеют место при изменении схемы сети в связи с отключением оборудования. В послеаварийных режимах параметры могут находиться в несколько больших по сравнению с нормальными режимами, но все же в приемлемых пределах.

Кроме нормальных, существуют быстропротекающие, аварийные и неаварийные режимы.

Продолжительный режим работы электротехнического устройства — это режим, продолжающийся не менее, чем необходимо для достижения установившейся температуры его частей при неизменной температуре охлаждающей среды.

Продолжительный режим работы электротехнического устройства имеет место, когда энергосистема или электроустановка находится в одном из следующих режимов: нормальном, ремонтном, послеаварийном.

Нормальный режим — это такой режим работы электротехнического устройства, при котором значения его параметров не выходят за пределы, допустимые при заданных условиях эксплуатации.

В нормальном режиме функционируют все элементы данной электроустановки, без вынужденных отключений и без перегрузок. Ток нагрузки в этом режиме может меняться в зависимости от графика нагрузки. Для выбора аппаратов и токоведущих частей следует принимать наибольший ток нормального режима $I_{\text{норм}}$.

Ремонтный режим — это режим плановых профилактических и капитальных ремонтов. В ремонтном режиме часть элементов электроустановки отключена, поэтому на оставшиеся в работе элементы ложится повышенная нагрузка. При выборе аппаратов и токоведущих частей необходимо учитывать это повышение нагрузки до $I_{pen_{\max}}$.

Послеаварийный режим это режим, в котором часть элементов электроустановки вышла из строя или выведена в ремонт вследствие аварийного (непланового) отключения. При этом режиме возможна перегрузка оставшихся в работе элементов электроустановки током $I_{\mathit{\Pi AB}_{max}}$.

Из двух последних режимов выбирают наиболее тяжелый, когда в рассматриваемом элементе электроустановки проходит наибольший ток I_{\max} .

Таким образом, расчетными токами продолжительного режима являются: — наибольший ток нормального режима $I_{\scriptscriptstyle HOPM}$; $I_{\scriptscriptstyle max}$ — наибольший ток ремонтного или послеаварийного режима.

Рассмотрим некоторые конкретные случаи определения расчетных токов.

<u>Цепь генератора.</u> Наибольший ток нормального режима принимается при загрузке генератора до номинальной мощности P_{non} при номинальном напряжении и $\cos \varphi_{non}$

$$I_{\text{норм}} = I_{\text{ном.}\Gamma} = \frac{P_{\text{ном}}}{\sqrt{3}U_{\text{ном}}\cos\varphi_{\text{ном}}}.$$

Наибольший ток послеаварийного или ремонтного режима определяется при условии работы генератора при снижении напряжения на 5%

$$I_{\text{max}} = \frac{P_{\text{HOM}}}{\sqrt{3}U_{\text{HOM}}0,95\cos\varphi_{\text{HOM}}}.$$

В конкретных условиях $I_{\rm max}$ может быть определен при работе генератора с повышенной токовой нагрузкой за счет улучшения системы охлаждения (повышение давления водорода и др.).

<u>Цепь двухобмоточного трансформатора связи на электростанции.</u> Со стороны ВН и НН принимают

$$I_{\text{норм}} = I_{\text{ном.т}} = \frac{S_{\text{ном}}}{\sqrt{3}U_{\text{ном}}},$$

где $S_{{\scriptscriptstyle HOM}}$ — номинальная мощность трансформатора.

Наибольший ток ремонтного или послеаварийного режима принимается при условии отключения параллельно работающего трансформатора, когда оставшийся в работе трансформатор может быть перегружен по правилам аварийных длительных или систематических перегрузок. Согласно ГОСТ 14209—85 для трансформаторов допускается длительная аварийная перегрузка на 40 % и систематическая перегрузка в зависимости от условий охлаждения, типа трансформатора и графика нагрузки. Если неизвестны действительные значения допустимых перегрузок, то можно принять

$$I_{\text{max}} = k_{\text{пг}} I_{\text{ном.T}} = (1, 3 - 1, 4) I_{\text{ном.T}},$$

где k_{III} — коэффициент перегрузочной способности оборудования.

<u>Цепь трехобмоточного трансформатора или автотрансформатора на электростанции.</u> Трехобмоточные трансформаторы широко применяются на ТЭЦ в качестве трансформаторов связи. В этом случае они работают как повышающие, передавая избыток мощности генераторов в сеть ВН и СН. Загрузка цепей ВН, СН и НН зависит от конкретных условий: графика нагрузки на НН, СН и схемы соединений электроустановки на НН. При блочном соединении генератора с трансформатором на стороне НН I_{nopm} , I_{nom} определяются так же, как в цепи генератора.

При поперечных связях между генераторами расчетные условия на стороне НН и ВН определяются по мощности трансформатора с учетом его перегрузки, т. е.

$$I_{\text{HODM}} = I_{\text{HOM.T}}; I_{\text{max}} = (1,3 - 1,4) I_{\text{HOM.T}}.$$

На стороне CH, если отсутствует связь с энергосистемой и установлено два трансформатора,

$$I_{\text{HOPM}} = \frac{S'_{\text{HF}}}{2\sqrt{3}U_{\text{HOM}}},$$

где $S'_{H\Gamma}$ — наибольшая перспективная нагрузка на CH;

$$I_{\text{max}} = 2I_{\text{HODM}}$$

Если к шинам СН присоединена система и возможны перетоки между ВН и СН, то

$$I_{\text{HODM}} = I_{\text{HOM,T}}; I_{\text{max}} = (1,3-1,4)I_{\text{HOM,T}}.$$

<u>Цепь двухобмоточного трансформатора на подстанции</u>. На стороне ВН и НН расчетные нагрузки определяют, как правило, с учетом установки в перспективе трансформаторов следующей по шкале ГОСТ номинальной мощности $S'_{{\scriptscriptstyle HOMT}}$:

$$I_{\text{норм}} = (0,65-0,7) \frac{S'_{\text{ном.т}}}{\sqrt{3} U_{\text{ном}}};$$

$$I_{\text{max}} = (1, 3 - 1, 4) \frac{S'_{\text{HOM.T}}}{\sqrt{3} U_{\text{HOM}}}.$$

<u>Цепь трехобмоточного трансформатора на подстанции</u>. На стороне ВН расчетные токи определяют по формулам

$$I_{\text{норм}} = (0,65-0,7) \frac{S'_{\text{ном.т}}}{\sqrt{3} U_{\text{ном}}};$$

$$I_{\text{max}} = (1, 3 - 1, 4) \frac{S'_{\text{HOM.T}}}{\sqrt{3} U_{\text{HOM}}}.$$

На стороне СН расчетные токи при двух установленных трансформаторах:

$$I_{\text{норм}} = \frac{S'_{\text{H}\Gamma}}{2\sqrt{3}U_{\text{HOM}}};$$

$$I_{\text{max}} = 2I_{\text{норм}},$$

где S'_{HF} — перспективная нагрузка на СН на 10-летний период.

<u>Цепь автотрансформатора на подстанции.</u> На стороне ВН и СН расчетные токи определяют по

$$I_{\text{норм}} = (0,65-0,7) \frac{S'_{\text{ном.T}}}{\sqrt{3}U_{\text{ном}}};$$

$$I_{\text{max}} = (1, 3 - 1, 4) \frac{S'_{\text{HOM.T}}}{\sqrt{3} U_{\text{HOM}}}.$$

так как автотрансформатор может быть использован для связи двух систем и перетоков мощности как из ВН в СН, так и в обратном направлении. На стороне НН расчетные токи определяют по перспективной нагрузке по формулам

$$I_{\text{норм}} = \frac{S'_{\text{Hr}}}{2\sqrt{3}U_{\text{Hom}}};$$

$$I_{\text{max}} = 2I_{\text{HODM}}$$

<u>Цепь линии.</u> Если линия одиночная, радиальная, то $I_{\text{норм}} = I_{\text{max}}$ определяется по наибольшей нагрузке линии.

для двух параллельно работающих линий

$$I_{\text{Hopm}} = \frac{S_{\text{Hr}}}{2\sqrt{3}U_{\text{HOM}}}; I_{\text{max}} = 2I_{\text{Hopm}},$$

где $S_{H\Gamma}$ — наибольшая мощность потребителей, присоединенных к линиям.

для п параллельных линий

$$I_{\text{норм}} = \frac{S_{\text{Hr}}}{n\sqrt{3}U_{\text{ном}}};$$
 $I_{\text{max}} = \frac{n}{n-1}I_{\text{норм}}.$

<u>Цепи секционных, шиносоединительных выключателей, сборные шины</u>. Ток нормального режима определяется с учетом токораспределения по шинам при наиболее неблагоприятном эксплуатационном режиме. Такими режимами являются: отключение части генераторов, перевод отходящих линий на одну систему шин, а источников питания — на другую. Обычно ток, проходящий по сборным шинам, секционному и шиносоединительному выключателям, не превышает *Імах* самого мощного генератора или трансформатора, присоединенного к этим шинам.

<u>Цепь группового сдвоенного реактора</u>. В нормальном режиме ветви реактора загружены равномерно. Наибольший ток нормального режима определяется по нагрузке присоединенных к ветви потребителей:

$$I_{\text{норм}} = \frac{S_{\text{H}\Gamma}}{\sqrt{3}U_{\text{HOM}}}.$$

В послеаварийном или ремонтном режиме при отключении одной из потребительских линий, присоединенных к ветви реактора, нагрузка другой ветви может соответственно возрасти, поэтому

$$I_{\max} = \frac{n}{n-1} I_{\text{норм}},$$

где n — число линий, присоединенных к одной ветви реактора. При правильно выбранном реакторе I_{\max} не превышает номинального тока его ветви.

В процессе работы сетей могут возникнуть нарушения симметрии напряжений и токов, а также синусоидальности их изменения во времени.

Расчеты режимов выполняются как при проектировании, так и при эксплуатации сетей. Целью расчетов рабочего режима сети обычно является проверка технических условий, т.е. соответствия токов в отдельных элементах и напряжений в узлах сети допустимым значениям. Экономичность работы сети характеризуют значения потерь активной и реактивной мощности, а также значения потерь электроэнергии за год.

В зависимости от предъявляемых требований и поставленной задачи расчеты рабочих режимов производятся более или менее детально, с различной степенью точности и учетом влияния различных факторов. Например, при разработке плана развития электрификации страны одновременно с выбором мощности и местоположения электростанций производятся расчеты режимов основных сетей напряжением 220 кВ и выше. Эти расчеты нередко носят оценочный характер, так как нагрузки потребителей обычно известны лишь ориентировочно. Поэтому к точности результатов расчетов рабочих режимов сетей при этом предъявляются меньшие требования. Ряд элементов, например распределительные сети в этих расчетах учитывается определенными укрупненными показателями.

При проектировании электрических систем и сетей различных напряжений на основании предварительных расчетов рабочих ре жимов выбираются параметры линий, оборудования электростанций, характеристики устройств зашиты и автоматики. Эти расчеты производятся более детально и с большей степенью точности.

В условиях эксплуатации нагрузки потребителей известны более точно, поэтому параметры режимов сетей также производятся с большей точностью, чем при проектировании. Расчеты по оптимизации режимов выполняются с учетом относительно мало влияющих факторов, которые при проектных расчетах могут не учитываться. В электрических системах расчеты по оптимизации режимов производятся с помощью ЭВМ.

Режим работы электрической системы характеризуется значениями показателей се состояния, называемых *параметрами режимов*. Все процессы в электрических системах можно охарактеризовать тремя параметрами: напряжением, током и активной мощностью. Но для удобства расчетов режимов применяются и другие параметры, в частности, реактивная и полная мощность. Произведение показаний вольтметра и амперметра в цепи переменного тока называется *полной мощностью*. Для трехфазной цепи она выражается формулой:

$$S = \sqrt{3} IU$$
,

где I- ток в одной фазе; *U*- линейное напряжение.

Активная мощность трехфазного переменного тока определяется по формуле

$$P = \sqrt{3}IU\cos\varphi$$
.

Множитель соѕф называется коэффициентом мощности. Угол ф указывает сдвиг но фазе тока и напряжения.

На основании этих выражений полная мощность S представляется гипотенузой прямоугольного треугольника, один катет которого представляет активную мощность $P = S \cos \varphi$, а другой - реактивную $Q = S \sin \varphi$.

Реактивная мощность находится также из выражения

$$Q = P \operatorname{tg} \varphi$$
,

где tgф- коэффициент реактивной мощности.

Следует помнить об условности толкования Q как мощности. Только активная мощность и энергия могут совершать работу и преобразовываться в механическую, тепловую, световую и химическую энергию. Активная мощность обусловлена преобразованием энергии первичного двигателя, полученной от природного источника, в электроэнергию. Реактивная мощность не преобразуется в другие виды мощности, не совершает работу и поэтому называется мощностью условно. Реактивная мощность идет на создание магнитного и электрических полей. Для анализа режимов в цепях синусоидального тока реактивная мощность является очень удобной характеристикой, широко используемой на практике.

Баланс активных мощностей

Особенностью производства и потребления электроэнергии является равенство выработанной и израсходованной в единицу времени электроэнергии (мощности). Следовательно, в электрической системе должно выполняться равенство (баланс) для активных мощностей

$$P_{\Gamma} = P_{\text{norp}} + \Delta P_{\text{nep}} + P_{\text{c.H}},$$

где P_{ε} - суммарная активная мощность, отдаваемая в сеть генераторами электростанций, входящих в систему; $P_{\text{потр}}$ - суммарная совмещенная активная нагрузка потребителей системы; ΔP_{nep} - суммарные потери активной мощности во всех элементах передачи электроэнергии (линиях, трансформаторах) по электрическим сетям; Рсн - суммарная активная нагрузка собственных нужд всех электростанций системы при наибольшей нагрузке потребителя.

Основная доля выработанной мощности идет на покрытие нагрузки потребителей. Суммарные потери на передачу зависят от протяженности линий электрических сетей, их сечений и числа трансформаций и находятся в пределах 5...15% от суммарной нагрузки. Нагрузка собственных нужд электростанций зависит от их типа, рода топлива и типа оборудования; она составляет для тепловых электростанций 5... 12%, для гидростанций - 0,5... 1% от мощности электростанции.

Равенство позволяет определить рабочую активную мощность системы. Располагаемая мощность генераторов $P_{r,pacn}$ системы несколько больше, чем рабочая мощность в режиме максимальных нагрузок $P_{\textit{г.max}}$; требуется учитывать необходимость резервирования при аварийных и плановых (ремонтных) отключениях части основного оборудования электроэнергетической системы:

$$P_{\text{r.pacn}} = P_{\text{r.max}} + P_{\text{r.pes}},$$

где $P_{\text{г.рез}}$ - мощность резерва системы, который должен быть не меньше 10% ее рабочей мощности.

При нарушении баланса активных мощностей, например, если

$$P_{\text{r.pacn}} < P_{\text{norp}} + \Delta P_{\text{nep}} + P_{\text{c.H}},$$

Баланс реактивных мощностей

В электрической системе суммарная генерируемая реактивная мощность должна быть равна потребляемой реактивной мощности. В отличие от активной мощности, источниками которой являются только генераторы электростанций, реактивная мощность генерируется как ими, так и другими источниками, к которым относятся воздушные и кабельные линии разных напряжений Q_{nt} а также установленные в сетях источники реактивной мощности (ИРМ) (компенсирующие устройства - КУ) мощностью Q_{KV} .

Поэтому баланс реактивной мощности в электрической системе представляется уравнением

$$Q_{\Gamma} + Q_{\Lambda} + Q_{KY} = Q_{\Pi \cap TP} + \Delta Q_{\Pi ep} + Q_{C.M}$$

Следует отмстить, что уравнение баланса реактивных мощностей связано с уравнением баланса активных мощностей, так как

$$Q_r = P_r \operatorname{tg} \varphi_r$$
;

$$Q_{\text{потр}} = P_{\text{потр}} \operatorname{tg} \varphi_{\text{потр}}$$

Генерация реактивной мощности на электростанциях зависит от числа и активной мощности работающих агрегатов, а потребление реактивной мощности - от состава электроприемников. При номинальном коэффициенте мощности генераторов $\cos \phi_r = 0.85$ коэффициент реактивной мощности $tg\phi_r = 0.6$. Для потребителей коэффициент реактивной мощности $tg\phi_{0Tp} = 0...3$.

Потери реактивной мощности на передачу в основном определяются потерями реактивной мощности в трансформаторах, при трех-четырех трансформациях суммарные потери мощности в трансформаторах могут достигать 40% от передаваемой полной мощности.

В линиях напряжением 110 кВ и выше генерация реактивной мощности (зарядная мощность) компенсирует реактивные потери в линиях и может превысить их.

Таким образом, при выборе активной мощности генераторов энергосистемы по условию баланса активных мощностей и при работе генераторов с номинальным коэффициентом мощности генерируемая суммарная реактивная мощность без дополнительно используемых ИРМ может оказаться меньше требуемой по условию баланса реактивных мощностей:

$$Q_{\Gamma} + Q_{\pi} < Q_{\text{norp}} + \Delta Q_{\text{nep}} + Q_{\text{c.H.}}$$

В этом случае образуется дефицит реактивной мощности, который приводит к следующему:

большая загрузка реактивной мощностью генераторов электростанций приводит к перегрузке по току генераторов;

передача больших потоков реактивной мощности от генераторов по элементам сети приводит к повышенным токовым нагрузкам и, как следствие, к увеличению затрат на сооружение сети, повышенным потерям активной мощности;

недостаток реактивной мощности в системе влечет за собой снижение напряжения в узлах электрических сетей и у потребителей.

Для получения баланса реактивных мощностей вблизи основных потребителей реактивной мощности устанавливают дополнительные источники с выдаваемой реактивной мощностью $Q\kappa y$.

При избытке реактивной мощности в системе, т.е. при

$$Q_{\rm r} + Q_{\rm n} + Q_{\rm KY} > Q_{\rm norp} + \Delta Q_{\rm nep} + Q_{\rm c.u}$$

в элементах электрической сети возникают перетоки реактивной мощности, встречные направлению потоков активной мощности, что приводит к повышению напряжений в узлах и увеличению потерь мощности. Данный режим характерен для периода минимальных нагрузок в системе.

Отсюда возникает задача оптимизации режима реактивной мощности в системе электроснабжения промышленного предприятия, выбора типа и мощности, а также места установки компенсирующих устройств.

В системах электроснабжения городов с коммунально-бытовой нагрузкой компенсирующие устройства обычно не устанавливаются.

Исходные положения по компенсации реактивной мощности в системах электроснабжения промышленных предприятий

При выборе средств компенсации реактивной мощности в системах электроснабжения промышленных предприятий необходимо различать две группы промышленных сетей в зависимости от состава их нагрузок;

сети общего назначения с режимом прямой последовательности основной частоты 50 Γ ц;

сети со специфическими нелинейными, несимметричными и резкопеременными нагрузками.

В данном разделе рассматриваются вопросы компенсации реактивной мощности в промышленных сетях общего назначения.

На начальной стадии проектирования определяются наибольшие суммарные расчетные нагрузки предприятия при естественном (т.е. до установки КУ) коэффициенте реактивной мощности $P_{\text{расчПП}}, Q_{\text{расчПП}}$

Наибольшая суммарная нагрузка предприятия, принимаемая для определения мощности компенсирующих устройств.

$$Q_{\text{max}\Pi\Pi} = L_{\text{omax}} Q_{\text{pacy}\Pi\Pi},$$

где $L_{\rm omax}$ - коэффициент, учитывающий несовпадение по времени наибольшей активной нагрузки системы и реактивной мощности промышленного предприятия. Значения для разных отраслей промышленности $L_{\rm omax}$ = 0,75.-0,95.

Значения наибольших реактивной и активной нагрузок предприятия сообщаются в энергосистему для определения значения экономически оптимальной реактивной мощности, которая может быть передана предприятию в режимах наибольшей и наименьшей активных нагрузок энергосистемы, соответственно O_{2J} и O_{2J} .

По реактивной мощности $Q_{\mathfrak{I}}$ определяется суммарная мощность компенсирующих устройств предприятия, а в соответствии с заданным значением $Q_{\mathfrak{I}}$ - регулируемая часть компенсирующих устройств.

Суммарная мощность компенсирующих устройств

$$Q_{\text{KY}} = Q_{\text{max}\Pi\Pi} - Q_{\mathfrak{pl}}.$$

В период минимальных активных нагрузок системы входная реактивная мощность предприятия должна быть равна Q_{92} , для чего требуется отключение части установленной на предприятии мощности КУ.

В качестве средств компенсации реактивной мощности используются статические конденсаторы напряжением до и выше 1 кВ и синхронные двигатели.

Основные потребители реактивной мощности на промышленных предприятиях

Рассмотрим основные виды электроприемников различного технологического назначения, электропотребителей разных отраслей промышленности, характер их нагрузок и особенности режимов работы.

Электродвигатели применяются в приводах различных производственных механизмов на всех промышленных предприятиях. Электропривод представляет собой комплекс электрических машин, аппаратов и систем управления, в котором электродвигатели конструктивно связаны с исполнительным механизмом и преобразуют электрическую энергию в механическую работу. В установках, не требующих регулирования скорости в процессе работы, применяются исключительно электроприводы переменного тока (асинхронные и синхронные двигатели).

Нерегулируемые электродвигатели переменного тока - основной вид электроприемников в промышленности, на долю которого приходится около 2/3 суммарной мощности. Доля электропотребления асинхронными двигателями напряжением 0,38 кВ составляет 52% в машиностроении. Характер потребления реактивной мощности асинхронными двигателями описан в следующем разделе.

Электротермия, электросварка, электролиз и прочие потребители составляют около 1/3 суммарной промышленной нагрузки.

Электротермические приемники в соответствии с методами нагрева делятся на следующие группы: дуговые электропечи для плавки черных и цветных металлов, установки индукционного нагрева для плавки и термообработки металлов и сплавов, электрические печи сопротивления, электросварочные установки, термические коммунально-бытовые приборы.

Наибольшее распространение в цеховых электрических сетях напряжением 0,38 кВ имеют печи сопротивления и установки индукционного нагрева. Печи сопротивления прямого и косвенного действия имеют мощность до 2000 кВт и подключаются к сети напряжением 0,38 кВ, коэффициент мощности близок к 1,0.

Индукционные плавильные печи промышленной и повышенной частоты представляют собой трехфазную электрическую нагрузку «спокойного» режима работы. Печи повышенной частоты питаются от вентильных преобразователей частоты, к которым подводится переменный ток напряжением $0,4\,$ кВ. Индукционные печи имеют низкий коэффициент мощности: от $0,1\,$ до 0,5.

Электросварочные установки переменного тока дуговой и контактной сварки представляют собой однофазную неравномерную: несинусоидальную нагрузку с низким коэффициентом мощности: 0,3 для дуговой сварки и 0,7 - для контактной.

Электрохимические и электролизные установки работают на постоянном токе, который получают от преобразовательных подстанций, выпрямляющих трехфазный переменный ток. Коэффициент мощности установок 0,8 ...0,9,

Установки электрического освещения с лампами накаливания, люминесцентными, дуговыми, ртутными, натриевыми, ксеноновым лампами применяются на всех предприятиях для внутреннего и наружного освещения. В производственных цехах в настоящее время применяются преимущественно дуговые ртутные лампы высокого давления типов ДРЛ и ДРИ 220 В. Аварийное освещение, составляющее 10% общего, выполняется лампами накаливания. Коэффициент мощности светильников с индивидуальными конденсаторами 0,9...0.95, а без них - 0,6. Лишь лампы накаливания имеют коэффициент мощности 1,0.

Потребление реактивной мощности асинхронными двигателями

В настоящее время наиболее распространенное выражение реактивной нагрузки асинхронного двигателя имеет вид:

$$q = (q_{\text{HOM}} - q_0)(K_3)^2 + q_0,$$

где $q_{\text{ном}}$ - номинальная реактивная мощность АД, которая может быть определена по паспортным данным двигателя.

$$q_{\text{HOM}} = \frac{p_{\text{HOM}}}{\eta_{\text{HOM}}} \operatorname{tg} \varphi_{\text{HOM}}.$$

После некоторых преобразований получим выражение полной реактивной нагрузки

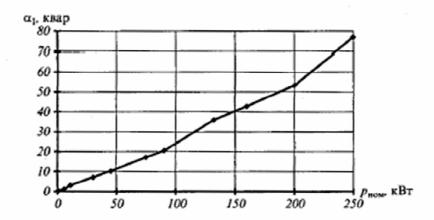
$$q = \frac{p_{\text{HOM}}}{\eta_{\text{HOM}}} \left[\frac{I_{\text{X.X}}}{I_{\text{HOM}} \cos \varphi_{\text{HOM}}} + (K_3)^2 \left(\operatorname{tg} \varphi_{\text{HOM}} - \frac{I_{\text{X.X}}}{I_{\text{HOM}} \cos \varphi_{\text{HOM}}} \right) \right],$$

где $p_{\text{ном}}$ - номинальная полезная активная мощность на валу, указываемая на заводском щитке; $I_{\text{ном}}$ - номинальное фазное значение тока статора; I_{XX} - ток холостого хода электродвигателя; $\eta_{\text{ном}}$ - коэффициент полезного действия; $K_3 = p/p_{HOM}$ - коэффициент загрузки АД по активной мощности; $tg\phi_{HOM}$ - коэффициент реактивной мощности, соответствующий номинальному коэффициенту мощности $cos\phi_{HOM}$, указанному на щитке.

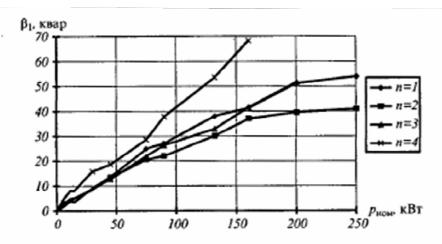
Для удобства расчетов преобразуем формулу в следующую:

$$q = \alpha_1 (K_3)^2 + \beta_1,$$

где $\alpha_1 = \frac{p_{\text{ном}}}{\eta_{\text{ном}}} \operatorname{tg} \phi_{\text{ном}} - 3U_{\text{ном}} I_{\text{X.X}} = \frac{p_{\text{ном}}}{\eta_{\text{ном}}} \left(\operatorname{tg} \phi_{\text{ном}} - \frac{I_{\text{X.X}_{\bullet}}}{\cos \phi_{\text{ном}}} \right);$

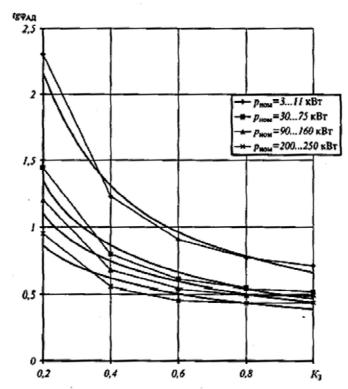

$$\beta_1 = q_0 = 3U_{\text{ном}} I_{\text{X.X}}.$$

Здесь U_{HOM} - номинальное напряжение двигателя, I_{XX} - относительный ток холостого хода АД.


На рис. приведены зависимости коэффициентов a_1 и β_1 от активной номинальной мощности p_{HOM} при числе пар полюсов i=1,2,3,4 для короткозамкнутых АД серии 4А.

Коэффициент реактивной мощности $tg\phi_{AJ}$ зависит от K_3 AJ и определяется следующим выражением:

$$tg\,\varphi=\alpha K_3+\frac{\beta}{K_3},$$



Графики зависимостей коэффициента α₁ от активной номинальной мощности АД

Графики зависимостей коэффициента β₁ от активной номинальной мощности и числа пар полюсов n AД

На рис. представлены графики зависимостей $tg\phi_{AД} = f(K_3)$ для AД различных групп мощностей.

Графики зависимостей коэффициента реактивной мощности от коэффициента загрузки для АД различных групп мощностей

Источники реактивной мощности (компенсирующие устройства)

На промышленных предприятиях применяют следующие компенсирующие устройства:

для компенсации реактивной мощности - синхронные двигатели и параллельно включаемые батареи силовых конденсаторов;

для компенсации реактивных параметров передачи - батареи силовых конденсаторов последовательного включения.

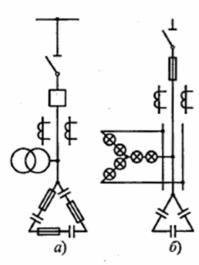
Синхронные двигатели как источник реактивной мощности

Основное назначение синхронных двигателей - выполнение механической работы, следовательно, он является потребителем активной мощности. При перевозбуждении СД его э.д.с. больше напряжения сети, в результате вектор тока статора опережает вектор напряжения, т.е. имеет емкостной характер, а СД выдают реактивную мощность. При недовозбуждении СД является потребителем реактивной мощности. При некотором режиме возбуждения СД его коэффициент мощности равен единице. Изменение тока возбуждения позволяет плавно регулировать генерируемую СД реактивную мощность. Затраты на генерацию двигателями реактивной мощности определяются в основном стоимостью связанных с этим потерь активной мощности в самом двигателе. Потери активной мощности в СД зависят от генерируемой ими реактивной мощности, причем чем меньше номинальная мощность СД и его частота вращения, тем больше эти потери. Для быстроходных СД удельный расход активной мощности составляет около 10 Вт/квар; для СД с частотой вращения 300.-500 об/мин -около 20...30 Вт/квар; для СД с частотой вращения 50... 100 об/мин - около 60...85 Вт/квар. Следовательно, маломощные двигатели с малой частотой вращения неэкономичны в качестве ИРМ. В качестве ИРМ обычно используют СД на номинальное напряжение 6 или 10 кВ, недогруженные по активной мощности.

Значения реактивной мощности, которую можно получить от СД, зависят от его загрузки активной мощностью и относительного напряжения на зажимах двигателя.

Силовые конденсаторы

Силовые конденсаторы - специальные однофазные или трехфазные емкости, предназначенные для выработки реактивной мощности.


Мощность конденсаторов в одном элементе составляет 5... 100 квар, номинальное напряжение - от 220 В до 10 кВ.

Реактивная мощность, вырабатываемая конденсатором,

$$Q_{\kappa} = U^2 \omega C_{\kappa}$$

где U - напряжение на зажимах конденсатора; ω - угловая частота переменного тока; C_{κ} - емкость конденсатора, которая определяется, в основном, площадью обкладок.

В установках с большей мощностью и на большее напряжение применяют батареи конденсаторов с параллельным и последовательно-параллельным включением элементов. Увеличение номинального напряжения конденсаторной батареи достигается

Схемы присоединения конденсаторных батарей:

а – через выключатель на напряжении 6... 10 кВ; б – через рубильник и предохранитель на напряжении до 1 кВ

последовательным включением элементов. ДЛЯ увеличения мощности применяют параллельное Обычно конденсаторы соединение элементов. включаются в сеть по схеме треугольника (рис.). При отключении конденсаторов необходимо, чтобы запасенная в них энергия разряжалась автоматически на включенное сопротивление постоянно активное (например, трансформатор напряжения).

Конденсаторы по сравнению с СД обладают следующими преимуществами: простотой эксплуатации вследствие отсутствия вращающихся частей; простотой монтажных работ вследствие малой массы; малыми потерями активной мощности на выработку реактивной (2,5...5 Вт/квар).

К недостаткам конденсаторов относят зависимость генерируемой реактивной мощности от напряжения, недостаточную стойкость токам КЗ и перенапряжениям, чувствительность к искажениям формы кривой подводимого напряжения, невозможность

плавного изменения мощности конденсаторной установки.

Размещение компенсирующих устройств в системах электроснабжения промышленных предприятий

После определения суммарной мощности компенсирующих устройств Q_{KY} , требуемых к установке в системе электроснабжения промышленного предприятия по условиям питающей энергосистемы, необходимо решить задачу размещения и выбора типа КУ в сетях промышленного предприятия.

Суммарная мощность КУ обеспечивается возможным использованием располагаемой реактивной мощности синхронных двигателей Q_{co} и установкой в сетях батарей конденсаторов напряжением до и выше 1 кВ, т. е. соответственно $Q_{\mathit{БH}}$ и $Q_{\mathit{БB}}$:

$$Q_{\rm KY} = Q_{\rm CД} + Q_{\rm BH} + Q_{\rm BB}.$$

Реактивная мощность $\sum_{T}^{N_T} Q_T$ передаваемая со стороны высокого напряжения через цеховые трансформаторы (6... 10/0,4...0,6 кВ) по условию баланса мощностей на шинах напряжением до 1 кВ трансформаторов, выражается формулой

$$\sum_{\mathbf{T}}^{N_{\mathbf{T}}} Q_{\mathbf{T}} = Q_{\text{pac} \mathbf{q} \Sigma_{\mathbf{H}}} - Q_{\mathbf{B} \mathbf{H}}.$$

Величина $\sum_{T}^{N_T} Q_T$ определяется номинальной мощностью цеховых трансформаторов при их числе N_T , коэффициенте загрузки трансформатора K_{3T} и расчетной активной нагрузки до 1 кВ $P_{\text{расч}\Sigma H}$:

$$\sum_{N_{\tau}}^{N_{\tau}} Q_{\tau} = \sqrt{(K_{3.\tau} S_{\text{HOM.T}})^2 - (P_{\text{pacu}\Sigma_{\text{H}}})^2}$$

при условии
$$Q_{\text{расч}\Sigma_{\mathsf{H}}} \ge \sum_{t=0}^{N_{\mathsf{T}}} Q_{\mathsf{T}}$$
 .

Необходимо определить оптимальное соотношение мощности источников реактивной мощности, устанавливаемых на стороне ниже 1 кВ $Q_{\text{БH}}$., и передачи реактивной мощности $\sum_{T}^{N_T} Q_T$. При этом следует учесть потери на генерацию реактивной мощности источниками напряжением до и выше 1 кВ, потери на передачу $\sum_{T}^{N_T} Q_T$ от сети напряжением выше 1 кВ в сеть напряжением ниже 1 кВ и, главное, увеличение мощности цеховых трансформаторов при увеличении $\sum_{T}^{N_T} Q_T$.

Реактивная мощность Q_T протекающая через один трансформатор цеховой ТП, определяется по условию минимума потерь активной мощности без учета активных сопротивлений кабельных линий сети напряжением 10 кВ для группы из $N_{\rm T}$, трансформаторов с одинаковой номинальной мощностью:

$$Q_{\rm T} = \frac{(Q_{\rm pacq\Sigma_H} - Q_{\rm BH})}{N_{\rm T}}.$$

Мощность батареи конденсаторов, устанавливаемых в сети напряжением до 1 кВ, питающейся от конкретного j-го трансформатора, определяется исходя из величины Q_T и реактивной нагрузки Q_{pacyj} приемников электроэнергии этой сети:

$$Q_{\text{БH}j} = Q_{\text{pac} + j} - Q_{\text{T}}.$$

По полученному значению $Q_{\mathit{БH}j}$ следует определить стандартное значение мощности конденсаторной установки $Q_{\kappa \nu i}$.

Расчеты показывали, что передача реактивной мощности в сеть напряжением до 1 кВ оказывается невыгодной, если это вызывает увеличение числа трансформаторов сверх необходимого числа вследствие большой стоимости комплектных трансформаторных полстанций.

Мощность компенсирующих устройств в сети напряжением выше 1 кВ определяется по условию баланса реактивной мощности на шинах вторичного напряжения главной понижающей подстанции. Если в системе электроснабжения имеются высоковольтные СД, которые могут быть использованы как ИРМ, то определяется их располагаемая реактивная мощность, и если их мощность Q_{cg} недостаточна для соблюдения условий баланса, то определяется мощность батарей конденсаторов высокого напряжения:

$$Q_{\text{БВ}} = Q_{\text{KY}} - Q_{\text{СД}} - Q_{\text{БН}}$$

Если цеховые трансформаторы имеют низкий коэффициент загрузки и коэффициент реактивной мощности нагрузки сетей напряжением до 1 кВ не превышает единицы, то предпочтительнее установка батарей конденсаторов в сети напряжением выше 1 кВ вследствие их более низкой удельной стоимости 1 квар, чем у низковольтных конденсаторов.

Конденсаторные установки напряжением выше 1 кВ целесообразно устанавливать на вторичном напряжении главной понижающей подстанции или распределительной подстанции; также на РП в системе электроснабжения предприятия. Не рекомендуется устанавливать конденсаторы напряжением выше 1 кВ на бесшинных цеховых подстанциях, на которых трансформаторы присоединены наглухо или через разъединитель, выключатся] нагрузки и предохранитель, так как присоединение конденсаторных установок к этим подстанциям вызовет их усложнение и удорожание.

Нерегулируемые конденсаторные установки на напряжение до 1 кВ обычно присоединяются к цеховым распределительным пунктам, магистральным шинопроводам, если этому не препятствует окружающая среда. Место установки регулируемых конденсаторных установок напряжением до 1 кВ выбирается с учетом требований регулирования напряжения или реактивной мощности.

Точка присоединения БН одной батареи конденсаторов к магистральному шинопроводу ШМА определяется ориентировочно:

$$L_{0-\text{E}} = L_{0-\text{I}} + \left(1 - \frac{Q_{\text{EH}}}{2Q_{\text{max}}}\right) L_{1-\text{K}},$$

где $L_{0-Б}$, L_{0-1} -длины магистрального шинопровода ШМА от начальной точки «О» до точек присоединения «Б» и «1» - первого распределительного ШРА, м, L_{1-k} - длина распределительной части ШМА со точки «1» до конечной точки магистрального шинопровода «к», а Q_{max} - максимальная реактивная нагрузка ветви «0-1» шинопровода ШМА.

Окончательно конденсаторы устанавливаются в точке присоединения ШРА, ближайшего к расчетной точке «к» в сторону цеховой трансформаторной подстанции.

Не рекомендуется чрезмерное дробление мощности конденсаторных установок в сетях напряжением до и выше І кВ, так как это приводит к значительному увеличению удельных - затрат на отключающую аппаратуру, измерительные приборы, конструкции и прочее на 1 квар установленной мощности батареи. Единичная мощность БК на напряжении выше 1 кВ принимается не менее 400 квар, если присоединение выполняется с помощью отдельного выключателя. В сетях низшего напряжения не рекомендуется применять БК мощностью менее 30 квар.

Если расчетная мощность БК на отдельных участках получается менее указанных значений, то БК на них не устанавливается.

Регулирование мощности компенсирующих устройств

Задание питающей энергосистемой двух значений входной реактивной мощности, которые могут быть переданы предприятию в режимах наибольшей и наименьшей активных нагрузок системы, соответственно Q_{31} и Q_{92} , (причем $Q_{92}=0$ практически во всех случаях), предопределяет необходимость регулирования потребления реактивной мощности предприятием в течение суток.

Для регулирования потребления реактивной мощности используется автоматическое регулирование возбуждения синхронных машин и регулировать батарей конденсаторов.

Регулирование конденсаторами реактивной мощности может вестись только ступенями путем деления батарей на части. Чем больше число таких ступеней, тем совершеннее регулирование, но тем больше затраты на установку переключателей и защитной аппаратуры. Обычно мощность батарей конденсаторов разделяется на две ступени:

базовую $Q_{\kappa.\delta a3}$ равную реактивной нагрузке предприятия в часы минимума активных нагрузок энергосистемы и включенную постоянно;

регулируемую $Q_{\kappa,pez}$ = $Q_{\kappa y}$ - $Q_{\kappa,\delta as}$ включаемую в часы максимальных активных нагрузок энергосистемы.

Ступенчатое регулирование батарей конденсаторов может производиться как вручную, так и автоматически. Автоматическое регулирование конденсаторных батарей может производиться в функции: напряжения, тока нагрузки, направления реактивной мощности относительно направления активной мощности, по времени суток.

При коммутировании БК возникают перенапряжения и броски тока. Поэтому на напряжении до 1 кВ для коммутации БК обычно применяют контакторы, на напряжении выше 1 кВ - воздушные, элегазовые или вакуумные выключатели. Для устранения переходных процессов при коммутации БК вместо выключателей можно использовать тиристорные ключи, которые позволяют включать конденсаторы в тот момент, когда мгновенное напряжение на конденсаторах равно напряжению сети, и отключать их, когда мгновенное значение тока в конденсаторах равно нулю.

Влияние компенсирующих устройств на параметры режимов электрических сетей

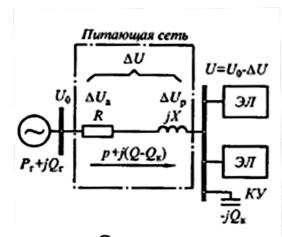


Схема влияния установки компенсирующих устройств на параметры режимов электрической сети

Установка компенсирующих устройств влияет на параметры режимов электрической сети, изменяя токи в ветвях и напряжения в узлах.

Рассмотрим влияние компенсации реактивной мощности на примере одной ветви схемы (рис.). Уменьшение полных мощностей и токов. При наличии в конце ветви КУ мощностью Q_K полная мощность, протекающая в ветви при номинальном напряжении U_{HOM}

$$S = \sqrt{(P_{\text{HOM}})^2 + (Q_{\text{II.HOM}} - Q_{\text{K}})^2} =$$

$$= \sqrt{(P_{\text{II.HOM}})^2 (1 + \text{tg}\,\phi^2 (1 - C_Q)^2)},$$

где $tg\phi$ - коэффициент реактивной мощности нагрузки; $C_{\mathcal{Q}}$ - степень компенсации реактивной мощности, равная отношению реактивной мощности КУ при номинальном напряжении к реактивной нагрузке

электропотребителя ЭП Q_{п.ном} при номинальном напряжении:

$$C_Q = Q_{\kappa}/Q_{\Pi,\text{HOM}}$$
.

Поскольку площади сечений линий и мощности трансформаторов выбирают по полной мощности (или току), ее уменьшение при $C_{\it Q} \! \leq \! 1$ позволяет в ряде случаев применять оборудование меньших номиналов, т.е. снизить капитальные затраты. Если же есть уже линия, которая эксплуатируется, то компенсация реактивной мощности позволяет повысить се пропускную способность по активной мощности и, следовательно, при увеличении нагрузки потребителя не менять электрооборудование.

При полной компенсации реактивной нагрузки, т.е. при $C_{\it Q}$ = 1, мощность ветви имеет минимальное значение:

$$S_{c=1} = P_{\text{п.ном}}$$

Отметим, что при $C_Q > 1$, т.е. при перекомпенсации, когда $Q_{\kappa}^{\ \ \ }$ $Q_{\text{п.ном}}$ полная мощность становится больше минимальной Sc=1

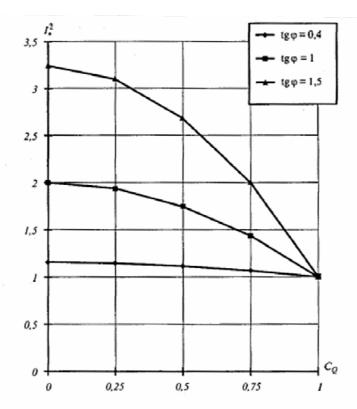
Снижение нагрузочных потерь мощности. Для каждой ветви с активным R и реактивным сопротивлением потери полной мощности определяются как

$$\Delta S = \frac{(P_{\text{п.ном}})^2 + (1 - C_Q)(Q_{\text{п.ном}})^2}{(U_{\text{ном}})^2} (R + jX) =$$

$$= \frac{(P_{\text{п.ном}})^2 (1 + \text{tg}^2 \phi (1 - C_Q)^2)}{(U_{\text{ном}})^2} (R + jX).$$

Потери полной мощности в сети при протекании только активной мощности потребителя при номинальном напряжении $U_{{\scriptscriptstyle HOM}}$ т.е. минимально возможные потери активной мощности при прочих равных условиях:

$$\Delta S_p = \frac{(P_{\text{II.HOM}})^2}{(U_{\text{HOM}})^2} (R + jX).$$


Отношение

$$\Delta S / \Delta S_p = d_0 = 1 + tg^2 \varphi (1 - C_Q)^2$$

позволяет проанализировать влияние степени компенсации реактивной мощности $C_{\mathcal{Q}}$ при разных значениях коэффициента реактивной мощности нагрузки tg φ на нагрузочные потери мощности. Отмстим, что $d_{\mathcal{Q}} = \mathrm{I}$, если напряжение равно номинальному значению $U_{\text{ном}}$.

На рис. показаны зависимости $I = \Delta S/\Delta S$ р, при разных значениях коэффициента реактивной мощности $tg\phi = 0,4; 1; 1,5$ и номинальном напряжении $U_{\text{ном}}$ из которых можно сделать вывод об эффективности степени компенсации реактивной мощности.

Как видно из этих зависимостей, уровень соотношения I в первую очередь определяется степенью компенсации реактивной мощности и коэффициентом реактивной мощности.

Зависимости $I_{\star}^2 = \Delta S/\Delta S_p = f(C_O; \operatorname{tg} \varphi)$ при номинальном напряжении

Например, без компенсации при $C_Q = 0$ и $tg\phi = 1$: $I^2 = 2$, т.е. реальные потери мощности больше минимальных в два раза; а при полной компенсации $C_Q = 1$ и любом значении коэффициента реактивной мощности их соотношение равно 1.

Отметим, что при перекомпенсации $C_{\it Q} > 1$ и нагрузочные потери мощности становятся больше минимальных $\Delta S_{\it p}$.

Снижение потерь напряжения. Потери напряжения при номинальном напряжении на потребителе

$$\Delta U = \frac{P_{\text{п.ном}}}{U_{\text{Hom}}} R[1 + \varepsilon \operatorname{tg} \varphi (1 - C_Q)],$$

где ε - отношение реактивных и активных сопротивлений элемента сети: $\varepsilon = X/R$. Очевидно, что компенсация реактивной мощности оказывает наибольшее влияние на потери напряжения в элементах с большим значением ε , т.е. в элементах с преобладанием реактивного сопротивления, каковыми являются трансформаторы и воздушные линии.

Напряжение на приемном конце линии U_k равно разности напряжения начала U_n и потерь напряжения ΔU_{nk} , т.е.

$$U_k = U_n - \Delta U_{nk} = U_n \frac{P_{\text{II.HOM}}}{U_{\text{MOM}}} R[1 + \epsilon \operatorname{tg} \varphi (1 - C_Q)].$$

Следовательно, при установке КУ напряжение в конце линии повышается. При перекомпенсации ($C_Q>1$) потери напряжения могут принять отрицательное значение $\Delta Unk<0$, напряжение в конце линии может стать больше напряжения в начале, т.е. $U_k>U_n$.

Батареи конденсаторов в сетях с резкопеременной и вентильной нагрузкой

Характерными резкопеременными нагрузками являются сварочные нагрузки на машиностроительных предприятиях, дуговые печи, прокатные станы и др. Главные приводы прокатных станов оснащаются регулируемыми вентильными преобразователями.

Нагрузки с регулируемыми вентильными преобразователями характеризуются большим потреблением реактивной мощности. Резкопеременный характер потребления реактивной мощности вызывает колебания напряжения в сети. Управляемые вентильные преобразователи, кроме того, значительно искажают форму кривой питающего напряжения. Нагрузки дуговых печей ввиду неравномерности потребления тока по фазам могут вызывать значительную несимметрию напряжения.

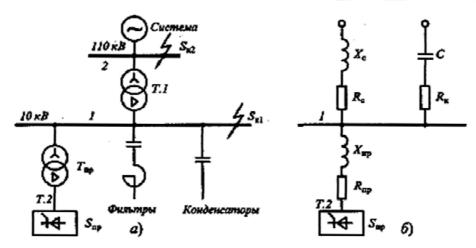
Все изложенное обусловливает принципы компенсации реактивной мощности, существенно отличающиеся от общепринятых в сетях с так называемой спокойной нагрузкой.

Особенности компенсации реактивной мощности в сетях с резкопеременной и вентильной нагрузкой заключаются в следующем:

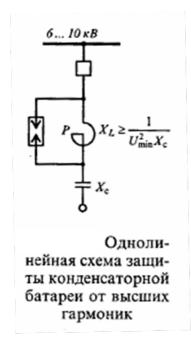
ввиду низкого коэффициента мощности потребителей и резкопеременного характера нагрузки необходимо осуществить компенсацию как постоянной и переменной составляющей реактивной мощности. Компенсация постоянной составляющей реактивной мощности от энергосистемы. Компенсация переменной составляющей реактивной мощности от энергосистемы. Компенсация переменной составляющей реактивной мощности преследует цель уменьшения колебаний напряжения в питающей сети;

ввиду быстрых изменений потребляемой реактивной мощности необходимо применение быстродействующих компенсирующих устройств, способных изменять регулируемую реактивную мощность со скоростью, соответствующей скорости наброса и сброса потребляемой реактивной мощности;

ограничивается применение батарей конденсаторов для компенсации постоянной составляющей реактивной мощности в сети с резкопеременной вентильной нагрузкой. Это обусловлено наличием в сети высших гармоник тока и напряжения при работе вентильных преобразователей, которые приводят к значительным перегрузкам батарей конденсаторов;


при наличии в сети высших гармоник тока и напряжения включение конденсаторов приводит к резонансным явлениям на частотах высших гармоник, что ведет к нарушению нормальной работы БК.

Сущность явлений резонанса удобно рассмотреть на примере простой схемы электроснабжения промышленного предприятия, показанной на рис. На схеме показаны три основных элемента, участвующих в резонансном процессе:


питающая сеть, упрощенно представленная в схеме замещения индуктивным X_Q и активным R_c сопротивлениями;

вентильный преобразователь как источник высших гармоник с сопротивлениями X_{np} и R_{np} - индуктивно-активная цепь в схеме замещения;

батарея конденсаторов С и R_{κ} – емкостно-активная цель в схеме замещения.

Однолинейная схема питающей сети с конденсаторными батареями и фильтрами высших гармоник (a) и схема замещения (б)

При отсутствии емкостных элементов (при отключении БК) частотные характеристики $\mathcal I$ линейны. Включение БK резко линейный характер частотной характеристики изменяет питающей сети, причем нелинейность частотной характеристики в значительной степени зависит от добротности контура, т. е. от соотношения XIR Нелинейность частотной характеристики питающей сети объясняется тем, что при включении БК образуется параллельный LC-контур, состоящий из индуктивного сопротивления питающее сети и емкостного сопротивления конденсатора. Таким образом, изменяются частотные характеристики систем и возникают условия для возникновения резонанса на частотах, превышающих промышленную частоту 50 Гц. Вентильные преобразователи генерируют в сеть спектр гармоник, начиная с пятой, поэтому в каждом конкретном случае необходим расчет токовой нагрузки БК резонансной группой гармоник (вплоть до 59, 61, 71 гармоник).

Батареи конденсаторов, предназначенные для компенсации реактивной мощности в сетях, питающих

нелинейную нагрузку, для их нормальной работы необходимо защищать реакторами, устанавливаемыми последовательно с конденсаторами.

Выбор числа и мощности трансформаторов на подстанции.

Количество силовых трансформаторов, планируемых к установке на проектируемой подстанции, в первую очередь, определяется категорийностью потребителей по надежности электроснабжения.

При наличии потребителей первой категории их количество должно быть в соответствии с рекомендациями ПУЭ не менее двух.

Наиболее часто на подстанциях устанавливают два трансформатора или автотрансформатора. В этом случае при правильном выборе мощности трансформаторов обеспечивается надежное электроснабжение потребителей даже при аварийном отключении одного из них.

На двухтрансформаторных подстанциях в первые годы эксплуатации, пока нагрузка не достигла расчетной, возможна установка одного трансформатора. В течение этого

периода необходимо обеспечить резервирование электроснабжения потребителей по сетям среднего или низшего напряжения. В дальнейшем, при увеличении нагрузки до расчетной устанавливается второй трансформатор. Если при установке одного трансформатора обеспечить резервирование по сетям СН и НН нельзя или полная расчетная нагрузка подстанции ожидается раньше, чем через три года после ввода ее в эксплуатацию, то подстанция сооружается по конечной схеме, т. е. с двумя трансформаторами.

Однотрансформаторные подстанции могут сооружаться для питания неответственных потребителей третьей категории, если замена поврежденного трансформатора или ремонт его производится в промежутке времени, не превышающим одних суток.

Сооружение однотрансформаторных подстанций для потребителей второй категории допускается при наличии централизованного передвижного трансформаторного резерва или другого резервного источника питания от сети СН или НН, включаемого вручную или автоматически.

Централизованный трансформаторный резерв широко используется в схемах электроснабжения промышленных предприятий. В этом случае в цехах сооружаются однотрансформаторные подстанции, и предусматривается один резервный трансформатор, который при необходимости может быть установлен на любой цеховой подстанции.

То же самое может быть предусмотрено для сетевого района, объединяющего несколько подстанций, связанных подъездными дорогами, состояние которых позволяет в любое время года перевезти резервный трансформатор на любую подстанцию.

Установка четырех трансформаторов возможна на подстанциях с двумя средними напряжениями (220/110/35/10 kB, 500/220/35/10 kB, и др.).

Трансформаторы и автотрансформаторы с высшим напряжением до 500 кВ включительно по возможности выбираются трехфазными.

Группы из однофазных трансформаторов устанавливаются при отсутствии трехфазных трансформаторов соответствующей мощности. При установке одной группы однофазных трансформаторов предусматривается одна резервная фаза. В ряде случаев может оказаться более экономичным применение спаренных трехфазных трансформаторов (автотрансформаторов).

Мощность трансформаторов выбирается по следующим условиям:

при установке одного трансформатора

$$S_{\scriptscriptstyle HOM} \geq S_{\scriptscriptstyle max}$$
;

при установке двух трансформаторов

$$S_{_{HOM}} \geq 0.7 \, S_{_{max}} \, ;$$

при установке *п* трансформаторов

$$S_{\text{\tiny HOM}} \ge 0.7 \frac{S_{\text{\tiny max}}}{n-1}.$$

Здесь под $S_{\it max}$ понимается наибольшая нагрузка подстанции на расчетный период пять лет.

Трансформаторы, выбранные по двум последним условиям, обеспечивают питание всех потребителей в нормальном режиме при оптимальной загрузке трансформаторов 0,6-0,7 $S_{\text{ном}}$. При аварии или выводе одного из трансформаторов в ремонт оставшийся в работе трансформатор должен обеспечивать питание потребителей с допустимой длительной перегрузкой не более 40% от его номинальной мощности или с перегрузкой, определяемой из условий температурного режима трансформаторов.

В некоторых случаях из-за невозможности обеспечить условия допустимой перегрузки трансформаторов разрешается их разгрузка за счет отключения всех или части

потребителей третьей категории средствами автоматической разгрузки или эксплуатационным персоналом.

При выборе мощности автотрансформаторов, к обмотке НН которых присоединены синхронные компенсаторы, необходимо проверить загрузку общей обмотки автотрансформатора.

Последовательность расчета

1. Предварительно определяется расчетная мощность силового трансформатора. Двухобмоточный трансформатор

$$S_{T pacu} \ge \frac{\sqrt{P_p^2 + Q_s^2}}{N_T \cdot \beta_T},$$

где β_T и N_T — соответственно коэффициент загрузки трансформатора (для двухтрансформаторных подстанций β_T =0,7; для однотрансформаторных β_T =0,8÷0,85) и количество трансформаторов;

 Q_{3} — реактивная мощность, передаваемая через трансформатор в сеть низкого напряжения (переток реактивной мощности из сети высокого напряжения).

$$Q_{9} = P_{H} tg \varphi_{H}$$
,

где $tg \, \phi_{H}$ — нормативный базовый коэффициент мощности, задаваемый энергосистемой потребителям в часы максимальных нагрузок.

Трехобмоточный трансформатор и автотрансформатор

Определяется суммарная нагрузка трансформатора

$$S_{T\Sigma} = P_{\scriptscriptstyle HH} + P_{\scriptscriptstyle CH} + j(Q_{\scriptscriptstyle 2} + Q_{\scriptscriptstyle CH}),$$

где P_{HH} , P_{CH} — соответственно активная нагрузка низкой и средней сторон трехобмоточного трансформатора или автотрансформатора;

 Q_{2} — реактивная мощность, передаваемая через трехобмоточный трансформатор (автотрансформатор) в сеть низкого напряжения;

 Q_{cH} — реактивная мощность, передаваемая через трехобмоточный трансформатор (автотрансформатор) в сеть среднего напряжения.

В целях снижения потерь мощности в распределительных сетях энергосистем Q_{cn} определяется, исходя из оптимизации режима по реактивной мощности.

Расчетная мощность трехобмоточного трансформатора или автотрансформатора равна

$$S_{T(AT)pac4} \ge \frac{\sqrt{\left(P_{HH} + P_{CH}\right)^2 + \left(Q_{3} + Q_{CH}\right)^2}}{N_T \cdot \beta_T}.$$

- 2. По справочным данным выбирается силовой трансформатор с номинальной мощностью $S_{T\ hom}$, ближайшей к найденной экономической мощности.
- 3. Принятый к установке на подстанции силовой трансформатор проверяется по условию допустимой 40% перегрузки в послеаварийном режиме

$$\beta_{T_{n/a}} = \frac{S_p}{S_{T_{HOM}}} \le 1,4.$$

4. Если коэффициент загрузки трансформатора в послеаварийном режиме превышает допустимый, тогда для выполнения данного условия необходима разгрузка трансформатора за счет отключения всех или части потребителей III категории

$$\beta_{T_{n/a}} = \frac{S_p - S_{III}}{S_{T_{HOM}}} \leq 1,4,$$

где $S_{I\!I\!I}$ - нагрузка отключаемых потребителей III категории, питаемых от данной подстанции, MBA.

5. Если и после отключения потребителей III категории условие допустимой перегрузки трансформаторов не соблюдается, необходимо выбрать трансформатор с большей номинальной мощностью.

3. Практические занятия

3.1. Методические рекомендации по проведению практических занятий Часть I

Практические занятия проводятся для того, чтобы студенты получили навыки в расчете установившихся режимов в простых замкнутых и разомкнутых сетях, а также в их комбинациях, для закрепления теоретического материала, изложенного на лекциях. В результате проведения практических занятий студенты должны научиться составлять схемы замещения электрических сетей и определять их параметры, рассчитывать и анализировать установившиеся режимы в разомкнутых сетях, кольцевых сетях, сетях с двухсторонним питанием, сетях с несколькими номинальными напряжениями, обеспечивать желаемое напряжение на шинах низкого и среднего напряжения силовых трансформаторов.

Часть II

Цель проведения практических занятий — научить студентов определять электрические нагрузки, показатели и характеристики ГЭН, уметь выбирать номинальное напряжение сети, сечение проводов (кабелей) и мощности трансформаторов из условий технико-экономических соображений. Выбирать схемы и конструкции РУ ТЭЦ и подстанций, рассчитывать токи КЗ и на основе их расчета выбирать и проверять оборудование ТЭЦ и подстанций, рассчитывать режимы в эл. сетях, уметь выбирать систему оперативного тока на подстанции.

Практические занятия проводятся с привлечением пакета программ автоматизации математических расчетов «MathCad», ПВК «ZAPUSK», «CURSE2», «KRNET», «Расчет эл.сети», «Elsnab8», «АСРЕ» и задач для самостоятельного решения.

В процессе обучения студенты осваивают ручные методы расчета и средства автоматизации инженерных расчетов - компьютерные промышленные разработки необходимые для последующей их реализации в практической деятельности:

Студенты должны научиться производить расчеты мощностей электрических нагрузок, питаемых от шин подстанции, уметь определить координаты центра электрических нагрузок и выбирать оптимальные места установки подстанций.

На основе расчета электрических нагрузок произвести расчет рационального напряжения питающей сети, осуществить выбор числа и мощности трансформаторов на подстанции с учетом КРМ, произвести выбор сечений проводов питающих линий, провести проверку силовых трансформаторов на допустимые перегрузки.

Для выбранных схем питающей сети и подстанции необходимо научиться осуществлять расчёты токов трехфазного и однофазного к.з.

По результатам расчетов токов к.з. уметь выбирать и проверять высоковольтные и электрические аппараты и общеподстанционные устройства, осуществить компоновку РУ ВН, СН и НН подстанции.

Студенты должны свободно выбирать схемы и конструкции подстанций, ТЭЦ, производить расчёты заземляющего устройства.

Всего предусмотрено 8 двухчасовых практических занятий, из которых завершающее занятие посвящено комплексному решению по разработке электрической части подстанции электроснабжения предприятия, города (сельскохозяйственного района).

На этом занятии студенты подводят итоги изучения дисциплины.

Перечень практических занятий Часть I

Согласно учебных планов предусмотрено 9 практических занятий (ПЗ), перечень которых приведен ниже.

- ПЗ 1. Расчет параметров схем замещения ЛЭП.
- ПЗ 2. Расчет параметров схем замещения трансформаторов и автотрансформаторов.
- ПЗ 3. Составление схем замещения электрической сети. Определение приведенной и расчетной нагрузки узла.
 - ПЗ 4. Расчет режимов в разомкнутых сетях.
 - ПЗ 5. Расчет режимов в кольцевых сетях.
 - ПЗ 6. Расчет режимов в сетях с двухсторонним питанием.
- ПЗ 7. Выбор ответвление РПН трансформаторов, автотрансформаторов, линейных регуляторов.
 - ПЗ 8. Расчет режимов в сетях с несколькими номинальными напряжениями.
 - ПЗ 9. Обзор задач по всем темам за семестр.

Часть II

Тематика практических занятий в семестре

	1		
$N_{\underline{0}}$	Наименование темы		
Π/Π			
1	Конструкции и схемы РУ ТЭЦ		
2	Расчет режимов ТЭЦ		
3	Выбор числа и мощности силовых трансформаторов на ПС с учетом KPM		
4	Понижающие подстанции эл. сетей 35-220 кВ. Выбор схем электрических соединений.		
5	Понижающие подстанции эл. сетей 35-220 кВ. Компоновка электрооборудования.		
6	Электродинамическое и термическое воздействие токов КЗ на оборудование ПС		
7	Выбор и проверка электрических аппаратов и проводников.		
8	Обзор задач по всем темам за семестр		

В процессе обучения студенты пользуются информационными и компьютерными технологиями. Широко применяются программные продукты MathCad, Visio, используется банк данных кафедры, содержащий электронные варианты учебников, справочные данные, а также информацию о современном оборудовании.

3.2. Методические указания по проведению практических занятий Часть I

На первом занятии целесообразно устроить входной контроль, на последнем – комплексную проверку качества знаний студентов.

При изложении кратких теоретических сведений рекомендуется систематизировать и обобщить материал, выделив при этом главные моменты. В процессе изложения материала целесообразно вовлекать студентов в его анализ, активизировать процесс мышления студентов за счет средств интенсивного обучения.

Блиц-опрос студентов или небольшая самостоятельная работа по теме практического занятия позволят лучше усвоить ход решения задач, понять их сущность.

При решении задач можно использовать разные формы. Например, преподаватель, решая задачу на доске, поясняет ее и привлекает к работе всю группу путем вопросов, постоянно подводя студентов к правильному решению.

Другая форма решения задач - самостоятельная работа студентов под контролем преподавателя с пояснением наиболее трудных моментов. Возможно решение задачи на доске студентом, но в этом случае преподаватель руководить процессом решения и вовлекает в работу всю группу.

Как правило, защита индивидуальных домашних заданий должна проводиться во внеаудиторное время, а на практическом занятии следует показать типовые ошибки, проанализировать результаты выполнения и защиты индивидуальных заданий, отметить лучшие и худшие из них, предложить студентам в виде деловой игры принять решение по устранению замечаний.

В конце практического занятия преподаватель называет тему следующего, указывает разделы теоретического материала, которые студент должен освоить для наиболее эффективного решения задач, выдает домашнее задание.

В процессе проведения практических занятий используются классические и современные педагогические технологии.

Часть II

На первом занятии необходимо изучить типовые графики городских и сельскохозяйственных потребителей, научиться определять их показатели и характеристики. Студенты должны уметь переходить от типовых ГЭН к реальным, уметь прогнозировать ГЭН и управлять ими с помощью потребителей-регуляторов.

На втором занятии необходимо освоить существующие методы расчета электрических нагрузок городских и сельскохозяйственных потребителей на различных ступенях системы электроснабжения, научиться пользоваться нормативно-технической документацией в области проектирования и усвоить область применения каждого расчетного метода.

На третьем занятии студенты учатся применять ранее изученные экономические методы и подходы при проектировании электрической сети, осуществляют выбор вариантов построения питающих и распределительных сетей на основе технико-экономического сравнения и чистого дисконтированного дохода.

На четвертом занятии следует изучить использование номограмм и формул при определения рационального напряжения, строить систему электроснабжения с минимальным количеством ступеней трансформации, при необходимости рассматривать пути перевода существующих сетей на повышенное напряжение.

На пятом занятии осуществляется применение ранее изученных и новых методик при выборе сечения проводов (кабелей). Осваиваются специфические особенности для города и с/х по расчету потерь напряжения, мощности и энергии в трансформаторах и электрических сетях.

На шестом занятии проводится выбор устройств защиты и автоматики в городских и с/х сетях, а также определяются их уставки. Рассматриваются вопросы согласования защит и строится карта селективности.

Седьмое занятие посвящено обзору задач по всем темам - комплексному решению по разработке СЭС жилого района города (с/х района). Подводятся итоги изучения дисциплины и проводится тренинг защиту курсового проекта.

Примеры заданий на практические занятия приведены в разделе 8.

Литература к практическим занятиям.

- 1. *Неклепаев Б.Н., Крючков И.П.* Электрическая часть электростанций и подстанций: Справочные материалы для курсового и дипломного проектирования. М.: Энергоатомиздат, 1989. 680с.
- 2. Пособие к курсовому и дипломному проектированию для электроэнергетических специальностей вузов / Под ред. В.М. Блок. М.: Высш. шк., 1990. 383с.
- 3. Боровиков В.А. Электрические сети энергетических систем. Л.: Энергия, 1977. 392с.
- 4. Блок В.М. Электрические сети и системы. М.: Высш. шк., 1986. 430с.
- 5. Идельчик В.И. Электрические системы и сети. М.: Высш. шк., 1989. 592с.
- 6. Инструктивные материалы по компенсации реактивной мощности и качеству электрической энергии. М.: Минэнерго СССР, 1991. 31с.

4. Лабораторные занятия, их содержание и объем в часах

Часть II

4.1. Методические рекомендации по проведению лабораторных занятий

Цель проведения лабораторных занятий – ознакомить студентов со схемами РУ ТЭЦ и подстанций, с устройством и конструкцией электрических аппаратов ТЭЦ и подстанций, привить навыки практической работы с электрооборудованием и условиями его эксплуатации.

4.2. Перечень тем лабораторных занятий

Тематика практических занятий в 7 семестре (16 часов)

№	Наименование темы	Количество			
Π/Π		часов			
1	Конструкции и схемы РУ ТЭЦ	4			
2	Электрооборудование и режимы работы ТЭЦ.	4			
3	Типы конструкций распределительных устройств.	4			
4	Основное электрооборудование, его конструкции, принципы	4			
	работы и условия эксплуатации.				

4.3. Методические указания по проведению лабораторных занятий

Лабораторный практикум, хотя и затрагивает только часть основных разделов учебной дисциплины, тем не менее позволяет студентам получить достаточно полное представление о конструкциях и схемах распределительных устройств, а также приобрести практические навыки в области основного электротехнического оборудования, необходимые для решения ряда практических задач повседневной инженерной деятельности в области ремонта и эксплуатации энергопредприятий и энергообъектов.

Лабораторные работы имеют различный уровень сложности и выполняются четыре часа.

Каждая лабораторная работа предусматривает самостоятельную работу студентов по освоению лекций и теоретического материала, вынесенного на самостоятельное изучение.

Текущий контроль знаний осуществляется путем опроса студентов перед началом лабораторного занятия по вопросам, перечень которых приведен в каждой лабораторной работе.

Каждая лабораторная работа состоит из двух блоков — теоретического и практического, что позволяет осуществить закрепление и систематизацию полученной на лекции информации.

Лабораторные работы по I и III темам подробно представлены в учебном пособии $A.\Gamma.$ Ротачевой «Типовые схемы распределительных устройств», а по остальным темам приводятся в УМКД.

Лабораторная работа № _____ «Высоковольтные изоляторы»

Цель работы: изучить конструкцию и область применения изоляторов.

Программа работы:

- 1. Изучить назначение, конструкцию и область применения станционных изоляторов.
- 2. То же для линейных изоляторов.
- 3. То же для аппаратных изоляторов.
- 4. Нарисовать эскизы и описать конструкцию всех типов изоляторов и дать им характеристику.
- 5. Ознакомиться с конструкцией изоляторов представленных в лаборатории электроснабжения.
- 6. Подготовить отчёт по лабораторной работе.

Контрольные вопросы:

- 1. Требования к изоляторам?
- 2. Виды и типы изоляторов?
- 3. Из каких материалов изготавливаются изоляторы?
- 4. Сколько изоляторов в гирлянде на напряжение 35, 110 кВ, 220 кВ?
- 5. Какой изолятор можно использовать вместо гирлянды в электроустановках напряжением 110 кВ?
- 6. Перечислить достоинства и недостатки изоляторов, выполненных из разных материалов.
- 7. Что такое "трекингостойкость"?

Содержание отчёта:

- а) название, цель и содержание работы (краткие теоретические сведения);
- б) эскизы изоляторов;
- в) письменно ответить на контрольные вопросы.

Общие сведения

Диэлектрики, из которых изготавливаются изоляторы, должны обладать высокой механической прочностью, поскольку изоляторы, являясь элементом конструкции, несут значительную нагрузку, должны иметь высокую электрическую прочность, позволяющую создавать экономичные и надежные конструкции изоляторов. Пробивное напряжение твердого диэлектрика в изоляторе примерно в 1,5 раза должно быть больше, чем напряжение перекрытия по поверхности, чем и определяется электрическая прочность изолятора.

Диэлектрики должны быть негигроскопичны и не должны изменять своих свойств под действием различных метеорологических факторов.

Классификация изоляторов

Изоляторы классифицируются по следующим признакам:

- 1) по материалу изготовления,
- 2) по назначению,
- 3) по способу установки.

По первому признаку изоляторы классифицируются следующим образом.

Опорно-стержневые изоляторы применяют в закрытых и открытых распределительных устройствах для крепления на них токоведущих шин или контактных деталей.

Опорно-штыревые изоляторы применяют для наружных установок в тех случаях, когда требуется высокая механическая прочность и опорно-стержневые изоляторы применяться не могут

Штыревые линейные изоляторы на напряжение 6...10 кВ состоят из фарфоровой или стеклянной изолирующей детали, в которую ввертывается металлический крюк или штырь.

Подвесные изоляторы тарельчатого типа широко применяются на воздушных линиях электропередачи 35 кВ и выше.

Проходные изоляторы применяются для изоляции токоведущих частей при прохождении их через стены, потолки и другие элементы конструкций распределительных устройств и аппаратов.

На рисунках ниже представлены различные типы изоляторов.

Специальные типы изоляторов, оболочки ОПН 10 - 35 кВ

Изоляторы для контактных сетей железнодорожного транспорта

Опорные изоляторы 10 - 35 кВ

Линейные изоляторы 10 - 135 кВ

Высокое внимание в конструкции изоляторов уделяется качеству границ раздела между материалами. Нанесение защитной оболочки на предварительно покрытый специальным праймером стеклопластиковый стержень и вулканизация непосредственно на стержне обеспечивают высокую прочность границы раздела "защитная оболочка/стержень". Прочность адгезии превышает прочность защитного покрытия, благодаря чему исключается возможность отслоения защитной оболочки от стержня при механических стрессах.

Благодаря применяемой технологии нанесения цельного ребристого покрытия границы раздела между ребрами отсутствуют, что существенно повышает надежность изолятора.

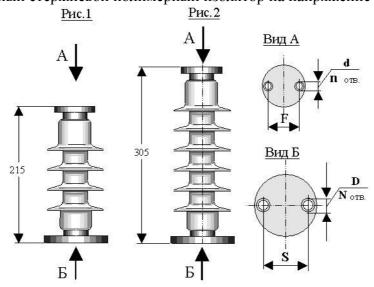
Герметичность границы раздела "защитная оболочка/оконцеватель" обеспечивается нанесениемчасти защитного покрытия поверх оконцевателя, либо применением обжатия в оконцевателе части защитного покрытия, обработанного силиконовым герметиком.

Высокая надежность границ раздела позволяет, при необходимости, проводить обмыв изоляторов струей воды под высоким давлением без риска вызвать разгерметизацию конструкции.

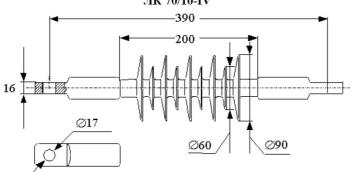
Для изготовления ребристой оболочки изолятора используется силиконовая композиция, обладающая высокой трекинг-эрозионной стойкостью, превосходной гидрофобностью, высокой стойкостью к воздействующим факторам окружающей среды, хорошими технологическими свойствами.

В конструкции изоляторов используются проверенные временем и новые решения:

Силиконовая цельнолитая защитная оболочка


Равномерная опрессовка стержня матрицами цилиндрического профиля

Высокая надежность границ раздела


Стальные оконцеватели, оцинкованные горячим способом

Опорный стержневой полимерный изолятор на напряжение 10 кВ

Линейный подвесной стержневой изолятор ЛК 70/10-IV

Изолятор предназначен для использования в натяжных и поддерживающих подвесках линий электропередачи с наибольшим рабочим напряжением 12кВ. По электрическим характеристикам изолятор соответствует нормам, предъявляемым к 20 кВ изоляторам.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Наибольшее рабочее напряжение	12 кВ
Испытательное напряжение полного грозового импульса	75 кВ
Выдерживаемое напряжение 50 Гц в сухом состоянии	42 кВ
Выдерживаемое напряжение 50 Гц под дождем	28 кВ
Минимальная разрушающая нагрузка на изгиб	4 кН
Минимальная разрушающая нагрузка на кручение	250 Нм

Тип	Рис.	n	N	F, мм	S, мм	d, мм	D, мм	Длина пути утечки, мм	Вес, кг
ИОСК-4/10 II- 1 УХЛ1	1	2	2	36	70	M8	M10	300	1,6
ИОСК 4/10 II- 2 УХЛ1	1	4	4	76	76	M12	M12	300	1,8
ИОСК 4/10 IV- 1 УХЛ1	2	2	2	36	70	M8	M10	500	1,8
ИОСК 4/10 IV- 2 УХЛ1	2	4	4	76	76	M12	M12	500	1,9

Требования к изоляторам

Диэлектрики, из которых изготавливаются изоляторы, должны обладать высокой механической и электрической прочностью. Диэлектрики должны быть негигроскопичны и не должны изменять своих свойств под действием различных метеорологических факторов.

Классификация изоляторов

Все выпускаемые промышленностью изоляторы классифицируются последующим признакам:

- 1) по материалу изготовления,
- 2) по назначению,
- 3) по способу установки.

По первому признаку изоляторы классифицируются следующим образом:

изготовленные из электротехнического фарфора, закаленного стекла, а также из некоторых полимеров.

По второму признаку подразделяются на опорные, подвесные и проходные.

Опорные изоляторы в свою очередь, делятся на стержневые и штыревые, подвесные – на изоляторы тарельчатого типа и стержневые.

Все изоляторы можно условно объединить в три группы: стационарные, линейные и аппаратные.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Климатическое исполнение и категория размещения по ГОСТ 15150	УХЛ 1
Номинальное рабочее напряжение	10 кВ
Испытательное напряжение полного грозового импульса	125 кВ
Выдерживаемое напряжение пром. частоты в сухом состоянии	75 кВ
Выдерживаемое напряжение 50 Гц под дождем	60 кВ
Длина пути утечки не менее	620 мм
Минимальная разрушающая нагрузка на растяжение	70 кН
Максимальная допустимая механическая нагрузка на растяжение	26 кН
Нормальная механическая нагрузка на растяжение	14 кН
Macca	1,42 кг

Лабораторная работа № _____ «Средства защиты от перенапряжений»

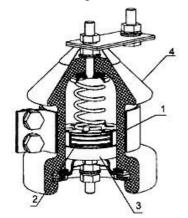
Цель работы: изучить назначение, устройство и принцип действия трубчатых и вентильных разрядников.

Программа работы:

- 1. Изучить процесс образования коммутационных и атмосферных перенапряжений.
- 2. Нарисовать эскизы защитного искрового промежутка, а также трубчатого и вентильного разрядников.
 - 3. Изучить конструктивные особенности и принцип действия разрядников.
- изучить назначение, устройство и принцип действия внешнего искрового промежутка;
- то же, трубчатого разрядника;
- то же вентильного разрядника;
- изучить марки трубчатых и вентильных разрядников;
- подготовить отчёт по работе.

Содержание отчёта:

- а) краткие теоретические сведения по изучаемому материалу;
- б) эскизы трубчатого и вентильного разрядников;
- в) письменно ответить на контрольные вопросы.


Контрольные вопросы:

- 1. В чем заключается недостаток защиты защитным промежутком и когда такая защита применяется?
- 2. Для чего необходим внешний искровой промежуток при установке трубчатых разрядников?
- 3. Чем определяется верхний и нижний пределы сопровождающего тока, отключаемого трубчатым разрядником?
 - 5. Где применяются трубчатые разрядники, их недостатки?
 - 6. На какие напряжения выпускаются трубчатые разрядники?
- 7. Каково назначение многократного искрового промежутка у рабочего сопротивления в вентильных разрядниках?
 - 8. Какую характеристику имеет вентильный разрядник почему?
- 9. Какие типы трубчатых и вентильных разрядников выпускает отечественная промышленность?

РАЗРЯДНИК, электротехническое устройство в простейшем случае в виде двух или нескольких электродов, разделенных диэлектрическим промежутком (напр., воздухом). Применяют для защиты электрических сетей и установок от перенапряжений (электрический

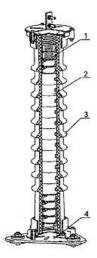
пробой, возникающий между электродами разрядника, предотвращает пробой изоляции между проводниками), а также для переключения электрических цепей (искусственно вызывается или гасится разряд между электродами разрядника).

Ниже приведены эскизы и краткое описание некоторых типов разрядников.

Разрядники вентильные серии РНК на напряжение 0,5 кВ предназначены для защиты устройств контроля изоляции высоковольтных вводов высоковольтных трансформаторов (КИВ-500). Разрядники серии РНК соответствуют ТУ16-521.218-76. Разрядник состоит из единичного искрового промежутка и рабочего нелинейного резистора (3), заключенных в герметично закрытую фарфоровую покрышку (4). Рабочий резистор разрядника изготовлен из спецмассы "Вилит" и обладает нелинейной вольт-амперной характеристикой. Искровой промежуток двумя фасонными латунными электродами образован (1), разделенными изолирующей прокладкой (2).

Разрядники вентильные серии РВС на напряжение от 110 до 220 кВ

Разрядники вентильные серии РВС от 110 до 220 кВ предназначены для защиты от атмосферных перенапряжений изоляции электрооборудования переменного тока частотой 50 и 60 Гц. Изготавливаются для сетей с эффективно заземленной нейтралью. Разрядник каждого типа серии РВС состоит из нескольких элементов, каждый из которых содержит блок многократных искровых промежутков (1) и рабочих нелинейных резисторов (2), заключенных в герметично закрытой фарфоровой покрышке (3). Рабочий резистор разрядника изготовлен из спецмассы "Вилит" и обладает нелинейной вольт-амперной характеристикой. Разрядник устанавливается на изолированном от земли основании (4) для удобства присоединения регистратора срабатывания и для измерения токов проводимости. К крышке верхнего элемента разрядника крепится экранирующее кольцо (5). В структуре условного обозначения принято:

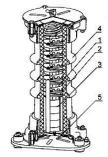

Р - разрядник;В - вентильный;С - станционный;

XX - номинальное напряжение;

М - модернизированный;

 $\mathbf{Y}(\mathbf{X}\mathbf{J},\mathbf{T})$ - климатическое исполнение;

1 - категория размещения;


Разрядники вентильные серии РВС на напряжение от 15 до 35 кВ

Разрядники вентильные серии РВС предназначены для защиты от атмосферных перенапряжений изоляции электрооборудования переменного тока частотой 50 и 60 Гц. Изготавливаются для сетей с любой системой заземления нейтрали. Разрядник каждого типа серии РВС состоит из блока многократных искровых промежутков (1) и рабочих нелинейных резисторов (2), заключенных в герметично закрытой фарфоровой покрышке (3). Рабочий резистор разрядника изготовлен из спецмассы "Вилит" И обладает нелинейной вольт-амперной характеристикой. Разрядник устанавливается на изолированном от "земли" основании (4) для удобства присоединения регистратора срабатывания и для измерения токов проводимости. В структуре условного обозначения принято:

Р - разрядник;В - вентильный;С - станционный;

XX - номинальное напряжение; **У**(**X**Л**,T**) - климатическое исполнение;

1 - категория размещения;

Разрядники вентильные с магнитным гашением серии РВРД на напряжение 3,6 и 10 кВ предназначены для защиты изоляции вращающихся электрических машин переменного тока частотой 50 и 60 Гц от атмосферных перенапряжений. Они эксплуатируются в районах с умеренным холодным и тропическим климатом. В структуре условного обозначения принято:

Р - разрядник;В - вентильный;С - станционный;

XX - номинальное напряжение;
 Y(XЛ,Т) - климатическое исполнение;
 1 - категория размещения;

Лабораторная работа № _____ «Комплектные распределительные устройства»

<u>Цель работы:</u> изучить назначение, особенности конструкции и эксплуатации КРУ. <u>Программа работы:</u>

- 1. Познакомиться с паспортными данными оборудования установленного в шкафу КРН-10 с выключателем ВМП-10.
- 2. Изучить конструкцию КРУ:
 - а) внешнее оформление,
 - б) типы шкафов КРУ и варианты их комплектования,
 - в) корпус шкафа КРУ,
 - г) отсеки ячейки, оборудование расположенное в отсеках и их назначение.
- 3. Ознакомиться с механизмами блокировки и их схемами.
- 4. Изучить конструкцию масляного выключателя ВМП-10.
- 5. Изучить привод выключателя ВМП-10.
- 6. Начертить схему ячейки.
- 7. Выполнить эскиз шкафа КРУ, с размещённым оборудованием;
- 8. Подготовить отчёт по работе.

Содержание отчёта:

- а) краткие теоретические сведения о назначении и применяемых видах КРУ;
- б) эскиз ячейки КРУ с расположением оборудования;
- в) письменно ответить на контрольные вопросы.

Контрольные вопросы:

- 1. Где применяются КРУ?
- 2. Какие бывают схемы первичных цепей в шкафах КРУ?
- 3. Для чего предназначен механизм блокировки?
- 4. Какие меры безопасности заложены в конструкции ячейки?
- 5. Какие выключатели встраиваются в КРУ?
- 6. Назначение привода?
- 7. Тип рабочих и дугогасительных контактов масляного выключателя?

Комплектное распределительное устройство (КРУ) - защищенное электротехническое устройство, предназначенное для приема и распределения электрической анергии и состоящее из шкафов КРУ со встроенными в них аппаратами для коммутации, управления, измерения, защиты и регулирования, а также с несущими конструкциями, кожухами, электрическими соединениями и вспомогательными элементами.

Комплектные распределительные устройства подразделяются на КРУ внутренней установки и КРУ наружной установки. КРУ внутренней установки 6 -10 кВ - устройства, предназначенные для работы в закрытых помещениях или сооружениях, выпускаются с одинарной системой сборных шин. По типу коммутационного аппарата их можно разделить на КРУ с маломасляными, вакуумными или электромагнитными выключателями КРУ наружной установки 6-10 кВ - устройства, предназначенные для открытых РУ. Они состоят из связанных между собой металлических шкафов с встроенными в них аппаратами и приборами, устройствами управления, защиты и автоматики.

В состав КРУ могут входить: шинные мосты между двумя рядами ячеек; шинные вводы; кабельные блоки для ввода силовых кабелей; кабельные лотки для подводки к ряду КРУ контрольных кабелей; блоки панелей для размещения общеподстанционной аппаратуры и ввода контрольных кабелей; переходные шкафы для стыковки с КРУ других серий.

КРУ представляет собой устройство, состоящее из закрытых металлических шкафов с встроенными в них аппаратами, измерительными и защитными приборами и вспомогательными устройствами. Шкафы, с завода-изготовителя поступают на место монтажа с полностью собранным и готовым к работе оборудованием. Применение КРУ приводит к сокращению объема, срока проектирования и монтажа электрооборудования. Шкаф состоит из металлического корпуса, который для безопасного обслуживания и локализации аварий разделен на отсеки с автоматически закрывающимися металлическими шторками.

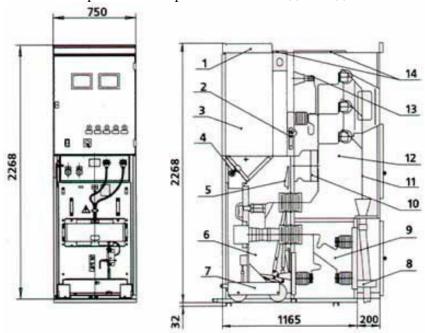
Ниже представлены описания и устройство некоторых КРУ.

КРУ К-63. Комплектные распределительные устройства напряжением 6-10 кВ серии К-63 предназначены для приема распределения электрической энергии переменного трехфазного тока промышленной частоты 50 и 60 Гц напряжением 6 и 10 кВ. КРУ серии К-63 применяются в качестве распределительных устройств 6-10 кВ, в том числе распределительных устройств трансформаторных подстанций, включая комплектные трансформаторные подстанции (блочные) 220/110/35/6-10 кВ, 110/6-10 кВ, 110/35/6-10 кВ, для электрических станций и систем электрификации железнодорожного транспорта. КРУ серии К-63 могут поставляться для расширения уже действующих распредустройств других производителей, соединяться ОНИ через переходные шкафы, входящие в состав КРУ.

Условия эксплуатации.

Шкафы КРУ серии К-63 предназначены для работы внутри помещения (климатическое исполнение УЗ и ТЗ по ГОСТ15150-69) при следующих условиях:

- верхнее рабочее (эффективное) значение температуры окружающего воздуха для исполнения УЗ не выше 40°С, для исполнения ТЗ 45°С
- нижнее значение температуры окружающего воздуха для исполнения УЗ минус 25°C, для исполнения ТЗ минус 10°C
- тип атмосферы типа II по ГОСТ 15150-69 (примерно соответствует атмосфере промышленных районов)

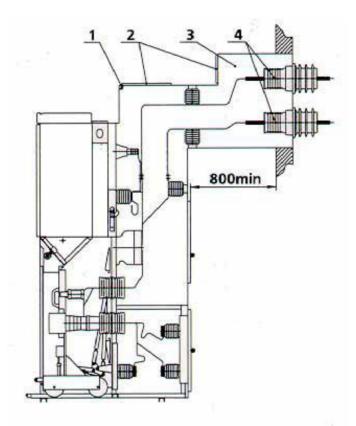

ТЕХНИЧЕСКИЕ ДАННЫЕ

Наименование параметра, показателя квалификации исполнение параметра, показателя квалификации исполнение параметра, петоствето БО Гц	ТЕХНИЧЕСКИЕ ДАННЫЕ					
при частотс 50 Гп при частотс 60 Гп	Наименование параметра, показателя квалификации					
при частотс 50 Гп при частотс 60 Гп	1. Номинальное напряжение (линейное), кВ:					
при частоте 60 Гц		6.0: 10				
2. Наибольшее раб. напряжение (линейное), кВ 127.2; 3. Номинальный ток главных цепей ячеек КРУ, А: для исполнений УЗ: при частоте 50 Гц 630;1000;1600 при частоте 60 Гц 630;1250 для исполнения ТЗ: 630;1250 при частоте 50 Гц 630;1000 4. Номинальный ток сборных шин, А 1000*;1600;2000;3150 при частоте 50 Гц 1000*;1600;2000 5. Номинальный ток отключения выключателя, встросиного в КРУ, кА: 12,5; 16; 20; 25; 31,5*** при частоте 50 Гц 15; 25 при частоте 60 Гц 16; 25 6. Ток термической стойкости (кратковременный ток) при времени протекания 3 с, кА 16; 25 7. Номинальный ток электродинамической стойкости главных цепей шкафов КРУ, кА 15;81*** 8. Уровень изоляции по ГОСТ 1516.1 -76, уровень "6" Нормальная изоляция 10. Наличие в ячейках выдвижных элементов Возд., твердая, комбинированная 11. Наличие в ячейках выдвижных элементов С выкатным элементами, без выкатных элементов 12. Вид линейных высоковольтных подсоединении Кабельные, шинные 13. Условия обслуживания С выкатным элементами, без выключатных дверх 14. Степень защиты по ГОСТ 14254-96 Ячеек К	-					
3. Номинальный ток главных цепей ячеек КРУ, А:	·					
при частоте 50 Γц 630;1000;1600 при частоте 60 Гц 630;1250 при частоте 60 Гц 630;1250 при частоте 60 Гц 630;1250 при частоте 60 Гц 630;1000 4. Номинальный ток сборных шин, А при частоте 50 Гц 1000*;1600;2000;3150 при частоте 50 Гц 1000*;1600;2000;3150 при частоте 60 Гц 800*;1000;1600;2000 5. Номинальный ток отключения выключателя,встроенного в КРУ, кА: при частоте 50 Гц 12,5; 16; 20; 25; 31,5*** при частоте 50 Гц 16; 25 16; 20; 25; 31,5*** при частоте 50 Гц 16; 25 16; 20; 25; 31,5*** 16; 25 17; 16; 20; 25; 31,5*** 17; 18; 18; 18; 18; 18; 18; 19; 19; 19; 19; 19; 19; 19; 19; 19; 19		127.2,				
при частоте 50 Γц 630;1000;1600 при частоте 60 Γц 630;1250 при частоте 50 Гц 630;1250 при частоте 50 Гц 630;1000 4. Номинальный ток сборных шин, А 1000*;1600;2000;3150 при частоте 50 Гц 1000*;1600;2000 5. Номинальный ток отключения выключателя,встроенного в КРУ, кА: 800*;1000;1600;2000 при частоте 50 Гц 12,5; 16; 20; 25; 31,5*** 1 при частоте 50 Гц 12,5; 16; 20; 25; 31,5*** 1 при частоте 50 Гц 12,5; 16; 20; 25; 31,5*** 1 при частоте 50 Гц 16; 25 6. Ток термической стойкости (кратковременный ток) при времени протекания 3 с, кА 20;31.5** 7. Номинальный ток электродинамической стойкости главных цепей шкафов КРУ, кА 8. Уровень изоляции по ГОСТ 1516.1 -76, уровень "6" Нормальная изоляция 9. Вид изоляции токоведущих частей С петзолированными комбинированным белуживанием 12. Вид линейных высоковольтных подсоединении Кабсльные, шинные 13. Условия обслуживания С выкатным элементам комбинированным белуживанием 14. Степень защиты по ГОСТ 14254-96 Ячеек КРУ-1Р20. а приоткрыты						
при частоте 60 Гп для исполнения ТЗ: при частоте 50 Гп 630;1250 при частоте 50 Гп 630;1000 4. Номинальный ток сборных шин, А при частоте 60 Гп 1000*;1600;2000;3150 при частоте 60 Гп 800*;1000;1600;2000 5. Номинальный ток отключения выключателя,встросниого в КРУ, кА: при частоте 50 Гп 12,5; 16; 20; 25; 31,5*** при частоте 50 Гп 16; 25 6. Ток термической стойкости (кратковременный ток) при времени протекания 3 с, кА 7. Номинальный ток электродинамической стойкости главных цепей шкафов КРУ, кА 8. Уровень изолящии по ГОСТ 1516.1 -76, уровень "6" Нормальная изолящия 10. Наличие изолящии токоведущих частей С неизолированными шинами, комбинированные 11. Наличие в ячейках выдвижных элементов С выкатными элементами, без выкатных элементов 12. Вид линейных высоковольтных подсоединении Кабельные, шинные 13. Условия обслуживания 14. Степень защиты по ГОСТ 14254-96 Ячеек КРУ-1Р20, а приоткрытых дверях релейных шкафов и нахождении выдвижного элемента ячейки в контрольном положении - 1900 15. Наличие дверей в отсеке выдвижного элемента ячейки в контрольном положении - 1900 16. Вид основных ячеек КРУ в зависимости от выключателями высокого напряжения с разъединяющими контактами с трансформаторами с трансформаторами		620,1000,1600				
для исполнения ТЗ: при частоте 50 Гц при частоте 60 Гц 4. Номинальный ток сборных шин, А при частоте 50 Гц при частоте	1					
при частоте 50 Гц 630;1250 при частоте 60 Гц 630;1000 4. Номинальный ток сборных шин, А 1000*;1600;2000;3150 при частоте 50 Гц 1000*;1600;2000 5. Номинальный ток отключения выключателя, встреенного в КРУ, кА: 12,5; 16; 20; 25; 31,5*** при частоте 50 Гц 12,5; 16; 20; 25; 31,5*** 6. Ток термической стойкости (кратковременный ток) при времени протекания 3 с, кА 20;31.5** 7. Номинальный ток электродинамической стойкости главных цепей шкафов КРУ, кА 51;81*** 8. Уровень изоляции по ГОСТ 1516.1 -76, уровень "6" Нормальная изоляция 9. Вид изоляции Возд., комбинированным 10. Наличие изоляции токоведущих частей С неизолированными шинами, комбинированные 11. Наличие в ячейках выдвижных элементов С выкатными элементами, без выкатных элементов 12. Вид линейных высоковольтных подсоединении Кабельные, шинные 13. Условия обслуживания С двухсторонним обслуживанием 14. Степень защиты по ГОСТ 14254-96 Ячеек КРУ-1Р20. а приоткрытых дверях релейных шкафов и нахождении выдвижнюго элемента ячейки Выключателями высокого элемента ячейки в контрольном положении - 1РОО 15. Наличие дверей в отсеке выдвижного элементая чейки выключателями высокого напряжения с разъединяющим контактами Выключателями <td>-</td> <td>630;1250</td>	-	630;1250				
при частоте 60 Γц 630;1000 4. Номинальный ток сборных шин, А 1000*;1600;2000;3150 при частоте 50 Гц 800*;1000;1600;2000 5. Номинальный ток отключения выключателя, встроенного в КРУ, кА: 12,5; 16; 20; 25; 31,5*** при частоте 50 Гц 16; 25 6. Ток термической стойкости (кратковременный ток) при времени протекания 3 с, кА 20;31.5** 7. Номинальный ток электродинамической стойкости главных цепей шкафов КРУ, кА 51;81*** 8. Уровень изоляции по ГОСТ 1516.1 -76, уровень "6" Нормальная изоляция 9. Вид изоляции токоведущих частей С неизолированными пинами, комбинированные 10. Наличие в ячейках выдвижных элементов С выкатными элементами, без выкатных элементов 12. Вид линейных высоковольтных подсоединении Кабельные, шинные 13. Условия обслуживания С двухсторонним обслуживанием 14. Степень защиты по ГОСТ 14254-96 Яческ КРУ-1Р20. а приоткрытых дверях релейных шкафов и нахождении выдвижного элемента ячейки в контрольном положении - 1РОО 15. Наличие дверей в отсеке выдвижного элемента ячейки в контрольном положении - 1РОО выключателями высокого напряжения с разъединяющими контактами с трансформаторами						
4. Номинальный ток сборных шин, А при частоте 50 Гц при частоте 60 Гц 5. Номинальный ток отключения выключателя,встроенного в КРУ, кА: при частоте 50 Гц при частоте 50 Гц 12,5; 16; 20; 25; 31,5*** при частоте 50 Гц при частоте 60 Гц 6. Ток термической стойкости (кратковременный ток) при времени протекания 3 с, кА 7. Номинальный ток электродинамической стойкости главных цепей шкафов КРУ, кА 8. Уровень изоляции по ГОСТ 1516.1 -76, уровень"6" 9. Вид изоляции 10. Наличие изоляции токоведущих частей 11. Наличие в ячейках выдвижных элементов 12. Вид линейных высоковольтных подсоединении 13. Условия обслуживания 14. Степень защиты по ГОСТ 14254-96 15. Наличие дверей в отсекс выдвижного элемента ячейки в контрольном положении - 15. Наличие дверей в отсекс выдвижного элемента ячейки в контрольном положении - в нахождении выдвижного элемента ячейки в контрольном положении - 16. Вид основных ячеек КРУ в зависимости от встраиваемого электрооборудования 16. Вид основных ячеек КРУ в зависимости от выключателями высокого напряжения с разъединяющими контактами с трансформаторами	1	·				
при частоте 50 Гц 1000*;1600;2000;3150 при частоте 60 Гц 800*;1000;1600;2000 5. Номинальный ток отключения выключателя,встроенного в КРУ, кА: 12,5; 16; 20; 25; 31,5*** при частоте 50 Гц 12,5; 16; 20; 25; 31,5*** 6. Ток термической стойкости (кратковременный ток) при времени протекания 3 с, кА 20;31.5** 7. Номинальный ток электродинамической стойкости главных цепей шкафов КРУ, кА 51;81*** 8. Уровень изоляции по ГОСТ 1516.1 -76, уровень "6" Нормальная изоляция 9. Вид изоляции Возд., твердая, комбинированным 10. Наличие изоляции токоведущих частей С неизолированным шинами, комбинированные 11. Наличие в ячейках выдвижных элементов С выкатными элементами, без выкатных элементами, без выкатных элементами, без выкатных элементами, без априоткрытых дверах уелейных шкафов и нахождении выдвижного элемента ячейки в контрольном положении - 1100 14. Степень защиты по ГОСТ 14254-96 Ячек КРУ-1Р20. а приоткрытых шкафов и нахождении выдвижного элемента ячейки в контрольном положении - 1100 15. Наличие дверей в отсеке выдвижного элемента ячейки Ячейки без дверей выключателями высокого напряжения с разъединяющими контактами с разъединяющими контактами		630;1000				
при частоте 60 Гц 5. Номинальный ток отключения выключателя,встроенного в КРУ, кА: при частоте 50 Гц при частоте 50 Гц при частоте 60 Гц 16; 25 6. Ток термической стойкости (кратковременный ток) при времени протекания 3 с, кА 7. Номинальный ток электродинамической стойкости главных цепей шкафов КРУ, кА 8. Уровень изоляции по ГОСТ 1516.1 -76, уровень"6" 9. Вид изоляции по ГОСТ 1516.1 -76, уровень"6" 9. Вид изоляции токоведущих частей 10. Наличие изоляции токоведущих частей 11. Наличие в ячейках выдвижных элементов 12. Вид линейных высоковольтных подсоединении 13. Условия обслуживания 14. Степень защиты по ГОСТ 14254-96 15. Наличие дверей в отсеке выдвижного элемента ячейки в контрольном положении - 1РОО 15. Наличие дверей в отсеке выдвижного элемента ячейки в контрольном положении - 1РОО 15. Наличие дверей в отсеке выдвижного элемента ячейки в контрольном положении - 1РОО 15. Наличие дверей в отсеке выдвижного элемента ячейки в контрольном положении грооб встраиваемого электрооборудования 14. Степень ячей в отсеке выдвижного элемента ячейки в контрольном положении грооб выключателями высокого напряжения с разъединяющими контактами с трансформаторами						
5. Номинальный ток выключателя, встроенного в КРУ, кА: отключения выключателя, встроенного в КРУ, кА: при частоте 50 Гц 12,5; 16; 20; 25; 31,5*** 6. Ток термической стойкости (кратковременный ток) при времени протекания 3 с, кА 20;31.5** 7. Номинальный ток электродинамической стойкости главных цепей шкафов КРУ, кА 51;81*** 8. Уровень изолящии по ГОСТ 1516.1 -76, уровень"6" Нормальная изолящия 9. Вид изолящии Возд., твердая, комбинированныя 10. Наличие изолящии токоведущих частей С неизолированным шинами, комбинированные 11. Наличие в ячейках выдвижных элементов С выкатным элементами, без выкатных элементов 12. Вид линейных высоковольтных подсоединении Кабельные, шинные 13. Условия обслуживания С двухсторонним обслуживанием 14. Степень защиты по ГОСТ 14254-96 Ячеек КРУ-1Р20. а приоткрытых дверях релейных шкафов и нахождении выдвижного элемента ячейки в контрольном положении - 1РОО 15. Наличие дверей в отсеке выдвижного элемента ячейки Ячейки без дверей 16. Вид основных ячеек КРУ в зависимости от выключателями высокого напряжения с разъединяющими контактами с разъединяющими контактами	при частоте 50 Гц	1000*;1600;2000;3150				
выключателя,встроенного в КРУ, кА: при частоте 50 Гц при частоте 50 Гц при частоте 50 Гц 16; 25 6. Ток термической стойкости (кратковременный ток) при времени протекания 3 с, кА 7. Номинальный ток электродинамической стойкости главных цепей шкафов КРУ, кА 8. Уровень изоляции по ГОСТ 1516.1 -76, уровень"6" 9. Вид изоляции 10. Наличие изоляции токоведущих частей 11. Наличие в ячейках выдвижных элементов 12. Вид линейных высоковольтных подсоединении 13. Условия обслуживания 14. Степень защиты по ГОСТ 14254-96 15. Наличие дверей в отсеке выдвижного элемента ячейки 16. Вид основных ячеек КРУ в зависимости от выключателями высокого встраиваемого электрооборудования 16. Вид основных ячеек КРУ в зависимости от выключателями высокого встраиваемого электрооборудования 1 трансформаторами 1 трансформаторами 1 трансформаторами 1 трансформаторами 1 ток 12,5; 16; 20; 25; 31,5*** 10; 25 10; 25 10; 25 10; 25 10; 25 10; 25 10; 25 10; 25 10; 25 10; 25 10; 25 10; 25 10; 25 10; 25 10; 25 11; 81*** 10; 25 11; 81*** 11; 81*** 12; 16; 20; 25; 31,5*** 20; 31,5*** 20; 31.5** 2	при частоте 60 Гц	800*;1000;1600;2000				
при частоте 50 Гц 12,5; 16; 20; 25; 31,5*** при частоте 60 Гц 16; 25 6. Ток термической стойкости (кратковременный ток) при времени протекания 3 с, кА 20;31.5** 7. Номинальный ток электродинамической стойкости главных цепей шкафов КРУ, кА 51;81*** 8. Уровень изоляции по ГОСТ 1516.1 -76, уровень "б" Нормальная изоляция 9. Вид изоляции Возд., твердая, комбинированная с неизолированными шинами, комбинированныме П1. Наличие изоляции токоведущих частей С неизолированными шинами, комбинированныме С выкатными элементами, без выкатных элементов С выкатными элементами, без выкатных элементов Из. Условия обслуживания С двухсторонним обслуживанием Обслуживани	5. Номинальный ток отключения					
при частоте 50 Гц 12,5; 16; 20; 25; 31,5*** при частоте 60 Гц 16; 25 6. Ток термической стойкости (кратковременный ток) при времени протекания 3 с, кА 20;31.5** 7. Номинальный ток электродинамической стойкости главных цепей шкафов КРУ, кА 51;81*** 8. Уровень изоляции по ГОСТ 1516.1 -76, уровень "б" Нормальная изоляция 9. Вид изоляции Возд., твердая, комбинированная с неизолированными шинами, комбинированныме П1. Наличие изоляции токоведущих частей С неизолированными шинами, комбинированныме С выкатными элементами, без выкатных элементов С выкатными элементами, без выкатных элементов Из. Условия обслуживания С двухсторонним обслуживанием Обслуживани	выключателя, встроенного в КРУ, кА:					
при частоте 60 Гц 6. Ток термической стойкости (кратковременный ток) при времени протекания 3 с, кА 7. Номинальный ток электродинамической стойкости главных цепей шкафов КРУ, кА 8. Уровень изоляции по ГОСТ 1516.1 -76, уровень "6" Нормальная изоляция 9. Вид изоляции 10. Наличие изоляции токоведущих частей С неизолированными шинами, комбинированные 11. Наличие в ячейках выдвижных элементов С выкатными элементами, без выкатных элементов 12. Вид линейных высоковольтных подсоединении 13. Условия обслуживания 14. Степень защиты по ГОСТ 14254-96 15. Наличие дверей в отсеке выдвижного элемента ячейки в контрольном положении - 1POO 15. Наличие дверей в отсеке выдвижного элемента ячейки в контрольном положении - 1POO встраиваемого электрооборудования 16. Вид основных ячеек КРУ в зависимости от встраиваемого электрооборудования 17. Наличие дверей в отсеке выдвижного элемента ячейки ос разъединяющими контактами с трансформаторами		12.5; 16; 20; 25; 31.5***				
6. Ток термической стойкости (кратковременный ток) при времени протекания 3 с, кА 7. Номинальный ток электродинамической стойкости главных цепей шкафов КРУ, кА 8. Уровень изоляции по ГОСТ 1516.1 -76, уровень "6" Нормальная изоляция 9. Вид изоляции Возд., твердая, комбинированная 10. Наличие изоляции токоведущих частей С неизолированными шинами, комбинированные 11. Наличие в ячейках выдвижных элементов С выкатными элементами, без выкатных элементов 12. Вид линейных высоковольтных подсоединении Кабельные, шинные 13. Условия обслуживания 14. Степень защиты по ГОСТ 14254-96 Ячеек КРУ-1Р20. а приоткрытых дверях релейных шкафов и нахождении выдвижного элемента ячейки в контрольном положении - 1РОО 15. Наличие дверей в отсеке выдвижного элемента ячейки 16. Вид основных ячеек КРУ в зависимости от встраиваемого электрооборудования 17. Номической стойкости от выключателями высокого напряжения с разъединяющими контактами с трансформаторами	1					
времени протекания 3 с, кА 20;31.5** 7. Номинальный ток электродинамической стойкости главных цепей шкафов КРУ, кА 51;81*** 8. Уровень изоляции по ГОСТ 1516.1 -76, уровень"6" Нормальная изоляция 9. Вид изоляции Возд., комбинированныя 10. Наличие изоляции токоведущих частей С неизолированными шинами, комбинированные 11. Наличие в ячейках выдвижных элементов С выкатными элементами, без выкатных элементов 12. Вид линейных высоковольтных подсоединении Кабельные, шинные 13. Условия обслуживания С двухсторонним обслуживанием 14. Степень защиты по ГОСТ 14254-96 Ячеек КРУ-1Р2О. а приоткрытых дверях релейных шкафов и нахождении выдвижного элемента ячейки в контрольном положении - 1РОО 15. Наличие дверей в отсеке выдвижного элемента ячейки Выключателями высокого напряжения с разъединяющими контактами с трансформаторами	1	10, 22				
7. Номинальный ток электродинамической стойкости главных цепей шкафов КРУ, кА 8. Уровень изоляции по ГОСТ 1516.1 -76, уровень"6" Нормальная изоляция 9. Вид изоляции Возд., твердая, комбинированныя польментов С неизолированными шинами, комбинированные 11. Наличие в ячейках выдвижных элементов С выкатными элементами, без выкатных элементов Изоляция по ГОСТ 14254-96 Ячеек КРУ-1Р20. а приоткрытых дверях релейных шкафов и нахождении выдвижного элемента ячейки в контрольном положении - 1РОО 15. Наличие дверей в отсеке выдвижного элемента ячейки В контрольном положении - 1РОО 15. Наличие дверей в отсеке выдвижного элемента ячейки без дверей выключателями высокого напряжения с разъединяющими контактами с трансформаторами		20.31 5**				
главных цепей шкафов КРУ, кА 51;81*** 8. Уровень изоляции Нормальная изоляция 9. Вид изоляции Возд., твердая, комбинированная 10. Наличие изоляции токоведущих частей С неизолированными шинами, комбинированные 11. Наличие в ячейках выдвижных элементов С выкатными элементами, без выкатных элементов 12. Вид линейных высоковольтных подсоединении Кабельные, шинные 13. Условия обслуживания С двухсторонним обслуживанием 14. Степень защиты по ГОСТ 14254-96 Ячеек КРУ-1Р20. а приоткрытых дверях релейных шкафов и нахождении выдвижного элемента ячейки в контрольном положении - 1РОО 15. Наличие дверей в отсеке выдвижного элемента ячейки Ячейки без дверей 16. Вид основных ячеек КРУ в зависимости от встраиваемого электрооборудования выключателями высокого напряжения с разъединяющими контактами с трансформаторами		20,31.3				
8. Уровень изоляции по ГОСТ 1516.1 -76, уровень"6" 9. Вид изоляции 10. Наличие изоляции токоведущих частей 11. Наличие в ячейках выдвижных элементов 12. Вид линейных высоковольтных подсоединении 13. Условия обслуживания 14. Степень защиты по ГОСТ 14254-96 15. Наличие дверей в отсеке выдвижного элемента ячейки в контрольном положении - 1POO 15. Наличие дверей в отсеке выдвижного элемента ячейки в контрольном положении - 1POO 16. Вид основных ячеек КРУ в зависимости от встраиваемого электрооборудования 17. Наличие дверей в отсеке выдвижного элемента по выключателями высокого напряжения с разъединяющими контактами с трансформаторами		51.01***				
9. Вид изоляции Возд., комбинированная 10. Наличие изоляции токоведущих частей С неизолированными шинами, комбинированные 11. Наличие в ячейках выдвижных элементов С выкатными элементами, без выкатных элементов 12. Вид линейных высоковольтных подсоединении Кабельные, шинные 13. Условия обслуживания С двухсторонним обслуживанием 14. Степень защиты по ГОСТ 14254-96 Ячеек КРУ-1Р20. а приоткрытых дверях релейных шкафов и нахождении выдвижного элемента ячейки в контрольном положении - 1РОО 15. Наличие дверей в отсеке выдвижного элемента ячейки Ячейки без дверей 16. Вид основных ячеек КРУ в зависимости от встраиваемого электрооборудования С разъединяющими контактами С трансформаторами		·				
комбинированная 10. Наличие изоляции токоведущих частей 11. Наличие в ячейках выдвижных элементов 12. Вид линейных высоковольтных подсоединении 13. Условия обслуживания 14. Степень защиты по ГОСТ 14254-96 15. Наличие дверей в отсеке выдвижного элемента ячейки в контрольном положении - 1POO 15. Наличие дверей в отсеке выдвижного элемента ячейки в контрольном положении - 1POO 16. Вид основных ячеек КРУ в зависимости от встраиваемого электрооборудования комбинированная С неизолированным шинами, комбинированным унементами, без выкатных элементами выдвухсторонним обслуживанием Кабельные, шинные С двухсторонним обслуживанием Ячеек КРУ-1Р20. а приоткрытых дверях релейных шкафов и нахождении выдвижного элемента ячейки в контрольном положении - 1POO 15. Наличие дверей в отсеке выдвижного элемента ячейки Выключателями высокого напряжения с разъединяющими контактами с трансформаторами		*				
10. Наличие изоляции токоведущих частей С неизолированными шинами, комбинированные 11. Наличие в ячейках выдвижных элементов С выкатными элементами, без выкатных элементов 12. Вид линейных высоковольтных подсоединении Кабельные, шинные С двухсторонним обслуживанием 14. Степень защиты по ГОСТ 14254-96 Ячеек КРУ-1Р20. а приоткрытых дверях релейных шкафов и нахождении выдвижного элемента ячейки в контрольном положении - 1РОО 15. Наличие дверей в отсеке выдвижного элемента ячейки 16. Вид основных ячеек КРУ в зависимости от встраиваемого электрооборудования С разъединяющими контактами с трансформаторами	9. Вид изоляции	1				
Комбинированные	10.11	-				
11. Наличие в ячейках выдвижных элементов 12. Вид линейных высоковольтных подсоединении 13. Условия обслуживания 14. Степень защиты по ГОСТ 14254-96 15. Наличие дверей в отсеке выдвижного элемента ячейки 16. Вид основных ячеек КРУ в зависимости от встраиваемого электрооборудования 17. Наличие дверей в отсеке выдвижного элемента ячейки в контрольном положении высокого напряжения с разъединяющими контактами с трансформаторами	10. Наличие изоляции токоведущих частей					
Выкатных элементов		1				
12. Вид линейных высоковольтных подсоединении 13. Условия обслуживания 14. Степень защиты по ГОСТ 14254-96 15. Наличие дверей в отсеке выдвижного элемента ячейки 16. Вид основных ячеек КРУ в зависимости от встраиваемого электрооборудования 17. Кабельные, шинные С двухсторонним обслуживанием Ячеек КРУ-1Р20. а приоткрытых дверях релейных шкафов и нахождении выдвижного элемента ячейки в контрольном положении - 1РОО 15. Наличие дверей в отсеке выдвижного элемента ячейки Ячейки без дверей Выключателями высокого напряжения с разъединяющими контактами с трансформаторами	11. Наличие в ячейках выдвижных элементов	· ·				
13. Условия обслуживания 14. Степень защиты по ГОСТ 14254-96 14. Степень защиты по ГОСТ 14254-96 15. Наличие дверей в отсеке выдвижного элемента ячейки в контрольном положении - 1РОО 15. Вид основных ячеек КРУ в зависимости от встраиваемого электрооборудования 16. Вид основных ячеек КРУ в зависимости от встраиваемого электрооборудования 17. Выключателями высокого напряжения с разъединяющими контактами с трансформаторами						
обслуживанием 14. Степень защиты по ГОСТ 14254-96 Ячеек КРУ-1Р20. а приоткрытых дверях релейных шкафов и нахождении выдвижного элемента ячейки в контрольном положении - 1РОО 15. Наличие дверей в отсеке выдвижного элемента ячейки 16. Вид основных ячеек КРУ в зависимости от выключателями высокого встраиваемого электрооборудования с разъединяющими контактами с трансформаторами		Кабельные, шинные				
14. Степень защиты по ГОСТ 14254-96 Ячеек КРУ-1Р20. а приоткрытых дверях релейных шкафов и нахождении выдвижного элемента ячейки в контрольном положении - 1РОО 15. Наличие дверей в отсеке выдвижного элемента ячейки Ячейки без дверей Ячейки без дверей Ячейки без дверей Выключателями высокого напряжения с разъединяющими контактами с трансформаторами	13. Условия обслуживания	С двухсторонним				
приоткрытых дверях релейных шкафов и нахождении выдвижного элемента ячейки в контрольном положении - 1РОО 15. Наличие дверей в отсеке выдвижного элемента ячейки 16. Вид основных ячеек КРУ в зависимости от встраиваемого электрооборудования 17. Выключателями высокого напряжения с разъединяющими контактами с трансформаторами		обслуживанием				
релейных шкафов и нахождении выдвижного элемента ячейки в контрольном положении - 1РОО 15. Наличие дверей в отсеке выдвижного элемента ячейки Ячейки без дверей 16. Вид основных ячеек КРУ в зависимости от выключателями высокого встраиваемого электрооборудования с разъединяющими контактами с трансформаторами	14. Степень защиты по ГОСТ 14254-96	Ячеек КРУ-1Р20. а				
нахождении выдвижного элемента ячейки в контрольном положении - 1РОО 15. Наличие дверей в отсеке выдвижного элемента ячейки Ячейки без дверей 16. Вид основных ячеек КРУ в зависимости от встраиваемого электрооборудования с разъединяющими контактами с трансформаторами		приоткрытых дверях				
нахождении выдвижного элемента ячейки в контрольном положении - 1РОО 15. Наличие дверей в отсеке выдвижного элемента ячейки Ячейки без дверей 16. Вид основных ячеек КРУ в зависимости от встраиваемого электрооборудования с разъединяющими контактами с трансформаторами		релейных шкафов и				
контрольном положении - 1POO 15. Наличие дверей в отсеке выдвижного элемента ячейки Ячейки без дверей 16. Вид основных ячеек КРУ в зависимости от выключателями высокого встраиваемого электрооборудования с разъединяющими контактами с трансформаторами						
контрольном положении - 1POO 15. Наличие дверей в отсеке выдвижного элемента ячейки Ячейки без дверей 16. Вид основных ячеек КРУ в зависимости от выключателями высокого встраиваемого электрооборудования с разъединяющими контактами с трансформаторами						
15. Наличие дверей в отсеке выдвижного элемента ячейки 16. Вид основных ячеек КРУ в зависимости от встраиваемого электрооборудования с разъединяющими контактами с трансформаторами						
15. Наличие дверей в отсеке выдвижного элемента ячейки 16. Вид основных ячеек КРУ в зависимости от выключателями высокого напряжения с разъединяющими контактами с трансформаторами						
16. Вид основных ячеек КРУ в зависимости от выключателями высокого встраиваемого электрооборудования с разъединяющими контактами с трансформаторами	15. Наличие дверей в отсеке вылвижного элемента ячейки					
встраиваемого электрооборудования напряжения с разъединяющими контактами с трансформаторами	-	†				
контактами с трансформаторами						
с трансформаторами		с разъединяющими				
напряжения		с трансформаторами				
		напряжения				

	с силовыми
	трансформаторами
	комбинированные
	с разрядниками или ОПН
	со статическими
	конденсаторами
17. Вид управления	Местное, дистанционное
18.Габаритные размеры высоковольтных ячеек без	
шинопровода, высота / глубина / ширина, мм, не более	2268/1250(1450****)/750
19. Масса, кг, не более	600

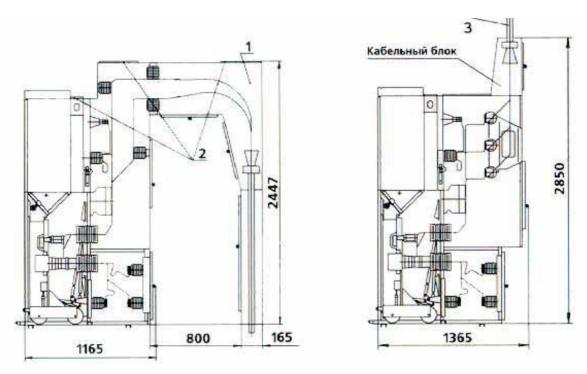
^{*} КРУ со сборными шинами на ток 1000 A при частоте 50 Гц и на ток 800 A " при частоте 60Гц выполняются только на ток электродинамической стойкости 51 кА

КРУ К63. Чертеж 1. Шкаф кабельного ввода с подключением в шкафу

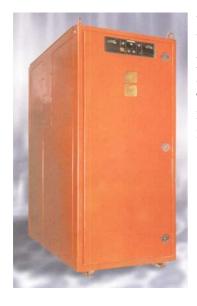

- 1. Лоток; 2. Заземляющий разъединитель; 3. Релейный шкаф; 4. Блокировочный замок;
- 5. Шторочный механизм; 6. Отсек выкатного элемента; 7. Выкатной элемент с вакуумным выключателем типа ВВ/ТЕЛ; 8. Трансформатор типа ТДЗЛ; 9. Отсек сборных шин;
- 10. Трансформатор тока; 11. Силовой кабель; 12. Отсек ввода; 13. Ограничитель перенапряжения типа ОПН; 14. Клапаны разгрузки избыточного давления.

^{**} для КРУ с трансформаторами тока на номинальные токи менее 600 А термическая и электродинамическая стойкость определяется стойкостью трансформатора тока

^{***} в зависимости от типа встраиваемого выключателя параметры тока отключения могут уточняться


^{****} КРУ с подключением силового кабеля внутри ячейки

КРУ К63. Чертеж 2. Шкаф шинного ввода/вывода



1. Фототиристор типа ТФ; 2. Клапаны разгрузки избыточного давления; 3. Шинный блок; 4. Изолятор типа ИПУ.

КРУ К63. Чертеж 3. Шкаф кабельного ввода/вывода с подключением вне шкафа

1. Кабельный блок; 2. Клапаны разгрузки избыточного давления; 3. Высоковольтный кабель.

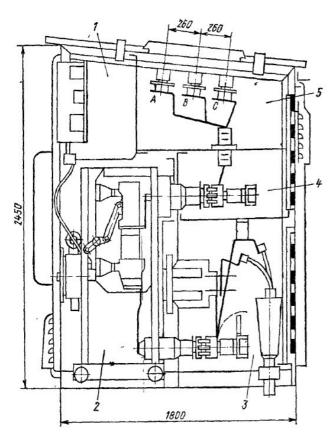
Устройство комплектное распределительное КРУРН-6А УХЛ5. Шкаф КРУРН-6А УХЛ5 предназначен для приема и распределения электрической энергии напряжением 6 кВ частоты 50 Гц, защиты сетей с изолированной нейтралью и управления токоприемниками в железнодорожных и угольных не опасных по газу и пыли, на промышленных и сельскохозяйственных предприятиях, для питания трансформаторных подстанций.

Техническая характеристика

Номинальное напряжение, кВ 6 Наибольшее рабочее напряжение, кВ 7,2

Номинальный ток, А:

- сборных шин 630


- отходящих присоединений 50, 100, 160, 200, 315, 400

вводных и секционных
 315, 400, 630

 Частота, Γц
 50

 Номинальный ток отключения, кА
 10

 Габаритные размеры, мм
 800x1770x1400

Шкаф КРУН серии К-VI-У

1- отсек вторичной коммутации; 2- тележка с выключателем ВМП-10 К и пружинным приводом; 3 — отсек нижних разъемных контактов, трансформаторов тока, кабельного ввода; 4 — отсек верхнего разъемного контакта; 5 — отсек сборных шин.

Первый отсек – отсек тележки. Второй отсек – отсек сборных шин. Третий отсек – приборный шкаф.

Лабораторная работа № _

«КОМПЛЕКТНАЯ ТРАНСФОРМАТОРНАЯ ПОДСТАНЦИЯ ТИПА КТП-10/0,4 кВ»

<u>Цель работы:</u> изучить назначение и устройство КТП.

Программа работы:

- 1. Изучить назначение и устройство КТП
- 2. Нарисовать внешний вид КТП и схему ее электрических соединений.
- 2. Записать паспортные данные КТП.
- 3. Изучить назначение и составные части вводного устройства.
- 4. Изучить силовой трансформатор (его паспортные данные, принцип действия и т.д.).
- 5. Разобраться с составными частями распределительного устройства низкого напряжения.
- 6. Изучить схему электрических соединений КТП.
- 7. Выполнить отчёт по лабораторной работе.

Содержание отчёта:

- а) краткие теоретические сведения;
- б) эскиз КТП и схема её электрических соединений;
- в) письменно ответить на контрольные вопросы.

Контрольные вопросы:

- 1. Каким образом осуществляется управление уличным освещением?
- 2. Какое оборудование входит в вводное устройство КТП?
- 3. Устройство и принцип действия силового трансформатора.
- 4. Как по коэффициенту трансформации определить назначение силового трансформатора?
- 5. Какое оборудование входит в состав распределительного устройства низкого напряжения?

Комплектные трансформаторные подстанции (КТП) изготавливаются на заводах и крупноблочными узлами доставляются на место монтажа.

КТП 6-10/0,4-0,23 кВ внутренней и наружной установки широко применяются для электроснабжения промышленных предприятий, сельскохозяйственных и коммунальных потребителей. ТакиеКТП комплектуются силовыми трансформаторами типа ТНЗ с негорючим заполнителем, трансформаторами типа ТМЗ герметичного исполнения с азотной подушкой или обычными масляными трансформаторами ТМ, ТСМА мощностью 25 - 1000 кВА.

Комплектные трансформаторные подстанции сельскохозяйственного назначения как правило выполняются наружной установки и предназначены для *приема*, *преобразования и распределения* электрической энергии потребителям.

Подстанция состоит из распределительных устройств высокого и низкого напряжения, силового трансформатора. Основным элементом подстанции является силовой трансформатор типа І. Трансформатор состоит из магнитопровода, обмоток (ВН - высшего» - низшего напряжения), бака и крышки. Трансформаторы мощностью 6,3-кВА имеют обмотку из алюминия, а трансформатор 25 кВА - из меди. Распределительное устройство ВН (вводное устройство) 6-10 представляет собой металлический шкаф (в котором установлены силовые предохранители ПК-6 или ПК-10) с проходными изоляторами установленными на крышке.

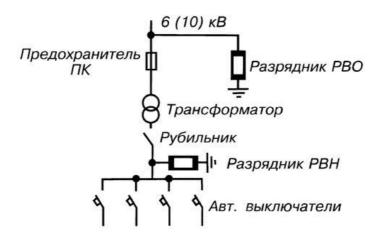
Силовой трансформатор размещается под шкафом ввода и устанавливается на раме. Изоляторы ВН и НН трансформатора закрываются зашитным металлическим кожухом, который крепится к крышке трансформатора задней части шкафа ввода. Трансформаторы ТМ-25, ТМ-40, ТМ-100 выполнены без охладителей; ТМ-160, ТМ-2150, ТМ-400 – радиаторными.

КТП ТУПИКОВОГО И ПРОХОДНОГО ТИПА мощностью 63 - 400 кВА напряжением 6 (10) кВ.

Подстанции трансформаторные комплектные представляют собой однотрансформаторные подстанции наружной установки и служат для приема электрической энергии трехфазного переменного тока частоты 50 Γ ц напряжением 6 или 10 кВ, преобразования в электроэнергию напряжением 0,4 кВ и снабжения ею потребителей в районах с умеренным климатом (от -40°C до +40°C). КТП выполняется с кабельными или воздушными вводами и выводами в различных сочетаниях. При воздушном вводе КТП подключается к ЛЭП посредством разъединителя, который поставляется комплектно с КТП и устанавливается на ближайшей опоре.

В КТП на отходящих линиях установлены стационарные автоматы. Патроны высоковольтных предохранителей установлены внутри шкафа КТП.

Подстанции обеспечивают учет активной электрической энергии. В КТП имеются электрические и механические блокировки, обеспечивающие безопасную работу обслуживающего персонала. В КТП имеется фидер наружного уличного освещения, который включается и отключается автоматически. Для создания нормальных условий работы низковольтной аппаратуры схемой предусмотрен обогрев.


Подстанции трансформаторные комплектные (КТП) представляют собой однотрансформаторные подстанции тупикового типа наружной установки, которые служат для приема электрической энергии трехфазного переменного тока частотой 50 Гц напряжением 6 или 10 кВ, преобразования ее в электроэнергию напряжением 0,4 кВ и снабжения ей потребителей.

Комплектные трансформаторные подстанции КТП-25-250/10/0,4-У1 мачтовые наружной установки предназначены для электроснабжения сельскохозяйственных потребителей, отдельных населенных пунктов и небольших промышленных объектов.

КТП имеет следующие основные части:

- 1. Устройство со стороны высшего напряжения (УВН);
- 2. Трансформатор силовой наружной установки;
- 3. Распределительное устройство со стороны низшего напряжения (РУНН) с автоматическими выключателями на отходящих линиях.

Однолинейная схема

Комплектно с КТП поставляется разъединитель наружной установки типа РЛНД-10 с приводом, а также площадка обслуживания шкафа РУНН.

НОМЕНКЛАТУРА ПОДСТАНЦИЙ НА НАПРЯЖЕНИЕ 10 кВ

- 1. Подстанции комплектные трансформаторные типа КТП мощностью от 63 до 630 кВА.
- 2. Подстанции комплектные двухтрансформаторные мощностью от 250 до 1600 кВА внутренней установки.
- 3. Подстанции двухтрансформаторные комплектные мощностью от160 до 630 кВА.
- 4. Подстанции комплектные трансформаторные тупиковые мощь в корпусе из железобетона.
- 5. Подстанции комплектные трансформаторные передвижные м.
- 6. Подстанции комплектные двухтрансформаторные блочные мощностью 250 630 кВА.

ВАРИАНТЫ ИСПОЛНЕНИЯ КОРПУСОВ БЛОКОВ:

- □ из панелей "Сэндвич" блоки РУНН, РУВН, трансформаторный блок металлический;
- □ из металла блоки РУВН, РУНН, трансформаторный блок;
- □ из железобетона, шесть блоков.

УСЛОВИЯ ЭКСПЛУАТАЦИИ

Климатическое исполнение У1 по ГОСТ 15150.

Высота над уровнем моря 1000м.

Температура окружающего воздуха от -40 до +40 С°.

Окружающая среда должна быть невзрывоопасная, не содержать агрессивных газов и испарений, химических отложений, тип атмосферы II по ГОСТ15150-69

КОМПЛЕКТНЫЕ ТРАНСФОРМАТОРНЫЕ ПОДСТАНЦИИ

Подстанция комплектная трансформаторная тупиковая в корпусе из железобетона типа КТП-ТВ

Подстанции комплектные двухтрансформаторные внутренней установки типа 2КТПВ

Подстанции комплектные двухтрансформаторные блочные в корпусе из железобетона типа КТПБ

Подстанции комплектные двухтрансформаторные типа 2КТП

Подстанция комплектная трансформаторная типа КТП-ПВ

КРАТКАЯ ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

Параметры Мощность силового трансформатора, кВА Номинальное напряжение на стороне ВН, кВ Номинальное напряжение на стороне НН, кВ Вид силового трансформатора

Подстанция комплектная трансформаторная тупиковая типа КТП-ТК

ОБЩИЕ СВЕДЕНИЯ

Комплектные трансформаторные подстанции типа КТП напряжением 6/10 кВ предназначены для приема, преобразования и распределения электрической энергии трехфазного переменного тока промышленной частоты 50 и 60 Гц в сетях электроснабжения промышленных предприятий, и других объектов. ОСОБЕННОСТИ

Подстанции изготовлены на основе сварных конструкций. Номинальные значения рабочих параметров, конструкция и сетка схем позволяют выполнять оптимальные решения в соответствии с требованиями заказчика.

ВАРИАНТЫ ИСПОЛНЕНИЯ

однотрансформаторные мощностью 63; 100; 160; 250; 400; 630 кВА

двухтрансформаторные мощностью 250; 400; 630 кВА

кабельный ввод; воздушный ввод; отходящие линии кабельные; отходящие линии воздушные; проходные; тупиковые; металлический корпус; корпус из панелей "Сэндвич"; корпус из железобетона

КОНСТРУКЦИЯ ПОДСТАНЦИЙ

конструкция из собранных с помощью сварных и болтовых соединений узлов из металлических листов, или ж/б плит или панелей "Сэндвич" и профилей

БЕЗОПАСНОСТЬ В ЭКСПЛУАТАЦИИ

высокая надежность за счет применения нормированных компонентов и стандартизованных аппаратов, а также проходных и опорных изоляторов, имеющих ребра с высокой трекингостойкостью; просторный отсек кабельных присоединений; комплект механических блокировок.

Значения 63; 100,160; 250; 400; 630 6; 10 0,4; 0,23 сухой; масляный

КОММУТАЦИОННЫЕ АППАРАТЫ
DITIONOTORI HOPPYORI

выключатель	нагрузки

□ разъединитель

□ предохранители

□ заземляющий разъединитель

□ автоматические выключатели

□ рубильники

Лабораторная работа № _____ «Разъединители короткозамыкатели и отделители»

Цель работы:

изучить конструкции разъединителей, короткозамыкателей и отделителей наружной установки 35-110 кВ; изучить работу приводов и блокировок.

Программа работы:

- 1. Изучить какие операции допускается производить с помощью разъединителя согласно ПУЭ.
 - 2. Изучить разъединители внутренней установки серий РВ, РВО, РВК.
 - 3. Изучить разъединители наружной установки серий РЛНЗ, РОН, РОНЗ.
 - 4. Изучить короткозамыкатель типа КЗ-3 5:
- а) включающие пружины,
- б) ножи короткозамыкателя и связь между ними,
- в) неподвижные контакты и изоляторы.
 - 5. Познакомиться с конструкцией и работой отделителя типа ОД-35/600:
- а) включающие пружины,
- б) контактная система отделителя,
- в) соединительные тяги полюсов отделителя.
 - 6. Познакомиться с устройством привода ШПК
- а) вал привода и вал рукоятки, соединение этих валов,
- б) механизм свободного расцепления с защелкой,
- в) отключающая катушка и реле максимального тока (РТМ),
- г) сигнально-блокировочные контакты и нагревательный элемент.
 - 7. Изучить схему совместной работы короткозамыкателя и отделителя:
- а) механическая блокировка,
- б) электрическая блокировка.

Содержание отчета:

- 1) Дать описание конструкции разъединителя, короткозамыкателя и отделителя.
- 2) Эскизы разъединителя, короткозамыкателя и отделителя.
- 3) Схема совместной работы короткозамыкателя и отделителя.
- 4) Ответить на контрольные вопросы.
- 5) Выводы по работе.

Контрольные вопросы:

- 1. Область применения разъединителей и их назначение.
- 2. Какие операции можно производить разъединителем?
- 3. В каких случаях применяются короткозамыкатели и отделители и какова последовательность их работы?
 - 4. Для какой цели нужен трансформатор тока ТШЛ-0,5?
- 5. Как осуществляется механическая блокировка между короткозамыкателем и отделителем?
 - 6. Достоинства и недостатки короткозамыкателя и отделителя.

Разъединители

Разъединители являются простейшими коммутационными аппаратами, используемыми на электрических станциях и подстанциях, и предназначены для включения и отключения электрических цепей высокого напряжения при отсутствии токов нагрузки и создания в них видимого разрыва. Контактная система разъединителей не имеет дугогасительных устройств, поэтому при ошибочном отключении нагрузки возникает устойчивая дуга, которая приводит к повреждению оборудования и несчастным случаям с обслуживающим персоналом. В этой связи необходимым требованием при работе с разъединителями является следующее: прежде чем оперировать разъединителем,

электрическая цепь должна быть разомкнута с помощью выключателя!

К разъединителям предъявляются следующие одинаковые *требования*:

- разъединитель должен создавать видимый разрыв цепи;
- должен быть электродинамически и термически устойчивым;
- должен допускать четкое включение и отключение при экстремальных условиях работы (обледенение, снег, дождь, ветер);
- должен иметь наиболее простую конструкцию, удобную для монтажа и эксплуатации.

Классифицируются разъединители по следующим признакам:

- по числу полюсов одно- и трехполюсные;
- по конструкции рубящего, поворотного, катящегося, пантографического и подвесного типа;
 - по способу установки с вертикальным и горизонтальным расположением ножей;
 - по роду установки для внутренних и наружных установок.

Разъединители для внутренней установки

Для внутренней установки применяются однополюсные (PBO) или трехполюсные (PB, PBK и др.) разъединители. Трехполюсные разъединители могут выполняться на общей раме или на отдельных рамах для каждого полюса.

Отдельные полюсы объединяются общим приводным валом.

На токи до 1000 А нож разъединителя выполняется из двух медных полос, на большие токи применяются ножи из трех-четырех полос.

В разъединителях рубящего типа (рис.1) нож вращается вокруг одного из неподвижных контактов. Движение ножу передается от вала через фарфоровые тяги. Необходимое давление в контактах создается пружинами.

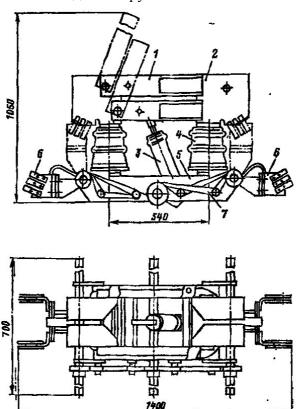


Рис. 1. Разъединители рубящего типа для внутренней установки с двумя заземляющими ножами PBP3-2-20/8000 (один полюс).

1 — подвижные ножи, 2 — неподвижный контакт, 3 — фарфоровая тяга, 4 - опорный изолятор, 5 — рама, 6 — заземляющие ножи, 7 — механическая блокировка между главными и заземляющими ножами.

Включение и отключение главных ножей осуществляется электродвигательным приводом, позволяющим производить эти операции дистанционно. Во включенном и отключенном положениях разъединитель надежно фиксируется системой рычагов привода, чтобы исключить самопроизвольное отключение или включение.

Разъединители выбирают по номинальному напряжению и току, роду установки и проверяют на термическую и динамическую стойкость токам короткого замыкания.

Разъединители для наружной установки. Разъединители, устанавливаемые в открытых распределительных устройствах, должны обладать соответствующей изоляцией и надежно выполнять свои функции в неблагоприятных условиях окружающей среды.

Разъединители рубящего типа. Разъединитель имеет два заземляющих ножа, привод главных ножей - электродвигательный (ПДН), а у заземляющих ножей - ручной. Недостатком этого разъединителя является его большие габариты, что усложняет его монтаж и эксплуатацию. Кроме того, в случае обледенения, для разрушения корки льда ножу разъединителя необходимо сообщать поступательно-вращательное движение, чем усложняется кинематика привода.

Разъединители горизонтально поворотного типа. Они выпускаются на напряжение 10 - 750 кВ. В этих аппаратах главный нож состоит из двух частей, как и у разъединителей рубящего типа, но эти части перемещаются в горизонтальной плоскости при повороте колонок изоляторов, на которых закреплены. Один полюс является ведущим, к нему присоединен привод. Движение к двум другим полюсам (ведомым) передается тягами. Эти разъединители могут иметь один или два заземляющих ножа. Контактная часть разъединителя состоит из ламелей, укрепленных на конце одного ножа, и контактной поверхности на конце другого ножа. При включении нож входит между ламелями. Давление в контакте создается пружинами. Достоинством этих аппаратов является их значительно меньшие габариты и более простой механизм управления. Кроме того, в случае обледенения, при отключении нож разъединителя как бы «ломается» на две части, поэтому значительно облегчается работа привода.

Пантографические разъединители со складывающимися ножами имеют очень сложную конструкцию. В нашей стране распространение не получили.

Подвесные разъединители. Они имеют подвижную контактную систему, состоящую из груза, снабженного пружинящими лапами и контактными наконечниками, к которым приварены токоведущие провода. Вся система подвешена на гирлянде изоляторов к порталу. Неподвижная контактная система состоит из кольца, укрепленного на опорных изоляторах или на трансформаторе тока. В отключенном состоянии подвижный контакт поднят. При включении освобождается трос, идущий к приводу, груз опускается вниз и наконечники приходят в соприкосновение с кольцом. В результате цепь — замыкается. Для заземления применяется телескопический заземлитель.

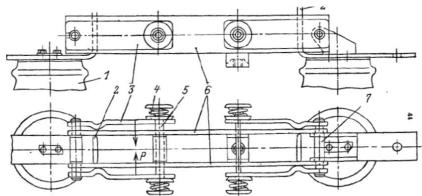


Рис 2. Контактная система разъединителей рубящего типа 1 – изолятор, 2 – неподвижный контакт, 3 – стальные пластины, 4- пружины, 5 – стержень, 6 – нож, 7 – ось.

Короткозамыкатели и отделители

Короткозамыкатель — это автоматически включающийся разъединитель, предназначенный для создания искусственного короткого замыкания. Двухполюсные короткозамыкатели применяют в установках 35 кВ (рис.3) при срабатывании которых создается искусственное двухфазное короткое замыкание.

Однополюсные короткозамыкатели применяют в сети с заземленной нейтралью напряжением 110 кВ и выше.

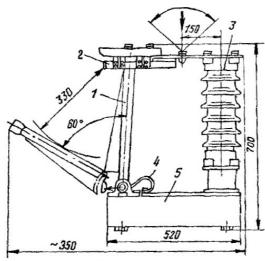


Рис. 3. Короткозамыкатель КЗ – 35.

1 – нож, 2 – неподвижный контакт, 3 – изолятор, 4 – шинка заземления, 5 – рама.

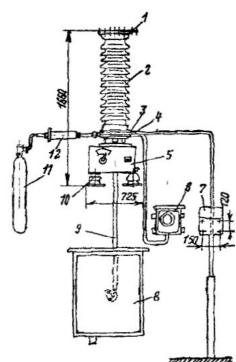


Рис. 4. Короткозамыкатель с элегазовым наполнителем К9-110. 1- контактный вывод, 2- контактная камера, 3- гидравлический затвор, 4- присоединение заземляющей шины, 5- основание, 6-мановакуумметр, 7- трансформатор тока ТЛ-0.5, 8- привод, 9-тяга, 10- изолятор, 11- баллон с элегазом, 12- фильтр.

Отделитель закрытого исполнения с элегазовым наполнением предназначен для отключения и включения токов намагничивания силовых трансформаторов и зарядных токов линий. В конструкцию отделителя входят три полюса, установленные на общем основании.

Токоведущие провода присоединяются к контактным выводам на верхнем и среднем фланцах, внутри контактной камеры находится неподвижный контакт розеточного типа и полый подвижный контакт с экраном. Включение происходит за счет пружин привода ППО. Давление в контактах создается за счет сжатой пружины и пружинящего розеточного контакта. Отключение происходит автоматически за счет отключающих пружин, расположенных в основании отделителя.

Короткозамыкатель и отделитель, устанавливаемые на подстанциях, работают встрого определенной последовательности, а именно: при повреждении силового трансформатора под действием релейной защита включается короткозамыкатель и создает двухфазное короткое замыкание на землю в питающей линии электропередачи. Тогда происходит отключение выключателя, установленного в начале линии электропередачи, который разрывает ток короткого замыкания. После разрыва тока к.з. приходит в действие отделитель и отключает силовой трансформатор от линии. Чтобы обеспечить нужную последовательность работы, между короткозамыкателем и отделителем осуществляется блокировка.

Принципиальная схема такой блокировки изображена на рис. 5 Блокировка работает следующим образом.

При повреждении силового трансформатора приходят в действие реле максимального тока 2, которое опускает защелку 3, удерживающую короткозамыкатель КЗ в отключенном положении и короткозамыкатель под действием пружины 4 включается. При замыкании его контактов происходит короткое замыкание линии на землю, вследствие чего по линии и короткозамыкателю будет протекать ток короткого замыкания. Во вторичной обмотке трансформатора тока 6 и присоединенного к нему электромагнита (блокирующего реле) 7 отделителя будет протекать трансформированный ток короткого замыкания, удерживающий сердечник 8 в нижнем положении. Установка трансформатора тока 6 и блокирующего реле 7 отделителя обеспечивает отключение последнего только после разрыва выключателем В на питающем конце линии. После отключения этого выключателя ток, протекающий в линии и короткозамыкателе становится равным нулю. Тогда сердечник 8 поднимается и сбивает защелку 10. Пружина 11 через изоляционную тягу 12 отключает отделитель. Блокирующая пластина 5, соединенная с механизмом короткозамыкателя, исключает возможность отключения отделителя до тех пор, пока не включится короткозамыкатель. Электромагниты отключения 1 и 9 служат для дистанционного включения короткозамыкателя и апробации работы отделителя.

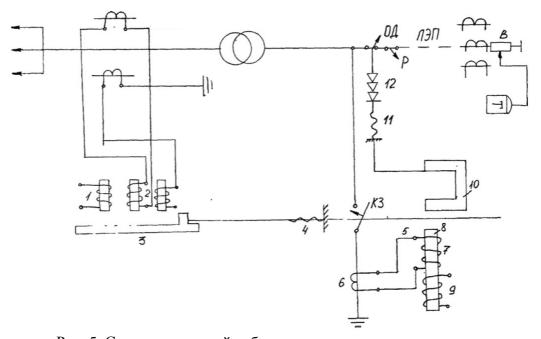
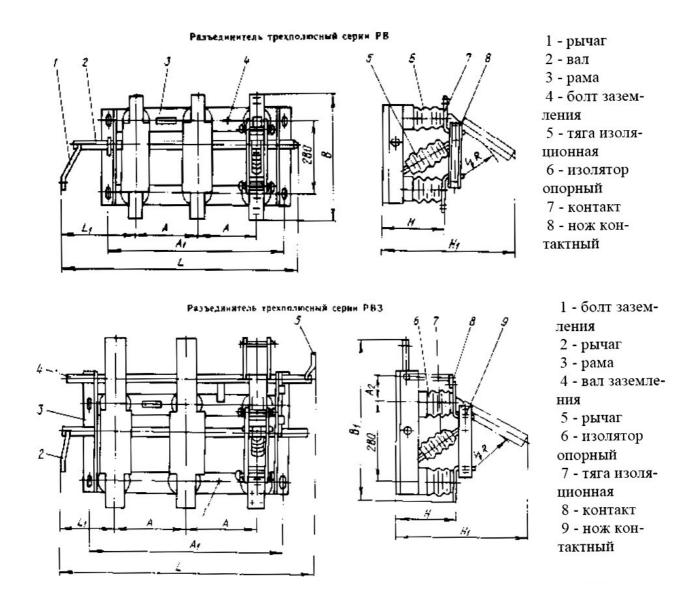



Рис. 5. Схема совместной работы короткозамыкателя и отделителя

ЛАБОРАТОРНАЯ РАБОТА №____ «МНОГООБЪЁМНЫЙ ВЫКЮЧАТЕЛЬ ВМ-35»

Цель работы:

Целью настоящей работы является изучение конструкции масляного выключателя типа BM-35, встроенных трансформаторов тока типа TB-35/10 и привода типа $\Pi\Pi$ -67.

Пояснения к работе.

Трехполюсные масляные выключатели серии ВМ-35 относятся к баковым многообъемным выключателем и предназначены для коммутации под нагрузкой электрических цепей трехфазного тока частотой 50 Гц с номинальным напряжением 35 кВ и применяется как для внутренней, так и для внешней установок. Нормальная работа выключателя обеспечивается при установке его на высоте не более 1000 м над уровнем моря и температуре окружающей среды от +40 до - 40 С. Выключатели этой серии выполняются в открытых распределительных устройствах с приводом ШНР-35, а для внутренних установок с приводом ПП-67. Масляный выключатель типа ВМ-35 выпускается на номинальное напряжение 35 кВ, номинальный ток 600 А и номинальную мощность отключения при 35 кВ до 400 МВ·А.

Программа работы:

- 1) Изучить конструкцию масляного выключателя, его паспортные данные.
- 2) Осмотреть устройство выключателя.
- 3) Ознакомиться с процессом гашения дуги (дать описание).
- 4) Осмотреть привод:
 - механизм завода пружин,
 - механизм отключения,
 - встроенные реле.

Содержание отчета:

- 1) Описать принцип работы выключателя.
- 2) Вычертить эскиз выключателя в разрезе.
- 3) Письменно ответить на контрольные вопросы.

Контрольные вопросы:

- 1) Как устроено дугогашение в масляных выключателях?
- 2) Почему баки разделены по фазам выключателя?
- 3) Почему выключатель ВМ-35 относится к многообъемным выключателям?
- 4) Достоинства и недостатки многообъемных масляных выключателей,
- 5) Можно ли осуществить с данным приводом АПВ?
- 6) Что называется одно-, пяти- и десятисекундным током термической устойчивости и чему он равен?

ЛАБОРАТОРНАЯ РАБОТА №____ «ИЗУЧЕНИЕ МАЛООБЪЁМНОГО МАСЛЯНОГО ВЫКЛЮЧАТЕЛЯ ВМГ-133 С ПРИВОДОМ ППМ-10»

Цель работы:

изучить конструкцию малообъемного масляного выключателя ВМГ-133 с приводом ППМ-10.

Пояснения к работе.

Малообъемные выключатели на напряжение до 35 кВ включительно, выполняются с одним или двумя разрывами цепи на фазу, а выключатели на напряжение 110 кВ и выше, с двумя и большим числом разрывов.

Каждый разрыв помещают в отдельном небольшом баке (горшке) выполненном из листовой стали или из изоляционного материала высокой механической и диэлектрической прочности. В этом же баке помещено дугогасительное устройство, выполненное, как правило, на принципе поперечного дутья.

Вследствие небольшого объема масла, оно быстро загрязняется и поэтому не может использоваться в качестве диэлектрика. В связи с этим в отключенном положении выключателя, конец подвижного контакта должен находиться выше уровня масла в баке с целью создания воздушного промежутка, для необходимой электрической прочности азрыва.

В малообъемных выключателях с металлическими баками бак соединяется с одним из контактов и изолируется от несущей рамы с помощью фарфоровых изоляторов.

Так как шины подводятся к болтовым зажимам, углубленным на дне бака, то бак выключателя находится под напряжением, но током не обтекаются.

Объем масла в баке должен быть достаточным для гашения дуги и охлаждения выходящих газов.

Программа выполнения работы:

- 1) Ознакомиться с паспортными данными выключателя,
- 2) Осмотреть устройство выключателя:
 - баки;
 - изоляторы проходные, подвижные контакты и фарфоровые тяги;
 - сварную раму с опорными изоляторами;
 - приводной вал с рычагами, отключающие пружины;
 - буферную пружину;
 - соединение вала выключателя с приводом;
 - зажимы для подвода тока к выключателю.
- 3) Осмотреть устройство бака выключателя:
 - гасительную камеру с продольными и поперечными каналами;
 - дополнительный резервуар со стальной камерой;
 - неподвижный контакт;
 - обратный шариковый клапан;
 - лабиринтный маслоотделитель.
- 4) Ознакомиться с процессом гашения дуги.
- 5) Осмотреть привод:
 - механизм отключения;
 - механизм завода пружины.
- 6) Произвести включение выключателя.
- 7) Познакомиться с расположением оборудования в ячейке:
 - шин.
 - разъединителей,
 - выключателя,
 - трансформаторов тока.

Содержание отчета:

Начертить эскиз масляного выключателя;

Описать конструкцию и принцип действия выключателя ВМГ-133; Письменно ответить па контрольные вопросы.

Контрольные вопросы:

Из какого материала выполняются баки выключателей ВМГ-133 на номинальные токи до $600\mathrm{A}$ и на $1000\mathrm{A}$?

Чем отличаются друг от друга выключатели ВМГ и ВМП?

Почему баки выключателей ВМГ-133 находятся под напряжением, но током не обтекаются?

Для чего используется масло в малообъемных выключателях?

Как устроены и работают дугогасительные камеры малообъемных масляных выключателей?

Для чего создается воздушный промежуток между контактами выключателя в отключенном положении?

Каково назначение карманов, расположенных в верхней части гасительной камеры?

Каковы положительные стороны малообъемных масляных выключателей по сравнению с многообъемными?

Где нашли наибольшее применение малообъемные масляные выключатели?

Что называется пятисекундным током термической устойчивости?

ЛАБОРАТОРНАЯ РАБОТА №___ «ПРИВОДЫ ВЫСОКОВОЛЬТНЫХ ВЫКЛЮЧАТЕЛЕЙ»

Цель работы:

изучить конструкцию приводов ПРБА и ПЭ-11, их механизмов включения и отключения.

Пояснения к работе:

ПРБА – привод ручной, блинкерный автоматический, может применяться при включающем усилии на рычаге не выше 300H и работе включения не более 200 Дж с выключателем не выше 35 кВ в тех случаях, когда наибольшее мгновенное значение токов короткого замыкания в месте установки не превышает 30 кА. Привод состоит из механизма свободного расцепления и набора отключающих катушек для осуществления различных схем релейной защиты.

При включении выключателя его отключающие пружины сжимаются и стремятся его отключить. Но выключатель удерживается во включенном положении механизмом свободного расцепления и защелкой. Ручное отключение осуществляется поворотом рычага сверху вниз. При этом освобождается защелка и выключатель отключается. При автоматическом отключении рычаг остается на месте, а освобождение защелки производится ударником отключающей катушки. Автоматическое отключение выключателя сигнализируется горизонтальным положением блинкера. Привод снабжен сигнальными контактами типа КСА.

Электромагнитный привод изготавливается для автоматического дистанционного управления любыми выключателями. Особенностями этого привода являются:

- тяговая характеристика, развиваемая электромагнитом, соответствует характеристике противодействующих сил выключателя;
 - требует наличия мощного источника постоянного тока;
- в связи с большим потреблением тока необходимо выбирать кабель значительного сечения, чтобы избежать значительного падения напряжения;
- вследствие электромагнитных процессов, происходящих в приводе, время включения достигает 1 с.

Увеличение мощности приводов влечет за собой увеличение мощности аккумуляторных батарей и применения кабелей большого сечения. В связи с этим применение приводов этого типа наибольшее распространение получили для выключателей небольшой мощности.

Программа выполнения работы:

І. ПРИВОД ПРБА.

Ознакомиться с: конструкцией привода; механизмом свободного отключения с защелкой; блинкером; отключающими катушками привода.

II. ПРИВОД ПЭ-11.

Ознакомиться с конструкцией привода: механизмом включения и отключения; механизмом ручного отключения.

Ознакомиться со схемой включения.

Ознакомиться с конструкцией ключа управления.

Содержание отчета:

Дать описание области применения, устройства и принципа действия приводов.

Письменно ответить на контрольные вопросы.

Контрольные вопросы:

- 1) Какие приводы изготавливаются по роду используемой энергии, по роду установки?
- 2) Достоинства и недостатки приводов ПРБА и ПЭ-11?
- 3) С какими выключателями применяются данные приводы?
- 4) Какие требования применяются к приводам?
- 5) Применяются ли данные приводы в схемах АПВ?

ЛАБОРАТОРНАЯ РАБОТА №___ «ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМА ТОРЫ НАПРЯЖЕНИЯ»

Цель работы:

изучить работу трансформаторов напряжения, их конструкцию, а также работу контроля изоляции в сетях с изолированной нейтралью.

Пояснения к работе.

Трансформаторы напряжения применяются в электроустановках переменного тока напряжением $0,4~\mathrm{kB}$ и выше для питания параллельных катушек измерительных приборов и реле защиты.

Первичную обмотку трансформатора напряжения подключают параллельно к сети, а ко вторичной обмотке присоединяют параллельные катушки приборов и реле.

Преобразование напряжения трансформатором характеризует его номинальный коэффициент трансформации (обозначается на его щитке). Измерительные трансформаторы напряжения изготавливают с такими коэффициентами трансформации, при которых их номинальное вторичное напряжение равно 100~B или $100/\sqrt{3}$.

Принципиальная схема включения трансформаторов напряжения подобна схеме включения силовых трансформаторов, а рабочий режим напоминает режим холостого хода силовых трансформаторов.

Векторные диаграммы их несколько различны.

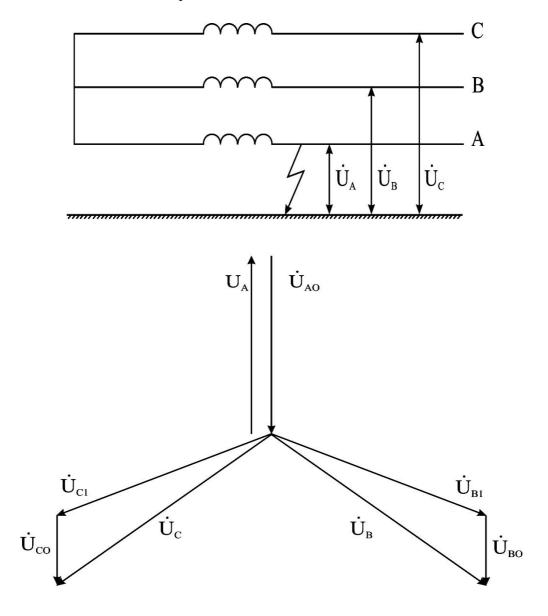
Для построения векторной диаграммы трансформатора напряжения необходимо знать; активные и индуктивные сопротивления обмоток, ток намагничивания. Целью построения векторной диаграммы является определение первичного напряжения по известной величине вторичного напряжения. Из векторной диаграммы видно, что для реального трансформатора напряжения $U_1 \neq U_2$ и сдвинуты на угол, называемый *угловой погрешностью*.

Рассеяние магнитного потока и потери в сердечнике приводят к погрешности измерения:

Vгловой погрешностью трансформатора напряжения называют угол δ между векторами U_1 и повернутому на 1800 вектором вторичного напряжения - U_2 .

погрешности зависят тока холостого хода. Для уменьшения ОТ этой величины сердечник трансформатора напряжения изготавливают с возможно меньшим магнитным сопротивлением. Погрешности увеличиваются с увеличением вторичной нагрузки S₂. Погрешности зависят от активного и индуктивного сопротивлений обмоток трансформатора напряжения, с уменьшением которых погрешности уменьшаются, С увеличением индуктивности вторичной обмотки (уменьшением соѕф) особенно значительно увеличивается угловая погрешность трансформатора нормализуется при $\cos \varphi = 0.8$. Значительные колебания первичного напряжения также оказывают на величину погрешностей.

Трансформаторы напряжения, согласно ГОСТ, должны удовлетворять заданным классам точности при значениях изменения мощности и напряжения от $0.25\cdot(U_1/U_1\text{ном})\cdot S$ допустимые колебания напряжения U_1 при этом должны находиться в пределах $\pm 10\%$ от U_{1HOM} .


Погрешности по напряжению можно изменить при помощи коэффициента трансформации. Для этого уменьшают число витков первичной обмотки на величину: $w_K = w_1(\Delta U/100)$, где w_1 и W_{K^-} соответственно полное число первичной обмотки и число уменьшенных витков.

Коррекция угловой погрешности может быть выполнена у трехфазных трансформаторов напряжения с помощью дополнительных компенсационных обмоток, которые соединяются с основными обмотками по схеме «зигзаг».

Для каждого трансформатора напряжения установлена величина максимальной (предельной) мощности, длительно допускаемой по условию его нагрева. Использование трансформатора напряжения на максимальную мощность возможно только для питания сигнальных реле, отключающих катушек автоматов и других приборов реле, для правильной работы которых не имеет значения величина погрешности.

<u>Контроль</u> <u>изоляции.</u> Сети напряжением 6 – 35 кВ работают с изолированной нейтралью.

В нормальном режиме напряжение фаз относительно земли U_u , U_v и U_w симметричны и равны фазному напряжению установки. При замыкании одной фазы на землю симметрия напряжений нарушается: возникают напряжения прямой $(U_{u1}\ U_{v1}\ U_{w1})$, обратной $(U_{u2},U_{v2},\ U_{w2})$ и нулевой $(U_{u0},\ U_{v0},\ U_{w0})$ последовательностей. Так как нулевая точка сети не заземлена, сопротивление нулевой последовательности велико. Поэтому напряжение обратной последовательности близко к нулю, а напряжение нулевой последовательности близко к напряжение обратной последовательности близко к напряжению сети.

Векторная диаграмма напряжений трансформатора напряжений

Из векторной диаграммы видно, что напряжение фазы U равно нулю, а напряжение фаз V и W увеличиваются в √3 раз против нормальной величины. Междуфазные напряжения остаются неизменными как по величине, так и по фазе. Поэтому работа приемников энергии не нарушается.

Согласно ПУЭ (Правила устройства электроустановок) допускается работа сети с изолированной нейтралью, при замыкании одной фазы на землю в течение 2 часов.

Однофазное замыкание в сети с изолированной нейтралью не является коротким. Через точку замыкания протекает небольшой емкостной ток, величина которого зависит от напряжения уставки, частоты и емкости фаз сети относительно земли.

Контролирующее устройство выполняется с помощью 3-х вольтметров, присоединенных к сборным шинам через измерительный трансформатор напряжения (трехфазный пятистержневой или три однофазных). Первичную и вторичную обмотки соединяют «в звезду», нейтрали - заземляют. Заземление нейтрали первичной обмотки необходимо для измерения напряжения между фазой и землей, вторичной - в целях безопасности. Вольтметры включаются на фазное напряжение. При металлических однофазных замыканиях на землю в сети их показания меняются: показание вольтметра поврежденной фазы становится равным нулю, а показания двух других вольтметров увеличиваются в $\sqrt{3}$ раз.

Звуковая сигнализация однофазного замыкания на землю осуществляется при помощи реле максимального напряжения, подключенного к дополнительной обмотке соединенного в разомкнутый треугольник. В нормальных условиях сумма э.д.с., индуктированных в трехфазных обмотках примерно равна нулю. Поэтому и напряжение, подведенное к реле, равно нулю. При однофазном замыкании напряжение на реле может увеличиваться до 100 В, реле срабатывает и подает звуковой сигнал.

Порядок выполнения работы:

Ознакомиться с конструкцией, паспортными данными и схемами соединений трансформаторов напряжения, представленных в лаборатории

Содержание отчета:

- 1) Нарисовать эскизы представленных в лаборатории трансформаторов напряжения.
- 2) Схемы включения трансформаторов напряжения (однофазных, трехфазных).
- 3) Письменно ответить на контрольные вопросы.

Контрольные вопросы:

- 1) Что такое контроль изоляции, в каких установках и для чего он применяется?
- 2) Почему установки до 35 кВ включительно работают с изолированной нейтралью, а на 110 кВ и выше с глухозаземленной нейтралью?
- 3) Что произойдет, если нейтраль первичной обмотки трансформатора напряжения типа НТМИ будет не заземлена?
- 4) Почему нельзя заземлять нейтраль первичной обмотки трансформатора напряжения типа НПМК?
- 5) Чему равно напряжение на дополнительной обмотке НТМИ в нормальном режиме и в режиме однофазного замыкания на землю?
 - 6) Каким способом можно уменьшить угловую погрешность?

5. Курсовое проектирование

5.1 Методические рекомендации по выполнению курсового проекта «Проектирование электрической части подстанции электроснабжения»

Часть І

Примерное содержание пояснительной записки

Введение

- 1. Содержание и основные разделы курсового проекта
- 2. Потребление активной и баланс реактивной мощности в проектируемой сети
 - 2.1. Задачи проработки раздела
 - 2.2. Обеспечение потребителей активной и реактивной мощностью
 - 2.3. Баланс реактивной мощности в проектируемой сети .
 - 2.4. Размещение компенсирующих устройств в электрической сети
- 3. Выбор номинального напряжения, схемы и основных параметров линий и подстанций
 - 3.1. Задачи и исходные положения проработки раздела
 - 32. Формирование вариантов схемы и номинального напряжения сети
 - 3.3. Выбор схем электрических подстанций
 - 3.4. Выбор технических параметров и характеристик основного оборудования линий и подстанций сети
 - 3.5. Анализ вариантов и выбор схемы и номинального напряжения сети
- 4. Расчет параметров основных режимов сети
 - 4.1. Задачи и исходные условия расчетов
 - 4.2. Рекомендации по расчетам основных режимов сети
- 5. Регулирование напряжения в сети
- 6. Основные технико-экономические показатели спроектированной сети
- 7. Оформление материалов проекта

Литература

Введение

Опыт подготовки инженеров-электроэнергетиков убедительно показал существенное значение выполнения студентами курсового проекта, в котором в конкретной форме прорабатываются основы проектирования районных распределительных электрических сетей 110(35)—220 кВ, обеспечивающих надежную и экономичную работу электроэнергетических систем.

Такая роль этого проекта определяется: во-первых, тем, что здесь студенты впервые решают конкретную задачу формирования комплекса линий электропередачи, подстанций, средств компенсации реактивных нагрузок и т. п. и их характеристик на основе специальных технических, технико-экономических и нормативных требований, обеспечивающих необходимое качество работы собственно проектируемой электрической сети, а также электроснабжения потребителей; во-вторых, эти непростые задачи должны решаться студентами в основном самостоятельно на основе комплекса знаний закономерностей электротехники, теории электрических сетей и с привлечением некоторых материалов курсов по электрическим машинам, электротехническим материалам и т. п.

Многосторонность вопросов проектирования электрических сетей энергосистем, ограниченное время работы студентов над проектом и незавершенность (в период работы над проектом) полного цикла высшего электроэнергетического образования обуславливает допущения и упрощения выполнения некоторых расчетов и принятия решений (не приводящие к принципиальным, качественным или недопустимым погрешностям), которые оговариваются в методических указаниях.

Исходя из учебно-методических установок и назначения курсового проектирования, как одной из основных форм самостоятельной учебной работы студентов, данные указания составлены в форме научно-технических консультаций и без дублирования лекционных и литературных материалов по вопросам электрических сетей.

1. Содержание и основные разделы курсового проекта

Проектирование электроэнергетических систем должно решать задачи формирования целесообразного комплекса электрических станций, линий электропередачи и понижающих подстанций, обеспечивающих высококачественное электроснабжение всех потребителей рассматриваемого региона (промышленность, транспорт, коммунально-бытовой комплекс, сельскохозяйственные производства и населенные пункты). При этом современная трактовка «целесообразного» выполнения энергосистемы подразумевает не только экономическую эффективность ее осуществления, но и соответствие требованиям охраны природы и экологической среды человека, технической эстетики, учета развития как потребителей электроэнергии, так и иных факторов народного хозяйства страны и т. п. В успешном решении данных задач очевидна роль научно-грамотного формирования конфигураций, схем и выбора параметров электрических сетей районов, являющихся связующей подсистемой между электрическими станциями и электроустановками непосредственных потребителей электроэнергии. В настоящее время в нашей стране, как и в иных индустриально развитых странах большая часть электрических сетей указанного назначения осуществляется при напряжениях классов 110—115 и 220—230 кВ. Протяженность электрических сетей 35—220 кВ в электроэнергетических системах составляет около 90% суммарной протяженности электросетей 35—1150 кВ.

Развитие современных электроэнергетических систем, имея в виду их базовое значение в индустриальном и социальном развитии страны, необходимо прогнозировать на 15 — 25 лет вперед. Планирование развития и проектирование конкретных электросетей районов осуществляется с прогнозом электропотребления, электрических нагрузок, состава электростанций и т. п. — на 10 — 15 лет. При этом неизбежна ограниченность достоверности указанных выше и иных исходных условий проектирования.

данном курсовом проекте осуществляется «эскизное» проектирование электрических сетей заданного района с пятью — шестью пунктами потребления электроэнергии, в которых будут сооружаться понижающие напряжение подстанции. Источником питания может быть крупная электростанция или подстанция 220—750 кВ, входящая в состав объединенной электроэнергетической системы. В отдельных случаях могут быть указаны два источника питания, но в таких заданиях для одного из них обязательно графики выдачи активной задаются И реактивной мошностей. предшествующем и последующем текстах номинальное напряжение 35 кВ записывается в скобках в связи с ограниченной пропускной способностью линий электропередачи (ЛЭП) данного напряжения, что обусловливает тенденции ограничения их развития; применение напряжения находит применение В основном электроснабжении данного сельскохозяйственных районов.

Каждому студенту в индивидуальном задании на проект указываются:

- а) схема географического расположения источника питания района, пунктов потребления электроэнергии, а также район страны, в котором проектируется электрическая сеть;
- б) номинальные напряжения распределительных устройств источников питания (35— 110-220~ кВ), от которых может осуществляться электроснабжение рассматриваемого района;
- в) максимальные и минимальные электрические нагрузки (активные и реактивные) в каждом из пунктов потребления электроэнергии, а также продолжительности использования наибольших нагрузок (час/год) и состав потребителей электроэнергии по требованиям надежности электроснабжения;
- г) величина реактивной мощности, которая может быть выдана с шин источника питания в проектируемую электрическую сеть;
- д) величина расчетных удельных убытков от аварийных и плановых перерывов питания потребителей (руб/кВт);
 - е) конкретизация состава расчетов, выполняемых на ЭВМ.

При выполнении проектов, как правило, следует предполагать, что номинальное напряжение распределительных электросетей в пунктах потребления электроэнергии равно 10 кВ; в соответствии с нормами и международными тенденциями следует исключать перспективы применения напряжения 6 кВ.

В отдельных случаях в заданиях могут быть заданы суточные графики потребления активной и реактивной мощности в заданных пунктах. Вместе с тем в большей части заданий для всех пунктов подразумевается характерный суточный график активной нагрузки с вечерним максимумом (в зимнее время) в период 17—20 часов, с нагрузками в период 9—12 час, равными 80—90% от максимальных и с минимальными нагрузками в период 0—6 ч.

Характерными разделами курсового проекта и ориентировочные значения их относительного объема (по трудозатратам) являются следующие:

- 1. Ознакомление с заданием на проект, с методическими указаниями, формирование конкретных условий, задач и плана выполнения проекта—5%.
- 2. Потребление активной мощности и баланс реактивной мощности в проектируемой сети 10%.
- 3. Выбор схемы и основных параметров линий электропередачи и понижающих подстанций сети 40%.
- 4. Овладение алгоритмом и использованием программы автоматизированного расчета на 3BM 15%.
 - 5. Расчеты параметров основных режимов работы сети 15%.
 - 6. Регулирование напряжения на подстанциях сети 10%.
- 7. Основные технико-экономические показатели спроектированной электрической сети 5%.

В указанные выше объемы разделов проекта входят и трудозатраты на написание и корректировку (по рекомендациям преподавателей) материалов расчетно-пояснительной записки и чертежей. Необходимо иметь в виду трудоемкость этой работы, составляющей не менее 10-15% общего рабочего времени, затрачиваемого студентами на выполнение проекта.

2. Потребление активной и баланс реактивной мощности в проектируемой сети Задачи проработки раздела

Задачами расчетов и анализа полученных результатов в данном разделе проекта являются: оценка суммарного потребления реактивной мощности в проектируемой электрической сети; анализ выполнения условий баланса реактивной мощности в проектируемой сети; определение суммарной мощности компенсирующих устройств, устанавливаемых в сети; определение мощности компенсирующих устройств и их размещения в узлах электрической сети.

Расчет баланса мощности должен выполняться для всех основных нормальных и наиболее тяжелых послеаварийных режимов работы проектируемой сети. На первом этапе выполнения проекта оценка баланса реактивной мощности выполняется только для нормального режима работы проектируемой сети при наибольших нагрузках потребителей.

Обеспечение потребителей активной и реактивной мощностью

Потребление активной мощности в проектируемой сети в период наибольших нагрузок слагается из заданных нагрузок в пунктах потребления электроэнергии и потерь мощности в линиях, понижающих трансформаторах и автотрансформаторах. При определении одновременно потребляемой активной мощности следует учитывать несовпадение по времени суток наибольших нагрузок отдельных потребителей. За счет этого несовпадения одновременно потребляемая активная мощность составляет обычно 95 — 96 % от суммы заданных наибольших нагрузок. Потери активной мощности в правильно спроектированной сети составляют 4 — 6 % от потребляемой мощности.

Источниками активной мощности в электроэнергетических системах являются электрические станции. Установленная мощность генераторов электростанции должна быть такой, чтобы покрыть все требуемые нагрузки с учетом потребителей собственных нужд станций и потерь мощности в элементах сети, а также обеспечить необходимый резерв мощности в системе. В курсовом проекте рассматривается электроснабжение района от электростанции или от одной из подстанций, входящих в состав крупной электроэнергетической системы, способной обеспечить выдачу активной мощности всем потребителям проектируемой сети без каких-либо ограничений.

Наибольшая суммарная активная мощность, потребляемая в проектируемой сети, составляет

$$P_{n,n\delta} = k_{0(P)} \sum_{i=1}^{n} P_{H\delta,i} + \Delta P_C \sum_{i=1}^{n} P_{H\delta,i} = (k_{0(P)} + \Delta P_C) \sum_{i=1}^{n} P_{H\delta,i}$$
 (2.1)

где $P_{H6,i}$ — наибольшая активная нагрузка подстанции i, 1=1, 2, ..., n; $k_{0(P)}=0.95$ -

0.96 — коэффициент одновременности наибольших нагрузок подстанций; $\Delta P_c = 0.05$ — суммарные потери мощности в сети в долях от суммарной нагрузки подстанций.

Соответствующая данной $P_{H\delta,i}$ необходимая установленная мощность генераторов электростанций определяется следующими составляющими

$$P_{\text{9C}} = P_{\Pi,\text{H6}} + P_{\text{9C,CH}} + P_{\text{9C,pe3}}$$
 (2.2)

где $P_{\text{эс.сн}}$ — электрическая нагрузка собственных нужд и $P_{\text{эс.рез}}$ — оперативный резерв мощности электростанций.

Нагрузка собственных нужд зависит от типа электрической станции и может быть ориентировочно принята для КЭС 3—8 %, для ТЭЦ 8 — 14 %, для АЭС 5 — 8 % и для ГЭС— 0.5 — 3 % от установленной мощности генераторов электрической станции.

Оперативный резерв обосновывается экономическим сопоставлением ущербов от вероятного недоотпуска электроэнергии при аварийном повреждении агрегатов на электростанции с дополнительными затратами на создание резерва мощности. Ориентировочно резервная мощность электростанций должна составлять 10—12% от суммарной установленной мощности генераторов, но быть не менее номинальной мощности наиболее крупного из генераторов, питающих рассматриваемых потребителей.

Баланс реактивной мощности в проектируемой сети

Основным, но не единственным источником реактивной мощности в системе являются генераторы электростанций. Располагаемая реактивная мощность электростанций определяется согласно номинальному коэффициенту мощности установленных на станциях генераторов. Кроме этого, в электрических сетях широко используются дополнительные источники реактивной мощности — компенсирующие устройства (КУ). Основным типом КУ, устанавливаемых на подстанциях потребителей, являются конденсаторные батареи. На основе специальных расчетов распределения реактивной мощности в электроэнергетической системе, для каждого узла системы определяется реактивная мощность, которую целесообразно передавать из системы в распределительные сети, питающиеся от того или иного узла.

Поэтому при проектировании электрической сети, получающей питание от системы, задается реактивная мощность Q_c , которую целесообразно потреблять из системы (в заданном узле присоединения) в режиме наибольших нагрузок. Потребление большей мощности приведет к дополнительной загрузке системных источников реактивной мощности, к дополнительным затратам на генерацию и передачу этой мощности и, следовательно, к отступлению от оптимального режима питающей системы. В связи с этим в проекте следует предусмотреть мероприятия, обеспечивающие выполнение поставленных электроэнергетической системой условий по потреблению реактивной мощности. Для этого необходим расчет баланса реактивной мощности в проектируемой сети.

Решить вопрос о необходимости установки КУ в проектируемой сети следует до выполнения расчетов возможных вариантов схемы и параметров сети, так как компенсация реактивной мощности влияет на передаваемые по линиям электропередачи и через трансформаторы мощности, на потери мощности и напряжения в элементах сети и может влиять на выбираемые номинальные мощности трансформаторов и сечения проводов линий. Таким образом, выбор мощности КУ и их размещение влияют на оценку технических и технико-экономических характеристик и показателей вариантов схемы сети и, следовательно, на принятие окончательного решения по рациональной схеме проектируемой сети района. В окончательно выбранном варианте электрической сети после расчетов установившихся режимов мощности КУ должны быть уточнены для обеспечения выполнения баланса реактивной мощности.

При небольшом количестве пунктов потребления, рассматриваемых в данном проекте, результаты расчетов баланса реактивной мощности для разных схем сетей (при совпадающих номинальных напряжениях) отличаются незначительно. Поэтому, расчет баланса реактивной мощности допустимо выполнять для одного из вариантов электрической сети. В случае необходимости этот расчет может быть уточнен после окончательного выбора схемы сети.

Суммарная наибольшая реактивная мощность, потребляемая с шин электростанции или районной подстанции, являющихся источниками питания для проектируемой сети, может быть оценена по выражению:

$$Q_{n,n\delta} = k_{0(Q)} \sum_{i=1}^{n} Q_{n\delta,i} + \Delta Q_{T,\Sigma} + \sum_{i=1}^{m} (\Delta Q_{l} - \Delta Q_{c,l})$$
(2.3)

где $k_{0(Q)}$ — коэффициент одновременности наибольших реактивных нагрузок потребителей $k_{0(Q)} \approx 0.98;~Q_{n\delta.i}$ — наибольшая реактивная нагрузка узла i;~n — количество пунктов потребления электроэнергии; $\Delta Q_{T.\Sigma}$ — суммарные потери реактивной мощности в трансформаторах и автотрансформаторах; ΔQ_l — потери реактивной мощности в линии l: $\Delta Q_{c,l}$ — реактивная мощность, генерируемая линией l; l—номера линий в рассматриваемой сети (l=1,2,...,m).

Для оценки потерь реактивной мощности в трансформаторах и автотрансформаторах можно принять, что при каждой трансформации напряжения потери реактивной мощности составляют приблизительно 10% от передаваемой через трансформатор полной мощности

$$\Delta Q_{T,\Sigma} \cong 0,1 \sum_{i=1}^{n} a_{T,i} S_{H\delta,i} \tag{2.4}$$

где $a_{T,i}$ - количество трансформаций напряжения от источника до потребителей в i-м пункте сети.

Потери реактивной мощности в линии ΔQ_{l} ; существенно зависят от передаваемой мощности и длины линии; генерируемая линией реактивная мощность $\Delta Q_{c,l}$ пропорциональна длине линии. Обе эти величины зависят от напряжения электропередачи, причем потери мощности обратно пропорциональны, а зарядная мощность прямо пропорциональна квадрату напряжения линии электропередачи. Вследствие этого соотношение ΔQ_{l} и $\Delta Q_{c,l}$ весьма различается для линий разных номинальных напряжений. Сечение проводов воздушной линии практически не оказывает влияния на величины $\Delta Q_{,l}$ и $\Delta Q_{c,l}$.

Для воздушных линий $110~\rm kB$ допускается на этой стадии расчета принимать равными величины потерь и генерации реактивной мощности. Для сетей с номинальным напряжением $220~\rm kB$ целесообразен расчет потерь реактивной мощности и зарядной мощности линий. Для оценки потерь реактивной мощности в воздушных линиях $220~\rm kB$ удельное реактивное сопротивление линии может быть принято равным $0,42~\rm Om/km$, а удельная генерация реактивной мощности q_c = $0,14~\rm Mgap/km$. При этом следует учитывать количество цепей воздушной линии.

Полученное по (2.3) значение суммарной потребляемой реактивной мощности $Q_{n,h6}$ сравнивается с указанным в задании на проект значением реактивной мощности Q_c , которую экономически целесообразно получать из системы в проектируемую сеть. В случае $Q_{n,h6} \le Q_c$ необходимость в установке КУ в узлах проектируемой сети отсутствует, так как системные источники реактивной мощности полностью покрывают всю потребность в ней.

При $Q_{\text{п,нб}} > Q_c$ в проектируемой сети должны быть установлены КУ, суммарная мощность которых определяется из выражения

$$Q_{k,\Sigma} = Q_{n,H\delta} - Q_c \tag{2.5}$$

Как уже отмечалось выше, основным типом КУ являются конденсаторные батареи, подключаемые в электрических сетях 10(6) кВ, питающихся от подстанций проектируемой сети. Вместе с тем, на крупных узловых подстанциях с высшим номинальным напряжением 110—220 кВ и более в ряде случаев может быть оправдана установка синхронных компенсаторов или статических тиристорных компенсаторов.

Размещение компенсирующих устройств в электрической сети

Конденсаторные батареи суммарной мощностью $Q_{k,\Sigma}$ должны быть распределены между подстанциями проектируемой сети таким образом, чтобы потери активной мощности в сети были минимальны. Решение этой оптимизационной задачи для сложной распределительной электрической сети может быть получено только с помощью специальных методов оптимизации режимов и расчета на 9BM по специальным программам. В то же время для достаточно простых схем, рассматриваемых в курсовом проекте, можно дать некоторые рекомендации по решению данной задачи без применения 9BM:

- 1. В электрических сетях двух и более номинальных напряжений (например, 220/110 кВ) следует в первую очередь устанавливать КУ в сетях 10 кВ, питающихся от подстанции более низкого номинального напряжения (например, 110 кВ).
- 2. В сети одного номинального напряжения экономически целесообразна в первую очередь компенсация реактивной мощности у наиболее электрически удаленных потребителей (по активному сопротивлению сети). При этом может быть экономически целесообразна полная компенсация реактивной мощности на данных подстанциях.

3. При незначительной разнице в электрической удаленности подстанций от источника питания в сети одного номинального напряжения расстановка КУ может производиться по условию равенства коэффициентов мощности нагрузок на шинах 10 кВ, удовлетворяющему требованию баланса реактивной мощности в проектируемой сети

$$tg\varphi_{\delta} = (\sum_{i=1}^{n_k} Q_{n\delta,i} - Q_{k\Sigma}) / \sum_{i=1}^{n_k} P_{n\delta,i}$$
 (2.6)

где i, n_{κ} — номера подстанций, на которых предусматривается установка конденсаторных батарей.

Тогда мощность конденсаторной батареи в каждом из рассмотренных узлов определяется в соответствии с выражением

$$Q_{k,i} = P_{H\delta,i}(tg\phi_i - tg\phi_\delta)$$
 (2.7)

Компенсация реактивной мощности оказывает существенное влияние на экономические показатели функционирования электрической сети, так как позволяет снизить потери активной мощности и электроэнергии в элементах сети. При выполнении норм экономически целесообразной компенсации реактивной мощности у потребителей $tg\phi_i$ на шинах $10~\mathrm{kB}$ подстанций должен быть доведен до значения $tg\phi_0 \cong 0,4$. Исходя из этого условия на каждой подстанции должны быть установлены конденсаторные батареи мощностью

$$Q_i = P_{H\delta,I}(tg\phi_I - tg\phi_{\Theta})$$
 (2.8)

Окончательное решение о необходимой мощности конденсаторных батарей на каждой из подстанций принимается по большей из величин, вычисленных по выражениям (2.7) и (2.8). Для некоторых из рассматриваемых подстанций вычисленная мощность КУ может оказаться отрицательной. Это свидетельствует о том, что единый коэффициент мощности достаточно высок и установка КУ в данном узле неоправданна. Данный узел должен быть исключен из числа $n_{\rm k}$, соответственно уточнены значения $tg\phi_6$ и мощности КУ в узлах сети. Заключительным в данном разделе расчетом является определение действительных нагрузок подстанций с учетом мощности установленных конденсаторных батарей. Все результаты расчетов целесообразно свести в таблицу, указав в ней значения потребляемых активных и реактивных мощностей в узлах сети и реактивную мощность, потребляемую из сети каждой подстанцией с учетом мощности установленных конденсаторных батарей.

3. Выбор номинального напряжения, схемы и основных параметров линий и подстанции

Задачи и исходные положения проработки раздела

В этом разделе проекта выбираются номинальное напряжение электрической сети, ее схема, образуемая линиями электропередачи, схемы электрических соединений понижающих подстанций, марки проводов воздушных линий и число и мощности трансформаторов, и автотрансформаторов подстанций.

Эти фундаментальные характеристики определяют капиталовложения и расходы по эксплуатации электрической сети, и потому их комплекс должен отвечать требованиям экономической целесообразности. При этом следует учитывать, что указанные характеристики и параметры сети находятся в тесной технико-экономической взаимосвязи. Так, изменение схемы сети может повлечь необходимость изменений не только сечений проводов воздушных линий и схем подстанций, но и изменения ее номинального напряжения (по техническим условиям или по технико-экономическим соображениям).

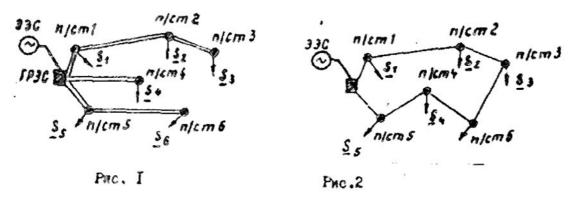
В общем виде требования к комплексу схемы, номинального напряжения и основных параметров сети должны обеспечивать экономическую ее целесообразность (на основе принятых или нормированных технико-экономических критериев) при обеспечении обоснованной (или заданной) надежности электроснабжения потребителей электроэнергии и нормированного качества напряжения.

Решение данной сложной задачи, как правило, осуществляется на основе формирования ряда вариантов выполнения сети, обладающих отличающимися техническими и технико-экономическими характеристиками и показателями; при этом используются сведения, характеристики и закономерности, полученные в научных исследованиях и на основе практики проектирования [4].

Общие принципы экономически целесообразного формирования электрических сетей могут быть сформулированы следующим образом:

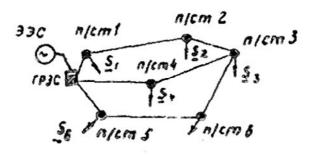
- а) схема сети должна быть по возможности (обоснованно) простой и передача электроэнергии потребителям должна осуществляться по возможно кратчайшему пути, что обеспечивает снижение стоимости сооружения линий и экономию потерь мощности и электроэнергии;
- б) схемы электрических соединений понижающих подстанций также должны быть, возможно, (обоснованно) простыми, что обеспечивает снижение их стоимости сооружения и эксплуатации, а также — повышение надежности их работы; в) следует стремиться осуществлять электрические сети с минимальным количеством трансформаций напряжения, необходимую установленную мощность трансформаторов автотрансформаторов, а также — потери мощности и электроэнергии; г) комплекс номинального напряжения и схемы сети должны обеспечивать необходимое качество электроснабжения потребителей выполнение технических И электрооборудования линий и подстанций (по токам в различных режимах сети, по механической прочности и т. п.).

Все расчеты данного раздела выполняются, в основном, по методикам, изложенным в [1, 2], и с учетом рекомендаций и норм по [3, 4, 5].


Формирование вариантов схемы и номинального напряжения сети

Выше было сказано о том, что выбор рациональной схемы сети производится на основе технико-экономического сопоставления ряда ее вариантов, которые составляются проектировщиком (студентом). Сопоставляемые варианты обязательно должны отвечать условиям технической осуществимости каждого из них по параметрам основного электрооборудования (провода, трансформаторы и т. п.), а также быть равноценными по надежности электроснабжения потребителей, относящихся к первой категории по [3, 4, 5].

Необходимость составления альтернативных или дополняющих друг друга вариантов схемы сети обуславливается тем, что основные различные типы схем обладают различными


и часто конкурирующими техническими и технико-экономическими показателями (при сооружении, эксплуатации и т. п.).

Разработку вариантов необходимо начинать не по пути «всевозможных сочетаний» линий, подстанций и номинальных напряжений, а на основе принципов, приведенных в предыдущем параграфе, и с учетом соображений альтернативности качеств и показателей определенных типов схем сетей. На такой основе можно рекомендовать формирование в первую очередь вариантов схем сетей: а) радиально-магистрального типа, при котором линии (двухцепные или одноцепные) не образуют замкнутых контуров (рис. 1); б) простейшего замкнутого кольцевого (петлевого) типа (рис. 2). Магистрально-радиальные сети, как правило: а) имеют наименьшую длину трасс линий; б) такие же величины потерь напряжения, мощности и электроэнергии; в) возможности применения простых схем на стороне высшего напряжения транзитных («проходных») подстанций (п/ст 2 на рис. 1); г) могут иметь высокую суммарную длину и стоимость линий, которые на большей части (или на всех участках) должны сооружаться двухцепными по условию надежного питания ответственных и крупных подстанций; д) обладают большими резервами по пропускной способности линий при перспективном росте нагрузок в заданных пунктах.

Кольцевые (петлевые) схемы обычно: а) обладают повышенной длиной трасс линий; б) имеют повышенные потери мощности и электроэнергии и большие потери напряжения в послеаварийных режимах (отключение участка «ЭС— π /ст 7» или «ЭС— π /ст 5» — на рис. 2); в) могут иметь весьма простые схемы транзитных подстанций (π /ст π), π 0 идр. на рис. 2);

г) могут иметь пониженную суммарную стоимость линий — одноцепных на всех или большей части участков; д) обладают хорошими возможностями присоединения новых подстанций, располагающихся по территории района, Промежуточными («компромиссными») техническими и технико-экономическими характеристиками могут обладать сложно-замкнутые сети, образуемые сооружением диагональных линий в составе кольцевых сетей (рис. 3). В некоторых случаях такое выполнение схемы сети может оказаться рациональным (например, при преобладающей нагрузке П/СТ3).

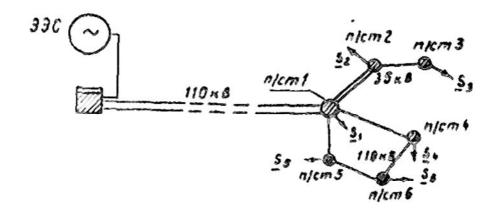
PHC. 3

Питание мелких подстанций, в составе потребителей которых отсутствует первая категория (по требованиям надежности электроснабжения), в некоторых случаях может

осуществляться по одноцепным воздушным линиям (п/ст 3 на рис. 4). При этом надо иметь в виду, что по [3] любая группа потребителей электроэнергии с суммарной максимальной нагрузкой 10 МВт и более относится к первой категории. Технико-экономическая обоснованность питания по одноцепной воздушной линии подстанции без потребителей первой категории может быть установлена специальным анализом, о котором говорится ниже.

Применение в обсуждаемых случаях вариантов с одноцепными нерезервированными линиями в большинстве случаев не означает осуществление и однотрансформаторных подстанций. Это связано с тем, что: а) все плановые ремонты воздушных линий могут быть выполнены без ее отключения, а аварийные ремонты производятся за относительно короткое время (одноцепных линий 8—10 час, двухцепных линий 20— 30 час); б) все плановые ремонты трансформаторов требуют его отключения на длительный срок (600—700 час) и в некоторых случаях этот ремонт должен выполняться с доставкой трансформатора в специальные мастерские.

Таким образом, осуществление однотрансформаторных понижающих подстанций возможно лишь при наличии передвижного трансформаторного резерва в рассматриваемой сети. Такое выполнение подстанций осуществимо при наличии развитой сети хороших шоссейных дорог, применяется при трансформаторах напряжением до 110 кВ и мощностью до 6,3 МВ-А и экономически оправдывается при обслуживании передвижным резервом не менее 2—3-х подстанций, расположенных в общем районе.


Для каждого из намеченных вариантов схемы намечаются номинальные напряжения сети. Для этого может быть применено эмпирическое расчетное выражение из [4] экономически целесообразного номинального напряжения

$$U_{\text{HOM}}^{9} = 1000/\sqrt{500/L + 2500/P}, \ \kappa B \tag{3.1}$$

где L — длина линии электропередачи, км; P — передаваемая активная мощность, MBт.

В наиболее приближенной форме допустимо сформулировать целесообразность передачи электроэнергии при напряжении: а) 35 кВ — до 10—15 МВт на расстояния до 10—15 км; 110 кВ — десятков МВт на десятки км; в) 220 кВ— 100—250 МВт на 150—250 км.

Введение промежуточных трансформаций в настоящем курсовом проекте (220/110 кВ, 110/35 кВ) может предварительно намечаться, но целесообразность реализации таких вариантов следует подвергнуть тщательному технико-экономическому анализу. Варианты применения двух номинальных напряжений в пределах проектируемой сети могут быть полезны в случаях явного подразделения компактных групп потребителей электроэнергии по величинам нагрузок подстанций и расстояниям передачи электроэнергии (рис. 4). Нецелесообразно введение «второго» номинального напряжения для питания одной или двух подстанций.

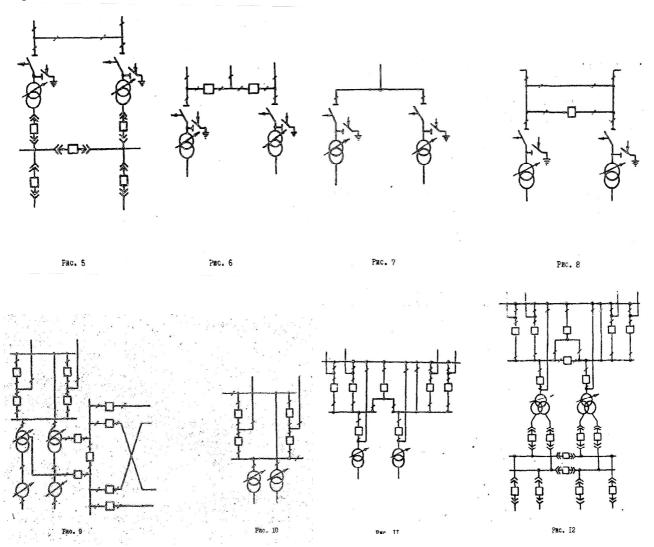
PAC. 4

Как отмечалось ранее, не рекомендуется без серьезных обоснований применение напряжения 35 кВ. Экономически неоправданно применение близких по техническим и технико-экономическим показателям номинальных напряжений в пределах одной и той же сети (например, 110 и 150 кВ или 220 и 330 кВ).

Приемлемость по техническим показателям намеченных вариантов комплексов схем и номинальных напряжений сети в первом приближении может проверяться по требующимся сечениям токоведущей части проводов (как правило, сталеалюминиевых), а также по наибольшим потерям напряжения в нормальных и послеаварийных режимах сети (см. ниже). Указанные сечения проводов в общем случае должны находиться в пределах: при напряжении 35 кВ—50—150 мм²; при 110 кВ—70—240 мм²; 220 кВ — 240—400 мм².

Поскольку в современных электрических сетях 110(35)— 220 кВ практически на всех вновь сооружаемых подстанциях устанавливаются трансформаторы с регулированием коэффициента трансформации под нагрузкой, то для этих сетей отсутствует нормирование потерь напряжения. Вместе с тем для предварительной технической оценки вариантов схем и номинальных напряжений сети можно рекомендовать в качестве допустимых суммарные потери напряжения в сети до 10—12% в нормальных и до 15—17% в послеаварийных режимах работы.

На основе изложенных выше принципов и рекомендаций формируется некоторое количество дополняющих друг друга и конкурирующих между собой вариантов (по комплексу схем и номинальных напряжений) электрической сети заданного района. При охарактеризованных в разделе 1 условиях выполнения данного курсового проекта количество обоснованных вариантов находится в пределах 4 — 6. Из их числа далее должен быть выбран наиболее рациональный по комплексу показателей и характеристик.


Выбор схем электрических подстанций

Схемы электрических соединений (типы схем) понижающих подстанций (ПС) 110(35) — 220/10 кВ на стороне высшего напряжения (ВН) определяется назначением каждой из ПС и ее «местоположением» в составе сети. Это могут быть узловая, проходная (транзитная), тупиковая или на ответвлениях («отпайках») от линии ПС. В соответствии с классификацией по [4] ПС подразделяются на три группы:

- 1. ПС 110(35) 330 кВ, осуществляемые по, так называемым, упрощенным схемам на стороне ВН с минимальным количеством или без выключателей, с одним или двумя трансформаторами, питающимся по одной или двум линиям ВН; на стороне «среднего» напряжения (СН, 110 или 35 кВ) может быть до шести присоединений воздушных линий.
- 2. ПС проходные (транзитные) 110 500 кВ с количеством трансформаторов или автотрансформаторов от двух до четырех, с количествами присоединяемых воздушных линий ВН до четырех и на СН до десяти и с количеством выключателей на ВН до девяти.

3. Узловые ПС (общесистемного значения) 330 — 1150 кВ с количествами автотрансформаторов — до четырех, воздушных линий на ВН — до восьми и на СН — до 10.

В проектируемой районной сети ПС относятся к первым двум группам. Обоснованный выбор схем ПС в общем случае является самостоятельной достаточно сложной технико-экономической задачей, которая в полном объеме рассматривается в курсах по электрическим станциям и подстанциям. В данном курсовом проекте разрешается произвести выбор схем без детальных технико-экономических расчетов и из состава типовых решений, рассматриваемых в [4]. Ниже приводятся краткие характеристики областей применения основных типов рекомендуемых для данных проектов схем ПС, представленных на рис. 5—12.

Для тупиковых ПС применяется схема рис. 5 с двумя блочными соединениями воздушных линий и трансформаторов. В цепях присоединений трансформаторов имеются отделители в комплекте с короткозамыкателями. Со стороны линий ВН имеется перемычка с двумя разъединителями, один из которых отключен в нормальных режимах работы. (На рис. 5—12 для упрощения применено условное изображение разъединителей ВН и СН в виде наклонной черточки. Такое же изображение разъединителей допускается лишь в расчетно-пояснительных записках по курсовым проектам, но не на чертежах схем (см. разд. 7).

Перемычка используется (при обоих включенных разъединителях) после отключения поврежденной линии, что позволяет сохранить в работе оба трансформатора; это повышает надежность электроснабжения потребителей и экономичность режима п/ст. Указанное расположение перемычки объясняется существенно большей повреждаемостью воздушных линий сравнительно с трансформаторами.

Следует помнить, что отделители не предназначены для отключений рабочих токов и токов коротких замыканий. Их отключение производится при отключенном со стороны ВН трансформатора напряжении. При коротких замыканиях в цепях трансформатора включаются короткозамыкатели, создающие искусственное одно- или двухфазное замыкание на землю, что обуславливает отключение выключателей головных участков питающих линий ВН. В результате последнего с трансформаторов снимается ВН и тем создаются условия для возможности отключения отделителей.

Аналогичная схема применяется при присоединении ПС на ответвлении (на «отпайке») к одной или двум магистральным воздушным линиям.

Если от ПС, питающейся по двум линиям ВН, отходит одноцепная линия к следующей ПС с потребителями II и III категорий (по требованиям надежности электроснабжения), то эта линия присоединяется по схеме мостика с двумя выключателями (рис. 6). В этом случае приемная ПС может быть выполнена по схеме рис. 7.

Для ПС кольцевых сетей широко применяется схема «мостика» с выключателем и с отделителями (в комплекте с короткозамыкателями) в цепях трансформаторов (рис. 8). Имеющаяся в схеме дополнительная перемычка (с разъединителями), разомкнутая в нормальных режимах, позволяет при ревизиях и ремонтах выключателя перемычки сохранить кольцевую сеть в замкнутом состоянии.

Для крупных ПС 220 кВ со значительной мощностью двух трансформаторов или автотрансформаторов, питающихся по двум линиям, рекомендуется применение схемы «четырехугольника», обеспечивающая высокую надежность электроснабжения потребителей (рис. 9). Вариант этой схемы (рис. 10) может применяться при присоединении ПС указанного типа к двум транзитным воздушным линиям (рис. 10).

При количестве присоединений на стороне ВН ПС более 6 при напряжениях 110—220 кВ рекомендуется схема с одной рабочей, секционированной выключателем, и обходной системами шин (рис. 11). Подача напряжения на обходную систему шин осуществляется только при включении предназначенного для этого выключателя («среднего» на рис. 11). Такая операция нужна при ремонте или замене любого иного выключателя данной схемы.

Схемы ПС с трехобмоточными трансформаторами или с автотрансформаторами на стороне СН определяются числом отходящих воздушных линий. При четном числе отходящих линий (от 4 до 10) рекомендуется применять на стороне СН одиночную секционированную систему шин с выключателями в цепях трансформаторов или автотрансформаторов (рис. 9). При этом следует учесть необходимость — по условиям надежности питания потребителей — каждую цепь двухцепной линии СН подключать к разным секциям шин.

Рекомендуется использовать автотрансформаторы с регулированием под нагрузкой рабочих ответвлений на стороне 110 кВ. В некоторых случаях для обеспечения независимого регулирования напряжения на шинах 10 кВ может потребоваться установка линейных регулировочных трансформаторов, включаемых в цепи трансформаторов с обмотками данного напряжения (рис. 9).

При включении на шины 10 кВ конденсаторных установок следует предусмотреть для них соответствующие ячейки выключателей.

На стороне «низшего» напряжения (НН) п/ст (в курсовых проектах— 10 кВ) могут применяться различные типы схем В зависимости от разнообразных непосредственного электроснабжения промышленных, коммунально-бытовых, сельскохозяйственных и электротранспортных потребителей. На п/ст блочного типа (рис. 5 — 8) обычно используются секционированные шины НН (рис. 5). При применении трансформаторов с расщепленной обмоткой НН рекомендуется двойная секционированная система шин (рис. 12). Секционные выключатели НН как правило, разомкнуты в нормальных режимах работы п/ст и автоматически включаются при аварийном (или плановом) отключении одного из трансформаторов.

Выбор технических параметров и характеристик основного оборудования линий и подстанций сети

К основному оборудованию, рассматриваемому в данном проекте, относятся линии электропередачи, трансформаторы, (АТ), выключатели понижающих ПС и компенсирующие устройства. Все электрооборудование должно выбираться со стандартными номинальными параметрами. Детальный анализ возможностей систематической перегрузки с учетом реального графика и коэффициента начальной нагрузки трансформаторного оборудования ПС в нормальных режимах в задачу данного проекта не входит. Поэтому в соответствии с существующей практикой проектирования мощность трансформаторов на понижающих ПС рекомендуется выбирать из условия допустимой перегрузки в послеаварийных режимах до 70—80%, на время максимума общей суточной продолжительностью не более 6 часов в течение не более 5 суток, т. е. по условию

$$S_{T,HOM} \ge \frac{P_{i\acute{a}}}{(1.7-1.8)(\eta_T - 1)Cos\phi_H}$$
 (3.2)

где $\eta_{\rm T}$ — число однотипных трансформаторов, устанавливаемых на ПС.

В случае установки АТ или трехобмоточных трансформаторов это условие преобразуется к виду

$$S_{AT,HOM} \ge \frac{S_{\tilde{n}i,fd} + S_{ff,fd}}{(1,7-1,8)(\eta_{AT}-1)}$$
 (3.3)

где S_{ch} , S_{hh} . —полные мощности нагрузки соответственно на стороне CH и HH.

Для AT 220 кВ, номинальная мощность обмотки НН отличается от номинальной мощности AT и указанное выше условие должно быть дополнено следующим:

$$S_{AT,HOM} \ge \frac{S_{HH,HO}}{2} \tag{3.4}$$

Если в составе нагрузки ПС имеются потребители 1-й категории или $P_{\text{нмах}} \ge 10 \text{ MBT}$, то число устанавливаемых трансформаторов должно быть не менее двух. Установка на ПС более двух трансформаторов или AT не рекомендуется и должна быть обоснована специально. На ПС 110 кВ, осуществляющих электроснабжение потребителей ІІ-й и ІІІ-й категорий, допускается установка одного трансформатора до 6,3 MB-A при наличии в сетевом районе централизованного передвижного трансформаторного резерва, дающего возможность замены поврежденного трансформатора за время не более одних суток. Мощность трансформатора на однотрансформаторной ПС выбирается по максимальной нагрузке потребления (с учетом систематически допустимых перегрузок).

На ВЛ предусматривается применение только сталеалюминиевых проводов марки АС, маркируемых в соответствии с ГОСТ 839—80. Выбор проводов производится по методу экономических интервалов токовых нагрузок для сталеалюминиевых проводов ВЛ 35—750 кВ при полной номенклатуре сечений [4] с последующей проверкой по допустимому нагреву. При необходимости прокладки двух линий по одной трассе предпочтение отдается применению двухцепных опор, как более экономичных и обеспечивающих надежность электроснабжения, удовлетворяющую потребителей 1-й категории. ВЛ 35—110 кВ и одноцепные линии до 330 кВ сооружаются, как правило, на железобетонных опорах. Двухцепные опоры на ВЛ 220 кВ применяются как стальные, так и железобетонные.

Для определения параметров линий и наибольших потерь напряжения необходимо знание потокораспределения в вариантах выполнения сети. На этой стадии проектирования допустимо определение потокораспределения без учета потерь мощности в трансформаторах и линиях. В замкнутых сетях одного номинального напряжения допускается определять потокораспределение по длинам линий. Потери напряжения следует определять с учетом действительных погонных активных сопротивлений выбранных проводов, но допускается использование среднего значения погонных реактивных сопротивлений линий (0,4 Ом/км).

При определении наибольших потоков мощности по линиям электропередачи, питающих 4—5 и более подстанций, следует учитывать коэффициенты одновременности для активных и реактивных мощностей, указанные в разделе 2. Неучет коэффициента

одновременности приводит к завышению расчетных значений потерь напряжения, мощности и в отдельных случаях может привести к выбору завышенных сечений проводов.

В настоящем курсовом проекте не производится выбор конкретных типов выключателей. Вместе с тем, следует иметь в виду, что воздушные выключатели, требующие специальные компрессорные устройства на ПС, применяются при общем количестве выключателей 6—8 и более. Мощность компенсирующих устройств при сравнении вариантов выбирается, как это было рекомендовано выше.

Анализ вариантов и выбор схемы и номинального напряжения сети

Из числа разработанных вариантов выполнения сети (см. выше) должен быть выбран наиболее рациональный. Как известно основным технико-экономическим критерием оценки инженерных решений являются приведенные народнохозяйственные затраты, учитывающие капиталовложения на осуществление объекта, ежегодные расходы по его эксплуатации, а также определенные сроки окупаемости затрат. В данном курсовом проекте приведенные затраты как правило учитываются в упрощенной «статической» форме, при которой не учитывается рассрочка капиталовложений в течение лет сооружения электрической сети, а также развитие эксплуатационных расходов в течение срока ее сооружения и эксплуатации.

Однако, полный и строгий технико-экономический анализ всех составленных вариантов схемы и номинального напряжения сети — чрезмерно трудоемок и не является необходимым. Может быть рекомендован двухэтапный анализ технико-экономической рациональности рассматриваемых вариантов.

На первом этапе варианты с одинаковым номинальным напряжением сопоставляются по натуральным количественным показателям, отражающим капиталовложения, следовательно, и эксплуатационные расходы по сети. Такими показателями являются: а) протяженность трасс линий; б) протяженность линий в одноцепном исчислении; в) суммарное количество ячеек выключателей 110(35)—220 кВ на подстанциях сети. В этом анализе могут также учитываться: а) наибольшие потери напряжения в сети (%), если варианты близки по только что указанным количественным показателям линий и подстанций; б) сопоставление вариантов по принципу передачи электроэнергии «вперед» от источника питания к потребителям сравнительно с перетоками мощности по линиям «поперек» указанного направления. В результате такого количественно-качественного анализа обычно могут быть выбраны два-три варианта, обладающих преимущественными показателями. Данные варианты подлежат последующему уточненному сравнению на основе расчетов приведенных народнохозяйственных затрат, связанных с их сооружением и эксплуатацией. Желательно, чтобы в таком технико-экономическом сопоставлении участвовали варианты схем как радиально-магистрального, так и кольцевого (или сложно замкнутого) типа. Выше указывалось, что данные принципы построения схемы сети обладают рядом конкурирующих качеств и показателей.

На втором окончательном этапе ограниченное число вариантов выполнения сети (2—3) сравнивается по основному технико-экономическому критерию приведенных затрат, учитывающих суммарные капиталовложения в сеть и ежегодные издержки по ее эксплуатации. При рассмотрении вариантов с разной надежностью питания потребителей в составе приведенных затрат учитываются ежегодные народнохозяйственные убытки от недоотпуска электроэнергии при плановых и аварийных отключениях потребителей.

Капиталовложения на осуществление каждой из линий и подстанции и издержки по их эксплуатации определяются на основе номинальных параметров основного электрооборудования (марки проводов воздушных линий, мощности трансформаторов и автотрансформаторов и др.) и по их стоимостным показателям.

При сравнении вариантов по приведенным затратам в общем случае должны учитываться полные стоимости: линий, ячеек выключателей (как на сооружаемых подстанциях, так и на источнике питания от ЭЭС), отделителей и короткозамыкателей, трансформаторов, автотрансформаторов, компенсирующих устройств, стоимости иного электрооборудования, необходимого для осуществления данного варианта сети, а также

ежегодные издержки по эксплуатации всего перечисленного выше электрооборудования и затраты на потери мощности и электроэнергии в линиях, трансформаторах и компенсирующих устройствах. Все указанные технико-экономические показатели определяются для тех частей схем сети, по которым сравниваемые варианты отличаются друг от друга.

Капиталовложения на подстанции определяются в зависимости от их номинального напряжения, схемы электрических соединений (на напряжениях 35—220 кВ), типов отключающей аппаратуры на стороне высшего напряжения (выключатели, отделители в комплекте с короткозамыкателями), количества и мощности устанавливаемых трансформаторов.

Капиталовложения на сооружение линий сети находятся в зависимости от их номинальных напряжений, марок проводов, материала и типа опор (одноцепные, двухцепные).

Капиталовложения на компенсирующие устройства должны учитываться в тех случаях, когда в рассматриваемых вариантах выполнения сети отличаются необходимые мощности данных устройств (по условиям баланса реактивной мощности или т. п.).

Задача регулирования напряжения в проекте, как правило, решается применением трансформаторов и автотрансформаторов с регулированием ответвлений под нагрузкой. Поэтому при сравнении вариантов не требуется выбор иных средств регулирования напряжения, если наибольшие потери напряжения не превосходят значений рекомендуемых в [3.2].

Если в вариантах схемы сети рассматривается питание пунктов с потребителями II и III категорий без резервирования линий или без резервирования линий и трансформаторов, то должны определяться и учитываться убытки от плановых и аварийных недоотпусков электроэнергии по методике [2,4,5] с учетом вероятностей аварийного и планового перерывов электроснабжения, среднего времени восстановления элементов и плановых учитываться возможные Здесь должны отключения нерезервированных цепей питания потребителей: линий, трансформаторов, выключателей и т.п. Целесообразна оценка от недоотпуска электроэнергии и в варианте с резервированием линий и трансформаторов. Такие ситуации могут быть при одновременном аварийном повреждении в обеих параллельных цепях сети (например, при повреждении двух взаимнорезервирующих линий, проложенных по общей трассе) или в аварийном режиме одной из цепей при плановом ремонте электрооборудования второй цепи. Убытки при плановых и аварийных отключениях потребителей оцениваются на основе удельных показателей [3,4]. Последние зависят от состава основных групп потребителей электроэнергии (промышленность, коммунально-бытовое хозяйство и др.) и характеристик их суточных графиков нагрузок. В данном проекте удельные убытки от недоотпуска электроэнергии могут оцениваться приближенно.

Для определения параметров линий, наибольших потерь напряжения и суммарных потерь электроэнергии необходимо знание потокораспределения в вариантах выполнения сети. На этой стадии проектирования допустимо определение потокораспределения без учета потерь мощности в трансформаторах (автотрансформаторах) и линиях. В замкнутых сетях одного номинального напряжения допускается определять потокораспределение по длинам линий. Рекомендуется применение метода наложения при расчетах послеаварийных режимов сложнозамкнутых сетей. Потери напряжения следует определять с учетом действительных погонных активных сопротивлений выбранных проводов, но допускается использование среднего значения погонных реактивных сопротивлений линий. Потери электроэнергии определяются с учетом реальных активных сопротивлений и проводимостей линий и трансформаторов (автотрансформаторов). Все расчеты на данной стадии проектирования выполняются по номинальным напряжениям сети. Определение затрат на потери электроэнергии производится с учетом района сооружения электрической сети (удельные

затраты на потери электроэнергии) и характеристик графика нагрузок (время наибольших потерь) [2, 4, 5].

На основе определения приведенных затрат ПО сравниваемым производится окончательный выбор экономически целесообразных конфигураций, номинального напряжения, схемы электрических соединений и параметров сети. Варианты схем считаются экономически равноценными, если разница в полных приведенных затратах по сравниваемым объектам ориентировочно составляет не более 5—7%. В таком случае следует выбирать вариант сети: с более высоким номинальным напряжением; с более высокой надежностью электроснабжения; с большей оперативной гибкостью схемы (приспосабливаемость схемы к различным режимам работы сети); с меньшим необходимым количеством электрической аппаратуры; с лучшими возможностями развития сети при росте нагрузок и появлении новых пунктов потребления электроэнергии и т. п.

Результатами проработок материалов главы являются выбор экономически целесообразных конфигураций, номинального напряжения, схемы электрических соединений, а также номинальных параметров проводов линий электропередачи и трансформаторов и автотрансформаторов подстанций. Эти параметры должны быть приведены в соответствующих таблицах в конце раздела. Здесь же приводится рисунок конфигурации сети и сведения о выбранных схемах электрических соединений подстанций.

4. Расчет параметров основных режимов сети

Задачи и исходные условия расчетов

Задачей данного раздела курсового проекта является определение потоков мощности по линиям выбранного варианта электрической сети и напряжений на шинах подстанций в основных расчетных нормальных и послеаварийных режимах работы с учетом потерь мощности и напряжения в элементах сети. Исходными данными для выполнения расчетов являются заданные рабочие напряжение на шинах источника питания, узловые мощности нагрузок, параметры схем замещения элементов электрической сети. Перед выполнением расчета режима работы сети следует для каждой подстанции определить ее расчетную нагрузку, включающую кроме нагрузки потребителей потери мощности в трансформаторах и суммарную реактивную мощность присоединенных к подстанции линий электропередачи.

Линии электропередачи в расчетах режимов представляются П-образной схемой замещения. При определении параметров схемы замещения ВЛ следует учесть, что протяженность ВЛ оказывается больше расстояния по прямой, соединяющей пункты.

В результате выполнения расчетов установившихся режимов работы сети может оказаться необходимым изменение сечений проводов линий, мощности трансформаторов и автотрансформаторов, компенсирующих устройств. После соответствующей корректировки расчет должен быть выполнен вновь. При этом по согласованию с руководителем этот расчет может выполняться упрощенно с использованием метода

наложения мощностей при изменении мощности КУ и пересчете потерь мощности и напряжения только в тех элементах, параметры которых изменились.

Рекомендации по расчетам основных режимов сети

Расчетными режимами работы электрической сети являются нормальные и послеаварийные установившиеся режимы, при которых нагрузки элементов сети имеют наибольшие и наименьшие значения, а рабочие напряжения на подстанциях — высшие и низшие значения. Такими режимами являются нормальные режимы наибольших и наименьших нагрузок подстанций, а также наиболее тяжелые послеаварийные режимы, связанные с отключением линий и трансформаторов.

Нормальный режим наибольших нагрузок рассчитывается по активным нагрузкам подстанций, указанным в задании на проект, и по реактивным нагрузкам подстанций с учетом мощности установленных на них компенсирующих устройств. По окончании расчета этого режима следует проверить, не оказалась ли реактивная мощность, передаваемая из энергосистемы в электрическую сеть, больше того значения мощности Q_c , которую допустимо потреблять в заданном питающем сеть узле энергосистемы. В случае

невыполнения этого условия дополнительные конденсаторные батареи соответствующей мощности должны быть размещены на подстанциях сети. Размещение следует выполнять, руководствуясь теми же рекомендациями, что приведены во втором разделе указаний. Корректировку режима работы сети после этого допустимо выполнить приближенно с помощью метода наложения мощностей. В ряде случаев после расчета потокораспределения может оказаться, что расчетный ток, протекающий по какой либо из линий, не соответствует экономическому интервалу применения выбранного на основании предварительных расчетов сечения проводов этой линии. Наиболее вероятно это может иметь место в кольцевых неоднородных сетях. В этом случае следует выбрать экономическое сечение проводов, пересчитать параметры схемы замещения такой линии и вновь выполнить расчет режима наибольших нагрузок.

Расчет нормального режима при наименьших нагрузках подстанций выполняется при заданном уменьшении активных нагрузок и таком же уменьшении реактивных нагрузок подстанций. Конденсаторные установки на подстанциях в этом режиме могут быть отключены во избежание выдачи реактивной мощности из проектируемой сети в систему. На двухтрансформаторных подстанциях в этом режиме может оказаться экономически целесообразным отключение одного из трансформаторов, что позволит снизить потери мощности в стали, но при этом увеличатся нагрузочные потери. Решение о возможности отключения одного из трансформаторов принимается на основании соответствующего расчета потерь мощности и электроэнергии и в зависимости от схемы электрических соединений подстанции и сети. Оно недопустимо в случаях существенного электроснабжения потребителей надежности вследствие одновременного трансформаторами отключения линий автоматизированного телемеханизированного управления коммутационными ИЛИ аппаратами в цепях трансформаторов и т. п.

Кроме того, в курсовом проекте должен быть рассчитан послеаварийный режим в период наибольших нагрузок подстанций, приводящий к наибольшему снижению напряжений на шинах высшего напряжения подстанций потребителей. В качестве послеаварнйного режима рассматривается режим, соответствующий отключению одной из линий сети. Выбор отключаемой линии выполняется в каждом конкретном случае индивидуально. Чаще всего это может быть наиболее загруженная линия кольцевой части сети, отключение которой приводит к значительному перераспределению потоков мощности, или отключение одной цепи двухцепной линии, по которой получают питание все или отключений подстанций. Совпадение аварийных взаимнорезервирующих линий не рассматривается как маловероятное. При расчете послеаварийных режимов следует учитывать, что повреждение ВЛ на одном из участков может приводить к отключению ее и на других участках, а также — к отключению трансформаторов. Поэтому следует внимательно анализировать состав линий трансформаторов, отключенных с учетом конкретных схем электрических соединений сети и действий релейной защиты, устройств автоматики и оперативного персонала. При использовании схем подстанций без выключателей или с ограниченным их числом на стороне высшего напряжения аварийное отключение одной из линий может приводить к отключениям и смежных линий, трансформаторов.

Расчетным в данном случае является режим сети, который соответствует частично восстановленной схеме сети при отключенном состоянии только поврежденного элемента (с учетом выбранных схем подстанций).

После расчета послеаварийного режима, как правило, оказывается, что реактивная мощность, передаваемая из энергосистемы в проектируемую сеть, больше экономически целесообразного значения Q_c . Так как такой режим работы сети относительно кратковременен и не скажется на экономичности работы энергосистемы в целом, то в этом случае допускается отклонение от заданного потребления реактивной мощности. Установка дополнительных КУ в электрической сети не предусматривается, а повышенное потребление

реактивной мощности покрывается за счет использования резерва реактивной мощности в энергосистеме.

Расчет установившихся режимов работы спроектированной электрической сети выполняется методом «в два этапа». На первом этапе расчета выполняется расчет потокораспределения в сети с учетом потерь мощности в элементах сети. Потери мощности определяются по номинальному напряжению сети. Для кольцевых участков сети предварительно определяется точка потокораздела. После этого уже выполняется расчет потокораспределения с учетом потерь мощности.

На втором этапе расчета определяются напряжения в узлах сети. Исходными данными для расчета падения напряжения является напряжение в начале элемента и поток мощности в начале этого же элемента, вычисленный на предыдущем этапе расчета. Для электрических сетей напряжением 110 кВ и ниже допускается ограничиваться вычислением только потери (продольной составляющей падения) напряжения.

Уровни напряжения на шинах источника питания в режимах наибольших и наименьших нагрузок указываются в задании на проектирование. Возможности регулирования напряжения на шинах источника питания сети в послеаварийных режимах должны быть согласованы с техническими возможностями осуществления такого регулирования и указаны в расчетно-пояснительной записке. При этом следует иметь в виду, что оперативные повышения напряжения возможны лишь при отдельных наиболее тяжелых авариях, какими могут считаться отключения линий 110 кВ длиной около 100км и более и линий 220 кВ длиной 200 км и более, по которым передаются значительные мощности.

В сетях двух номинальных напряжений (например) 220/110 кВ), обычно связанных автотрансформаторами, при переходе к расчету напряжений в сети среднего (например 110 кВ) напряжения следует выбрать коэффициент трансформации, который может отличаться от номинального значения. Для снижения потерь активной и реактивной мощности и потерь электроэнергии в сети целесообразно поддержание возможно большего уровня рабочего напряжения на шинах источника питания в режиме наибольших нагрузок. Так как подстанция с автотрансформаторами является источником питания для сети более низкого напряжения, то коэффициент трансформации АТ следует выбирать таким, чтобы напряжение на стороне среднего напряжения составляло ~ 110 % номинального напряжения в режиме наибольших нагрузок и в послеаварийных режимах и 100—105 % номинального напряжения в режиме наименьших нагрузок. В частности, оно может быть принято таким же, как задано на шинах источника питания проектируемой сети: 220 и 110 кВ. Автотрансформаторы, используемые для связи этих сетей, имеют следующие номинальные напряжения обмоток: $U_{\text{вн}} = 230 \text{ кB}; \ U_{\text{сн}} = 121 \text{ кB}; \ U_{\text{нн}} = 11 \text{ кB}.$ Регулирование напряжения осуществляется за счет РПН на стороне среднего напряжения и имеет пределы регулирования напряжения $\pm 6 \times 2$ %. При известном желаемом напряжении на стороне среднего напряжения $U_{c, \text{жел}}$ требуемое ответвление регулируемой части обмотки может быть определено по выражению

$$n^{\text{MCEN}}_{oms} = \left(\frac{U_{c,\text{MCEN}} \cdot U_{\text{BH}}}{U_{c}' \cdot U_{c\text{H}}} - 1\right) \frac{100}{\Delta U_{oms}}$$

$$(4.1)$$

где Uc' — рассчитанное напряжение со стороны среднего напряжения, приведенное к стороне высшего напряжения; Δ Uoтв — ступень регулирования напряжения в процентах (Δ Uoтв =2%).

Полученное значение округляется до ближайшего целого значения $n_{\text{отв}}$, по модулю не превышающего максимального количества ответвлений, равного шести, и вычисляется действительное напряжение со стороны среднего напряжения

$$U_{c} = \frac{U'_{c,} \cdot U_{cH}}{U_{cu}} (1 + n_{oms} \frac{\Delta U_{oms}}{100})$$
 (4.2)

Далее выполняется расчет напряжений в сети напряжением 110 кВ.

По заданию руководителя проекта расчеты ряда установившихся режимов работы спроектированной сети могут быть выполнены на ЭВМ с помощью специальных программ.

В расчетно-пояснительной записке может приводиться только расчет режима наибольших нагрузок. Результаты расчетов режима наименьших нагрузок и послеаварийного режима могут быть сведены в таблицы, в которых должны быть указаны расчетные нагрузки подстанций, мощности, протекающие в начале и конце каждой линии электрической сети, а также напряжения в узлах сети.

5. Регулирование напряжения в сети

Задачей проработки этого раздела проекта является обеспечение нормативных отклонений напряжения на шинах 10 кВ подстанций проектируемой сети [3, 4, 5].

Основным экономически целесообразным средством регулирования напряжения в проектируемой сети являются трансформаторы с регулированием коэффициента трансформации под нагрузкой (РПН).

Согласно [3] на шинах 10 кВ подстанций должен осуществляться закон встречного регулирования напряжения в пределах отклонений напряжения от +5 (или более) до 0% при изменениях нагрузки подстанций от наибольшей до наименьшей. Обычно при наибольших нагрузках достаточны отклонения напряжения на этих шинах в пределах +5—6%. Определение желаемых отклонений напряжения на шинах 10 кВ подстанций при промежуточных значениях нагрузки производится линейной интерполяцией.

Аварийные отключения линий и трансформаторов рассматриваются, как правило, при наибольших нагрузках подстанций. Поэтому желаемые отклонения напряжения на шинах 10 кВ в таких режимах должны соответствовать отклонениям напряжения, требуемым в режиме наибольших нагрузок.

В этом разделе проекта должны быть выбраны рабочие ответвления понижающих трансформаторов, обеспечивающие поддержание требуемых отклонений напряжения на шинах $10~\mathrm{kB}$ подстанций во всех рассмотренных режимах работы. Выполняется это следующим образом. После расчета установившегося режима работы сети известны напряжения на шинах высшего напряжения каждой из подстанций U_{g} . Проще всего напряжение на шинах низшего напряжения, приведенное к стороне высшего напряжения (т. е. без учета коэффициента трансформации трансформаторов), определить по выражению

$$U_{H}' = \frac{U_{g}}{2} + \sqrt{\frac{U_{g}^{2}}{4}} - P_{H}R_{T} - Q_{H}X_{T}$$
 (5.1)

где $P_{\rm H}, Q_{\rm H}$ — активная и реактивная мощность нагрузки в рассматриваемом режиме; $R_{\rm T}, X_T$: — активное и реактивное сопротивление трансформаторов с учетом количества параллельно работающих трансформаторов.

Понижающие трансформаторы имеют РПН в нейтрали обмотки высшего напряжения. Ответвление регулируемой части обмотки, обеспечивающее желаемое напряжение на шинах низшего напряжения $U_{H \text{ жел}}$, может быть определено по выражению

$$n^{\mathcal{M}e_{n}}_{oms} = \left(\frac{U_{H}^{\prime} \cdot U_{HH}}{U_{H,\mathcal{M}e_{n}} \cdot U_{GH}} - 1\right) \frac{100}{\Delta U_{oms}}$$

$$(5.2)$$

где $U_{\text{нн}}$, $U_{\text{вн}}$ — номинальные напряжения обмоток низшего и высшего напряжения; $\Delta U_{\text{отв}}$ — ступень регулирования напряжения в процентах.

Вычисленное значение округляется до ближайшего целого числа $n_{\text{отв}}$ с учетом максимального числа ответвлений, которое может колебаться от 8 до 10 для различных типов трансформаторов. После этого следует определить действительное напряжение на шинах низшего напряжения подстанции

$$U_{H} = \frac{U'_{H} \cdot U_{HH}}{U_{GH} (1 + n_{oms} \frac{\Delta U_{oms}}{100})}$$
(5.3)

и отклонение напряжения на напряжения на этих шинах от номинального напряжения

$$(U_{HOM}=10 \text{ kB})$$

$$\delta U = \frac{U_H - U_{HOM}}{U_{HOM}} 100,\% \tag{5.4}$$

Отдельно решается вопрос регулирования напряжения на шинах низшего напряжения подстанций с автотрансформаторами. Так как в автотрансформаторах устройство РПН осуществляется на стороне среднего напряжения, то здесь отсутствует возможность регулирования напряжения на стороне низшего напряжения. На крупных подстанциях требуемое напряжение непосредственно на шинах низшего напряжения может быть обеспечено с помощью синхронных компенсаторов. Другим способом регулирования напряжения является использование линейных регулировочных трансформаторов, позволяющих регулировать напряжение в пределах ±10 х I,5 % номинального напряжения.

Если в результате расчета регулировочных ответвлений трансформаторов выясняется, что необходимо произвести корректировку напряжения на шинах источника питания, то новые значения напряжений на подстанциях допускается оценивать приближенно, ориентировочно считая, что во всех точках сети напряжения изменятся на столько же процентов, на сколько было изменено напряжение на шинах источника питания.

Результаты расчетов ответвлений трансформаторов, обеспечивающих желаемые напряжения на шинах низшего напряжения подстанций в режиме наименьших нагрузок и послеаварийном режиме, сводятся в таблицы, в которых указываются напряжения низшей стороны трансформатора, приведенные к стороне высшего напряжения, расчетный номер ответвления обмотки, округленное значение номера ответвления с учетом возможного диапазона регулирования напряжения, действительное напряжение на шинах низшего напряжения подстанции и отклонение этого напряжения от номинального напряжения.

6. Основные технико-экономические показатели спроектированной сети

В этом разделе проекта определяются основные показатели, характеризующие полные расходы денежных средств и электрооборудования, необходимые для сооружения и эксплуатации сети, а также некоторые удельные технико-экономические показатели, характеризующие обоснованность решений, принятых в процессе проектирования сети. К ним относятся: 1) капиталовложения на сооружение линий, подстанции и сети в целом (руб); 2) ежегодные издержки по эксплуатации линий, подстанций и сети в целом (руб/год); 3) удельная себестоимость передачи электроэнергии по сети от шин заданного источника питания до шин вторичного напряжения (10 кВ) понижающих подстанций 35—220 кВ (коп/кВт-ч); 4) потери активной мощности и потери электроэнергии в спроектированной сети, соответственно в кВт, кВт-ч/год, и в процентах от полезно отпущенной потребителям мощности и электроэнергии; 5) основные натуральные показатели сети, как-то: количество понижающих трансформаторов с разделением по номинальным напряжениям и мощностям; количество выключателей с разделением но номинальным напряжениям; то же комплектов отделителей и короткозамыкателей; количество километров проводов (по маркам и в однофазном исчислении); суммарная мощность компенсирующих устройств с разделением по типам и номинальным напряжениям.

При определении капиталовложений следует учитывать стоимость сооружения всех линий и подстанций спроектированной сети от шин заданного источника питания сети до шин 10 кВ подстанций включительно. При этом должны быть учтены стоимости электрооборудования конструктивной и строительной частей, а также стоимость строительно-монтажных работ. При оценке стоимости ячеек выключателей 10 кВ подстанции надо учитывать ячейки выключателей в цепях понижающих трансформаторов и автотрансформаторов, секционные и шиносоединительные выключатели и выключатели линий 10 кВ, отходящих от шин понижающих подстанций. Количество таких ячеек выключателей определяется исходя из максимальной нагрузки подстанции и мощности условно приходящейся на одну линию; так при вторичном напряжении 10 кВ такой величиной может быть принято 1,5—2 МВт [4]. (Такое определение количества ячеек учитывает ячейки линий, секционные, резервные, измерительных трансформаторов и др.)

Для одной наиболее крупной подстанции следует учесть стоимость сооружения щита районного диспетчерского управления, вспомогательных сооружений, масляного хозяйства, механической мастерской, гаража и т. д.

Эксплуатационные издержки также определяются с учетом всего указанного оборудования и стоимости потерь электроэнергии в сети в целом от шин источника питания до шин вторичного напряжения понижающих подстанций. Следует помнить, что затраты на потери мощности и электроэнергии должны оцениваться с учетом региона сооружения сети.

Если при расчетах режимов сети было принято решение об экономической целесообразности отключения части трансформаторов в режиме наименьших нагрузок, то это необходимо учитывать при определении потерь электроэнергии. Для этого надо знать длительность режимов работы сети с полным и сниженным числом трансформаторов. Допускается, в первом приближении, применять следующий метод оценки длительности режимов наибольших и наименьших нагрузок подстанций (при условном двухступенчатом годовом графике нагрузки). Электроэнергия, потребленная за один год с шин вторичного напряжения каждой понизительной подстанции:

$$W_{r,i} = P_{H\bar{0}, i} \cdot T_{H\bar{0}, i} = P_{H\bar{0}, i} \cdot t_{H\bar{0}, i} + P_{HM i} \cdot t_{HM, i}$$
(6.1)

где $T_{\rm Hf,i}$ — продолжительность использования наибольших нагрузок, ч/год; $P_{\rm Hf,i}$, $P_{\rm HM,i}$ — соответственно наибольшая и наименьшая активные нагрузки подстанции i (см. табл. 1); $t_{\rm nf,i}$, $t_{\rm HM,i}$ — соответственно условные длительности наибольшей и наименьшей нагрузок при упрощенном двухступенчатом годовом графике по продолжительности активных нагрузок (ч/год), причем $t_{\rm Hf,i}$ =8760— $t_{\rm HM,i}$, ч; 8760 — длительность невисокосного года в час.

Таблица 1 - Ориентировочные значения соотношений наименьших и наибольших нагрузок подстанции

Т, час/год	3000	4000	5000	6000	7000	8000
$P_{\scriptscriptstyle {HM}}$ в долях от $P_{\scriptscriptstyle {H}ar{0}}$	0,2-0,3	0,3-0,35	0,35-0,40	0,40-0,45	0,6-0,7	0,75-0,8

Суммарные потери мощности в режиме наибольших нагрузок, как и в любом ином режиме работы, спроектированной электрической сети наиболее просто могут быть определены по разности суммарной нагрузки сети (на шинах источника питания сети в целом) и суммы нагрузок на шинах 10(6)—20 кB подстанций.

Затраты на потери электроэнергии в сети

$$3_{\Delta W,\Sigma} \cong 3_{\text{уд},R} \Delta P_{R,\Sigma} \tau_{cp} + 3_{\text{уд},\Pi} \Delta P_{c\tau,\Sigma} \cdot 8760 + 3_{\Delta W,\kappa y}, \qquad \text{руб/год} \tag{6.2}$$

где $3_{\text{уд,R}}$, $3_{\text{уд,п}}$ — удельные затраты на потери электроэнергии для переменной и постоянной составляющих потерь активной мощности в сети в заданном географическом регионе, руб/кВт-ч; $\Delta P_{R,\Sigma}$ —суммарные потери активной мощности в активных сопротивлениях линий, трансформаторов и автотрансформаторов сети, кВт; $\Delta P_{\text{ст,\Sigma}}$ — тоже в стали трансформаторов и автотрансформаторов, кВт; $\tau_{\text{ср}}$ — время наибольших потерь мощности (ч/год), соответствующие средневзвешенному (по мощности) времени использования наибольших нагрузок

$$au_{cp} = f(T_{_{H\tilde{0},cp}} = \frac{\sum_{i=1}^{n} P_{_{H\tilde{0},i}} T_{_{H\tilde{0},i}}}{\sum_{i=1}^{n} P_{_{H\tilde{0},i}}}$$
, час/год (6.3)

Стоимость потерь электроэнергии в нерегулируемых батареях конденсаторов определяется, как

$$3_{\Delta W, \kappa y} = 3_{y \chi, \eta} \Delta P_{\kappa} Q_{\kappa \Sigma} T_{B}$$
, руб/год (6.4)

где помимо встречавшихся выше обозначений $\Delta P_{\kappa}=0,002$ —0,003 — удельные потери мощности в конденсаторах, о. е.; $Q_{\kappa\Sigma}$ — суммарная мощность конденсаторов на подстанциях, включенная в течение времени Тв, ч.

Если конденсаторы включены весь год, то $T_{\text{в}}$ = $T_{\text{г}}$ =8760 ч/год. При регулируемых батареях конденсаторов, соответствующих условию неизменности коэффициентов мощности нагрузок подстанций во всех режимах работы:

$$3_{\Delta W, \Sigma} \cong 3_{\text{уд,п}} \Delta P_{\kappa} \cdot Q_{\kappa, \text{cp}}, \text{ руб/год,}$$
 (6.5)

где $Q_{\kappa,cp}$ — средняя включенная мощность конденсаторов на $\pi/c\tau$. Эта величина, в первом приближении, для подстанции і может быть определена как

$$Q_{\kappa,i,cp} = 0.5(Q_{\kappa,i,H6} + Q_{\kappa,i,HM}),$$
 (6.6)

где $Q_{\kappa,i,HG}$ — мощности конденсаторов, включенные на подстанции в режимах наибольших и наименьших нагрузок, соответствующие t_{HGi} , $t_{HM,i}$, (6.1).

Удельная себестоимость передачи полезно отпущенной потребителям электроэнергии в спроектированной сети определяется, как

$$c = \frac{M_{\Sigma}}{\sum_{i=1}^{n} P_{H_{0,i}} T_{H_{0,i}}}, \text{ коп/кВт-ч,}$$
(6.7)

где $И_{\Sigma}$ — суммарные ежегодные издержки по эксплуатации спроектированной сети.

Суммарные потери активной мощности (ΔP_{Σ} %) и электроэнергии (ΔW_{Σ} %) в сети в процентах определяются без учета коэффициентов одновременности наибольших нагрузок подстанций, соответственно по выражениям:

$$\Delta P_{\Sigma} \% = \frac{\Delta P_{\Sigma}}{\sum_{i=1}^{n} P_{H\delta,i}} 100 \qquad \Delta W_{\Sigma} \% = \frac{\Delta W_{\Sigma}}{\sum_{i=1}^{n} P_{H\delta,i} T_{H\delta,i}} 100$$

$$(6.8)$$

Определение капиталовложений и годовых эксплуатационных расходов производится по единичным или удельным экономическим показателям.

7. Оформление материалов проекта

Курсовой проект должен быть оформлен в виде сброшюрованной расчетнопояснительной записки, помещенной в переплет из плотной бумаги с титульным листом определенной формы и чертежей.

В расчетно-пояснительной записке должен содержаться следующий материал: оригинал задания на проект, оглавление, перечень чертежей к проекту, основной материал по всем этапам разработки проекта (см. выше), рисунки, список литературы, которая использовалась при выполнении проекта.

Расчетно-пояснительная записка должна быть четко поделена на главы и параграфы, заглавия которых следует выделять шрифтом.

Каждая глава и изложение каждого вопроса в записке должны начинаться с четкой формулировки задачи проектирования в данном разделе. Далее приводятся нормы, критерии и требования, которые должны быть соблюдены при разработке вопроса, а также — конкретные исходные данные для расчетов. На основании сформулированных требований намечаются возможные варианты решения поставленной задачи (например, варианты схемы и конфигурации сети, варианты возможных размещений компенсирующих устройств и др.). Здесь должно быть обращено особое внимание на описания и обоснования выдвигаемых вариантов и применяемых методов расчетов и решений.

При выполнении первого из расчетов того или иного типа дается обоснование или пояснение по применяемому методу расчета и расчетная формула в общем виде. Далее однократно показывается численная подстановка конкретных исходных данных в расчетную формулу и приводится результат вычисления. Во всех последующих случаях применения тех же расчетных методов и формул — приводятся лишь результаты расчетов, сведенные в продуманные удобочитаемые таблицы. Каждая таблица должна иметь номер и наименование. Все результаты расчетов должны иметь указания размерности.

Текст расчетно-пояснительной записки должен быть написан аккуратно. Не допускаются сокращения слов, кроме общепринятых в технической литературе (ТЭЦ, КЭС, п/ст и т. п.); тем более недопустимы сокращения слов в заглавиях проекта в целом, его разделов и параграфов.

По ходу изложения приводятся ссылки на литературные источники, список которых помещается в конце записки, на рисунки и чертежи к проекту. Следует обратить особое внимание на письменный анализ результатов каждой основной группы расчетов или этапа проектирования (например, выбор конфигурации и схемы сети, результаты расчета баланса реактивной мощности, решение задачи регулирования напряжения на подстанциях и т. д.). На основании такого анализа формируются выводы о выполнении задач проектирования в данном разделе, соблюдении норм и условий проектирования и др. Такие выводы в большинстве случаев являются одними из исходных материалов для следующего этапа проектирования.

В расчетно-пояснительной записке обязательно должны быть рисунки, изображающие основные варианты конфигурации, принятые схемы электрических соединений подстанций, потокораспределения в различных режимах работы сети и т. п. Рисунки должны иметь нумерацию и наименования, а в тексте расчетно-пояснительной записки следует делать ссылки на $\mathbb{N}_{\mathbb{C}}$ рисунков.

По проекту обычно выполняются два чертежа, на которых изображаются:

- а) схема района, для которого проектируется электрическая сеть (с соблюдением масштаба), основные рассматриваемые в проекте варианты конфигурации и схемы сети. Эти варианты изображаются упрощенно с указанием лишь выключателей сетей 110(35)—220 кВ и трансформаторов. Здесь указываются номинальные напряжения сети или ее участков, марки проводов линий, длины линий и номинальные мощности трансформаторов и автотрансформаторов, активные и реактивные нагрузки п/ст;
- б) полная принципиальная схема электрических соединений спроектированной сети, схема замещения сети и основные результаты расчетов режимов. Здесь должны быть

показаны все линии, трансформаторы, выключатели, отделители, короткозамыкатели и разъединители 35—220 кВ. Схемы подстанций на стороне 10 кВ изображаются условно в виде одиночной секционированной системы шин. Здесь должны быть представлены выключатели в цепях трансформаторов, секционирующий шины выключатель, а также выключатели нескольких отходящих линий. Подключение компенсирующих устройств изображается условно — непосредственно к шинам 10 кВ подстанций.

Литература

- 1. Электрические системы. Электрические сети: Учеб. для электроэнерг. спец. вузов/В. А. Веников, А. А. Глазунов, Л. А. Жуков и др. / Под ред. В. А. Веникова. Изд. 2-е переработанное н дополненное. М.: Высш. шк., 1994.
- 2. Идельчик В. И. Электрические системы и сети. М.: Энергоатомиздат, 1989.
- 3. Правила устройства электроустановок/Минэнерго СССР. 6-е изд. М.: Энергоатомиздат, 1986.
- 4. Справочник по проектированию электроэнергетических систем. / Под ред. С. С. Рокотяна и И. М. Шапиро. Третье издание переработанное н дополненное. М.: Энергоатомиздат, 1985.
- 5. Электротехнический справочник / Под ред. В. Г. Герасимова, П. Г. Грудинского, В. А. Лабуниова и др. 7-е издание. Том 3. Кн. 1. М.: Энергоатомиздат, 1988.
- 6. Зуев Э. Н. Технико-экономические основы проектирования электрических сетей. М,: Моск. энерг. ин-т, 1988.

5.2. Пример выполнения курсового проекта

Введение

Начало развития электрических систем в нашей стране было положено планом ГОЭЛРО – планом электрификации всей России. Его идеи привели к созданию объединённых энергетических систем, в том числе и Единой энергетической системы (ЕЭС). Задачу проектирования следует рассматривать как задачу развития ЕЭС России. При проектировании электрических систем важно учитывать интересы и специфику административных и экономических районов. Поэтому проектирование развития ЕЭС должно основываться на учёте развития отдельных энергосистем и их объединений.

Создание мощных электрических систем обусловлено их большими технико-экономическими преимуществами. С увеличением их мощности появляется возможность сооружения крупных электрических станций с более экономичными агрегатами, повышается надёжность электроснабжения потребителей, более полно и рационально используется оборудование.

Однако фундаментальные проблемы электроэнергетики, наметившиеся в 80 годы и получившие развитие в последующие период, не нашли своего разрешения. На фоне общеэкономического спада продолжала повышаться энергоемкость экономики, произошло резкое падение объемов инвестиций с одновременным снижением эффективности работ отдельных секторов отрасли. Нерешенность указанных проблем может привести к замедлению экономического роста.

Качественный рост энергоэффективности экономики и изменения инвестиционного климата в энергетики невозможны без изменения сложившейся системы экономических отношений и безотлагательного проведения структурной реформы электроэнергетики и тесно связанной с ней газовой отрасли.

Целями реформирования электроэнергетики Российской Федерации являются обеспечение устойчивого функционирования и развития экономики и социальной сферы, повышение эффективности производства и потребления электроэнергии, обеспечение надежного и бесперебойного энергоснабжения потребителей.

Стратегической задачей реформирования является перевод электроэнергетики в режим устойчивого развития на базе применения прогрессивных технологий и рыночных принципов функционирования, обеспечение на этой основе надежного, экономически эффективного удовлетворения платежеспособного спроса на электрическую и тепловую энергию в краткосрочной и долгосрочной перспективе.

Формирование электрических систем осуществляется с помощью электрических сетей, которые выполняют функции передачи энергии и электроснабжения потребителей. С учётом этого и ведётся их проектирование.

ОЭС Востока расположена в южной, наиболее обжитой части Дальнего Востока. Характерной особенностью электрической схемы ОЭС Востока является ее цепочечный характер. Протяженность такой цепочки с запада на восток составляет около 3500 километров. Четыре энергосистемы (Амурская, Дальневосточная, Хабаровская и Южно-Якутский энергорайон Якутскэнерго) работают параллельно на напряжении 500-220 кВ. От ОЭС Востока в ремонтном режиме питается часть Читинской энергосистемы.

В настоящее время в состав ОЭС Востока входит Зейская ГЭС мощностью 1330 МВт и 14 тепловых электростанций, в том числе и ТЭЦ. В ближайшем будущем в состав ОЭС Востока войдет Бурейская ГЭС мощностью 1980 МВт.

В перспективе развития энергосистемы предусмотрен ввод новых источников питания, таких как Нижнебурейская ГЭС, каскад ГЭС на реке Зея, строительство Благовещенской ТЭЦ-2. Самая мощная тепловая электростанция — Приморская ГРЭС мощностью 1495 МВт. Установленная мощность электростанций ОЭС Востока — 7006,7 МВт.

1. Краткая энергоэкономическая характеристика района

Хабаровский край — расположен в центральной части южной половины Дальнего Востока, у Тихого океана. Граничит с Китаем на юго-западе; с востока омывается Охотским и Японским морями, проливами Татарский и Невельского отделяется от острова Сахалин. Площадь Хабаровского края составляет 824,6 тысяч км², Разделен на 17 административных районов, имеет 7 городов и 29 поселков городского типа. Центр — город Хабаровск. Побережье Хабаровского края изрезано слабо, за исключением юго-западного участка Охотского моря, где имеются Удская губа и заливы Тугурский, Академии и др. Протяженность береговой линии около 2500 километров. На территории края преобладают горные рельефы (около 70 % от территории). На юге горные системы вытянуты в северовосточном направлении. Юго-запад занимают Хребты Турана, Малый Хинган и др. с высотами от 750 до 2500 метров. В центральной части края — горы широтной ориентацией: хребты Джагарда, Селемджинский. Наиболее обширные низменности: на юге — Нижне- и Средне Амурская.

Климат умеренно муссонный, холодной малоснежной зимой и теплым влажным летом. Средняя температура января от -22 °C на юге, до -40 °C на севере, на морском побережье от -15 °C до -25 °C; средняя температура июля до 11 °C в приморской части, до 21 °C в южных внутренних районах. Осадков в год от 400 мм на севере до 800 мм на юге и 1000 мм на восточном склоне Сихотэ-Алиня. По толщине стенки гололеда центр Хабаровского края относится ко II группе, по скоростному напору ветра к III. Среднегодовая продолжительность гроз от 20 до 40 часов. Центр Хабаровского края относится к району с редкой пляской проводов, с повторяемостью пляски один раз в десять лет.

В Хабаровском крае в основном распространены дерново-подзолистые почвы, на равнинных участках — лугово-болотные и болотные почвы, в южных районах — бурые лесные и буротаежные почвы. На севере формируются горно-таежные и горно-тундровые почвы.

Экологическая ситуация в целом умеренно острая, на севере условно удовлетворительная, вокруг промышленных центров – острая и очень острая в результате загрязнения атмосферы и вод суши, утраты продуктивности земель и лесных ресурсов. По степени загрязненности окружающей среды Хабаровский край относится ко второму классу.

Структура промышленности Хабаровского края: машиностроение 14,7 %; переработка сырья 25,8 %; топливно-энергетический комплекс 38,3 %; химическая промышленность 1,8 %; легкая, пищевая и др. 19,7 %.

Внутренние различия центральной части Хабаровского края – наиболее заселена и освоена в промышленном и сельскохозяйственном отношении часть. Здесь сосредоточены предприятия:

- машиностроения и металлообработки (океанические и морские суда, самолеты, дизели, метало режущие станки);
- черной металлургии (прокат черного металла, сталь);
- лесной, деревообрабатывающей отрасли и целлюлозы (деловая древесина, фанера, целлюлоза);
- горнодобывающей отрасли (уголь, руда цветных металлов (олово и медный концентрат);
- химической отрасли (кислородный, сернокислый, шиноремонтный, гидролизный и биохимический, химико-фармацевтический);
- стройматериалов;
- рыбной, пищевой и легкой.

Самыми крупными потребителями, влияющими на качество электрической энергии, являются черная металлургия и металлообработка, они искажают синусоидальность и симметрию.

Самый крупный промышленный и транспортный центр – Хабаровск, Комсомольск-на-Амуре, Амурск и др.

В качестве узловой распределительной подстанции была принята подстанция Комсомольская. Подстанция Комсомольская является одной из крупнейших подстанций в Хабаровском крае (после подстанции 500 кВ Хабаровская). Она имеет четыре ступеней напряжения — 500, 220, 110 и 10 кВ. Распределительные устройства 500, 220, 110 кВ выполнены открытыми (ОРУ).

На сегодняшний день на подстанции из самого крупного оборудования установлены: один автотрансформатор типа 3xAOДЦТН - 167000/500/220/10; два автотрансформатора типа ATДЦТН - 63000/220/110/10; один реактор типа 3xPOДЦ - 60000/500У1.

Выдача электроэнергии промышленным и сельскохозяйственным потребителям производится на напряжениях 220 и 110 кВ.

ОРУ 500 кВ ПС Комсомольская получает электрическую энергию по ВЛ 500 кВ от ПС Хабаровская. ОРУ 220 кВ ПС Комсомольская выполнена по схеме – две рабочие с обходной секции шин. От ОРУ 220 кВ отходят три линии (двух цепная ВЛ на ПС Старт, одноцепные на ПС Селихино, и ПС ГПП – 4). ОРУ 110 кВ ПС Комсомольская выполнена по схеме – одна рабочая, секционированная выключателем, и обходная система шин. От ОРУ 110 кВ отходят четыре линии (двух цепные ВЛ на ПС Береговая, ПС К, Амурскую ТЭЦ, и одноцепная на ПС Гайтер). ЗРУ 10 кВ применяют, через тока ограничивающие реакторы для питания нагрузки собственных нужд подстанции.

В качестве электрической станции приняли Амурскую ТЭЦ. Амурская ТЭЦ является одной из крупнейших станций в Хабаровском крае. Она имеет две ступени напряжения – 110 кВ и генераторное напряжение. Распределительное устройство 110 кВ выполнено открытым (ОРУ). На станции установлены: три генератора мощностью по 60 МВт; один генератор мощностью 80 МВт; один генератор мощностью 25 МВт; два повышающих трансформатора мощностью 60 МВА; один повышающий трансформатор мощностью 125 МВА.

Выдача электроэнергии промышленным и сельскохозяйственным потребителям производится на напряжении 110 кВ. ОРУ 110 кВ Амурской ТЭЦ выполнено по схеме – две рабочие с обходной секции шин. От ОРУ 110 кВ отходят три двух цепные воздушные линии на ПС Эльбан, ПС Амурмаш, ПС Комсомольская.

2. Определение режимных характеристик потребителей электрической сети

Для построения суточных графиков электрических нагрузок рассчитаем активные и реактивные мощности для понизительных подстанций по формулам:

$$\boldsymbol{P}_{i}^{(t_{j}-t_{j+1})} = \boldsymbol{P}_{*}^{(t_{j}-t_{j+1})} \cdot \boldsymbol{a}_{*i} \cdot \boldsymbol{P}_{max}, \tag{1}$$

где P_i – активная мощность для интервала времени $(t_j - t_{j+1}); \ P_{*i}$ – относительная ордината суточного графика потребления для интервала времени $(t_j - t_{j+1}); \ a_{*i}$ – процентное соотношение нагрузки потребителя; P_{max} – максимальное значение мощности, указанное в задании на проект.

$$Q_{i}^{(t_{j}-t_{j+1})} = Q_{*}^{(t_{j}-t_{j+1})} \cdot a_{*_{i}} \cdot P_{max},$$
 (2)

где Q_i – реактивная мощность для интервала времени $(t_j-t_{j+1});\ Q_{*i}$ – относительная ордината суточного графика потребления для интервала времени $(t_j-t_{j+1});\ a_{**i}$ – процентное соотношение нагрузки потребителя; P_{max} – максимальное значение мощности, указанное в задании на проект.

Характеристикой потребителей также является годовой график по продолжительности активной нагрузки.

Это упорядоченный график, в котором значения мощности расположены в порядке убывания, показывающий длительность работы в течение года с различной нагрузкой.

Площадь, ограниченная этим графиком и осями координат пропорциональна активной энергии, потребляемой в год W.

По ней можно определить еще одну характеристику-число часов использования наибольшей нагрузки $T_{\rm max}$.

$$T_{max} = W/P_{max} = \sum P_i \cdot \Delta T_i/P_{max}$$
 (3)

Вероятностные характеристики графика электрических нагрузок определяются по следующим формулам.

Средняя нагрузка:

$$P_{\tilde{n}\tilde{o}} = \frac{1}{24} \sum_{i=1}^{n} P_i t_i$$

$$Q_{\tilde{n}\tilde{o}} = \frac{1}{24} \sum_{i=1}^{n} Q_i t_i$$
(4)

Эффективная нагрузка:

$$\mathbf{\mathcal{D}}_{\hat{y}\hat{o}} = \sqrt{\frac{1}{24} \sum_{i=1}^{n} P_i^2 \cdot t_i}$$

$$\mathbf{\mathcal{Q}}_{\hat{y}\hat{o}} = \sqrt{\frac{1}{24} \sum_{i=1}^{n} Q_i^2 \cdot t_i}$$
(5)

Максимальная нагрузка:

$$\begin{split} P_{max} &= P_{\tilde{n}\tilde{o}}(1+1,96\sqrt{K_{\tilde{o}\tilde{o}}^2-1})\\ Q_{max} &= Q_{\tilde{n}\tilde{o}}(1+1,96\sqrt{K_{\tilde{o}\tilde{o}}^2-1}) \end{split} \tag{6}$$

где P_{cp} , Q_{cp} - средняя нагрузка; P_{\max} , Q_{\max} - максимальная нагрузка; K_{ϕ} - коэффициент формы.

Минимальная нагрузка:

$$P_{min} = P_{\tilde{n}\tilde{o}}(1 - 1,96\sqrt{K_{\hat{o}\tilde{o}}^{2} - 1})$$

$$Q_{min} = Q_{\tilde{n}\tilde{o}}(1 - 1,96\sqrt{K_{\hat{o}\tilde{o}}^{2} - 1})$$
(7)

где $P_{_{cp}}$, $Q_{_{cp}}$ - средняя нагрузка; $K_{_{\phi}}$ - коэффициент формы; $P_{_{\min}}$, $Q_{_{\min}}$ - минимальная нагрузка.

Коэффициент формы определяется следующим образом:

$$\hat{E}_{\hat{o}\,\delta} = \mathcal{D}_{\hat{y}\hat{o}} / \mathcal{D}_{\tilde{n}\delta}
\hat{E}_{\hat{o}\,O} = \mathcal{Q}_{\hat{v}\hat{o}} / \mathcal{Q}_{\tilde{n}\delta}$$
(8)

где $P_{{}_{}^{\circ\phi}}$, $Q_{{}_{}^{\circ\phi}}$ - эффективная мощность

Вероятностные характеристики представлены в таблице 1

Таблица 1 – Вероятностные характеристики

Время	ПС	Pcp	Рэф	Pmax	Pmin	Qcp	Qэф	Qmax	Qmin
Зима	A	80.60	80.637	84.847	76.37	83.867	83.869	85.108	82.625
Лето	Α	78.19	78.218	82.301	74.079	82.189	82.192	83.406	80.972
Год	A	79.399	79.437	84.2	74.598	83.028	83.035	85.081	80.975
Зима	Б	9.523	9.795	14.022	5.093	5.075	5.234	7.588	2.561
Лето	Б	7.567	7.764	10.969	4.165	2.748	2.836	4.122	1.375
Год	Б	8.545	8.838	12.97	4.119	3.911	4.21	6.961	0.862
Зима	В	6.122	6.297	9.014	3.229	3.262	3.365	4.878	1.646
Лето	В	4.865	4.991	7.052	2.677	1.767	1.823	2.65	0.884
Год	В	5.493	5.682	8.338	2.648	2.514	2.706	4.475	0.554
Зима	Γ	69.382	69.54	77.998	60.766	72.643	72.695	78.013	67.274
Лето	Γ	51.342	51.445	57.718	44.967	50.124	50.16	53.829	46.419
Год	Γ	60.362	61.155	79.597	41.127	61.384	62.452	83.93	38.838
Зима	Д	17.685	18.191	26.041	9.329	9.424	9.72	14.093	4.756
Лето	Д	14.053	14.418	20.372	7.734	5.104	5.267	7.655	2.553
Год	Д	15.869	16.414	24.087	7.65	7.264	7.818	12.928	1.6
Зима	Е	32.332	32.532	39.405	25.259	30.115	30.175	33.837	26.393
Лето	Е	28.818	28.949	34.202	23.435	26.658	26.689	29.215	24.1
Год	Е	30.575	30.793	37.741	23.409	28.386	28.485	33.042	23.73
Зима	Ж	35.735	35.957	43.552	27.918	33.285	33.351	37.399	29.171
Лето	Ж	31.852	31.996	37.802	25.902	29.464	29.499	32.29	26.637
Год	Ж	33.793	34.034	47.714	25.873	31.374	31.484	36.52	26.228

3. Выбор и технический анализ принятых вариантов сети

3. 1. Построение схем электрической сети

Выбор рациональной схемы сети производится на основе технико-экономического сопоставления ряда ее вариантов. Сопоставляемые варианты обязательно должны отвечать условиям технической осуществимости каждого из них по параметрам основного электрооборудования (провода, трансформаторы и т. п.), а также быть равноценными по надежности электроснабжения потребителей, относящихся к первой категории.

Общие принципы экономически целесообразного формирования электрических сетей могут быть сформулированы следующим образом: схема сети должна быть по возможности простой, и передача электроэнергии потребителям должна осуществляться по возможно кратчайшему пути, что обеспечивает снижение стоимости сооружения линий и экономию потерь мощности и электроэнергии; следует стремиться осуществлять электрические сети с минимальным количеством трансформаций напряжения, что снижает необходимую установленную мощность трансформаторов и автотрансформаторов, а также — потери мощности и электроэнергии; комплекс номинального напряжения и схемы сети должны обеспечивать необходимое качество электроснабжения потребителей и выполнение технических ограничений электрооборудования линий и подстанций (по токам в различных режимах сети, по механической прочности и т. п.).

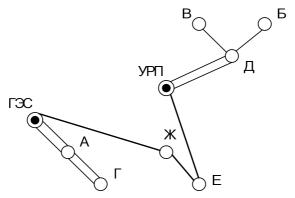


Рисунок 1- Первый вариант схемы

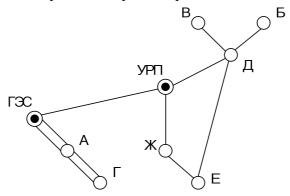


Рисунок 2- Второй вариант схемы

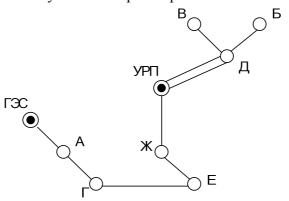


Рисунок 3- Третий вариант схемы 3.2. Анализ трех вариантов

Рациональное напряжение электрической сети может быть выбрано по эмпирическим формулам:

а) Формула Стилла:

$$U = 4.34\sqrt{L + 16P} \tag{9}$$

применяется при $L \le 250 \kappa M$, $P \le 60 MBm$

б) Формула А.М Залесского:

$$U = \sqrt{P(100 + 15\sqrt{L})} \tag{10}$$

применяется при $L \le 1000 \kappa M$, $P \ge 60 MBm$

в) Формула Г.А Илларионова:

$$U = 1000\sqrt{(500/L + 2500/P)} \tag{11}$$

При увеличении количества проводников в фазе мощность в формулах 3-5 делится на количество проводников.

Данные формулы дают удовлетворительные результаты для всей шкалы номинальных напряжений от 35 до 1150кВ. В формулах P - является мощностью передаваемой по одной цепи ЛЭП; L-является длиной трасы ЛЭП

Таблица 2 – Данные расчета

№ Варианта	Линия	Длинна	U расч,кВ	Uном,кB
	ГЭС-А	23,759	139	220
	А-Г	23,759	109	220
	ГЭС-Ж	69,26	112	110
№ 1	Ж-Е	23,759	79	110
	УРП-Д	37,566	110	110
	Д-В	23,759	53	110
	Д-Б	23,759	68	110
	УРП-Е	53,124	120	110

Продолжение таблицы 2

продолжение таолицы 2							
	ГЭС-А	23,759	139	220			
	А-Г	23,759	109	220			
	УРП-Ж	33,6	121	110			
	Д-Е	53,126	68	110			
	УРП-Д	37,566	110	110			
№ 2	Ж-Е	23,759	110	110			
	Д-Б	23,759	68	110			
	Д-В	23,759	53	110			
	ГЭС-УРП	21,466	220	220			
	ГЭС-А	23,759	162	220			
	А-Г	23,759	128	220			
	Г-Е	50,4	72	220			
№ 3	Ж-Е	23,759	118	220			
	УРП-Ж	33,6	154	220			
	УРП-Д	23,759	110	110			
	Д-Б	23,759	68	110			
	Д-В	23,759	53	110			

Таблица 3 – Данные вариантов сети

Вариант	Длина линии, км	Число выключателей
№ 1	352,296	21
№ 2	352,929	21
№3	277,93	19

По наименьшей суммарной длине линий и наименьшему количеству выключателей для дальнейшего анализа выбираем варианты 1 и 3.

4. Выбор технических параметров и характеристик основного оборудования линий и подстанций сети

4.1. Выбор силовых трансформаторов.

$$S_{PT} = \frac{\sqrt{P_{cp}^2 + (P_{max}^{3UM} * tg(\varphi))^2}}{n_T \cdot K_3^{O\Pi T}},$$
(12)

где S_{PT} – расчётная мощность трансформатора, MBA; P_{CP} – активная средняя годовая мощность, MBT; P_{MS}^{3UM} – значение максимальной активной мощности, MBT; n_T – число трансформаторов; $K_3^{O\Pi T}$ – оптимальный коэффициент загрузки.

По формуле рассчитаем мощность трансформатора ПС А:

$$S_{PT} = \frac{\sqrt{80,60^2 + (84,847*0,4)^2}}{2 \cdot 0.7} = 61,09MBA.$$

Рассчитаем мощность трансформатора ПС Б:

$$S_{PT} = \frac{\sqrt{9,523^2 + (4,022*0,3)^2}}{0.9} = 11,567MBA.$$

Рассчитаем мощность трансформатора ПС В:

$$S_{PT} = \frac{\sqrt{6,122^2 + (9,014*0,3)^2}}{0.9} = 7,436MBA.$$

По аналогии рассчитываем мощности других трансформаторов. Результаты заносим в таблицу 4

Таблица 4- Трансформаторы

Two many populations								
		ВАРИАНТ №1	ВАРИАНТ №3					
ПОДСТАНЦИЯ	Ѕрасч,МВА	Марка тр-ра	Марка тр-ра					
A	61,09	ТРДН 63000/220	ТРДН 63000/220					
Б	11,415	ТДН 16000/110	ТДН 16000/110					
В	6,544	ТДН 10000/110	ТДН 10000/110					
Γ	49,549	ТРДН 63000/220	ТРДН 63000/220					
Д	22,895	ТРДН 25000/110	ТРДН 25000/110					
Е	23,18	ТРДН 25000/110	ТРДН 32000/220					
Ж	29,132	ТРДН 32000/110	ТРДН 32000/2200					

Определим коэффициент загрузки трансформатора в нормальном режиме, который, не должен превышать 0,7 по формуле

$$K_{3}^{HOPM} = \frac{\sqrt{P_{CP}^{2} + Q_{HECK}^{2}}}{N_{T} \cdot S_{HOM}}$$
 (13)

и коэффициент загрузки трансформатора в послеаварийном режиме, который, не должен превышать 1,4,

Коэффициент аварийной перегрузки определяется из учета того, что один трансформатор отказал в период наибольшей загрузки трансформатора. Возможна перегрузка силовых трансформаторов в том случае если температура нагрева масла и температура нагрева обмоток не будет превышать допустимые

$$K_{3}^{II/A} = \frac{\sqrt{P_{CP}^{2} + Q_{HECK}^{2}}}{S_{HOM}}$$
 (14)

Рассчитаем коэффициент загрузки трансформатора в нормальном и аварийном режимах на примере подстанции А.

$$K_{3}^{HOPM} = \frac{\sqrt{80,60^{2} + (84,847 * 0,4)^{2}}}{2 \cdot 63} = 0,694$$

$$K_{3}^{\Pi/A} = \frac{\sqrt{80,60^{2} + (84,847 * 0,4)^{2}}}{63} = 1,388$$

Аналогично определим коэффициенты для других трансформаторов и занесем их в таблицу 5.

Таблица 5- Коэффициенты загрузки трансформаторов в нормальном и послеаварийном режимах.

Подстанция	$K_{_3}^{^{HOPM}}$	$K_{_3}^{^{\Pi/A}}$
A	0,694	1,388
Б	0,651	
В	0,669	
Γ	0,581	1,162
Д	0,773	
Е	0,562	1,124
Ж	0,595	1,190

4.2. Баланс реактивной мощности

Основным, но не единственным источником реактивной мощности в системе являются генераторы электростанций. Располагаемая реактивная мощность электростанций определяется согласно номинальному коэффициенту мощности установленных на станциях генераторов. Кроме этого, в электрических сетях широко используются дополнительные источники реактивной мощности — компенсирующие устройства (КУ). Основным типом КУ, устанавливаемых на подстанциях потребителей, являются конденсаторные батареи.

На основе специальных расчетов распределения реактивной мощности в электроэнергетической системе, для каждого узла системы определяется реактивная мощность, которую целесообразно передавать из системы в распределительные сети, питающиеся от того или иного узла.

Поэтому при проектировании электрической сети, получающей питание от системы, задается реактивная мощность Q_c , которую целесообразно потреблять из системы (в заданном узле присоединения) в режиме наибольших нагрузок. Потребление большей мощности приведет к дополнительной загрузке системных источников реактивной мощности, к дополнительным затратам на генерацию и передачу этой мощности и, следовательно, к отступлению от оптимального режима питающей системы. В связи с этим в проекте следует предусмотреть мероприятия, обеспечивающие выполнение поставленных электроэнергетической системой условий по потреблению реактивной мощности. Для этого необходим расчет баланса реактивной мощности в проектируемой сети.

Решить вопрос о необходимости установки КУ в проектируемой сети следует до выполнения расчетов возможных вариантов схемы и параметров сети, так как компенсация реактивной мощности влияет на передаваемые по линиям электропередачи и через трансформаторы мощности, на потери мощности и напряжения в элементах сети и может влиять на выбираемые номинальные мощности трансформаторов и сечения проводов линий. Таким образом, выбор мощности КУ и их размещение влияют на оценку технических и технико-экономических характеристик и показателей вариантов схемы сети и, следовательно, на принятие окончательного решения по рациональной схеме проектируемой сети района.

В окончательно выбранном варианте электрической сети после расчетов установившихся режимов мощности КУ должны быть уточнены для обеспечения выполнения баланса реактивной мощности.

Баланс реактивной мощности должен соблюдаться м/у $\sum Q_{{\scriptscriptstyle \it FEH}}$ и $\ \sum Q_{{\scriptscriptstyle \it HOTP}}$,

T.e $\sum Q_{\text{\tiny FEH}} \geq \sum Q_{\text{\tiny FIOTP}}$

$$\sum Q_{\text{TEH}} = Q_{\text{TEH}}^{\text{T9C}} + Q_{\text{TEH}}^{\text{YP\Pi}} + \Delta Q_{\text{BJ}} , \qquad (15)$$

где $Q_{\it \Gamma EH}^{\it \Gamma \supset C}$ - генерируемая реактивная мощность с шин $\it \Gamma \supset C$, MBap;

 $Q_{{\scriptscriptstyle \Gamma\!E\!H}}^{{\scriptscriptstyle Y\!P\!\Pi}}$ - генерируемая реактивная мощность с шин УРП.

$$Q_{\text{\tiny FEH}}^{\text{\tiny FSC}} = 0.62*(P_{\text{\tiny FSC-A}} + P_{\text{\tiny A-\Gamma}}) \tag{16}$$

где $P_{\Gamma \supset \Gamma_{-4}}, P_{A-\Gamma}$ -максимальные зимние активные мощности подстанций A и Γ , MBт.

$$Q_{\text{\tiny FEH}}^{\text{\tiny VPII}} = 0.8*(Q_{\text{\tiny VPII-XK}} + Q_{\text{\tiny XK-E}} + \sum (Q_{\text{\tiny ZI-B-B}}^{\text{\tiny IIC}})) \tag{17}$$

$$Q_{\text{\tiny \it IEH}}^{\text{\tiny \it IPSC}} = 0.62*(158,566+73,101) = 143,633$$
 MBap;

 $Q_{\text{TEH}}^{\text{VPII}} = 0.8*(103,301+43,788+14,093+4,878+7,588) = 138,92 \text{ MBap};$

$$\Delta Q_{RU1} = q_0 *0.6* L_{C2C-C} = 0.139*0.6*47,518 = 3,963 \text{ MBap};$$

$$\sum Q_{TEH} = 143,633 + 138,92 + 3,963 = 286,516 \text{ MBap.}$$

$$\sum Q_{TOTP} = Q_{TOTP}^{\Sigma} + \sum \Delta Q_{TP} + \Delta Q_{RT}$$
(18)

где $Q_{{\scriptscriptstyle HOTP}}^{\scriptscriptstyle \Sigma}$ - суммарная максимальная реактивная мощность потребителей, МВар; $\sum \Delta Q_{{\scriptscriptstyle TP}}$ - суммарные потери реактивной мощности в трансформаторах.

$$Q_{notp}^{\Sigma}$$
 =85,108+7,588+4,878+78,013+14,093+33,837+37,399=260,916 MBap.

$$\sum \Delta Q_{TP} = 0.1 * (\sum S_{TP})$$
 (19)

 $\sum \Delta Q_{\rm TP} = 0.1*(63*2+16+10+63*2+25+32*2+2*32) = 43.1 \quad \text{MBap}.$

$$\Delta Q_{BJI} = q_0 *0.4 * L_{P3C-VPII} = 0.139 *0.4 *128,636 = 7,152$$
 MBap. (20)

$$\sum Q_{\text{HOTP}} = 260,916+43,1+7,152=311,168$$
 MBap.

Сравним $\sum Q_{\it ГЕН}$ и $\sum Q_{\it ПОТР}$. $\sum Q_{\it ГЕН}$ =286,516 Мвар < $\sum Q_{\it ПОТР}$ =311,168 Мвар, следовательно требуется компенсация реактивной мощности.

4.3. Выбор компенсирующих устройств

Мощность компенсирующих устройств определяется по формуле:

$$Qкy = (Q max - Qэн)/2$$
 (21)

где $Q_{\text{сш}}$ — мощность компенсирующих устройств на две секции шин, Мвар; Q_{max} — максимальная реактивная мощность для зимы, Мвар; $Q_{\text{эн}}$ — эффективная реактивная мощность для зимы, МВт.

Реактивная мощность подстанций:

Qэн =
$$\operatorname{Pmax}^* tg(\varphi)_{\operatorname{ЭH}}$$
 (22)

где $tg(\boldsymbol{\varphi})_{_{\mathcal{H}}}$ –нормативно целесообразный коэффициент мощности; $tg(\boldsymbol{\varphi})_{_{\mathcal{H}}}$ =0.333 – для зимы и для напряжения 110 кВ; $tg(\boldsymbol{\varphi})_{_{\mathcal{H}}}$ =0.4 –для зимы и напряжения 220 кВ; $tg(\boldsymbol{\varphi})_{_{\mathcal{H}}}$ =0.7 –для лета.

Значения максимальных, активных и реактивных мощностей даны в таблице 1.

Рассчитаем мощность КУ для подстанции А по формуле (21)

$$Qky = (Q max - QH)/2 = (84,847 - 33,9388)/2 = 25,5846 MBap$$
 (23)

8*УКЛ 56-10.5-3150 УЗ,УКЛ 56-10.5-450 УЗ, КС-10.5-75 УЗ

Окуф=25,725 -фактическая мощность компенсирующих устройств на 1 сш.

Qнеск = Qmax – Qкуф =
$$84,847 - 25,725*2=33,658$$
 MBap (24)

Так же производится расчет и для летнего времени года, в качестве максимальных мощностей берутся летние максимальные нагрузки.

Результаты расчета снесены в таблицу 6 и 7.

Таблица 6 – Компенсирующие устройства для третьего варианта

ПС	Qэн	Qку	марка и кол-во	Qкуф	Qнеск	погрешн.
			8*УКЛ 56-10.5-3150 У3,			
A	33,94	25,6	УКЛ 56-10.5-450 УЗ, КС-10.5-75 УЗ	25,7	33,66	0,83
Б	4,674	2,91	УКЛ 56-10.5-2700 УЗ, 4* КС-10.5-75 УЗ	3	4,588	1,83
В	3,004	1,87	УКЛ 56-10.5-900 УЗ, 3* УКЛ 56-10.5-330 УЗ	1,89	2,988	0,54
			7*УКЛ 56-10.5-3150 У3, 3*УКЛ 56-10.5-450 У3,			
Γ	31,2	23,4	КС-10.5-75 УЗ	23,5	31,06	0,44
			УКЛ 56-10.5-2700 УЗ, 3*УКЛ 56-10.5-900 УЗ,			
Д	8,679	5,41	2*КСВ 32-10.5-10 У3	5,42	8,673	0,07
Е	15,76	9,04	2*УКЛ 56-10.5-3150 У3, УКЛ 56-10.5-2700 У3	9	15,84	-0,5
			2*УКЛ 56-10.5-3150 УЗ, УКЛ 56-10.5-2700 УЗ,			
Ж	17,42	9,99	3* УКЛ 56-10.5-330 У3	9,99	17,42	0,01
			ЛЕТО		·	
ПС	Оэн	Okv	марка и кол-во	Okvd	Онеск	погреш

ПС	Qэн	Qку	марка и кол-во	Окуф	Qнеск	погреш
Α	57,61	12,9	4*УКЛ 56-10.5-3150 УЗ, УКЛ 56-10.5-450 УЗ	13,1	57,31	0,53
Б	7,678	3,56				
В	4,936	2,29				
Γ	40,4	6,71	2*УКЛ 56-10.5-3150 УЗ, УКЛ 56-10.5-450 УЗ	6,75	40,33	0,18
Д	14,26	6,61				
Е	23,94	2,64	УКЛ 56-10.5-2700 УЗ			
Ж	26,46	2,91	УКЛ 56-10.5-2700 УЗ, УКЛ 56-10.5-330 УЗ	3,03	26,23	0,87

Таблица 7 – Компенсирующие устройства для первого варианта

ПС	Qэн	Qку	марка и кол-во	Окуф	Qнеск	погрешн.
			8*УКЛ 56-10.5-3150 УЗ,УКЛ 56-10.5-450 УЗ,			
Α	33,94	25,58	КС-10.5-75 УЗ	25,7	33,66	0,83
			2*УКЛ 56-10.5-900 У3,2*УКЛ 56-10.5-450			
Б	4,674	2,914	У3,4* КС-10.5-75 У3	3	4,588	1,83
В	3,004	1,874	УКЛ 56-10.5-900 У3,3* УКЛ 56-10.5-330 У3	1,89	2,988	0,54
			7*УКЛ 56-10.5-3150 У3,3*УКЛ 56-10.5-450			
Γ	31,2	23,41	У3,КС-10.5-75 У3	23,5	31,06	0,44
			УКЛ 56-10.5-2700 У3,3*УКЛ 56-10.5-900			
Д	8,679	5,414	У3,2*КСВ 32-10.5-10 У3	5,42	8,673	0,07
			2*УКЛ 56-10.5-3150 У3,УКЛ 56-10.5-2700 У3,			
E	13,13	10,35	УКЛ 56-10.5-900 УЗ,УКЛ 56-10.5-450 УЗ	10,4	13,14	-0,03
			2*УКЛ 56-10.5-3150 У3,УКЛ 56-10.5-2700 У3,			
Ж	14,52	11,44	2*УКЛ 56-10.5-900 У3,2* УКЛ 56-10.5-330 У3	11,5	14,48	0,25

ЛЕТО

ПС	Qэн	Qкy	марка и кол-во	Окуф	Qнеск	погреш
A	57,61	12,9	4*УКЛ 56-10.5-3150 УЗ,УКЛ 56-10.5-450 УЗ	13,1	57,31	0,53
Б	7,678	-3,556				
В	4,936	-2,286				
Γ	40,4	6,713	2*УКЛ 56-10.5-3150 УЗ,УКЛ 56-10.5-450 УЗ	6,75	40,33	0,18
Д	14,26	-6,605				
Е	23,94	2,637	УКЛ 56-10.5-2700 УЗ			
Ж	26,46	2,914	УКЛ 56-10.5-2700 УЗ,УКЛ 56-10.5-330 УЗ	3,03	26,23	0,87

После компенсации проводим повторный расчет баланса, где в место суммарной максимальной реактивной мощностей потребителей ($Q_{{\scriptscriptstyle HOTP}}^{\scriptscriptstyle \Sigma}$), подставляем сумму получившихся не скомпенсированных мощностей. В результате получаем: $\sum Q_{{\scriptscriptstyle TEH}}$ =286,516 и $\sum Q_{{\scriptscriptstyle HOTP}}$ =164,421 Мвар .

Основным типом КУ являются конденсаторные батареи, подключаемые в электрических сетях 10 кВ, питающихся от подстанций проектируемой сети. Вместе с тем, на крупных узловых подстанциях с высшим номинальным напряжением 110—220 кВ и более в ряде случаев может быть оправдана установка синхронных компенсаторов или статических тиристорных компенсаторов.

4.4. Выбор сечений линий в вариантах

Сечение провода – важнейший параметр линии. С увеличением сечения проводов линии, увеличиваются затраты на ее сооружение и отчисления от них. Одновременно уменьшаются потери электроэнергии и их стоимость за год.

На воздушных линиях предусматривается применение только сталеалюминевых проводов марки AC, маркируемых в соответствии с ГОСТ 839—80. Выбор проводов производится по методу экономических интервалов токовых нагрузок для сталеалюминевых проводов ВЛ 110—750 кВ при полной номенклатуре сечений.

Для полученных двух вариантов схем определим потокораспределение реактивной мощности без учета потерь а так же выберем сечение и марку провода.

Расчетный ток в воздушных линиях между подстанциями вычисляется по формуле

$$I_{\text{\tiny MAX}} = \frac{\sqrt{P_{\text{\tiny max}}^2 + Q_{\text{\tiny neck}}^2}}{\sqrt{3} \cdot U_{\text{\tiny HOM}} \cdot n}, \tag{25}$$

где $\, n - \kappa$ оличество цепей; $\, U_{\text{ном}} - \,$ номинальное напряжение, $\, \kappa B$;

 P_{max} , Q_{heck} — потоки активной максимальной и максимальной нескомпенсированной реактивной мощности соответственно.

Найдём токи на участках, в зависимости от которых, по экономическим токовым интервалам, принимается суммарное сечение проводов ЛЭП:

$$I_{p} = I_{\text{Max}} \cdot \alpha_{i} \cdot \alpha_{t} , \qquad (26)$$

где α_i – коэффициент, учитывающий изменение тока по годам эксплуатации;

 α_t – коэффициент, учитывающий число часов использования максимальной нагрузки линии ($T_{\rm M}$).

Для воздушных линий $110 - 220 \text{ кB } \alpha_i$ принимается равным 1,05.

Для $T_{\scriptscriptstyle M}$ равным 3800 часов $\alpha_{\scriptscriptstyle t}$ принимается равным 0,9. По формуле (26) находим токи $I_{\scriptscriptstyle D}$ Результаты расчётов заносим в таблицу 8.

Таблица 8 – Расчётные токи

Bap. 1	ГЭС-А	А-Г	В-Д	Б-Д	УРП-Д	ГЭС-Ж	УРП-Е	Ж-Е
I_{pacy} , A	211	101	47	73	128	97	120	16
Bap. 3	ГЭС-А	УРП-Ж	А-Г	Г-Е	Ж-Е	Б-Д	УРП-Д	В-Д
I_{pacy} , A	200	128	90	26	77	73	128	47

По экономическим токовым интервалам выбираем провода.

Таблица 9 – Марки проводов

Вариант	Участок	Марка провода	Материал опор
	ГЭС-А	AC-240	Сталь
1	А-Г	AC-240	Сталь
1	В-Д	AC-150	Сталь
	Б-Д	AC-150	Сталь
	УРП-Д	AC-150	Сталь
1	ГЭС-Ж	AC-185	Сталь
1	УРП-Е	AC-240	Сталь
	Ж-Е	AC-150	Сталь
	ГЭС-А	AC-400	Сталь
	УРП-Ж	AC-240	Сталь
3	А-Г	AC-240	Сталь
	Г-Е	AC-240	Сталь
	Ж-Е	AC-240	Сталь
	Д-В	AC-150	Сталь
	Д-Б	AC-150	Сталь
3	УРП-Д	AC-150	Сталь

5. Технико-экономическое сравнение вариантов

5.1. Потери электрической энергии

Потери в силовых трансформаторах.

Потери электроэнергии в каждом силовом трансформаторе определяются по формуле:

$$\Delta W_{T} = \sum \frac{(P_{3\phi i}^{2} + Q_{3\phi}^{2})}{2 \cdot S_{Turn}^{2}} \cdot \Delta P_{\kappa} \cdot T_{i} + \Delta P_{x} \cdot T_{i} , \qquad (27)$$

где ΔW_T - потери энергии в силовом трансформаторе; T_i - количество зимних (летних) часов; $S_{T \ \text{ном}}$ — номинальная мощность трансформатора; ΔP_{κ} — потери при коротком замыкании в трансформаторе; ΔP_x — потери холостого хода в трансформаторе; $P_{9\varphi i}$ — эффективная мощность подстанции; $Q_{9\varphi}$ — эффективная мощность подстанции.

Расчёт потерь в силовых трансформаторах будем вести с учётом того, что на некоторых подстанциях стоят два трансформатора.

Потери электроэнергии в линиях.

Потери электроэнергии в воздушных линиях определяются по формуле:

$$\Delta W_{BJI} = \frac{P_{\phi\phi}^2 + Q_{\phi\phi}^2}{U_{\mu\rho\rho\mu}^2} \cdot R_{BJI} \cdot T, \qquad (28)$$

где ΔW_{BJ} – потери энергии в воздушных линиях; $P_{9\varphi}$, $Q_{9\varphi}$ – потоки эффективной активной и нескомпенсированной реактивной мощности; R_{BJ} – сопротивление линии; T – количество зимних (летних) часов.

Сопротивление воздушной линии определяется по формуле:

$$R_{BJI} = (r_0 \cdot 1)/n \tag{29}$$

где r_0 – сопротивление линии на один км, Ом·км; l – длина линии, км; n - количество непей

Потери в компенсирующих устройствах для данных подстанций определим по формуле:

$$\Delta W_{KV} = 0.003 \cdot Q_{\phi_{AKT,KV}} \cdot 2 \cdot T_3 \tag{30}$$

Капиталовложения.

Определим капиталовложения в районную электрическую сеть первого и третьего вариантов схемы. Капиталовложения определяются по формуле:

$$K=K_{BJI}+K_{II/cT}, \qquad (31)$$

где $K_{\rm BЛ}$ - капиталовложения в воздушные линии; $K_{\rm \Pi/cr}$ - капиталовложения в подстанции. Капиталовложения в воздушные линии определяются по формуле:

$$K_{B,\Pi} = K_0 \cdot l \cdot 1, 1$$
 (32)

где K_0 - стоимость одного километра линии;

Стоимость одного км ВЛ всех участков обоих схем в таблицах 10 и 11.

Таблица 10- Стоимость одного километра ВЛ первого варианта

Участок	Марка провода	Длина линии, км Стоимость 1км, тыс.	
ГЭС-А	AC-240	47,518	16,6
А-Г	AC-240	47,518	16,6
ГЭС-Ж	AC-185	69,26	11,9
УРП-Е	AC-240	53,124	12,6
УРП-Д	AC-150	75,132	11,5
Е-Ж	AC-150	23,759	11,5
Д-В	AC-150	23,759	11,5
Д-Б	AC-150	23,759	11,5

Таблица 11-Стоимость одного километра третьего варианта

Участок	Марка провода	Длина линии, км	Стоимость 1км, тыс. р.	
ГЭС-А	AC-400	23,759	18,8	
А-Г	AC-240	23,759	16,6	
Е-Г	AC-240	50,4	16,6	
УРП-Ж	AC-240	33,6	16,6	
Ж-Е	AC-240	23,759	16,6	
УРП-Д	AC-150	75,132	11,5	
Д-Б	AC-150	23,759	11,5	
Д-В	AC-150	23,759	11,5	

Капиталовложения в подстанции определяется по формуле:

$$K_{\pi/c\tau} = K_{opy} + K_{\tau p} + K_{\delta \kappa} + K_{\pi oc\tau}, \tag{33}$$

где $K_{\text{ору}},\,K_{\text{тр}},\,K_{\text{бк}},\,K_{\text{пост}}\,\,-\,\,$ справочные данные.

5.2. Издержки

Издержки для обоих вариантов находятся по формуле:

$$\mathcal{H} = \mathcal{H}_{at3} + \mathcal{C}_{\Delta W} \tag{34}$$

где $И_{\text{атэ}}$ – издержки на амортизацию, текущий ремонт, эксплуатацию; $C_{\Delta W}$ – стоимость потерь электроэнергии.

Издержки $И_{\text{атэ}}$ определяются по формуле:

$$M_{\text{atj}} = M_{\text{BJI}} + M_{\text{п/cr}} = (\alpha_{\text{a.n}} + \alpha_{\text{pn}} + \alpha_{\text{on}}) \cdot K_{\text{BJI}} + (\alpha_{\text{a.nc}} + \alpha_{\text{pnc}} + \alpha_{\text{onc}}) \cdot K_{\text{nc}},$$
(35)

где $(\alpha_{a.n}+\alpha_{pn}+\alpha_{on})$ —ежегодные отчисления на амортизацию, текущий ремонт и обслуживание ЛЭП в о.е.; $(\alpha_{a.nc}+\alpha_{pnc}+\alpha_{onc})$ — ежегодные отчисления на амортизацию, текущий ремонт и обслуживание подстанций в о.е.

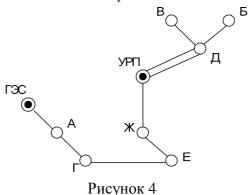
Стоимость потерь электроэнергии определим по формуле:

$$C_{\Delta W} = C_0 \cdot \Delta W \tag{36}$$

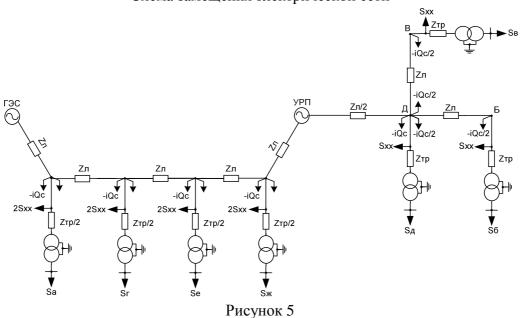
где C_o – удельная стоимость потерь электроэнергии; ΔW – потери электроэнергии в сети. Затраты определяются по формуле:

$$3 = E_{H} \cdot K + I I \tag{37}$$

где E_H – коэффициент равный 0,12.


Расчет выполнен в программе CRNET, результаты даны в приложении 1.

5.3. Применение оптимального варианта сети


На основании технико-экономического расчета выбираем оптимальный вариант сети. По наименьшим затратам выбираем третий вариант электрической сети и производим ее расчет. Суммарные дальнейший приведенные затраты второго ДЛЯ варианта: $\sum R = 1300.87$ тыс.руб. Суммарные приведенные затраты третьего ДЛЯ варианта: $\sum R = 1119.72$ тыс.руб.

6. Расчет установившихся режимов

Схема электрической сети

Схема замещения электрической сети

С помощью программы MathCAD рассчитываем максимальный режим и выбираем отпайки для трансформаторов, номера отпаек занесем в таблицу, сам расчет прилагается в Приложении 2.

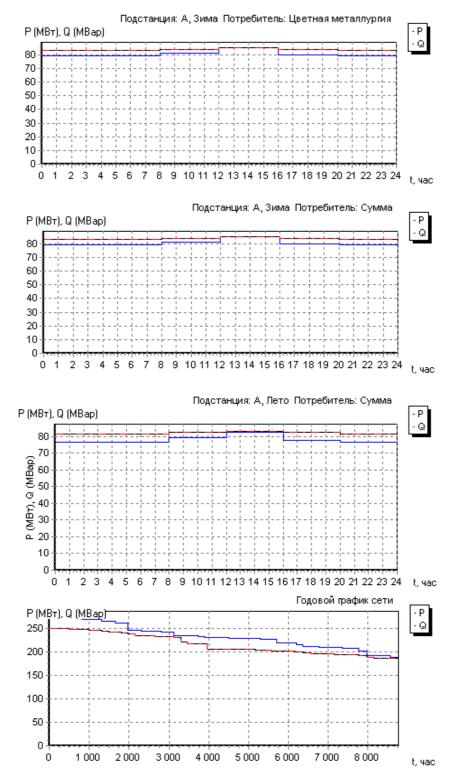
Таблица 12 - отпайки РПН

П/ст	A	Б	В	Γ	Д	Е	Ж
$U_{\scriptscriptstyle HH}^{\scriptscriptstyle \it BH}$, к ${ m B}$	243,046	115,129	113,152	239,573	115,757	233,101	235,721
$U_{\scriptscriptstyle HH}^{\scriptscriptstyle \mathcal{H}\!$	10	10,5	10,5	10,1	10,4	10,3	10,2
Номер отпайки п	6	-5	-7	5	1	1	4
$U_{\scriptscriptstyle HH}^{\it факт}$, кВ	10,126	10,513	10,513	10,168	10,352	10,245	10,154

Заключение

В данном курсовом проекте были рассмотрены следующие вопросы:

- рассчитаны электрические нагрузки узлов по программе "Расчет сети";
- составили двенадцать вариантов электрической сети;
- по программе "Расчет сети" рассчитали потоки мощности на участках, и исходя из длины участка и протекаемой по участку мощности и по эмпирическим формулам рассчитали напряжение;
- по наименьшей длине воздушных линий и количеству выключателей на подстанции выбраны три варианта;
- рассчитан баланс реактивной мощности и выбраны два варианта сети;
- выбраны компенсирующие устройства, трансформаторы и сечения линий по экономическим токовым интервалам;
- на основании технико-экономического расчета был выбран третий вариант.
- вручную был просчитан максимальный режим, а по программе SDO-6 были также просчитаны максимальный, после аварийный и минимальный режим.


Список использованных источников

- 1. «Пособие к курсовому и дипломному проектированию для электроэнергетических специальностей вузов»: Учебное пособие под ред. В.М. Блок. М.: Высшая школа, 1990.
- 2. Неклепаев Б.Н., Крючков И.П. «Электрическая часть электростанций и подстанций: Справочные материалы для курсового и дипломного проектирования». М., 1989.
- 3. «Справочник по проектированию электроэнергетических систем». Под ред. С.С. Рокотяна и И.М. Шапиро. М., 1985.
- 4. «Электротехнический справочник». Том 3. книга 1.
- 5. Справочник по проектированию электроснабжения, линий электропередачи и сетей. Под ред. В.И. Круповича, М.Л. Самовера.— М.: Энергия, 1975.—696с.
- 6. Идельчик В. И. Электрические сети и системы. Учебник для вузов. М.: Энергоатомиздат, 1989. 592с.

Приложение 1

Пример расчета показателей и характеристик ГЭН

Расчет проводится для каждого потребителя подстанции, затем строится суммарный график нагрузки всех потребителей подстанции для зимнего и летнего периода, а после этого годовой график сети. Показан пример для подстанции A, для остальных потребителей и подстанций расчет аналогичен, поэтому графики нагрузок в методических указаниях не приводятся.

Приложение 2

Пример расчета в программе KRNET

Введите номинальное напряжение сети в кВ Uном. сети = 220

Введите нормативный коэффициент (o.e) En= 0.12

Введите коэффициент отчислений на амортизацию (о.е) Ра= 0.125

Время максимальных потерь Тр = 2225.18 ч.

Введите удельные сопротивления линий в Ом/км

Ro(1) 0.121 Xo(1) 0.435

Ro(2) 0.121 Xo(2) 0.435

Введите удельные проводимости линий в *10^-6 См/км

Bo(1) 2.6

Bo(2) 2.6

Введите номинальное напряжение источника в кВ Uном. ист. = 225

Введите номинальное напряжение сети в кВ Uном. сети = 220

Расчетные мощности в узлах

Sp(1) = 78.526

Sp(2) = 86.614

Выберите по таблицам необходимые трансформаторы

Введите количество трансформаторов на п/ст. и их номинальные мощности в МВА

K(1) 2 S(1) 63

K(2) 2 S(2) 63

Введите потери К.З. и Х.Х. в кВт Ркз(1) 345 Рхх(1) 137 Ркз(2) 345 Рхх(2) 137

Потери энергии в трансформаторах W1= 6122347.05кВт*ч

Введите удельные стоимости линии (на 100 км.) в тыс. руб.

C1(1) 16.6

C1(2) 16.6

Введите количество масляных выключателей В= 6

Введите стоимость одного масляного выключателя в тыс. руб. Во= 16.5

Введите количество трансформаторов и цену одного трансформатора тыс.руб.

K(1) 2 C2(1) 153

K(2) 2

C2(2) 153

Введите суммарные амортизационные отчисления в % для линий 2.8

Введите суммарные амортизационные отчисления в % для оборудования 8.4

Стоимость линии S1= 1577.56 тыс.руб.

Стоимость масляных выключателей S2= 148.50 тыс.руб.

Стоимость трансформаторов S3= 612.00 тыс.руб.

Стоимость потерь эл. энергии S4= 193.79 тыс.руб.

Приведенные затраты R= 652.56 тыс.руб.

ГЭС-УРП

Ввелите число п/ст N= 2

Введите длины линий в км

L(1) 69.26

L(2) 23.759

L(3) 53.124

Введите время использования максимума нагрузки в часах Тм = 3800

Введите стоимость потерь эл. энергии В (руб/кВт*ч)=0.013

Введите экономический коэффициент мощности Тэ= 0.3333

Введите активные мощности п/ст в МВт и коэффициент мощности

P(1) 41.81 T(1) 0.895

P(2) 37.828 T(2) 0.894

Введите напряжение источника 1 в кВ 121

Введите напряжение источника 2 в кВ 121

Расчетное значение номинального напряжения Uном.pac.= 109.90

Введите номинальное напряжение сети в кВ Uном. сети = 110

Введите нормативный коэффициент (o.e) En= 0.12

Введите коэффициент отчислений на амортизацию (о.е) Ра= 0.125

Время максимальных потерь Тр = 2225.18 ч.

Введите удельные сопротивления линий в Ом/км

Ro(1) 0.162 Xo(1) 0.413 Ro(2) 0.198 Xo(2) 0.42

Ro(3) 0.12 Xo(3) 0.405

Введите удельные проводимости линий в *10^-6 См/км

Bo(1) 2.75 Bo(2) 2.7

Bo(3) 2.81

Расчетные мощности в узлах

Sp(1) = 44.073

Sp(2) = 39.874

Введите количество трансформаторов на п/ст. и их номинальные мощности в МВА

K(1) 2 S(1) 32 K(2) 2 S(2) 25

Введите потери К.З. и Х.Х. в кВт

Pкз(1) 145 Pxx(1) 44 Pкз(2) 120 Pxx(2) 36

Потери энергии в трансформаторах W1= 2047249.66кВт*ч

Введите удельные стоимости линии (на 100 км.) в тыс. руб.

C1(1) 11.9 C1(2) 11.5 C1(3) 12.6

Введите количество масляных выключателей В= 8

Введите стоимость одного масляного выключателя в тыс. руб. Во= 16.5

Введите количество трансформаторов и цену одного трансформатора тыс.руб.

K(1) 2 C2(1) 73.4 K(2) 2 C2(2) 64

Введите суммарные амортизационные отчисления в % для линий 2.8

Введите суммарные амортизационные отчисления в % для оборудования 8.4

Стоимость линии S1= 1766.78 тыс.руб.

Стоимость масляных выключателей S2= 132.00 тыс.руб.

Стоимость трансформаторов S3= 274.80 тыс.руб.

Стоимость потерь эл. энергии S4= 97.55 тыс.руб.

Приведенные затраты R= 507.23 тыс.руб.

Д-Б

Введите число $\pi/\text{ст } N=1$

Введите длины линий в км L(1) 23.759

Введите время использования максимума нагрузки в часах Тм = 3800

Введите стоимость потерь эл. энергии В (руб/кВт*ч)=0.013

Введите экономический коэффициент мощности Тэ= 0.333

Введите активные мощности п/ст в МВт и коэффициент мощности Р(1) 13.461 Т(1) 0.5411

Расчетные мощности компенсирующих устройств в Мвар Q4(1)=2.80

Выбрать по справочнику и ввести выдаваемые мощности компенсирующих устройств Q5(1)=3.05

Реактивные мощности нагрузок с учетом установки компенсирующих устройств в Мвар O(1)=4.484

Введите номинальное напряжение сети в кВ Uном. сети = 110

Выбор сечения проводов

Введите нормативный коэффициент (o.e) En= 0.12

Введите коэффициент отчислений на амортизацию (о.е) Ра= 0.125

Время максимальных потерь Тр = 2225.18 ч.

Введите удельные проводимости линий в *10^-6 См/км Во(1) 2.7

Расчетные мощности в узлах Sp(1) = 14.047

Выберите по таблицам необходимые трансформаторы

Введите количество трансформаторов на п/ст. и их номинальные мощности в МВА

K(1) 1 S(1) 16

Введите потери К.З. и Х.Х. в кВт Ркз(1) 85 Рхх(1) 18

Потери энергии в трансформаторах W1= 303459.79кВт*ч

Введите удельные стоимости линии (на 100 км.) в тыс. руб. С1(1) 0.257

Введите количество масляных выключателей В= 1

Введите стоимость одного масляного выключателя в тыс. руб. Во= 16.5

Введите количество трансформаторов и цену одного трансформатора тыс.руб.

K(1) 1 C2(1) 110

Введите суммарные амортизационные отчисления в % для линий 2.8

Введите суммарные амортизационные отчисления в % для оборудования 8.4

Стоимость линии S1= 6.11 тыс.руб.

Стоимость масляных выключателей S2= 16.50 тыс.руб.

Стоимость трансформаторов S3= 110.00 тыс.руб.

Стоимость потерь эл. энергии S4= 5.89 тыс.руб.

Приведенные затраты R= 36.58 тыс.руб.

Л-В

Введите число $\pi/\text{ст } N=1$

Введите длины линий в км L(1) 23.759

Введите время использования максимума нагрузки в часах Тм = 3800

Введите стоимость потерь эл. энергии В (руб/кВт*ч)=0.013

Введите экономический коэффициент мощности Тэ= 0.333

Введите активные мощности п/ст в МВт и коэффициент мощности Р(1) 7.693 Т(1) 0.5411

Расчетные мощности компенсирующих устройств в Мвар Q4(1)=1.60

Выбрать по справочнику и ввести выдаваемые мощности компенсирующих устройств Q5(1)=1.6

Реактивные мощности нагрузок с учетом установки компенсирующих устройств в Мвар O(1)=2.563

Расчетное значение номинального напряжения Uном.pac.= 52.59

Введите номинальное напряжение сети в кВ Uном. сети = 110

Выбор сечения проводов

Введите нормативный коэффициент (o.e) En= 0.12

Введите коэффициент отчислений на амортизацию (о.е) Ра= 0.125

Время максимальных потерь Тр = 2225.18 ч.

Корень из сигмы (* 10^-2) = 9.20 (кВт/руб)

Значения токов на участках І[1]=42.56 А

Выберите по номограммам сечение проводников

Введите удельные сопротивления линий в Ом/км Ro(1) 0.21 Xo(1) 0.416

Введите удельные проводимости линий в $*10^{-6}$ См/км Во(1) 2.7

Введите номинальное напряжение источника в кВ Ином. ист. = 121

Введите номинальное напряжение сети в кВ Uном. сети = 110

Расчетные мощности в узлах Sp(1) = 7.973

Выберите по таблицам необходимые трансформаторы

Введите количество трансформаторов на п/ст. и их номинальные мощности в МВА

K(1) 1 S(1) 10

Введите потери К.З. и Х.Х. в кВт Ркз(1) 58 Рхх(1) 14

Введите удельные стоимости линии (на 100 км.) в тыс. руб. С1(1) 0.257

Введите количество масляных выключателей В= 1

Введите стоимость одного масляного выключателя в тыс. руб. Во= 16.5

Введите количество трансформаторов и цену одного трансформатора тыс.руб.

K(1) 1 C2(1) 87.5

Введите суммарные амортизационные отчисления в % для линий 2.8

Введите суммарные амортизационные отчисления в % для оборудования 8.4

Стоимость линии S1= 6.11 тыс.руб.

Стоимость масляных выключателей S2= 16.50 тыс.руб.

Стоимость трансформаторов S3= 87.50 тыс.руб.

Стоимость потерь эл. энергии S4= 3.29 тыс.руб.

Приведенные затраты R= 28.71 тыс.руб.

УРП-Л

Введите число п/ст N= 1

Введите длины линий в км

L(1) 75.132

Введите время использования максимума нагрузки в часах Тм = 3800

Введите стоимость потерь эл. энергии В (руб/кВт*ч)=0.013

Введите экономический коэффициент мощности Тэ= 0.333

Введите активные мощности п/ст в МВт и коэффициент мощности Р(1) 26.922 Т(1) 0.5412

Расчетные мощности компенсирующих устройств в Мвар Q4(1)=5.61

Выбрать по справочнику и ввести выдаваемые мощности компенсирующих устройств Q5(1)=5.61

Реактивные мощности нагрузок с учетом установки компенсирующих устройств в Мвар Q(1)=8.960

Расчетное значение номинального напряжения Uном.pac.= 97.61

Введите номинальное напряжение сети в кВ Uном. сети = 110

Выбор сечения проводов

Введите нормативный коэффициент (o.e) En= 0.12

Введите коэффициент отчислений на амортизацию (о.е) Ра= 0.125

Время максимальных потерь Тр = 2225.18 ч.

Корень из сигмы (* 10^-2) = 9.20 (кВт/руб)

Значения токов на участках I[1]=148.92 A

Выберите по номограммам сечение проводников

Введите удельные сопротивления линий в $O_{M/KM}$ Ro(1) 0.21 Xo(1) 0.416

Введите удельные проводимости линий в *10^-6 См/км Во(1) 2.7

Введите номинальное напряжение сети в кВ Uном. сети = 110

Скорректированные реактивные мощности нагрузок в Мвар Q(1)= 7.48

Расчетные мощности в узлах Sp(1) = 27.941

Выберите по таблицам необходимые трансформаторы

Введите количество трансформаторов на п/ст. и их номинальные мощности в МВА

K(1) 1 S(1) 25

Введите потери К.З. и Х.Х. в кВт Ркз(1) 120 Рхх(1) 25

Потери энергии в трансформаторах W1= 552530.23кВт*ч

Напряжение в узле U = 115.05 кB

Введите удельные стоимости линии (на 100 км.) в тыс. руб. С1(1) 0.257

Введите количество масляных выключателей В= 3

Введите стоимость одного масляного выключателя в тыс. руб. Во= 16.5

Введите количество трансформаторов и цену одного трансформатора тыс.руб.

K(1) 1 C2(1) 125

Введите суммарные амортизационные отчисления в % для линий 2.8

Введите суммарные амортизационные отчисления в % для оборудования 8.4

Стоимость линии S1= 19.31 тыс.руб.

Стоимость масляных выключателей S2= 49.50 тыс.руб.

Стоимость трансформаторов S3= 125.00 тыс.руб.

Стоимость потерь эл. энергии S4= 31.52 тыс.руб.

Приведенные затраты R= 75.79 тыс.руб.

 $\mathsf{R}_{\Sigma=\ 652.56+507.23+36.58+28.71+75.79=1300.87}$

Схема №3 ГЭС-УРП-220

Введите число $\pi/\text{ст } N=4$

Введите длины линий в км L(1) 23.759 L(2) 23.759 L(3) 50.4 L(4) 23.759 L(5) 33.6

Введите время использования максимума нагрузки в часах Тм = 3800 Введите стоимость потерь эл. энергии В (руб/кВт*ч)=0.013 Введите экономический коэффициент мощности Тэ= 0.4 Введите активные мощности п/ст в МВт и коэффициент мощности P(2) 74.868 T(2) 1.042 P(1) 81.453 T(1) 1.04 P(3) 41.81 T(3) 0.895 P(4) 37.828 T(4) 0.894 Расчетное значение номинального напряжения Uном.pac.= 209.81 Ввелите номинальное напряжение сети в кВ Uном. сети = 220 Введите нормативный коэффициент (o.e) En= 0.12 Введите коэффициент отчислений на амортизацию (о.е) Ра= 0.125 Время максимальных потерь Тр = 2225.18 ч. Введите удельные сопротивления линий в Ом/км Ro(1) 0.075Xo(1) 0.42Ro(2) 0.121 Xo(2) 0.435 Ro(3) 0.121 Xo(3) 0.435 Xo(4) 0.435 Ro(5) 0.121 Ro(4) 0.121 Xo(5) 0.435 Ro(3) 0.121 Xo(3) 0.435 Ro(4) 0.121 Xo(4) 0.435 Ro(5) 0.121 Xo(5) 0.435 Введите удельные проводимости линий в *10^-6 См/км Bo(1) 2.7Bo(2) 2.6Bo(3) 2.6 Bo(4) 2.6 Bo(5) 2.6 Расчетные мощности в узлах Sp(1) = 87.728Sp(2) = 80.634Sp(3) = 45.029Sp(4) = 40.741Введите количество трансформаторов на п/ст. и их номинальные мощности в МВА K(1) 2S(1) 63K(2) 2S(2) 63K(3) 2S(3) 32K(4) 2 S(4) 32Введите потери К.З. и Х.Х. в кВт Ркз(1) 345 Pxx(1) 137 Ркз(2) 345 Pxx(2) 137 Ркз(3) 215 Pxx(3) 125 Ркз(4) 215 Pxx(4)Напряжение в узле 1 U = 221.29 кBНапряжение в узле 2 U = 219.08 кBНапряжение в узле 3 U = 219.50 кBНапряжение в узле 4 U = 221.04 кBВведите удельные стоимости линии (на 100 км.) в тыс. руб. C1(1) 18.8 C1(2) 16.6 C1(3) 16.6 C1(4) 16.6 C1(5) 16.6 Введите количество масляных выключателей В= 14 Введите стоимость одного масляного выключателя в тыс. руб. Во= 16.5 Введите количество трансформаторов и цену одного трансформатора тыс.руб. K(1) 2C2(1) 153 K(2) 2C2(2) 153 K(3) 2C2(3) 110 K(4) 2C2(4) 110 Введите суммарные амортизационные отчисления в % для линий 2.8 Введите суммарные амортизационные отчисления в % для оборудования 8.4 Стоимость линии S1 = 2629.87 тыс.руб. Стоимость масляных выключателей S2= 231.00 тыс.руб. Стоимость трансформаторов S3= 1052.00 тыс.руб. Стоимость потерь эл. энергии S4= 210.31 тыс.руб. Приведенные затраты R= 978.64 тыс.руб. Д-Б Ввелите число $\pi/\text{ст } N=1$

Введите длины линий в км L(1) 23.759

Введите время использования максимума нагрузки в часах Тм = 3800

Введите стоимость потерь эл. энергии В (руб/кВт*ч)=0.013

Введите экономический коэффициент мощности Тэ= 0.333

Введите активные мощности п/ст в МВт и коэффициент мощности Р(1) 13.461 Т(1) 0.5411

Расчетные мощности компенсирующих устройств в Мвар Q4(1)=2.80

Выбрать по справочнику и ввести выдаваемые мощности компенсирующих устройств Q5(1)=3.05

Реактивные мощности нагрузок с учетом установки компенсирующих устройств в Мвар

O(1)=4.484

Введите номинальное напряжение сети в кВ Uном. сети = 110

Выбор сечения проводов

Введите нормативный коэффициент (o.e) En= 0.12

Введите коэффициент отчислений на амортизацию (о.е) Ра= 0.125

Время максимальных потерь Тр = 2225.18 ч.

Введите удельные проводимости линий в *10^-6 См/км

Bo(1) 2.7

Bo(1) 2.7

Расчетные мощности в узлах

Sp(1) = 14.047

Выберите по таблицам необходимые трансформаторы

Введите количество трансформаторов на п/ст. и их номинальные мощности в МВА

K(1) 1 S(1) 16

Введите потери К.З. и Х.Х. в кВт Ркз(1) 85 Рхх(1) 18

Потери энергии в трансформаторах W1= 303459.79кВт*ч

Введите удельные стоимости линии (на 100 км.) в тыс. руб. С1(1) 0.257

Введите количество масляных выключателей В= 1

Введите стоимость одного масляного выключателя в тыс. руб. Во= 16.5

Введите количество трансформаторов и цену одного трансформатора тыс.руб.

K(1) 1 C2(1) 110

Введите суммарные амортизационные отчисления в % для линий 2.8

Введите суммарные амортизационные отчисления в % для оборудования 8.4

Стоимость линии S1= 6.11 тыс.руб.

Стоимость масляных выключателей S2= 16.50 тыс.руб.

Стоимость трансформаторов S3= 110.00 тыс.руб.

Стоимость потерь эл. энергии S4= 5.89 тыс.руб.

Приведенные затраты R= 36.58 тыс.руб.

Д-В

Ввелите число п/ст N= 1

Введите длины линий в км L(1) 23.759

Введите время использования максимума нагрузки в часах Тм = 3800

Введите стоимость потерь эл. энергии В (руб/кВт*ч)=0.013

Введите экономический коэффициент мощности Тэ= 0.333

Введите активные мощности п/ст в МВт и коэффициент мощности Р(1) 7.693 Т(1) 0.5411

Расчетные мощности компенсирующих устройств в Мвар Q4(1)=1.60

Выбрать по справочнику и ввести выдаваемые мощности компенсирующих устройств O5(1)=1.6

Q3(1)=1.0

Реактивные мощности нагрузок с учетом установки компенсирующих устройств в Мвар Q(1)=2.563

Расчетное значение номинального напряжения Uном.pac.= 52.59

Введите номинальное напряжение сети в кВ Uном. сети = 110

Выбор сечения проводов

Введите нормативный коэффициент (o.e) En= 0.12

Введите коэффициент отчислений на амортизацию (о.е) Ра= 0.125

Время максимальных потерь Тр = 2225.18 ч.

Корень из сигмы (* 10^{-2}) = 9.20 (кВт/руб)

Значения токов на участках І[1]=42.56 А

Выберите по номограммам сечение проводников

Введите удельные проводимости линий в *10^-6 См/км

Введите номинальное напряжение источника в кВ Uном. ист. = 121

Введите номинальное напряжение сети в кВ Uном. сети = 110

Расчетные мощности в узлах

Sp(1) = 7.973

Выберите по таблицам необходимые трансформаторы

Введите количество трансформаторов на п/ст. и их номинальные мощности в МВА

K(1) 1 S(1) 10

Введите потери К.З. и Х.Х. в кВт Ркз(1) 58 Рхх(1) 14

Введите удельные стоимости линии (на 100 км.) в тыс. руб. С1(1) 0.257

Введите количество масляных выключателей В= 1

Введите стоимость одного масляного выключателя в тыс. руб. Во= 16.5

Введите количество трансформаторов и цену одного трансформатора тыс.руб.

K(1) 1 C2(1) 87.5

Введите суммарные амортизационные отчисления в % для линий 2.8

Введите суммарные амортизационные отчисления в % для оборудования 8.4

Стоимость линии S1= 6.11 тыс.руб.

Стоимость маслянных выключателей S2= 16.50 тыс.руб.

Стоимость трансформаторов S3= 87.50 тыс.руб.

Стоимость потерь эл.энергии S4= 3.29 тыс.руб.

Приведенные затраты R= 28.71 тыс.руб.

УРП-Д

Введите число п/ст N= 1

Введите длины линий в км L(1) 75.132

Введите время использования максимума нагрузки в часах Тм = 3800

Введите стоимость потерь эл. энергии В (руб/кВт*ч)=0.013

Введите экономический коэффициент мощности Тэ= 0.333

Введите активные мощности п/ст в МВт и коэффициент мощности Р(1) 26.922 Т(1) 0.5412

Расчетные мощности компенсирующих устройств в Мвар Q4(1)=5.61

Выбрать по справочнику и ввести выдаваемые мощности компенсирующих устройств O5(1)=5.61

Реактивные мощности нагрузок с учетом установки компенсирующих устройств в Мвар Q(1)=8.960

Расчетное значение номинального напряжения Uном.pac.= 97.61

Введите номинальное напряжение сети в кВ Uном. сети = 110

Выбор сечения проводов

Введите нормативный коэффициент (o.e) En= 0.12

Введите коэффициент отчислений на амортизацию (о.е) Ра= 0.125

Время максимальных потерь Тр = 2225.18 ч.

Корень из сигмы (* 10^{-2}) = 9.20 (к $B_T/pyб$)

Значения токов на участках І[1]=148.92 А

I[1]=140.72 A

Выберите по номограммам сечение проводников

Введите удельные проводимости линий в *10^-6 См/км

Bo(1) 2.7

Введите номинальное напряжение источника в кВ Uном. ист. = 121

Введите номинальное напряжение сети в кВ Uном. сети = 110

Скорректированные реактивные мощности нагрузок в Мвар Q(1)= 7.48

Расчетные мощности в узлах Sp(1) = 27.941

Выберите по таблицам необходимые трансформаторы

Введите количество трансформаторов на п/ст. и их номинальные мощности в МВА

K(1) 1 S(1) 25

Введите потери К.З. и Х.Х. в кВт Ркз(1) 120 Рхх(1) 25

Потери энергии в трансформаторах W1= 552530.23кВт*ч

Напряжение в узле U = 115.05 кB

Введите удельные стоимости линии (на 100 км.) в тыс. руб. С1(1) 0.257

Введите количество масляных выключателей В= 3

Введите стоимость одного масляного выключателя в тыс. руб. Во= 16.5

Введите количество трансформаторов и цену одного трансформатора тыс.руб.

K(1) 1 C2(1) 125

Введите суммарные амортизационные отчисления в % для линий 2.8

Введите суммарные амортизационные отчисления в % для оборудования 8.4

Стоимость линии S1= 19.31 тыс.руб.

Стоимость масляных выключателей S2= 49.50 тыс.руб.

Стоимость трансформаторов S3= 125.00 тыс.руб.

Стоимость потерь эл. энергии S4= 31.52 тыс.руб.

Приведенные затраты R= 75.79 тыс.руб.

 $\mathsf{R}_{\Sigma} = 978.64 + 36.58 + 28.71 + 75.79 = 1119,72$

РАСЧЕТ УСТАНОВИВШЕГОСЯ РЕЖИМА

$$i := \sqrt{-1}$$

Находим сопротивления и проводимости линий по справочным данным.

Находим зарядные мощности.

 $b_{078} := 2.737 \cdot 10^{-6}$

$$Q_{13} := \frac{110^2 \cdot b_{013} \cdot 23.759}{2}$$

$$Q_{13} = 0.776$$

$$Q_{34} := \frac{110^2 \cdot b_{034} \cdot 23.759}{2}$$

$$Q_{34} = 0.374$$

$$Q_{45} := \frac{110^2 \cdot b_{045} \cdot 60.574}{2} \qquad Q_{45} = 0.953$$

$$Q_{62} := \frac{110^2 \cdot b_{062} \cdot 53.126}{2}$$
 $Q_{62} = 0.903$

$$Q_{56} := \frac{110^2 \cdot b_{056} \cdot 23.759}{2} \qquad \qquad Q_{56} = 0.374$$

$$Q_{27} := \frac{110^2 \cdot b_{027} \cdot 37.566}{2}$$

$$Q_{27} = 1.244$$

$$Q_{78} := \frac{110^2 \cdot b_{078} \cdot 23.759}{2} \qquad Q_{78} = 0.393$$

$$Q_{79} := \frac{110^2 \cdot b_{027} \cdot 23.759}{2}$$

$$Q_{79} = 0.787$$

Данные выбранных ранее трансформаторов:

$$\begin{split} Z_{Tp3} &\coloneqq 4 + 100\mathrm{i} & S_{xx3} &\coloneqq 0.137 + 0.504\mathrm{i} \\ Z_{Tp9} &\coloneqq 4.38 + 86.7\mathrm{i} & S_{xx9} &\coloneqq 0.026 + 0.112\mathrm{i} \\ Z_{Tp8} &\coloneqq 7.95 + 139\mathrm{i} & S_{xx8} &\coloneqq 0.014 + 0.07\mathrm{i} \\ Z_{Tp4} &\coloneqq 4 + 100\mathrm{i} & S_{xx4} &\coloneqq 0.137 + 0.504\mathrm{i} \\ Z_{Tp7} &\coloneqq 2.54 + 55.9\mathrm{i} & S_{xx7} &\coloneqq 0.036 + 0.175\mathrm{i} \\ Z_{Tp6} &\coloneqq 8.63 + 198\mathrm{i} & S_{xx6} &\coloneqq 0.125 + 0.288\mathrm{i} \\ Z_{Tp5} &\coloneqq 8.63 + 198\mathrm{i} & S_{xx5} &\coloneqq 0.125 + 0.288\mathrm{i} \end{split}$$

Hаходим мощности нагрузок: $S := P_{max} + Q_{heck}$

$$S_3 := 84.847 + 33.658i$$
 $S_7 := 26.041 + 8.673i$ $S_9 := 9.014 + 2.988i$ $S_6 := 43.552 + 17.419i$ $S_8 := 26.041 + 8.673i$ $S_5 := 39.405 + 15.837i$ $S_4 := 77.998 + 31.063i$

Расчет линии с 2-х сторонним питанием 1-3-4-2 (ГЭС-УРП):

Находим потери мощности трансформаторов и расчетные нагрузки узлов:

$$\Delta S_{Tp} = \frac{\left(\text{Re}\left(\frac{S}{2}\right)\right)^2 + \left(\text{Im}\left(\frac{S}{2}\right)\right)^2}{\left(U_{HOM}\right)^2} \cdot Z_{Tp}$$

$$\Delta S_{Tp3} := \frac{\text{Re}\left(\frac{S_3}{2}\right)^2 + \text{Im}\left(\frac{S_3}{2}\right)^2}{220^2} \cdot Z_{Tp3}$$

$$\Delta S_{Tp3} := S_3 + 2 \cdot \left(\Delta S_{Tp3} + S_{xx3}\right)$$

$$S_{np3} := S_{np3} - i \cdot \left(Q_{13} + Q_{34}\right)$$

$$S_{3p} := S_{np3} - i \cdot \left(Q_{13} + Q_{34}\right)$$

$$\Delta S_{Tp4} := \frac{\text{Re}\left(\frac{S_4}{2}\right)^2 + \text{Im}\left(\frac{S_4}{2}\right)^2}{2} \cdot Z_{Tp4}$$

$$\Delta S_{Tp4} := \frac{\text{Re}\left(\frac{S_4}{2}\right) + \text{Im}\left(\frac{S_4}{2}\right)}{220^2} \cdot Z_{Tp4}$$

$$\Delta S_{Tp4} := S_4 + 2 \cdot \left(\Delta S_{Tp4} + S_{XX4}\right)$$

$$S_{\Pi p4} := S_4 + 2 \cdot \left(\Delta S_{Tp4} + S_{XX4}\right)$$

$$S_{\Pi p4} = 78.563 + 39.353i$$

$$S_{4p} := S_{\pi p 4} - i \cdot (Q_{34} + Q_{45})$$
 $S_{4p} = 78.563 + 38.026i$

$$\Delta S_{Tp5} \coloneqq \frac{\text{Re} \left(\frac{S_5}{2}\right)^2 + \text{Im} \left(\frac{S_5}{2}\right)^2}{220^2} \cdot Z_{Tp5}$$

$$\Delta S_{Tp5} = 0.08 + 1.845i$$

$$S_{\pi p5} := S_5 + 2 \cdot \left(\Delta S_{\tau p5} + S_{xx5}\right)$$

$$S_{\pi p5} = 39.816 + 20.102i$$

$$S_{5p} := S_{\pi p5} - i \cdot (Q_{45} + Q_{56})$$

$$S_{5p} = 39.816 + 18.776i$$

$$\Delta S_{Tp6} \coloneqq \frac{\text{Re}{\left(\frac{S_6}{2}\right)^2 + \text{Im}{\left(\frac{S_6}{2}\right)^2}}}{220^2} \cdot Z_{Tp6}$$

$$\Delta S_{Tp6} = 0.098 + 2.25i$$

$$S_{\pi p6} := S_6 + 2\Delta S_{\tau p6} + 2 \cdot S_{xxt}$$

$$S_{\pi p6} = 43.998 + 22.495i$$

$$S_{6p} := S_{\pi p6} - i \cdot (Q_{56} + Q_{62})$$

$$S_{6p} = 43.998 + 21.219i$$

Расчет участка цепи 2-7-(8,9) (УРП-Д-В,Б)

$$\Delta S_{\text{Tp7}} \coloneqq \frac{\text{Re}\big(S_7\big)^2 + \text{Im}\big(S_7\big)^2}{110^2} \cdot Z_{\text{Tp7}}$$

$$\Delta S_{Tp7} = 0.158 + 3.48i$$

$$S_{\pi p7} := S_7 + \Delta S_{\pi p7} + S_{xx}$$

$$S_{\pi p7} = 26.235 + 12.328i$$

$$S_{7p} := S_{\pi p7} - i \cdot (Q_{27} + Q_{78} + Q_{79})$$

$$S_{7p} = 26.235 + 9.904i$$

$$\Delta S_{\text{Tp8}} := \frac{\text{Re}(S_8)^2 + \text{Im}(S_8)^2}{110^2} \cdot Z_{\text{Tp8}}$$

$$\Delta S_{\text{Tp8}} = 0.495 + 8.654i$$

$$S_{\pi p8} := S_8 + \Delta S_{\pi p8} + S_{xx8}$$

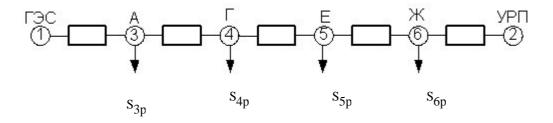
$$S_{\pi p8} = 26.55 + 17.397i$$

$$s_{8p} \coloneqq s_{\pi p8} - \mathrm{i} \cdot \mathsf{Q}_{78}$$

$$S_{8p} = 26.55 + 17.004i$$

$$\Delta S_{\text{Tp9}} := \frac{\text{Re}(S_9)^2 + \text{Im}(S_9)^2}{110^2} \cdot Z_{\text{Tp9}}$$

$$\Delta S_{TD9} = 0.033 + 0.646i$$


$$S_{\pi p9} := S_9 + \Delta S_{\pi p9} + S_{xx}$$

 $S_{\pi p9} = 9.073 + 3.746i$

$$S_{9p} := S_{\pi p9} - i \cdot Q_{79}$$

 $S_{9p} = 9.073 + 2.959i$

Рассчитываем линию с 2-х сторонним питанием 1-3-4-5-6-2 (ГЭС-УРП):

$$\mathbf{S}_{13} \coloneqq \frac{\mathbf{S}_{3p} \cdot \left(\overline{\mathbf{Z}_{34} + \mathbf{Z}_{45} + \mathbf{Z}_{56} + \mathbf{Z}_{62}}\right) + \mathbf{S}_{4p} \cdot \left(\overline{\mathbf{Z}_{45} + \mathbf{Z}_{56} + \mathbf{Z}_{62}}\right) + \mathbf{S}_{5p} \cdot \left(\overline{\mathbf{Z}_{56} + \mathbf{Z}_{62}}\right) + \mathbf{S}_{6p} \cdot \overline{\mathbf{Z}_{62}}}{\left(\overline{\mathbf{Z}_{13} + \mathbf{Z}_{34} + \mathbf{Z}_{45} + \mathbf{Z}_{56} + \mathbf{Z}_{62}}\right)}$$

$$S_{13} = 151.47 + 76.356i$$

$$s_{26} \coloneqq \frac{s_{6p} \cdot \left(\overline{z_{56} + z_{45} + z_{34} + z_{13}}\right) + s_{5p} \cdot \left(\overline{z_{45} + z_{34} + z_{13}}\right) + s_{4p} \cdot \left(\overline{z_{34} + z_{13}}\right) + s_{3p} \cdot \overline{z_{13}}}{\left(\overline{z_{13} + z_{34} + z_{45} + z_{56} + z_{62}}\right)}$$

$$S_{26} = 96.373 + 43.788i$$

Определяем уравнительную мощность

 $U_H := 220$

$$S_{\text{YP}} \coloneqq \frac{\text{Uh} \cdot 1.13 - \text{Uh} \cdot 1.09}{\overline{\left(Z_{13} + Z_{34} + Z_{45} + Z_{56} + Z_{62}\right)}} \cdot \text{Uh}$$

$$S_{\text{YP}} = 7.097 + 26.945i$$

$$S_{13f} := S_{13} + S_{VP}$$
 $S_{13f} = 158.566 + 103.301i$

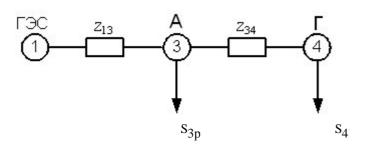
$$\begin{split} s_{34} &\coloneqq s_{13f} - s_{3p} \\ s_{34} &= 73.101 + 61.178i \end{split} \qquad \begin{aligned} s_{65} &\coloneqq s_{26f} - s_{6p} \\ s_{26} &= 96.373 + 43.788i \end{aligned}$$

$$s_{45} &\coloneqq s_{34} - s_{4p} \\ s_{45} &\coloneqq s_{65} - s_{5p} \\ s_{45} &\coloneqq -5.462 + 23.152i \end{aligned} \qquad \begin{aligned} s_{54} &\coloneqq s_{65} - s_{5p} \\ s_{54} &\coloneqq s_{65} - s_{5p} \end{aligned}$$

 $S_{26f} = 89.276 + 16.842i$

Рассчитываем потери мощности на участке между точками потокораздела

$$\Delta S_{45} := \frac{\text{Re}(S_{45})^2 + \text{Im}(S_{45})^2}{220^2} \cdot Z_{45}$$


$$\Delta S_{45} = 0.071 + 0.256i$$

Определяем нагрузки в конце каждой разомкнутой сети

 $S_{26f} := S_{26} - S_{yp}$

$$\begin{split} \mathbf{S}_{4'} &:= \text{Re}\big(\mathbf{S}_{34}\big) + \text{Re}\big(\mathbf{S}_{45}\big) + \text{Im}\big(\mathbf{S}_{34}\big) \, \mathbf{i} \\ \\ \mathbf{S}_{4'} &= 67.639 + 61.178 \mathbf{i} \\ \\ \mathbf{S}_{5'} &:= \text{Re}\big(\mathbf{S}_{65}\big) + \big(\text{Im}\big(\mathbf{S}_{45}\big) + \text{Im}\big(\mathbf{S}_{45}\big)\big) \mathbf{i} \\ \\ \mathbf{S}_{5'} &= 45.278 + 46.303 \mathbf{i} \end{split}$$

Разрезаем сеть по точке потокораздела и рассчитываем две разомкнутые сети.

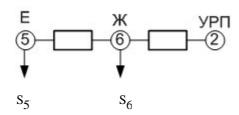
$$\Delta S_{34} := \frac{\text{Re}(S_{4'})^2 + \text{Im}(S_{4'})^2}{220^2} \cdot Z_{34}$$

$$\Delta S_{34} = 0.494 + 1.776i$$

$$S_{34H} := S_{4'} + \Delta S_{34}$$

$$S_{34H} = 68.133 + 62.954i$$

$$S_{13\kappa} := S_{34\mu} + S_{3p}$$


$$S_{13K} = 153.598 + 105.077i$$

$$\Delta S_{13} := \frac{\text{Re}(S_{13\text{K}})^2 + \text{Im}(S_{13\text{K}})^2}{220^2} \cdot Z_{13}$$

$$\Delta S_{13} = 1.275 + 7.141i$$

$$S_{13H} := S_{13K} + \Delta S_{13}$$

$$S_{13H} = 154.873 + 112.218i$$

$$\Delta S_{65} := \frac{\text{Re}(S_{5'})^2 + \text{Im}(S_{5'})^2}{220^2} \cdot Z_{56}$$

$$\Delta S_{65} = 0.249 + 0.896i$$

$$S_{65H} := S_{5'} + \Delta S_{65}$$

$$S_{65H} = 45.527 + 47.199i$$

$$S_{26K} := S_{65H} + S_{9p}$$

$$S_{26\kappa} = 54.6 + 50.158i$$

$$\Delta S_{26} := \frac{\text{Re} \left(S_{26\text{K}}\right)^2 + \text{Im} \left(S_{26\text{K}}\right)^2}{220^2} \cdot Z_{62}$$

$$\Delta S_{26} = 0.462 + 1.66i$$

$$S_{26H} := S_{26K} + \Delta S_{26}$$

$$S_{26H} = 55.061 + 51.818i$$

Расчет разомкнутой сети 2-7-(8,9):

7-8

$$S_{78\kappa} := S_{8p}$$

$$S_{78\kappa} = 26.55 + 17.004i$$

$$\Delta S_{78} := \frac{\text{Re} \left(S_{78\text{K}}\right)^2 + \text{Im} \left(S_{78\text{K}}\right)^2}{110^2} \cdot Z_{78}$$

$$\Delta S_{78} = 0.386 + 0.812i$$

$$S_{78H} := S_{78K} + \Delta S_{78}$$

 $S_{78H} = 26.936 + 17.816i$

7-9

$$S_{79K} := S_{9p}$$

 $S_{78K} = 26.55 + 17.004i$

$$\Delta S_{79} := \frac{\text{Re}(S_{79\text{K}})^2 + \text{Im}(S_{79\text{K}})^2}{110^2} \cdot Z_{79}$$

 $\Delta S_{79} = 0.035 + 0.074i$

$$S_{79H} := S_{79K} + \Delta S_{79}$$

 $S_{79H} = 9.108 + 3.034i$

2-7

$$S_{27K} := S_{79H} + S_{78H} + S_{7p}$$

$$S_{27K} = 62.28 + 30.754i$$

$$\Delta S_{27} \coloneqq \frac{\text{Re} \big(S_{27 \text{K}}\big)^2 + \text{Im} \big(S_{27 \text{K}}\big)^2}{110^2} \cdot Z_{27}$$

$$\Delta S_{27} = 1.483 + 3.116i$$

$$S_{27H} := S_{27K} + \Delta S_{27}$$

 $S_{27H} = 63.762 + 33.869i$

 $U_{HOM} := 220$

$$U_{\Gamma \ni C} := U_{HOM} \cdot 1.13$$

 $U_{\Gamma \ni C} = 248.6$

$$U_{A} \coloneqq U_{\Gamma \ni C} - \frac{\overline{S_{13H}}}{\overline{U_{\Gamma \ni C}}} \cdot Z_{13}$$

$$U_A = 242.985 - 5.412i$$

$$|U_{A}| = 243.046$$

$$\mathbf{U}_{A} \coloneqq \mathbf{U}_{\Gamma \ni C} - \left(\frac{\text{Re}\left(\mathbf{S}_{13\text{H}}\right) \cdot \text{Re}\left(\mathbf{Z}_{13}\right) + \text{Im}\left(\mathbf{S}_{13\text{H}}\right) \cdot \text{Im}\left(\mathbf{Z}_{13}\right)}{\overline{\mathbf{U}_{\Gamma \ni C}}} + i \cdot \frac{\text{Re}\left(\mathbf{S}_{13\text{H}}\right) \cdot \text{Im}\left(\mathbf{Z}_{13}\right) - \text{Im}\left(\mathbf{S}_{13\text{H}}\right) \cdot \text{Re}\left(\mathbf{Z}_{13}\right)}{\overline{\mathbf{U}_{\Gamma \ni C}}}\right)$$

$$U_A = 242.985 - 5.412i$$

$$|U_{A}| = 243.046$$

$$\mathbf{U}_{\Gamma} \coloneqq \mathbf{U}_{\mathbf{A}} - \frac{\overline{\mathbf{S}_{34_{\mathbf{H}}}}}{\overline{\mathbf{U}_{\mathbf{A}}}} \cdot \mathbf{Z}_{34}$$

 $U_{\Gamma} = 239.455 - 7.487i$

 $|U_{\Gamma}| = 239.573$

 $U_{\text{YP}\Pi} := U_{\text{HOM}} \cdot 1.09$

$$\mathbf{U}_{\mathcal{K}} \coloneqq \mathbf{U}_{\mathbf{YP\Pi}} - \frac{\overline{\mathbf{S}_{\mathbf{26H}}}}{\overline{\mathbf{U}_{\mathbf{YP\Pi}}}} \cdot \mathbf{Z}_{\mathbf{62}}$$

 $U_{\text{KK}} = 235.708 - 2.478i$

 $|U_{K}| = 235.721$

$$\mathbf{U}_E \coloneqq \mathbf{U}_{\mathcal{K}} - \frac{\overline{\mathbf{S}_{65H}}}{\overline{\mathbf{U}_{\mathcal{K}}}} \cdot \mathbf{Z}_{34}$$

 $U_E = 233.069 - 3.87i$

 $|U_{\rm E}| = 233.101$

 $U_{\text{YP}\Pi} := U_{\text{HOM}} \cdot 1.09$

$$\mathbf{U'_E} \coloneqq \mathbf{U}_{\Gamma} - \frac{\overline{\mathbf{S}_{65H}}}{\overline{\mathbf{U}_{\Gamma}}} \cdot \mathbf{Z}_{34}$$

U'_E = 236.831 - 8.803i

 $|U'_{E}| = 236.994$

$$\epsilon \coloneqq \frac{\left| \mathbf{U}_E \right| - \left| \mathbf{U}_E' \right|}{\left| \mathbf{U}_E \right|} \cdot 100$$

 $\varepsilon = -1.67$

 $U_{HOM} := 110$

 $U_{\text{УР\Pi}} := U_{\text{HOM}} \cdot 1.09$

$$\mathbf{U}_{\Begin{subarray}{c} \Bar{\mathbf{U}} \Begin{subarray}{c} \Bar{\mathbf{U}} \Bar{\mathbf{U}} \Begin{subarray}{c} \Bar{\mathbf{U}} \Begin{subarray}{c} \Bar{\mathbf{U}} \Begin{subarray}{c} \Bar{\mathbf{U}} \Begin{subarray}{c} \Bar{\mathbf{U}} \Bar{\mathbf{U}} \Begin{subarray}{c} \Bar{\mathbf{U}} \Bar{\mathbf{U}} \Bar{\mathbf{U}} \Bar{\mathbf{U}} \Begin{subarray}{c} \Bar{\mathbf{U}} \B$$

 $U_{\text{Д}} = 115.715 - 3.105i$

 $|U_{\text{Д}}| = 115.757$

$$\begin{split} \mathbf{U}_{\mathrm{B}} \coloneqq \mathbf{U}_{\mathrm{J}} - \frac{\overline{\mathbf{s}_{78\mathrm{H}}}}{\overline{\mathbf{U}_{\mathrm{J}}}} \cdot \mathbf{Z}_{78} & \mathbf{U}_{\mathrm{B}} = 113.058 - 4.61\mathrm{i} \\ & \left| \mathbf{U}_{\mathrm{B}} \right| = 113.152 \\ \\ \mathbf{U}_{\mathrm{B}} \coloneqq \mathbf{U}_{\mathrm{J}} - \frac{\overline{\mathbf{s}_{79\mathrm{H}}}}{\overline{\mathbf{U}_{\mathrm{J}}}} \cdot \mathbf{Z}_{79} & \mathbf{U}_{\mathrm{B}} = 115.069 - 3.742\mathrm{i} \\ & \left| \mathbf{U}_{\mathrm{B}} \right| = 115.129 \end{split}$$

Определим напряжение низшей стороны, приведенное к высшей стороне:

ПОДСТАНЦИЯ-А

$$S_{3pn} := \frac{S_{\pi p3} - 2 \cdot S_{xx3}}{2}$$
 $S_{3pn} = 42.596 + 21.133i$

$$\mathbf{U}_{\mathrm{HHBH3}} \coloneqq \mathbf{U}_{A} - \left(\frac{\mathrm{Re}\left(\mathbf{S}_{3pn}\right) \cdot \mathrm{Re}\left(\mathbf{Z}_{Tp3}\right) + \mathrm{Im}\left(\mathbf{S}_{3pn}\right) \cdot \mathrm{Im}\left(\mathbf{Z}_{Tp3}\right)}{\overline{\mathbf{U}_{A}}} + \mathrm{i} \cdot \frac{\mathrm{Re}\left(\mathbf{S}_{3pn}\right) \cdot \mathrm{Im}\left(\mathbf{Z}_{Tp3}\right) + \mathrm{Im}\left(\mathbf{S}_{3pn}\right) \cdot \mathrm{Re}\left(\mathbf{Z}_{Tp3}\right)}{\overline{\mathbf{U}_{A}}}\right)$$

 $U_{HH} = 11.207$

$$U_{HHBH3} = 233.194 - 23.072i$$

$$k_{t} := \frac{230}{11}$$
 $k_{t} = 20.909$

$$U_{HH} := \frac{\left|U_{HHBH3}\right|}{k_{t}}$$
 $U_{HH} = 11.20$

$$k_{t \text{жел}} := \frac{\left| U_{\text{HHBH3}} \right|}{10}$$
 $k_{t \text{жел}} = 23.433$

$$n := \left(\frac{k_{t\text{жел}}}{k_t} - 1\right) \cdot \frac{1}{0.0178} \qquad \qquad n = 6.782$$

$$n_{ct} := 6$$

$$U_{HHf3} := \frac{U_{HHBH3}}{k_{t} \cdot (1 + n_{ct} \cdot 0.0178)}$$

$$\left| U_{\rm HHf3} \right| = 10.126$$

ПОДСТАНЦИЯ-Г

$$s_{4pn} := \frac{s_{\pi p4} - 2 \cdot s_{xx4}}{2}$$

$$S_{4pn} = 39.145 + 19.172i$$

$$\mathbf{U}_{\mathrm{HHBH4}} \coloneqq \mathbf{U}_{\Gamma} - \left(\frac{\mathrm{Re}\left(\mathbf{S}_{4pn}\right) \cdot \mathrm{Re}\left(\mathbf{Z}_{Tp4}\right) + \\ \\ \mathbf{Im}\left(\mathbf{S}_{4pn}\right) \cdot \mathrm{Im}\left(\mathbf{Z}_{Tp4}\right)}{\overline{\mathbf{U}_{\Gamma}}} + \\ \\ \mathbf{i} \cdot \frac{\mathrm{Re}\left(\mathbf{S}_{4pn}\right) \cdot \mathrm{Im}\left(\mathbf{Z}_{Tp4}\right) + \\ \\ \mathbf{Im}\left(\mathbf{S}_{4pn}\right) \cdot \mathrm{Re}\left(\mathbf{Z}_{Tp4}\right)}{\overline{\mathbf{U}_{\Gamma}}} \right) \\ = \mathbf{Im}\left(\mathbf{S}_{4pn}\right) \cdot \mathbf{Im}\left(\mathbf{S}_{4pn}\right) \cdot$$

 $U_{HHBH4} = 230.283 - 23.868i$

$$k_t := \frac{230}{11}$$

$$k_t = 20.909$$

$$\mathbf{U}_{\mathrm{HH}} \coloneqq \frac{\left|\mathbf{U}_{\mathrm{HHBH4}}\right|}{k_{\mathsf{t}}}$$

$$U_{HH} = 11.073$$

$$\mathbf{k}_{\text{tжел}} \coloneqq \frac{\left|\mathbf{U}_{\text{HHBH4}}\right|}{10.1}$$

$$k_{tжел} = 22.922$$

$$n := \left(\frac{k_{t \text{жел}}}{k_t} - 1\right) \cdot \frac{1}{0.0178}$$

$$n = 5.4$$

$$n_{ct} := 5$$

$$\mathbf{U}_{\mathrm{HHf4}} \coloneqq \frac{\mathbf{U}_{\mathrm{HHBH4}}}{\mathbf{k}_{\mathrm{t}} \cdot \left(1 + \mathbf{n}_{\mathrm{ct}} \cdot 0.0178\right)}$$

$$\left| \mathbf{U}_{\mathrm{HHf4}} \right| = 10.168$$

ПОДСТАНЦИЯ-Ж

$$S_{5pn} := \frac{S_{\pi p5} - 2 \cdot S_{xx5}}{2}$$

$$S_{5pn} = 19.783 + 9.763i$$

$$\mathbf{U}_{\mathbf{HHBH5}} \coloneqq \mathbf{U}_{\mathbf{\mathcal{K}}} - \left(\frac{\text{Re}\big(\mathbf{S}_{5pn}\big) \cdot \text{Re}\big(\mathbf{Z}_{Tp5}\big) + \text{Im}\big(\mathbf{S}_{5pn}\big) \cdot \text{Im}\big(\mathbf{Z}_{Tp5}\big)}{\overline{\mathbf{U}_{\mathbf{\mathcal{K}}}}} + \mathbf{i} \cdot \frac{\text{Re}\big(\mathbf{S}_{5pn}\big) \cdot \text{Im}\big(\mathbf{Z}_{Tp5}\big) + \text{Im}\big(\mathbf{S}_{5pn}\big) \cdot \text{Re}\big(\mathbf{Z}_{Tp5}\big)}{\overline{\mathbf{U}_{\mathbf{\mathcal{K}}}}}\right)$$

$$U_{HHBH5} = 226.605 - 19.357i$$

$$k_{t} := \frac{230}{11}$$

$$k_t = 20.909$$

$$\mathbf{U}_{\mathrm{HH}} := \frac{\left|\mathbf{U}_{\mathrm{HHBH5}}\right|}{\mathbf{k_{\mathrm{f}}}}$$

$$U_{HH} = 10.877$$

$$k_{\text{tжел}} \coloneqq \frac{\left| U_{\text{HHBH5}} \right|}{10.2}$$

$$k_{twen} = 22.297$$

$$n := \left(\frac{k_{t\text{жел}}}{k_t} - 1\right) \cdot \frac{1}{0.0178}$$

$$n = 3.729$$

$$n_{ct} := 4$$

$$U_{HHf5} := \frac{U_{HHBH5}}{k_t \cdot \left(1 + n_{ct} \cdot 0.0178\right)}$$

$$\left| U_{HHf5} \right| = 10.154$$

ПОДСТАНЦИЯ-Е

$$S_{6pn} := \frac{S_{np4} - 2 \cdot S_{xx4}}{2}$$

$$S_{6pn} = 39.145 + 19.172i$$

$$U_{\text{HHBH6}} \coloneqq U_E - \left(\frac{\text{Re}\big(S_{6pn}\big) \cdot \text{Re}\big(Z_{Tp6}\big) + \text{Im}\big(S_{6pn}\big) \cdot \text{Im}\big(Z_{Tp6}\big)}{\overline{U_E}} + i \cdot \frac{\text{Re}\big(S_{6pn}\big) \cdot \text{Im}\big(Z_{Tp6}\big) + \text{Im}\big(S_{6pn}\big) \cdot \text{Re}\big(Z_{Tp6}\big)}{\overline{U_E}}\right)$$

$$U_{HHBH6} = 214.773 - 37.531i$$

$$k_t := \frac{230}{11}$$

$$k_t = 20.909$$

$$\mathbf{U}_{\mathrm{HH}} := \frac{\left|\mathbf{U}_{\mathrm{HHBH6}}\right|}{k_{\mathsf{t}}}$$

$$U_{HH} = 10.427$$

$$k_{tжел} := \frac{\left| U_{HHBH6} \right|}{10.3}$$

$$k_{tжел} = 21.168$$

$$n := \left(\frac{k_{t\text{жел}}}{k_t} - 1\right) \cdot \frac{1}{0.0178}$$

n = 0.695

 $n_{ct} := 1$

$$\mathbf{U}_{\text{HHf6}} \coloneqq \frac{\mathbf{U}_{\text{HHBH6}}}{\mathbf{k}_{t} \cdot \left(1 + \mathbf{n}_{\text{ct}} \cdot 0.0178\right)}$$

 $\left| \mathbf{U}_{\mathrm{HHf6}} \right| = 10.245$

ПОДСТАНЦИЯ-Д

$$S_{7pn} := S_{np7} - 2 \cdot S_{xx}$$

$$S_{7pn} = 26.163 + 11.978i$$

$$\mathbf{U}_{\mathbf{HHBH7}} \coloneqq \mathbf{U}_{\coprod} - \left(\frac{\text{Re}\left(\mathbf{S}_{7pn}\right) \cdot \text{Re}\left(\mathbf{Z}_{Tp7}\right) + \text{Im}\left(\mathbf{S}_{7pn}\right) \cdot \text{Im}\left(\mathbf{Z}_{Tp7}\right)}{\overline{\mathbf{U}_{\coprod}}} + i \cdot \frac{\text{Re}\left(\mathbf{S}_{7pn}\right) \cdot \text{Im}\left(\mathbf{Z}_{Tp7}\right) + \text{Im}\left(\mathbf{S}_{7pn}\right) \cdot \text{Re}\left(\mathbf{Z}_{Tp7}\right)}{\overline{\mathbf{U}_{\coprod}}}\right)$$

 $U_{HHBH7} = 109.013 - 15.827i$

$$k_t := \frac{115}{11}$$

$$k_t = 10.455$$

$$\mathbf{U}_{\mathrm{HH}} \coloneqq \frac{\left|\mathbf{U}_{\mathrm{HHBH7}}\right|}{k_{\mathsf{t}}}$$

$$U_{HH} = 10.537$$

$$k_{\text{tжел}} \coloneqq \frac{\left| U_{\text{HHBH7}} \right|}{10.4}$$

$$k_{tжел} = 10.592$$

$$n := \left(\frac{k_{\text{tжел}}}{k_t} - 1\right) \cdot \frac{1}{0.0178}$$

$$n = 0.738$$

 $n_{ct} := 1$

$$U_{HHf7} \coloneqq \frac{U_{HHBH7}}{k_t \cdot \left(1 + n_{ct} \cdot 0.0178\right)}$$

$$\left| \mathbf{U}_{\mathrm{HHf7}} \right| = 10.352$$

ПОДСТАНЦИЯ-В

$$S_{8pn} := S_{\pi p8} - 2 \cdot S_{xx8}$$

$$S_{8pn} = 26.522 + 17.257i$$

$$\mathbf{U}_{\mathrm{HHBH8}} \coloneqq \mathbf{U}_B - \left(\frac{\mathrm{Re}\big(\mathbf{S}_{8pn}\big) \cdot \mathrm{Re}\big(\mathbf{Z}_{Tp8}\big) + \mathrm{Im}\big(\mathbf{S}_{8pn}\big) \cdot \mathrm{Im}\big(\mathbf{Z}_{Tp8}\big)}{\overline{\mathbf{U}_B}} + \mathrm{i} \cdot \frac{\mathrm{Re}\big(\mathbf{S}_{8pn}\big) \cdot \mathrm{Im}\big(\mathbf{Z}_{Tp8}\big) + \mathrm{Im}\big(\mathbf{S}_{8pn}\big) \cdot \mathrm{Re}\big(\mathbf{Z}_{Tp8}\big)}{\overline{\mathbf{U}_B}}\right)$$

 $U_{HHBH8} = 88.637 - 37.435i$

$$k_{t} := \frac{115}{11}$$

$$k_t = 10.455$$

$$U_{HH} := \frac{\left|U_{HHBH8}\right|}{k_{t}}$$

$$U_{HH} = 9.204$$

$$k_{tжел} \coloneqq \frac{\left|U_{HHBH8}\right|}{10.5}$$

$$k_{tжел} = 9.164$$

$$n := \left(\frac{k_{t\text{жел}}}{k_t} - 1\right) \cdot \frac{1}{0.0178}$$

$$n = -6.937$$

$$n_{ct} := -7$$

$$U_{HHf8} \coloneqq \frac{U_{HHBH8}}{k_t \cdot \left(1 + n_{ct} \cdot 0.0178\right)}$$

$$\left| U_{\rm HHf8} \right| = 10.513$$

ПОДСТАНЦИЯ-Б

$$S_{9pn} := S_{\pi p9} - 2 \cdot S_{xx}$$

$$S_{9pn} = 9.021 + 3.522i$$

$$\mathbf{U}_{\text{HHBH9}} \coloneqq \mathbf{U}_{\overline{b}} - \left(\frac{\text{Re}\big(\mathbf{S}_{6pn}\big) \cdot \text{Re}\big(\mathbf{Z}_{Tp6}\big) + \text{Im}\big(\mathbf{S}_{6pn}\big) \cdot \text{Im}\big(\mathbf{Z}_{Tp6}\big)}{\overline{\mathbf{U}_{\overline{b}}}} + i \cdot \frac{\text{Re}\big(\mathbf{S}_{6pn}\big) \cdot \text{Im}\big(\mathbf{Z}_{Tp6}\big) + \text{Im}\big(\mathbf{S}_{6pn}\big) \cdot \text{Re}\big(\mathbf{Z}_{Tp6}\big)}{\overline{\mathbf{U}_{\overline{b}}}}\right)$$

$$U_{HHBH9} = 76.946 - 71.297i$$

$$k_t := \frac{115}{10.5}$$

$$k_t = 10.952$$

$$\mathbf{U}_{\mathrm{HH}} \coloneqq \frac{\left|\mathbf{U}_{\mathrm{HHBH9}}\right|}{\mathbf{k}_{\mathrm{t}}}$$

$$U_{HH} = 9.578$$

$$k_{tжел} := \frac{\left| U_{HHBH9} \right|}{10.5}$$

$$k_{tжел} = 9.99$$

$$n := \left(\frac{k_{\text{tжел}}}{k_{\text{t}}} - 1\right) \cdot \frac{1}{0.0178}$$

$$n = -4.934$$

$$n_{ct} := -5$$

$$\mathbf{U}_{\mathrm{HHf9}} \coloneqq \frac{\mathbf{U}_{\mathrm{HHBH9}}}{\mathbf{k}_{\mathrm{t}} \cdot \left(1 + \mathbf{n}_{\mathrm{ct}} \cdot 0.0178\right)}$$

$$\left| \mathbf{U}_{\mathrm{HHf9}} \right| = 10.513$$

Приложение 4

Листинг расчета в ПВК SDO-6

Время расчета: 04:46:44 Для задания коэффициентов трансформации используется полярная система координат

*CРЖМ * Расчет установившегося режима ------ Время:04:46:46.28

- (В): В ветви 2-- 17 заданы нулевые сопротивления
- (В): В узле 1 задан источник реак.мощности без пределов регулирования
- (В): В узле 2 задан источник реак.мощности без пределов регулирования
- (В): В узле 17 задан источник реак.мощности без пределов регулирования

узлов- 17 ветвей- 9 генераторов- 0 трансформаторов- 7 синхр. компенсаторов- 3 из них трехобмоточных- 7 тр-ов с поперечным рег.- 0 узлов с нагрузкой- 7 узлов со с.х.н.- 0 ветвей с фикс. Р- 0 узлов с шунтами- 0 параллельных ветвей- 0 из них управляемых- 0 перетоков сальдо- 0 узлов с пределами- 0 ветвей с пределами- 0 контр. параметров по узламконтр. параметров по ветвям- 0 отключенных ветвей- 0 узлов с стк- 0 Температура: 20 град. Частота системы 1 = 50.00 гц

Суммарная нагрузка по Р: 295. Мвт по Q: 114. Мвар Суммарная генерация по Р: 0. Мвт по Q: 0. Мвар Узлы балансирующие по Р: 1 2 17

Узлы балансирующие по P: 1 2 17 Узлы балансирующие по Q: 1 2 17

Рнб тах(узел) Онб тах (узел) шаг Итерация якобиан ннэ 0 Q-U 113.289(3) 723.378(3) .100E+01 .379*E 85 89 1 P-D 84.061(10) 16.327(7) .929E+00 .379*E 85 89 2 Q-U 8.003(4) 22.426(3) .842E+00 .379*E 85 89 11.582(10) .611E+00 .379*E 85 3 P-D 14.674(4) 89 4 O-U .741(3) 12.410(10) .900E+00 .379*E 85 89

(И): Расчет закончен. Макс.небаланс = .19040E+00

Информация об узлах схема: DENMAX

N узла	U	D (град)	Рн	Qн	P_{Γ}	$Q\Gamma$	Рш	Qı	П	Рнб	Qнб
1	248.600	-		161.49	7 102	2.375	-	-	-	-	
2	239.800	-		87.493	3 17.	484	-	-	-	-	
3	242.990	-1.341	-		-	-	-	-	-		
4	239.351	-1.925	-		-	-	-	-	-		
5	237.071	-1.690	-		-	-	-	-	-		
6	237.316	-1.217	-		-	-	-	-	-		
7	117.061	-1.313	-		-	-	-	-	-		
8	116.351	-1.615	-		-	-	-	-	-		
9	115.961	-1.786	-		-	-	-	-	-		
10	10.017	-5.543	84.850	33.660	-	-	-	-	-	-	
11	10.084	-5.897	78.000	31.060	-	-	-	-	-	-	
12	10.363	-5.739	39.400	15.840	-	-	-	-	-	-	
13	10.139	-5.702	43.550	17.420	-	-	-	-	-	-	
14	10.467	-7.622	26.040	8.673	-	-	-	-	-	-	
15	10.461	-7.097	14.020	4.588	-	-	-	-	-	-	
16	10.472	-7.052	9.014	2.988	-	-	-	-	-	-	

17	119.900 -		50.134	14.073	-		-	
	 29 Информация		.229 299.12		32 .00	000.		
	Pij Qij 161.497 112.3	Pji Ç)ji дP в	орона				
2- 17	87.493 17.48							-
	75.245 65.0°							
5- 6 -	-3.493 25.88 -43.115 6.43	3.303 35 43.211	-6.084	.0721 -	.2012	.005 -	-	-
7- 8	9.107 4.056	6 -9.073	-3.983 .0	341 -	.0723	.049 -	_	_
7- 9	14.181 6.26	5 -14.098	-6.089	.0824 -	.1750	.077 -	-	-
7- 17	-49.473 -22.3	375 50.134	4 24.073	.6615 -	1.697	5 .268 -	-	-
	Информац			7.575		.000		
Имя тр-ра	узел имя	Uтек Кмод	Карг Р	Q	I dP	dQ Ps		
			MBAp				МВАр	
	242.990 23			31 .225	.3025	7.5618		
10	10.017		22 -33.470 					
4	239.351 22	2.95 .00 7	8.231 37.4	59 .209	.2626 3	3.5660		
11	10.084	-77.90	68 -30.893					
	237.071 22		0.540 10.20	 05 107	1/102			
	10.363			33 .107	.1405 2	2.4034		
	237.316 22			39 .119	.1820 3	3.1757		
13	10.139	-43.53	39 -17.364					
7	117 061 10) 64 00 2	6.190 12.04	 47 142	1540 1	 L 3900		
14		-26.03		., .1 .2	.15 10			
	116.351 10			0 .049	.0077 0.	0081		
16		-9.01	.2 -2.982 					
9	115.961 10							
15	10.461	-14.0	17 -4.578					
IJ m a = -			1	1940 12	 6255			
Итого Таби	: ица распредел	еция поте п г		1840 12.0 NMAX	0233			
	ица распределу Имарные мош	-		еактивн.				
H	агрузка	294.874	114.229)				
	енерация	299.125		2				
	нерация ЛЭП	24	.000	0				
	отери в шунтах из них в БСК	x .00	.000 .000	U				
	тери в СК	.000						
	тери в ЛЭП			5				
	отери в тран-ра			525				

```
Потери на корону
                               .000
       Суммарные потери
                               4.283
                                         20.201
       Потери в линиях электропередач
 U ном U ср. активные % реактивные % генер. в ЛЭП % корона
                                                                   %
              .78 18.2
 110.0 117.3
                          1.94 4.8
                                     .00 .0
                                               .00 .0
 220.0 240.9
               2.32 54.2
                          5.63 26.4
                                      0. 00.
                                                .00 .0
             3.099 72.4 7.575 31.3
Итого:
                                              .000 .0
       Потери в трансформаторах
       активные % реактивные %
 U ном
 110.0
         .29 6.7
                   3.92 14.7
 220.0
         .90 20.9 11.71 54.0
      ----- ----
         1.184 27.6 12.625 68.7
Итого:
                Информация об отпайках трансформаторов
        Номера узлов 1-ая Uрпн N-ая 1-ая ЭДС N-ая 1-ая угол N-ая Кмод Карг
Кмод Карг
      3 - 0- 10
                    1
                       16
                           19
                                                    .000 .00 23.409 .00
           0- 11
                           19
                                                    .000 .00 22.951
                    1
                       15
                                                                     .00
      5 - 0- 12
                       11
                           19
                                                    .000 .00 22.088 .00
                    1
      6 - 0- 13
                    1
                       14
                           19
                                                    .000 .00 22.511
                                                                    .00
      7 - 0- 14
                       11
                           19
                                                    .000 .00 10.644 .00
                    1
                       3
      8 - 0- 16
                           19
                                                    .000 .00 10.644 .00
                    1
      9 - 0- 15
                       5
                          19
                                                   .000 .00 10.644 .00
                    1
           Информация об узлах схема: DENMIN
   N узла
             U
                   D(град)
                            Рн
                                    Он
                                                         Рш
                                                                Ош
                                                                        Рнб
                                           РΓ
                                                  QΓ
                                                                                Онб
         213.400
                                    128.196
      1
                                             86.476
      2
         217.800
                                     87.520
                                             56.616
                   -1.433
      3
         207.875
      4
         206.278
                   -1.969
      5
         209.589
                   -1.788
         211.759
      6
                   -1.256
      7
         107.486
                   -1.436
      8
         107.117
                   -1.774
      9
                            _
         106.911
                   -1.963
                  -7.215
      10
           9.949
                          82.300
                                   57.040
      11
          10.148
                  -5.972
                           57.720
                                   40.330
      12
           10.314
                   -6.237
                           34.200
                                    _
      13
           10.257
                   -6.248
                           37.800
                                    26.230
      14
          10.366
                   -7.147
                           20.370
      15
           10.508
                   -6.773
                           10.970
      16
          10.519
                   -6.717
                           7.052
                                     39.038
                                              4.762
      17
          108.900
                     250.412 123.600 254.754 147.854
                                                          .000
                                                                 .000
           Информация о ветвях схема: DENMIN
   Ветвь
           Pij
                  Qii
                         Pji
                               Qji
                                       дР корона
                                                    дQ
                                                          Ιл
                                                              Kmod
                                                                        Карг
                                                                                QΓ
                   96.476 -127.188 -90.825 1.0074 -
  1-
         128.196
                                                         2.6509 .435 -
  2-
      6
         87.520
                  66.616 -86.492 -62.888 1.0283 -
                                                        1.7283 .292
 2-
```

17

```
20.067 -44.186 -19.500 .1564 - .5671 .135 -
       44.342
 3-
 4-
    5
       -13.796 -27.343 13.930 27.827 .1334 -
                                            .4833 .086 -
      -48.246 -30.491 48.457 31.257 .2113 -
7 108 656 7.007
 5-
                                            .7666 .157 -
    6
             .656 -7.087 -.612 .0208 - .0441 .038 - 1.033 -11.017 -.926 .0503 - .1068 .060 -
 7-
    8
       7.108
 7-
    9
       11.067
   17 -38.637 -3.734 39.038 4.762 .0010 -
                                           .0288 .209 -
 7-
                       _____
                        3.0088 .0 6.376
                                                    .000
          Информация о трансформаторах схема - DENMIN
Имя тр-ра узел имя Uтек Кмод Карг P Q I dP dQ Psh Qsh кВ MBт MBAp кА MBт MBAp MBT MBAp
          207.875 19.20 .00 82.844 70.768 .303 .5494 7.7359
     3
          9.949 -82.294 -57.032
     10
     4 206.278 19.20 .00 57.978 46.861 .209 .2612 3.5302
        10.148 -57.717 -40.331
    11
 _____
     5 209.589 20.19 .00 34.316 2.671 .095 .1164 1.6700
         10.314 -34.199 -.001
    12
 .-----
          211.759 19.20 .00 38.035 31.633 .135 .2355 2.4030
         10.257 -37.800 -26.230
     13
 .....
    7 107.486 10.27 .00 20.463 2.046 .111 .0930 1.0463
    14 10.366 -20.370 .000
     8 107.117 10.10 .00 7.087 .613 .038 .0351 .6130
         10.519 -7.052 .000
     16
______
     9 106.911 10.10 .00 11.017 .927 .060 .0468 .9271
 Итого:
                                 1.3374 17.9256
   Таблица распределения потерь в схеме: DENMIN
      Суммарные мощности: активн.
                                  реактивн.

      Нагрузка
      250.412
      123.600

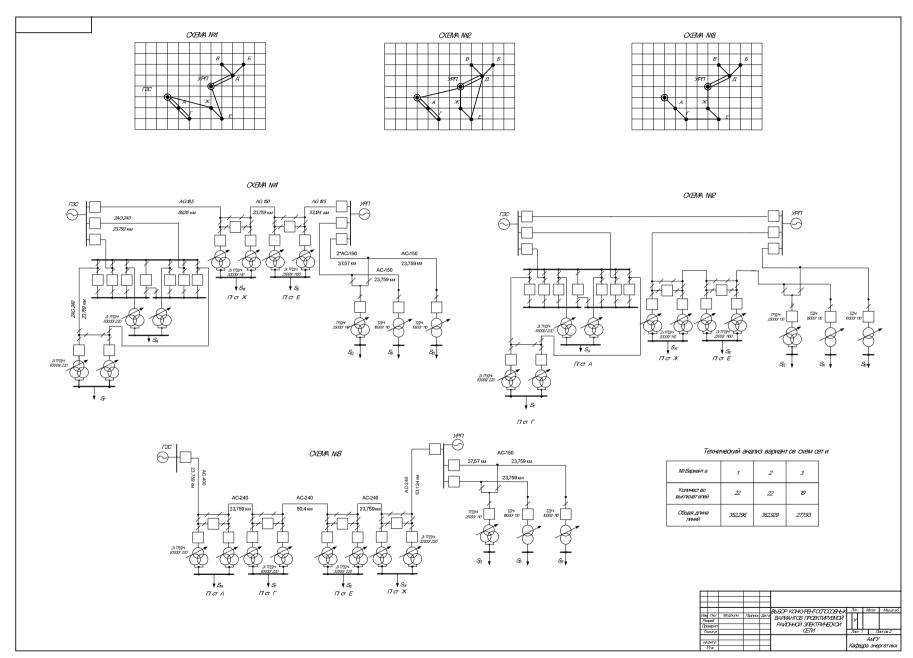
      Генерация
      254.754
      167.854

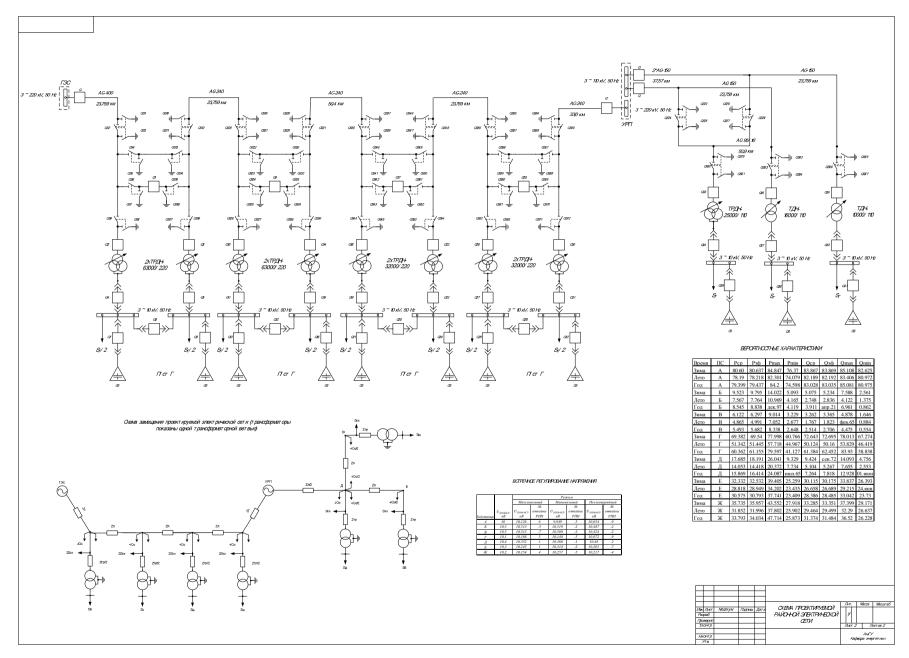
                             167.854
      Генерация ЛЭП
                              .000
     Потери в шунтах .000
                              .000
       из них в БСК
                             .000
     Потери в СК .000
Потери в Л Э П 3.009
Потери в тран-рах 1.337
Потери на корону .000
Суммарные потери 4.346
                              6.376
                               17.926
                               24.302
          Потери в линиях электропередач
U ном U ср. активные % реактивные % генер. в ЛЭП % корона
110.0 107.6 .47 10.9 0.18 2.7 .00 .0
                                      .00 .0
                             0. 00. 00. 00.
220.0 211.1 2.54 58.4 6.20 25.3
      _____
Итого: 3.009 69.2 6.376 27.9
                                     .000 .0
     Потери в трансформаторах
```

```
U ном
        активные % реактивные %
         .17 4.0
                    1.59 8.1
 110.0
 220.0
         1.16 26.7
                    16.34 64.0
         1.337 30.8 17.926 72.1
Итого:
                Информация об отпайках трансформаторов
        Номера узлов 1-ая Uрпн N-ая 1-ая ЭДС N-ая 1-ая угол N-ая Кмод Карг
Кмод Карг
      3 - 0- 10
                        5
                           19
                                                    .000
                                                         .00 19.200 .00
                    1
                        5
      4 - 0- 11
                    1
                           19
                                                    .000 .00 19.200 .00
      5 - 0- 12
                        8
                           19
                                                         .00 20.190 .00
                    1
                                                    .000
      6 - 0- 13
                    1
                        5
                           19
                                                    .000 .00 19.200 .00
                        9
      7 - 0- 14
                    1
                           19
                                                         .00 10.271 .00
                                                    .000
      8 - 0- 16
                        8
                           19
                                                    .000 .00 10.095 .00
                    1
      9 - 0- 15
                    1
                           19
                                                    .000
                                                         .00 10.095 .00
           Информация об узлах схема: DENAVAR
             U
                   D(град)
                             Рн
                                    Qн
                                                  QΓ
                                                          Рш
                                                                 Qш
                                                                         Рнб
                                                                                 Онб
   N узла
                                           РΓ
          228.800
                                     267.698
                                              208.479
          179.535
                  -12.060
      3
      4
          183.698
                  -10.772
          200.947
                   -6.057
      5
         211.189
                   -3.646
      6
      7
          111.355
                   -1.437
      8
          110.596
                   -1.769
      9
          110.179
                   -1.957
      10
          10.054
                  -19.989
                            84.850
                                     33.660
      11
           10.072
                  -17.673
                            78.000
                                     31.060
      12
           10.265
                  -11.781
                            39.400
                                    15.840
      13
           10.217
                   -9.382
                           43.550
                                    17.420
                   -8.461
      14
           10.430
                           26.040
                                    8.673
      15
           10.424
                   -7.875
                           14.020
                                    4.588
      16
           10.487
                   -7.824
                            9.014
                                    2.988
      17
          114.400
                                      50.269
                                               25.060
                     294.874 114.229 317.967 233.539
                                                           .000
                                                                  .000
           Информация о ветвях схема: DENAVAR
                                       дР корона
                                                           Iл Kmod
   Ветвь
            Pij
                  Qij
                         Pji
                                Qji
                                                      дQ
                                                                         Карг
                                                                                  Qг
         267.698
                  208.479 -258.830 -176.328 8.8671 -
                                                          32.1516 .857
  2-
      17
         -84.947
                  -48.057
                           85.789
                                    51.112
                                             .8423 -
                                                        3.0552 .314
  4-
      5 -164.227
                  -93.542
                           170.629
                                   116.745
                                              6.4020 -
                                                          23.2029
                                                                  .595
  5-
      6 -210.497 -137.357 214.958 153.534
                                              4.4604 -
                                                          16.1772 .723
  7-
      8
          9.117
                  4.198
                          -9.079
                                  -4.117
                                           .0382 -
                                                       .0811 .052
                                   -6.292
  7-
      9
          14.198
                   6.488
                         -14.106
                                            .0924 -
                                                        .1962 .081
  7-
      17
          -49.528
                  -23.158
                            50.269
                                    25.060
                                             .7413 -
                                                         1.9020 .284
```

21.4438 .0 76.766

Информация о трансформаторах схема - DENAVAR Имя тр-ра узел имя Uтек Кмод Карг Р Q I dP dQ Psh Qsh MBт MBAp кA MBт MBAp MBт MBAp кВ 3 179.535 18.02 .00 84.539 48.137 .313 .5872 14.6807 10.054 -83.952 -33.456 10 4 183.698 18.02 .00 77.857 42.595 .279 .4668 11.6698 11 10.072 -77.390 -30.925 -----200.947 18.59 .00 39.537 20.709 .128 .2129 4.8838 12 10.265 -39.324 -15.825 211.189 19.52 .00 43.760 22.823 .135 .2357 5.4068 6 10.217 -43.525 -17.416 13 ------7 111.355 10.10 .00 26.213 12.472 .151 .1726 3.7987 14 10.480 -26.040 -8.673 8 110.596 10.10 .00 9.079 4.117 .052 .0646 1.1293 10.487 -9.014 -2.988 16 9 110.179 10.10 .00 14.106 6.292 .081 .0861 1.7039 10.424 -14.020 -4.588 15 ______ 1.8258 43.2729 Итого: Таблица распределения потерь в схеме: DENAVAR Суммарные мощности: активн. реактивн.


 Нагрузка
 294.874
 114.229


 Генерация
 317.967
 233.539

 233.539 Генерация ЛЭП .000 Потери в шунтах .000 .000 из них в БСК .000 Потери в СК .000
Потери в Л Э П 21.444
Потери в тран-рах 1.826
Потери на корону .000
Суммарные потери 23.270 76.766 43.273 120.039 Потери в линиях электропередач U ном U ср. активные % реактивные % генер. в ЛЭП % корона % 110.0 111.6 .87 3.7 2.18 1.8 .00 .0 .00 .0 220.0 200.8 20.57 88.4 74.59 62.1 .00 .0 .00 .0 -----21.444 92.2 76.766 64.0 Итого: .000 .0 Потери в трансформаторах U ном активные % реактивные % 110.0 .32 1.4 6.63 5.5 220.0 1.50 6.5 36.64 30.5 _____ Итого: 1.826 7.8 43.273 36.0

Информация об отпайках трансформаторов

				шфо	Ришц	in oo omani	.uzi ipi	шеформатор) D			
	Ho	мер	а узл	ЮВ	1-ая	Uрпн N-ая	1-ая	ЭДС N-ая	1-ая у	тол N-ая	Кмод	Карг
Кмод	Карг	•										
	3 -	0-	10	1	1	19		.00	00. 0	18.022	.00	
	4 -	0-	11	1	1	19		.00	00. 0	18.022	.00	
	5 -	0-	12	1	3	19		.00	00. 0	18.592	.00	
	6 -	0-	13	1	6	19		.00	00. 0	19.519	.00	
	7 -	0-	14	1	8	19		.00	00. 0	10.095	.00	
	8 -	0-	16	1	8	19		.00	00. 0	10.095	.00	
	9 -	0-	15	1	8	19		.00	00. 0	10.095	.00	

Часть II

Курсовой проект по данной дисциплине выполняется в 8 семестре и предназначен для изучения вопросов проектирования электрической части подстанций электроснабжения.

В проекте рассматриваются вопросы расчета электрических нагрузок, выбора уровня рационального напряжения, выбора числа и мощности силовых трансформаторов с учетом компенсации реактивной мощности, выбора главной электрической схемы подстанции, выбора числа и сечений питающих линий, расчета токов коротких замыканий, выбора и проверки основного электрического оборудования, выбора системы оперативного тока на подстанции, решения вопросов компенсации емкостных токов замыкания на землю и др.

Введение

Курсовое проектирование имеет цель получить студентом расчетные и практические навыки по выбору электрической части подстанций электроснабжения, расчету режимов работы электрооборудования, выбору и проверке электрических аппаратов.

При выполнении проекта студент полностью отвечает за принятые решения, а задача руководителя сводится к ознакомлению студента с возможными вариантами решения, методами расчета, он направляет самостоятельную творческую работу студента.

Оформление проекта.

Курсовой проект разрабатывается в соответствии с заданием и оформляется в виде расчетно-пояснительной и графической части (2 листа формата A-1).

Пояснительная записка включает: титульный лист, задание, введение, расчетно-пояснительная часть, список используемой литературы и оглавление.

Без наличия задания проект к проверке не принимается.

Чертежи, графики, схемы должны соответствовать требованиям ЕСКД. Пояснения расчетов должны быть предельно краткими и четкими. При многократном повторении одинаковых решений пример подробного решения приводится один раз, а результаты остальных решений сводятся в таблицу.

Указания по выполнению графической части проекта

Графический материал должен содержать два листа чертежей формата А1:

№1 - принципиальная однолинейная схема коммутации проектируемой подстанции;

№2 – выполнить в соответствии с указанной литерой в таблице вариантов.

В таблице вариантов указывается условное обозначение второго листа графической части:

- О план и разрезы по ОРУ-220-110(35) кВ.
- 3 план и разрезы по закрытой части подстанции.
- Т чертёж установки силового трансформатора на открытой части подстанции.
- III конструкция шинопровода связи силового трансформатора $110/10~\mathrm{kB}$ со сборными шинами РУ напряжением $10~\mathrm{kB}$.
 - К фасад и разрез по камере КРУ-10 кВ отходящего присоединения.

Защита проекта

Проект защищается на кафедре.

Студенту дается 10 минут для краткого сообщения о содержании курсового проекта и принятых в нем решениях, а затем он отвечает на вопросы членов комиссии.

Примерное содержание пояснительной записки

Введение

Исходные данные

1. Расчет электрических нагрузок

- 2. Выбор рационального напряжения
- 3. Баланс реактивной мощности
- 4. Выбор числа и мощности силовых трансформаторов
 - 4.1. Выбор числа и мощности цеховых трансформаторов
 - 4.2. Выбор числа и мощности трансформаторов ГПП
- 5. Выбор количества и сечений линий
 - 5.1. Выбор линий сети 6-20 кВ
 - 5.2. Выбор числа и сечений питающих линий
- 6. Выбор схемы и конструкции ГПП (ПГВ)
- 7. Разработка однолинейной схемы электроснабжения
- 8. Расчет токов коротких замыканий
 - 8.1. Расчет токов трехфазного КЗ
 - 8.2. Расчет токов однофазного КЗ
 - 8.3. Проверка выбранных сечений линий на воздействие токов КЗ
- 9. Выбор и проверка электрических аппаратов
 - 9.1. Выбор и проверка ВЧ аппаратуры
 - 9.2. Выбор и проверка выключателей
 - 9.3. Выбор и проверка разъединителей
 - 9.4. Выбор и проверка трансформаторов тока
 - 9.5. Выбор и проверка трансформаторов напряжения
 - 9.6. Выбор и проверка ОПН
 - 9.7. Выбор и проверка сборных шин
 - 9.8. Выбор и проверка изоляторов
 - 9.9. Выбор и проверка ячеек КРУ
- 10. Регулирование напряжения
- 11. Выбор системы оперативного тока
- 12. Выбор и проверка ТСН
- 13. Расчет емкостных токов замыкания на землю и выбор дугогасящих реакторов
- 14. Выбор и проверка аккумуляторных батарей
- 15. Релейная защита и автоматика
- 16. Определение себестоимости распределения электроэнергии

Заключение

Список литературы

Введение

Во введении должны быть использованы материалы постановлений Правительства Российской Федерации, приказов, руководящих указаний и документов Минтопэнерго РФ, нормативно-техническая документация РАО «ЕЭС России».

Во введении должны быть сформулированы основные задачи подъема уровня жизни населения и сферы его обслуживания, развития инфраструктуры предприятия и его производств на основе широкого внедрения электроэнергии в жизненные и технологические процессы на базе надежного и качественного электроснабжения.

Обосновываются цели и задачи и задачи разрабатываемого проекта.

Исходные данные

Обстоятельное изучение вопросов проектирования электрической части подстанций электроснабжения – сложная самостоятельная задача.

Для распространенных в среде промышленных предприятий электроприемников характеристики электрической нагрузки определены на основе многолетних экспериментальных исследований и приводятся в задании.

В данном разделе необходимо воспользоваться заданным преподавателем вариантом курсового проектирования.

Варианты 1.1÷1.20.

Выбрать тип и мощность синхронных электродвигателей для насосов, имеющих производительность по $1,65 \text{ м}^3/\text{с}$ каждый и напор -60 м.

Определить электрические нагрузки насосной станции водоснабжения промышленного предприятия, если известно, что один из установленных насосов резервный. Нагрузки электроосвещения и других потребителей приведены в таблице вариантов.

Составить схему электрических соединений подстанции, выбрать напряжение для питания двигателей и мощность понизительных трансформаторов, если известно, что насосная питает потребители первой категории и может получать электроэнергию от подстанции энергосистемы, на которой установлены два трехобмоточных трансформатора с напряжениями 220/110/35 кВ. Расстояния до подстанции энергосистемы приведены в таблице вариантов. Мощность питающей системы принять неограниченно большой.

Рассчитать токи короткого замыкания на шинах проектируемой подстанции насосной и выбрать основное оборудование подстанции (выключатели, отделители, короткозамыкатели, разъединители, трансформаторы тока и напряжения, проходные и опорные изоляторы, сборные шины) с проверкой на действие токов короткого замыкания.

Описать второй лист графической части проекта в соответствии с разрабатываемым вариантом.

Варианты II.I ÷ II.20.

Выбрать мощность и количество трансформаторов ГПП для питания потребителей электроэнергии I, II и III категорий.

Определить мощность компенсирующих устройств для компенсации реактивной мощности до $\cos \phi = 0.95$ и предусмотреть их установку.

Потребителями электроэнергии при напряжении 380/220 В являются в основном асинхронные электродвигатели небольшой мощности, преобразовательные агрегаты, сварочные трансформаторы, освещение.

Нагрузки сконцентрированы в 10 пунктах равномерно, в радиусе около 800 м.

Приведенные в таблице вариантов нагрузки – потребляемые.

Число часов использования максимума нагрузок – 3800 час/г.

Выбрать напряжение и число линий питания перечисленных нагрузок, если известно, что питание возможно от энергосистемы, ближайшая подстанция которой удалена от потребителей на указанное в таблице вариантов расстояние.

На подстанции энергосистемы установлены трехобмоточные трансформаторы напряжением 220/110/35 кВ.

Мощность короткого замыкания на шинах 220 кВ подстанции составляет 6000 MB·A.

Составить схему электроснабжения, исходя из указанных условий, и разработать однолинейную схему коммутации ГПП.

Рассчитать токи короткого замыкания на шинах ГПП и выбрать основное оборудование (выключатели, отделители, короткозамыкатели, трансформаторы тока и напряжения, разъединители, проходные и опорные изоляторы, сборные шины) с проверкой на действие токов короткого замыкания.

Описать второй лист графической части проекта в соответствии с таблицей вариантов.

Варианты III.1 ÷ III.20

Выбрать и обосновать принципиальную электрическую схему ГПП промышленного предприятия в части РУ–110(35) кВ и 10(6) кВ.

Рассчитать, используя метод коэффициента спроса, потребную мощность нагрузок, выбрать количество и мощность трансформаторов ГПП, предполагая, что нагрузки относятся к потребителям I, II и III категориям, причем нагрузки III категории составляют 30% общей нагрузки.

Установленные мощности нагрузок приведены в таблице вариантов.

Вычислить токи короткого замыкания и выбрать основное оборудование ГПП.

Питание осуществляется от подстанции энергосистемы и с шин ТЭЦ по самостоятельным линиям 110 кВ.

Генераторы ТЭЦ и энергосистемы снабжены АРВ.

Для ограничения токов короткого замыкания на вводах со стороны низшего напряжения трансформаторов $\Gamma\Pi\Pi$ должны быть предусмотрены, в случае необходимости, реакторы.

Потребители электроэнергии I, II и III категорий сосредоточены равномерно в 12 пунктах, находящихся в радиусе 500–800 м от ГПП.

Примечания.

- 1. Нагрузка присоединений к шинам ГПП должна приниматься в пределах 4500–6500 кВА.
- 2. При расчете электрических нагрузок использовать ПК.

Варианты IV.1 ÷IV.20

Выбрать и обосновать принципиальную электрическую схему ГПП в части PУ-110(35) и 10(6) кВ.

Рассчитать, используя метод коэффициента спроса, потребную мощность силовых трансформаторов на ГПП.

Нагрузки предприятия относятся к потребителям I, II и III категорий, причем нагрузки III категории составляют 30% общей нагрузки.

Установленная мощность нагрузок приведена в таблице вариантов.

Потребители электроэнергии I, II и III категорий сосредоточены равномерно в цехах промышленного предприятия и питаются от 15 трансформаторных подстанций, находящихся на расстоянии не более 800 м от главной понизительной подстанции.

Питание ГПП осуществляется от РУ–110 кВ ТЭЦ самостоятельными линиями. Связь ТЭЦ с системой и ГРЭС показана на схеме.

Вычислить токи короткого замыкания, выбрать и проверить на действие токов короткого замыкания основное оборудование ГПП (короткозамыкатели, отделители, разъединители, выключатели, трансформаторы тока и напряжения, проходные и опорные изоляторы, сборные шины).

Число часов использования максимума нагрузок - 4200 час. Мощность питающей системы неограниченно большая.

Предусмотреть компенсацию реактивной мощности и выбрать места установки компенсирующих устройств и их мощность.

Необходимые исходные данные приведены в таблице вариантов.

Таблица вариантов	1	.1	÷1	1	0)
-------------------	---	----	----	---	---	---

1	2	3	4	5	6	7	8	9	10
6	7	8	9	10	6	7	8	9	10
0,68	0,7	0,72	0,74	0,75	0,76	0,68	0,7	0,72	0,74
25	35	45	55	65	30	40	50	60	70
100	110	120	130	140	100	110	120	130	140
70	80	90	100	110	70	80	90	80	85
160	170	180	190	200	160	170	180	190	200
140	150	160	170	180	140	150	160	170	180
50	50	75	75	75	50	50	75	75	75
100	120	160	100	125	160	100	125	160	100
15	25	35	20	30	30	15	25	35	20
О	3	T	Ш	К	О	3	T	Ш	К
11	12	13	14	15	16	17	18	19	20
7	9	6	8	10	6	7	8	9	10
0,75	0,76	0,68	0,69	0,7	0,71	0,72	0,73	0,74	0,75
40	60	30	35	40	45	50	55	60	65
110	130	110	120	130	140	150	160	170	180
90	95	100	110	90	95	100	110	120	130
180	190	180	190	200	210	220	230	240	250
160	170	150	160	180	150	160	170	180	190
75	75	50	75	100	50	50	75	75	100
125	160	125	125	160	125	125	125	160	160
30	30	15	20	25	20	25	30	35	40
О	3	T	Ш	К	О	3	T	Ш	К
	0,68 25 100 70 160 140 50 100 15 0 11 7 0,75 40 110 90 180 160 75 125 30	6 7 0,68 0,7 25 35 100 110 70 80 160 170 140 150 50 50 100 120 15 25 0 3 11 12 7 9 0,75 0,76 40 60 110 130 90 95 180 190 160 170 75 75 125 160 30 30	6 7 8 0,68 0,7 0,72 25 35 45 100 110 120 70 80 90 160 170 180 140 150 160 50 50 75 100 120 160 15 25 35 O 3 T 11 12 13 7 9 6 0,75 0,76 0,68 40 60 30 110 130 110 90 95 100 180 190 180 160 170 150 75 75 50 125 160 125 30 30 15	6 7 8 9 0,68 0,7 0,72 0,74 25 35 45 55 100 110 120 130 70 80 90 100 160 170 180 190 140 150 160 170 50 50 75 75 100 120 160 100 15 25 35 20 O 3 T III 11 12 13 14 7 9 6 8 0,75 0,76 0,68 0,69 40 60 30 35 110 130 110 120 90 95 100 110 180 190 180 190 160 170 150 160 75 75 50 75 125 <td>6 7 8 9 10 0,68 0,7 0,72 0,74 0,75 25 35 45 55 65 100 110 120 130 140 70 80 90 100 110 160 170 180 190 200 140 150 160 170 180 50 50 75 75 75 100 120 160 100 125 15 25 35 20 30 0 3 T III K 11 12 13 14 15 7 9 6 8 10 0,75 0,76 0,68 0,69 0,7 40 60 30 35 40 110 130 110 120 130 90 95 100 110 90 180 190 180 190 200 180 190 180 190 200 160 170 150 160 180 75 75 50 75 100 125 160 125 125 160 30 30 15 20 25</td> <td>6 7 8 9 10 6 0,68 0,7 0,72 0,74 0,75 0,76 25 35 45 55 65 30 100 110 120 130 140 100 70 80 90 100 110 70 160 170 180 190 200 160 140 150 160 170 180 140 50 50 75 75 75 50 100 120 160 100 125 160 15 25 35 20 30 30 0 3 T III K O 11 12 13 14 15 16 7 9 6 8 10 6 0,75 0,76 0,68 0,69 0,7 0,71 40 60 30<</td> <td>6 7 8 9 10 6 7 0,68 0,7 0,72 0,74 0,75 0,76 0,68 25 35 45 55 65 30 40 100 110 120 130 140 100 110 70 80 90 100 110 70 80 160 170 180 190 200 160 170 140 150 160 170 180 140 150 50 50 75 75 75 50 50 100 120 160 100 125 160 100 15 25 35 20 30 30 15 0 3 T III K O 3 11 12 13 14 15 16 17 7 9 6 8 10</td> <td>6 7 8 9 10 6 7 8 0,68 0,7 0,72 0,74 0,75 0,76 0,68 0,7 25 35 45 55 65 30 40 50 100 110 120 130 140 100 110 120 70 80 90 100 110 70 80 90 160 170 180 190 200 160 170 180 140 150 160 170 180 140 150 160 50 50 75 75 75 50 50 75 100 120 160 100 125 160 100 125 15 25 35 20 30 30 15 25 0 3 T III K 0 3 T 11 <td< td=""><td>6 7 8 9 10 6 7 8 9 0,68 0,7 0,72 0,74 0,75 0,76 0,68 0,7 0,72 25 35 45 55 65 30 40 50 60 100 110 120 130 140 100 110 120 130 70 80 90 100 110 70 80 90 80 160 170 180 190 200 160 170 180 190 140 150 160 170 180 140 150 160 170 50 50 75 75 75 50 50 75 75 100 120 160 100 125 160 100 125 160 15 25 35 20 30 30 15 25 35</td></td<></td>	6 7 8 9 10 0,68 0,7 0,72 0,74 0,75 25 35 45 55 65 100 110 120 130 140 70 80 90 100 110 160 170 180 190 200 140 150 160 170 180 50 50 75 75 75 100 120 160 100 125 15 25 35 20 30 0 3 T III K 11 12 13 14 15 7 9 6 8 10 0,75 0,76 0,68 0,69 0,7 40 60 30 35 40 110 130 110 120 130 90 95 100 110 90 180 190 180 190 200 180 190 180 190 200 160 170 150 160 180 75 75 50 75 100 125 160 125 125 160 30 30 15 20 25	6 7 8 9 10 6 0,68 0,7 0,72 0,74 0,75 0,76 25 35 45 55 65 30 100 110 120 130 140 100 70 80 90 100 110 70 160 170 180 190 200 160 140 150 160 170 180 140 50 50 75 75 75 50 100 120 160 100 125 160 15 25 35 20 30 30 0 3 T III K O 11 12 13 14 15 16 7 9 6 8 10 6 0,75 0,76 0,68 0,69 0,7 0,71 40 60 30<	6 7 8 9 10 6 7 0,68 0,7 0,72 0,74 0,75 0,76 0,68 25 35 45 55 65 30 40 100 110 120 130 140 100 110 70 80 90 100 110 70 80 160 170 180 190 200 160 170 140 150 160 170 180 140 150 50 50 75 75 75 50 50 100 120 160 100 125 160 100 15 25 35 20 30 30 15 0 3 T III K O 3 11 12 13 14 15 16 17 7 9 6 8 10	6 7 8 9 10 6 7 8 0,68 0,7 0,72 0,74 0,75 0,76 0,68 0,7 25 35 45 55 65 30 40 50 100 110 120 130 140 100 110 120 70 80 90 100 110 70 80 90 160 170 180 190 200 160 170 180 140 150 160 170 180 140 150 160 50 50 75 75 75 50 50 75 100 120 160 100 125 160 100 125 15 25 35 20 30 30 15 25 0 3 T III K 0 3 T 11 <td< td=""><td>6 7 8 9 10 6 7 8 9 0,68 0,7 0,72 0,74 0,75 0,76 0,68 0,7 0,72 25 35 45 55 65 30 40 50 60 100 110 120 130 140 100 110 120 130 70 80 90 100 110 70 80 90 80 160 170 180 190 200 160 170 180 190 140 150 160 170 180 140 150 160 170 50 50 75 75 75 50 50 75 75 100 120 160 100 125 160 100 125 160 15 25 35 20 30 30 15 25 35</td></td<>	6 7 8 9 10 6 7 8 9 0,68 0,7 0,72 0,74 0,75 0,76 0,68 0,7 0,72 25 35 45 55 65 30 40 50 60 100 110 120 130 140 100 110 120 130 70 80 90 100 110 70 80 90 80 160 170 180 190 200 160 170 180 190 140 150 160 170 180 140 150 160 170 50 50 75 75 75 50 50 75 75 100 120 160 100 125 160 100 125 160 15 25 35 20 30 30 15 25 35

Примечание: в таблице приведены установленные мощности нагрузок.

Таблица вариантов II.1÷II.10

Варианты	1	2	2	4	5	6	7	8	9	10
Данные вариантов	1	<u> </u>	3	4	3	6	/	0	9	10
Нагрузка в кВт										
І категории	2500	3000	3500	4000	4500	5000	5500	4000	3500	3000
II категории	5500	6300	7000	7500	8000	8500	9000	8000	7500	7000
III категории	5000	5500	5000	5000	5500	5000	4500	5000	4500	4000
Коэффициент мощности	0,65	0,67	0,69	0,71	0,73	0,75	0,77	0,75	0,73	0,71
Расстояние до подстанции энергосистемы (км)	30	35	40	45	50	55	60	50	40	30
Мощность трансформаторов энергосистемы, MBA	100	100	125	160	200	160	125	100	200	160
Графика, 2-й лист	О	3	T	Ш	К	О	3	T	Ш	К

Таблица вариантов II.11÷II.20

Варианты	1.1	12	13	14	15	16	17	18	19	20
Данные вариантов	11	12	13	14	13	10	1 /	10	19	20
Нагрузка в кВт										
I категории	2500	2000	2000	2500	3000	3500	4000	4500	5000	5500
II категории	6500	6000	5000	5800	6000	6500	7000	7500	8000	8500
III категории	3500	5000	5500	5000	5500	5500	5000	4000	4800	4500
Коэф-нт мощности	0,69	0,67	0,65	0,66	0,68	0,70	0,72	0,74	0,76	0,78
Расстояние до подстанции энергосистемы (км)	25	20	25	30	35	40	45	50	45	40
Мощность трансформаторов энергосистемы, MB·A	125	100	100	100	100	125	125	160	160	200
Графика 2-й лист	O	3	T	Ш	К	О	3	T	Ш	К

Примечание : на однолинейной схеме коммутации должны быть показаны все аппараты (выключатели, разъединители, силовые и измерительные трансформаторы, реакторы, предохранители), а также измерительные приборы вторичной коммутации; нагрузку присоединений к шинам ГПП следует принимать в пределах 4500–6500 кВА.

Таблица вариантов III.1÷III.10

U									
1	2	3	Л	5	6	7	8	Q	10
1	2	3			U	-	0	,	
15	20	25	30	35	40	35	30	25	20
12	14	16	18	20	22	23	21	21	19
14	16	18	20	23	28	29	27	26	25
60	80	100	150	160	160	150	100	80	60
0,83	0,84	0,85	0,86	0,87	0,87	0,86	0,85	0,84	0,83
0,125	0,126	0,127	0,128	0,129	0,129	0,128	0,127	0,126	0,125
80	100	125	160	200	200	160	125	100	80
10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
5600	5800	6000	6300	6700	7100	6900	6600	6400	6200
4800	5100	5400	5700	5900	6400	6200	6000	5800	5600
1700	1600	1500	1400	1300	1400	1500	1600	1700	1400
2300	2500	2700	2900	3100	3300	3300	3100	2800	2800
2550	2700	2800	3000	3300	3700	3500	3300	3200	3000
4600	4900	3500	3700	4000	5700	5000	3800	3600	3400
1700	1800	1900	2000	2400	2600	2600	2400	2200	2000
300	330	360	390	420	440	440	420	400	380
O	3	T	Ш	К	O	3	T	Ш	К
	1 15 12 14 60 0,83 0,125 80 10000 5600 4800 1700 2300 2550 4600 1700 300	1 2 15 20 12 14 14 16 60 80 0,83 0,84 0,125 0,126 80 100 10000 10000 5600 5800 4800 5100 1700 1600 2300 2500 2550 2700 4600 4900 1700 1800 300 330	1 2 3 15 20 25 12 14 16 14 16 18 60 80 100 0,83 0,84 0,85 0,125 0,126 0,127 80 100 125 10000 10000 10000 5600 5800 6000 4800 5100 5400 1700 1600 1500 2300 2500 2700 2550 2700 2800 4600 4900 3500 1700 1800 1900 300 330 360	1 2 3 4 15 20 25 30 12 14 16 18 14 16 18 20 60 80 100 150 0,83 0,84 0,85 0,86 0,125 0,126 0,127 0,128 80 100 125 160 10000 10000 10000 10000 4800 5100 5400 5700 1700 1600 1500 1400 2300 2500 2700 2900 2550 2700 2800 3000 4600 4900 3500 3700 1700 1800 1900 2000 300 330 360 390	1 2 3 4 5 15 20 25 30 35 12 14 16 18 20 23 60 80 100 150 160 0,83 0,84 0,85 0,86 0,87 0,125 0,126 0,127 0,128 0,129 80 100 125 160 200 10000 10000 10000 10000 10000 4800 5100 5400 5700 5900 1700 1600 1500 1400 1300 2300 2500 2700 2900 3100 2550 2700 2800 3000 3300 4600 4900 3500 3700 4000 1700 1800 1900 2000 2400 300 330 360 390 420	1 2 3 4 5 6 15 20 25 30 35 40 12 14 16 18 20 22 14 16 18 20 23 28 60 80 100 150 160 160 0,83 0,84 0,85 0,86 0,87 0,87 0,125 0,126 0,127 0,128 0,129 0,129 80 100 125 160 200 200 10000 10000 10000 10000 10000 10000 4800 5100 5400 5700 5900 6400 1700 1600 1500 1400 1300 1400 2300 2500 2700 2900 3100 3300 2550 2700 2800 3000 3300 3700 4600 4900 3500 3700 4000 5700 <td>1 2 3 4 5 6 7 15 20 25 30 35 40 35 12 14 16 18 20 22 23 14 16 18 20 23 28 29 60 80 100 150 160 160 150 0,83 0,84 0,85 0,86 0,87 0,87 0,86 0,125 0,126 0,127 0,128 0,129 0,129 0,128 80 100 125 160 200 200 160 10000 10000 10000 10000 10000 10000 10000 4800 5100 5400 5700 5900 6400 6200 1700 1600 1500 1400 1300 1400 1500 2300 2500 2700 2900 3100 3300 3300 2550</td> <td>1 2 3 4 5 6 7 8 15 20 25 30 35 40 35 30 12 14 16 18 20 22 23 21 14 16 18 20 23 28 29 27 60 80 100 150 160 160 150 100 0,83 0,84 0,85 0,86 0,87 0,87 0,86 0,85 0,125 0,126 0,127 0,128 0,129 0,129 0,128 0,127 80 100 125 160 200 200 160 125 10000 10000 10000 10000 10000 10000 10000 10000 4800 5100 5400 5700 5900 6400 6200 6000 4800 5100 1500 1400 1300 1400 1500</td> <td>1 2 3 4 5 6 7 8 9 15 20 25 30 35 40 35 30 25 12 14 16 18 20 22 23 21 21 14 16 18 20 23 28 29 27 26 60 80 100 150 160 160 150 100 80 0,83 0,84 0,85 0,86 0,87 0,87 0,86 0,85 0,84 0,125 0,126 0,127 0,128 0,129 0,129 0,128 0,127 0,126 80 100 125 160 200 200 160 125 100 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000</td>	1 2 3 4 5 6 7 15 20 25 30 35 40 35 12 14 16 18 20 22 23 14 16 18 20 23 28 29 60 80 100 150 160 160 150 0,83 0,84 0,85 0,86 0,87 0,87 0,86 0,125 0,126 0,127 0,128 0,129 0,129 0,128 80 100 125 160 200 200 160 10000 10000 10000 10000 10000 10000 10000 4800 5100 5400 5700 5900 6400 6200 1700 1600 1500 1400 1300 1400 1500 2300 2500 2700 2900 3100 3300 3300 2550	1 2 3 4 5 6 7 8 15 20 25 30 35 40 35 30 12 14 16 18 20 22 23 21 14 16 18 20 23 28 29 27 60 80 100 150 160 160 150 100 0,83 0,84 0,85 0,86 0,87 0,87 0,86 0,85 0,125 0,126 0,127 0,128 0,129 0,129 0,128 0,127 80 100 125 160 200 200 160 125 10000 10000 10000 10000 10000 10000 10000 10000 4800 5100 5400 5700 5900 6400 6200 6000 4800 5100 1500 1400 1300 1400 1500	1 2 3 4 5 6 7 8 9 15 20 25 30 35 40 35 30 25 12 14 16 18 20 22 23 21 21 14 16 18 20 23 28 29 27 26 60 80 100 150 160 160 150 100 80 0,83 0,84 0,85 0,86 0,87 0,87 0,86 0,85 0,84 0,125 0,126 0,127 0,128 0,129 0,129 0,128 0,127 0,126 80 100 125 160 200 200 160 125 100 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000

Таблица вариантов III.11÷III.20

таолица вариантов III.11÷III.20										
11	12	13	14	15	16	17	18	19	20	
	12						10			
15	20	25	30	35	40	35	30	25	25	
17	15	13	15	17	19	21	23	25	27	
23	21	19	17	15	16	18	20	22	24	
50	100	60	80	100	120	160	160	120	100	
0,82	0,84	0,82	0,83	0,84	0,85	0,86	0,86	0,85	0,84	
0,124	0,123	0,124	0,125	0,126	0,127	0,128	0,128	0,127	0,126	
63	125	80	100	125	160	200	200	160	125	
10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	
6000	5800	5600	6000	6400	6800	7200	7600	8000	7500	
5300	5000	5000	5300	5600	5900	6200	6500	6800	7100	
1500	1600	1300	1400	1500	1600	1700	1800	1900	1800	
2700	2600	2400	2550	2700	2850	3000	3150	3300	3000	
2800	2600	2600	2700	2800	2900	3000	3100	3200	3100	
3100	4800	3600	3600	3700	3800	3900	4000	4200	4300	
1900	1800	1900	1800	1700	1800	1900	2000	2100	2200	
360	340	300	320	340	360	380	400	420	420	
О	3	T	Ш	К	O	3	T	Ш	К	
	11 15 17 23 50 0,82 0,124 63 10000 6000 5300 1500 2700 2800 3100 1900 360	11 12 15 20 17 15 23 21 50 100 0,82 0,84 0,124 0,123 63 125 10000 10000 6000 5800 5300 5000 1500 1600 2700 2600 2800 2600 3100 4800 1900 1800 360 340	11 12 13 15 20 25 17 15 13 23 21 19 50 100 60 0,82 0,84 0,82 0,124 0,123 0,124 63 125 80 10000 10000 10000 6000 5800 5600 5300 5000 5000 1500 1600 1300 2700 2600 2400 2800 2600 2600 3100 4800 3600 1900 1800 1900 360 340 300	11 12 13 14 15 20 25 30 17 15 13 15 23 21 19 17 50 100 60 80 0,82 0,84 0,82 0,83 0,124 0,123 0,124 0,125 63 125 80 100 10000 10000 10000 10000 5300 5600 6000 5300 500 5000 5300 1400 2700 2600 2400 2550 2800 2600 2600 2700 3100 4800 3600 3600 1900 1800 1900 1800 360 340 300 320	11 12 13 14 15 15 20 25 30 35 17 15 13 15 17 23 21 19 17 15 50 100 60 80 100 0,82 0,84 0,82 0,83 0,84 0,124 0,123 0,124 0,125 0,126 63 125 80 100 125 10000 10000 10000 10000 10000 5300 5600 5600 6000 6400 5300 5000 5000 5300 5600 1500 1600 1300 1400 1500 2700 2600 2400 2550 2700 2800 2600 2600 2700 2800 3100 4800 3600 3600 3700 1900 1800 1900 1800 1700 360<	11 12 13 14 15 16 15 20 25 30 35 40 17 15 13 15 17 19 23 21 19 17 15 16 50 100 60 80 100 120 0,82 0,84 0,82 0,83 0,84 0,85 0,124 0,123 0,124 0,125 0,126 0,127 63 125 80 100 125 160 10000 10000 10000 10000 10000 10000 6000 5800 5600 6000 6400 6800 5300 5000 5300 5600 5900 1500 1600 1300 1400 1500 1600 2700 2600 2400 2550 2700 2850 2800 2600 2600 2700 2800 2900 <	11 12 13 14 15 16 17 15 20 25 30 35 40 35 17 15 13 15 17 19 21 23 21 19 17 15 16 18 50 100 60 80 100 120 160 0,82 0,84 0,82 0,83 0,84 0,85 0,86 0,124 0,123 0,124 0,125 0,126 0,127 0,128 63 125 80 100 125 160 200 10000 10000 10000 10000 10000 10000 10000 5300 5600 5600 6000 6400 6800 7200 5300 5000 5300 5600 5900 6200 1500 1600 1300 1400 1500 1600 1700 2700 2600 <td>11 12 13 14 15 16 17 18 15 20 25 30 35 40 35 30 17 15 13 15 17 19 21 23 23 21 19 17 15 16 18 20 50 100 60 80 100 120 160 160 0,82 0,84 0,82 0,83 0,84 0,85 0,86 0,86 0,124 0,123 0,124 0,125 0,126 0,127 0,128 0,128 63 125 80 100 125 160 200 200 10000 10000 10000 10000 10000 10000 10000 10000 5300 5800 5600 6000 6400 6800 7200 7600 5300 5000 5300 5600 5900 6200 6500</td> <td>11 12 13 14 15 16 17 18 19 15 20 25 30 35 40 35 30 25 17 15 13 15 17 19 21 23 25 23 21 19 17 15 16 18 20 22 50 100 60 80 100 120 160 160 120 0,82 0,84 0,82 0,83 0,84 0,85 0,86 0,86 0,85 0,124 0,123 0,124 0,125 0,126 0,127 0,128 0,128 0,127 63 125 80 100 125 160 200 200 160 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000</td>	11 12 13 14 15 16 17 18 15 20 25 30 35 40 35 30 17 15 13 15 17 19 21 23 23 21 19 17 15 16 18 20 50 100 60 80 100 120 160 160 0,82 0,84 0,82 0,83 0,84 0,85 0,86 0,86 0,124 0,123 0,124 0,125 0,126 0,127 0,128 0,128 63 125 80 100 125 160 200 200 10000 10000 10000 10000 10000 10000 10000 10000 5300 5800 5600 6000 6400 6800 7200 7600 5300 5000 5300 5600 5900 6200 6500	11 12 13 14 15 16 17 18 19 15 20 25 30 35 40 35 30 25 17 15 13 15 17 19 21 23 25 23 21 19 17 15 16 18 20 22 50 100 60 80 100 120 160 160 120 0,82 0,84 0,82 0,83 0,84 0,85 0,86 0,86 0,85 0,124 0,123 0,124 0,125 0,126 0,127 0,128 0,128 0,127 63 125 80 100 125 160 200 200 160 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000	

Таблица вариантов IV.1÷IV.10

таолица вариантов ту.т-ту.то								1 0		10
Данные вариантов / Варианты	1	2	3	4	5	6	7	8	9	10
ЛЭП-110 кB, l ₁ (км)	20	25	30	35	40	45	77	40	35	30
ЛЭП-110 кB, l ₂ (км)	10	15	17	20	18	26	28	22	20	18
ЛЭП-110 кB, l ₃ (км)	20	25	27	30	28	28	28	28	26	24
ЛЭП-110 кВ, 14 (км)	7	8	9	10	11	12	7	8	9	10
ГенераторыГ-1,Г-2 (MBA)	160	200	300	320	500	160	200	300	320	500
ГенераторыГ-3,Г-4 (МВт)	63	50	60	100	150	50	60	63	100	150
соѕф ген-ров Г-3, Г-4	0,87	0,86	0,85	0,84	0,83	0,83	0,82	0,84	0,84	0,85
соѕф ген-ров Г-1, Г-2	0,82	0,83	0,84	0,85	0,86	0,87	0,87	0,86	0,85	0,84
Тр–ры Т-1, Т-2 (МВА)	200	250	320	320	630	200	250	320	320	630
Тр–ры Т-1, Т-2 (МВА)	80	63	80	125	160	63	80	80	125	160
Цехи горячей обработки металлов (кВт)	7500	7000	6500	6000	5500	5000	5500	6000	6500	7000
То же при холодной обработке металлов (кВт)	6000	6200	6400	6600	6800	7000	7000	6800	6600	6400
Вентиляторы, производственные насосы, двиггенер., трансмиссии (кВт)	10000	11000	12000	13000	14000	15000	15000	11000	12000	13000
Производственные механизмы с повторно-кратковременным режимом (кВт)	2300	2000	1500	1500	1500	2500	2000	1500	1500	2000
Краны цеховые (кВт)	2550	2700	2800	3000	3300	3700	3500	3900	3200	3000
Приемники непрерывного транспорта и обработки земли в литейных цехах	2600	2800	3000	3200	3400	3600	3600	3400	3200	3000
Печи сопротивления, сушильные шкафы, нагревательные приборы (кВт)	1700	1900	2100	2300	2500	2700	1700	1900	2100	2300
Печи плавильные (кВт)	4100	4300	4500	4700	4900	5100	5100	4900	4700	4500
Сварочные машины точечной и шовной сварки (кВт)	1000	900	800	700	600	500	500	600	700	800
Освещение (кВт)	350	370	390	410	430	450	440	420	400	380
Графика, 2-й лист	O	3	T	Ш	К	О	3	T	Ш	К

Таблица вариантов IV.1÷IV.10

Данные вариантов / Варианты	11	12	13	14	15	16	17	18	19	20
ЛЭП-110 кВ, l ₁ (км)	25	20	25	30	35	40	45	50	45	40
ЛЭП-110 кВ, 12 (км)	17	15	12	14	16	18	20	22	24	26
ЛЭП-110 кВ, 1 ₃ (км)	23	21	28	26	24	22	22	18	16	14
ЛЭП-110 кВ, 14 (км)	11	12	7	8	9	10	11	12	13	14
ГенераторыГ-1,Г-2 (MBA)	200	300	320	500	160	200	300	32	500	320
ГенераторыГ-3,Г-4 (МВт)	60	63	50	60	100	125	160	125	100	63
соѕφ ген–ров Г-1, Г-2	0,83	0,82	0,82	0,84	0,84	0,85	0,86	0,85	0,84	0,83
соѕф ген-ров Г-3, Г-4	0,86	0,87	0,82	0,83	0,86	0,85	0,83	0,81	0,84	0,82
Тр–ры Т-1, Т-2 (MBA)	250	320	200	250	320	320	630	630	320	320
Тр–ры Т-1, Т-2 (MBA)	80	80	63	80	80	125	125	160	160	125
Цехи горячей обработки металлов (кВт)	7500	8000	5500	6000	6500	7000	7500	800	8500	8000
То же при холодной обработке металлов (кВт)	6200	6000	6000	6300	6600	6900	7200	7500	7800	7500
вентиляторы, производственные насосы, двигатель-генераторы, трансмиссии (кВт)	10000	11000	14000	15000	12000	13000	14000	15000	16000	17000
Производственные механизмы с повторно-кратковременным режимом (кВт)	2500	2500	1500	1600	1700	1800	1900	200	2200	2400
Краны цеховые (кВт)	2800	2600	2500	2600	2750	2850	3000	3200	3400	3400
Приемники непрерывного транспорта и обработки земли в литейных цехах	2800	2600	2700	2800	2900	3000	3100	3200	3300	3400
Печи сопротивления, сушильные шкафы, нагревательные приборы (кВт)	2500	2700	1700	1800	1900	2000	2200	2400	2600	2800
Печи плавильные (кВт)	4300	4100	4300	4500	4700	4900	5100	5300	5500	5200
Сварочные машины точечной и шовной сварки (кВт)	900	1000	1100	1000	900	800	700	600	500	600
Освещение (кВт)	360	340	350	360	370	380	390	400	4200	440
Графика, 2-й лист	О	3	T	Ш	К	О	3	T	Ш	К

Расчетная часть

Последовательность выполнения курсового проекта с подробным рассмотрением вопросов проектирования электрической части подстанции приведена в учебном пособии Ю.В. Мясоедов, Н.В. Савина, А.Г. Ротачева. Электрическая часть станций и подстанций. Учебное пособие. Благовещенск: Амурский гос. ун-т, 2007.

Заключение

В заключение приводится краткая характеристика разработанной подстанции, ее схемы и конструкции, выбранного оборудования с точки зрения надежности и эффективности электроснабжения потребителей качественной электроэнергией.

Дается оценка экономичности принятых решений и приводятся основные технико-экономические показатели и характеристики курсового проекта.

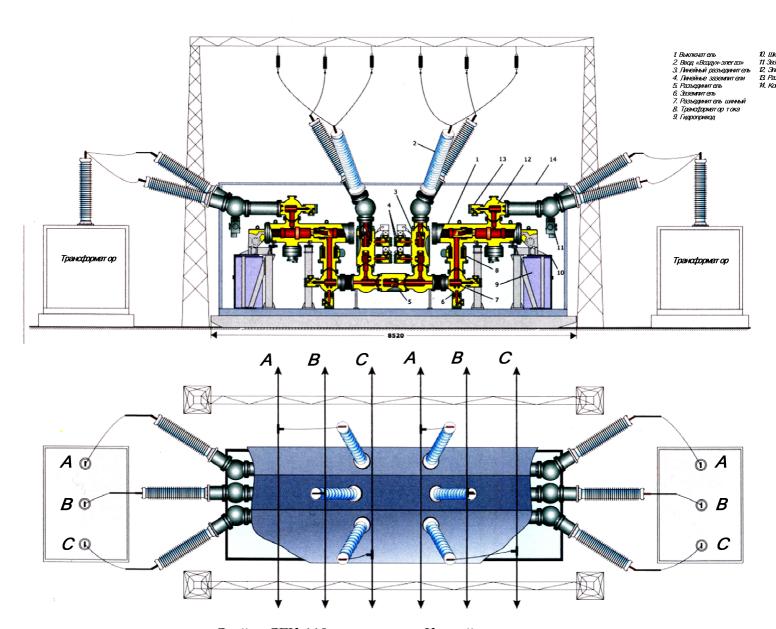
Графическая часть курсового проекта

Курсовой проект разрабатывается в соответствии с заданием и сопровождается графической частью (2 листа формата А-1). Чертежи, графики, схемы должны соответствовать требованиям ЕСКД.

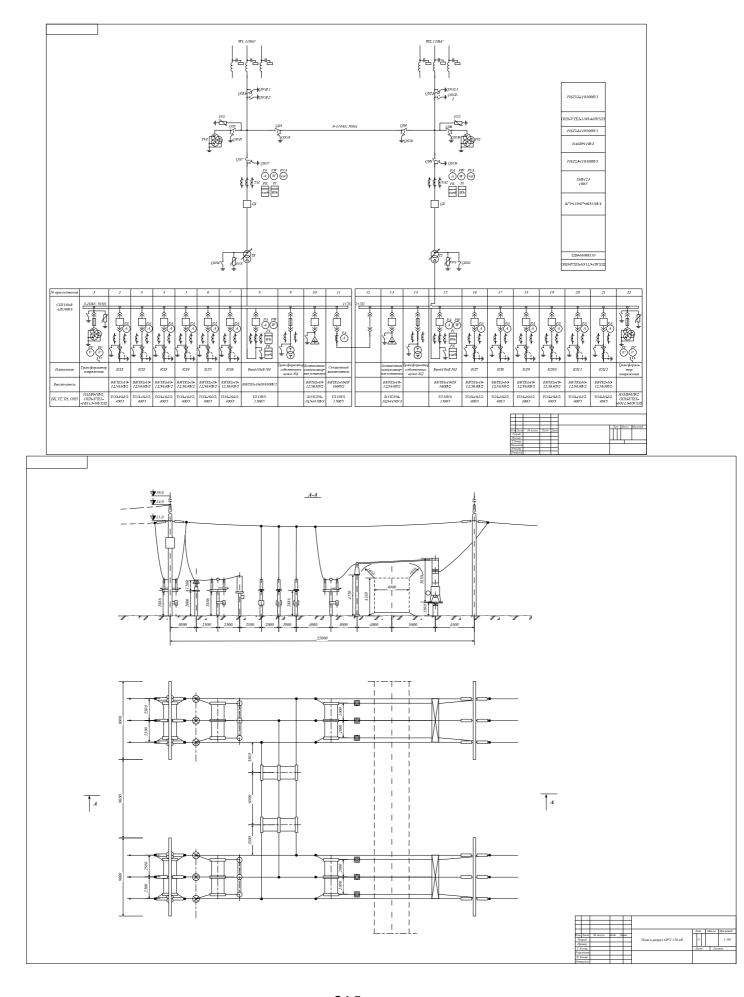
Графическая часть в соответствии с заданием преподавателя может быть представлена:

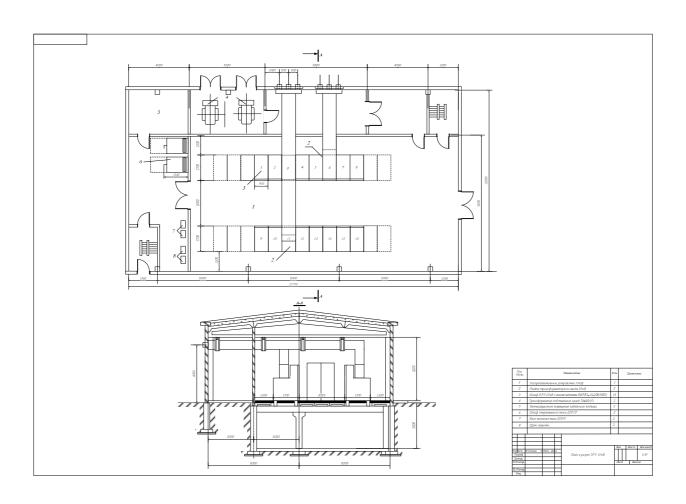
1 лист – Однолинейная электрическая схема подстанции или схема электроснабжения;

2 лист – согласно задания может включать в себя: план и разрезы по ОРУ–220-110(35) кВ; план и разрезы по закрытой части подстанции; чертёж установки силового трансформатора на открытой части подстанции; конструкция шинопровода связи силового трансформатора 110/10 кВ со сборными шинами РУ напряжением 10 кВ; фасад и разрез по камере КРУ–10 кВ отходящего присоединения.


При выполнении расчетной и графической части проекта представляет значительный интерес опыт зарубежных стран, где рассматриваемые подстанции глубокого ввода имеют широкое применение. При их выполнении отмечается все большее использование оборудования с элегазом, всемерное упрощение распределительных устройств, вплоть до глухого присоединения кабельных линий высокого напряжения к трансформаторам и непосредственным вводом в кожух последних. В некоторых случаях градостроительные соображения вынуждают рассматриваемые подстанции размещать под землей. Такое решение встречается в практике зарубежных стран из-за высокой стоимости земельных участков, особенно в крупных городах.

В последние годы в РФ также освоен выпуск специальных герметичных распределительных устройств, в качестве изолирующей и дугогасящей среды для которых используется элегаз (шестифтористая сера). Опыт зарубежных стран, где оборудование с элегазовым наполнением получило широкое распространение, показывает, что при наличии такого оборудования габариты подстанций сокращаются в несколько раз.


Фирма ABB в настоящее время выпускает элегазовые КРУЭ для заводских и городских подстанций на основе ячеек PASS MO.


Заводы РФ в настоящее время освоили производство элегазовых ячеек КРУЭ (марка ЯЭ-110 (220) и ЯГК 110), что не исключает применение ячеек КРУЭ при компоновке ПС глубокого ввода, РУ 110—220 кВ которые, как указано, выполняются по упрощенным схемам.

В качестве примера приведены несколько листов графической части курсового проекта.

Ячейка ЯГК-110 исполнения «Контейнер»

6. Самостоятельная работа студентов

6.1. График самостоятельной работы студентов

Номер и	Номер	Содержание самостоятельной	Номер	Объем	Формы	Сроки
наименование	лекци	работы	литератур	В	Формы контроля	контрол
темы	и (Л),	риооты	ы	часах	СРС	Я
TCMBI	П3		Di	Ideax	CIC	(номер
	115					учебно
						й
						недели)
1	2	3	4	5	6	7
1. Введение.	Л1	Топливно-энергетический			Блиц-опрос	2
Характеристик		комплекс, история его				
а и структура		развития. состав				
энергетическо		энергообъединений. Схема				
й системы		Амурской энергосистемы,				
		ОЭС Востока				
2. Исходные	Л2	Изучение и анализ			Блиц-опрос,	3
данные для		характерных графиков			защита ЛР	
проектировани		электрических нагрузок				
Я	ЛР 1	потребителей, типовых				
электрических		графиков. Расчет и анализ				
сетей		вероятностных характеристик				
энергосистем		ГЭН на ПК, коэффициенты				
		ГЭН				
	Л3	Методы прогнозирования			Блиц-опрос	4
		электропотребления				
3. Технико-	Л4	Методы проектирования			Блиц-опрос	5
экономические	1	энергосистем и электрических				
основы		сетей. Схема развития ЕНЭС				
проектировани		Дальнего Востока.				
Я	ПЗ 1	Подготовка к практическому			Защита	2
электрических		занятию, выполнение			домашнего	
сетей и систем		домашнего задания.			задания	
	Л 5	Проектирование схем			Блиц-опрос	6
		электрических сетей. Типовые				
		схемы подстанций. Выбор				
		защитных аппаратов для ВЛ и				
		КЛ				
	Л6	Категорийность потребителей			Блиц-опрос	7
		и требования к надежности				
		электроснабжения			-	
	Л7	Вывод формул определения			Блиц-опрос	8
		сечения по допустимой потере				
	ПЗ 2	напряжения			Защита	4
		Подготовка к практическому			домашнего	
		занятию, выполнение			задания	
	- -	домашнего задания.			-	_
	Л8	Конструктивное исполнение			Блиц-опрос	9
		средств, используемых для				
		КРМ, их сравнительный				

	ПЗ 3	анализ.	Защита	6
		Подготовка к практическому	домашнего	
		занятию, выполнение	задания	
		домашнего задания.		
4.	Л9	Регулировочные	Блиц-опрос	10
Регулирование		характеристики КУ. Способы	Самостоятель	
напряжения в		регулирования напряжения	ная работа	
ЭЭС	Л 10	Выбор УПК, схемы и	Блиц-опрос	11
		конструкции УПК.	_	
	ПЗ 4	Подготовка к практическому	Защита	6
		занятию, выполнение	домашнего	
		домашнего задания.	задания	
5. Основы	Л11			
расчета				
установивших				
ся режимов				

6.2. Методические указания по выполнению домашних заданий и контрольных работ.

При изучении дисциплины предусмотрено выполнение семи индивидуальных домашних заданий для студентов очной формы обучения и одной контрольной работы для студентов заочной и сокращенной заочной форм обучения.

Тематика индивидуальных домашних заданий совпадает с тематикой практических занятий. Прежде чем приступать к выполнению домашних заданий необходимо изучить соответствующих теоретический материал и разобраться с решением аналогичных задач, рассмотренных на практических занятиях или в литературе. Примеры решения задач по всем темам приведены в [4] и в п. 4.2 данного УМКД.

В таблице 5.1 систематизирована рекомендуемая литература, которая поможет успешно справиться с индивидуальным домашним заданием. Там же показаны в учебных неделях сроки защиты заданий. Индивидуальные домашние задания выполняются с помощью ПВК MathCad, SDO-6, RASTR и графического редактора Visio.

Контрольная работа для студентов заочной и сокращенной заочной форм обучения предусматривает выполнение трех задач на следующие темы: определение расчетной нагрузки узла, расчет режимов разомкнутых сетей, расчет режимов замкнутых сетей.

Примеры решения таких задач показаны в п.4.2 данного УМКД и в [4].

6.3. Комплекты домашних заданий, контрольных работ.

Комплекты домашних заданий выполнены по темам, каждая из которых содержит 15-25 задач. Задачи варьируются случайным образом при выдаче студентам.

Ниже приводятся примеры индивидуальных домашних заданий.

Полный комплект заданий находится у лектора.

Методические указания по выполнению домашних заданий и контрольных работ Часть II

Выполнение домашних заданий и контрольных работ предусматривает использование учебно-методического пособия Ю.В. Мясоедова, Н.В. Савиной, А.Г. Ротачевой «Электрическая часть станций и подстанций» и учебно-методического комплекса по дисциплине «Электропитающие системы и сети».

В данных методических разработках представлены все необходимые методические указания в области проектирования и компоновки электрической части подстанций электроснабжения и даны проверочные задания по дисциплине. Представленная в этих разработках последовательность реализации вопросов, посвященных рассмотрению

проектируемой подстанции электроснабжения, а также приведенные примеры ее расчетов соответствуют стадийности выполнения курсового проекта и комплексного задания по дисциплине.

Следует помнить о том, что при изучении отдельных теоретических вопросов курса используются знания, полученные в ранее изученных дисциплинах.

Поэтому для закрепления полученных ранее знаний и практической их привязки к изучаемому курсу целесообразно использовать следующие методические разработки:

- 1. Мохов В.Б., Бирило И.А. Методические указания к курсовому проектированию «Районная электрическая сеть» Благовещенск, 1993.
- 2. Ю.В. Мясоедов, Н.В.Савина, А.Н.Козлов. Автоматизация в курсовом и дипломном проектировании. Учебное пособие. Благовещенск: Амурский гос. ун-т, 2000.
- 3. Савина Н.В., Мясоедов Ю.В., Дудченко Л.Н. Электрические сети в примерах и расчетах. Учебное пособие. Благовещенск: Амурский гос. ун-т, 1999.
- 4. Ю.В. Мясоедов, Н.В. Савина, А.Г. Ротачева. Проектирование электрической части электростанций и подстанций. Учебное пособие. Благовещенск: Амурский гос. ун-т, 2002.

Задания составлены так, что второе является продолжением первого, а третье - продолжением второго и т.д. Задания даны в вариантах, которые приведены в табл.1.

Студент выполняет вариант, соответствующий последним двум цифрам его шифра.

Задание № 1

На основании исходных данных (табл. 1) требуется:

- 1) выбрать тип и параметры генераторов и системы их возбуждения;
- 2) обосновать главную схему электрических соединений станции и схему собственных нужд;
- 3) осуществить выбор числа и мощности повысительных трансформаторов собственных нужд;
- 4) составить принципиальную схему электрических соединений станции и схему собственных нужд.

Тип и параметры генераторов, устанавливаемых на станции, выбирают на основании заданной мощности по справочным данным. При этом необходимо привести все данные генераторов (номинальные параметры, реактивные сопротивления, систему возбуждения, размер, массу, цену) и дать расшифровку его типа.

Потребители заданы напряжением и мощностью (P_{min} и P_{max}). График нагрузки потребителей следует принять ступенчатым (половину суток потребляют P_{min} , другую половину - P_{max}) или постоянным (если задано одно значение мощности). По степени ответственности электроснабжения потребители относятся к первой категории.

Если число отходящих потребительских линий не дано в задании, его определяют, исходя из экономически целесообразной мощности для одной линии данного напряжения по табл. 2.

Для проектируемой станции студент намечает два-три варианта главной схемы электрических соединений. Варианты могут отличаться количеством генерирующих источников, подключенных к системам шин разных напряжений, количеством трансформаторов связи между этими системами шин, схемами генераторного и повышенного напряжений, числом высоковольтных выключателей и т.д. Далее производится сравнение вариантов.

Мощность трансформаторов (или автотрансформаторов) определяется с учетом допустимых нормальных (систематических) перегрузок и перегрузок зимой за счет недогрузки летом. Трансформаторы связи по мощности должны быть выбраны так, чтобы они могли заменить любой из генераторов станции; должны быть указаны группа и схема соединения обмоток и дана расшифровка типа трансформатора (автотрансформатора). В

справочниках приведены номинальные мощности трансформаторов и автотрансформаторов и их технические данные.

При выборе схемы и источников питания системы собственных нужд (СН) станции студенту необходимо:

- 1) выбрать напряжение распределительных устройств СН;
- 2) определить число и мощность рабочих трансформаторов СН основной ступени напряжения;
- 3) определить число и мощность резервных трансформаторов СН, решить вопрос о месте их подключения.

Расход мощности на собственные нужды станции зависит от типа и мощности станции, рода топлива и способа его сжигания, параметров пара и ряда других условий. При учебном проектировании максимальную мощность, потребляемую на собственные нужды электростанций (в процентах от их установленной мощности) можно выбрать на основании данных табл.3.

На ТЭС для питания собственных нужд применяют два напряжения: 6~кB - для питания крупных двигателей мощностью 200~кBт и выше; 380/220~B - для питания более мелких двигателей, а также для освещения станции.

РУ СН 6 кВ выполняют с одной секционированной системой шин. Число секций шин 6 кВ на блочных станциях принимают равным числу блоков. Секции шин питаются от трансформаторов или от реактированных линий СН (в зависимости от напряжения генератора), которые присоединяют к блоку на генераторном напряжении. При наличии выключателя между генератором и трансформатором блока ответвление присоединяют, как правило, между выключателем и трансформатором.

Для блоков большой мощности, начиная с 160 МВт, требуется разделение РУСН одного блока на две секции. Для питания секций используют трансформаторы с расщепленной обмоткой низкого напряжения.

На ТЭЦ число секций шин 6 кВ должно соответствовать числу котлов. Источники рабочего питания – трансформаторы или реактивные линии – подключают к сборным шинам генераторного напряжения.

Задание № 2

Для выбранной в задании 1 главной схемы электрических соединений станции составить расчетную схему и наметить расчетные точки к.з., необходимые для выбора электрических аппаратов и проводников всех наиболее характерных присоединений: генератора, трансформатора, сборных шин повышенных напряжений, цепей ответвлений к трансформаторам или реакторам СН, шин СН 6 кВ (если они предусмотрены на электростанции).

Произвести расчет токов к.з., необходимый для выбора проводников и аппаратов указанных выше соединений. Предварительно определить расчетные рабочие токи как для нормального, так и для аварийного (форсированного) режимов.

Задание № 3

Для принятой в задании 1 главной электрической схемы:

- 1) выбрать электрические аппараты для ТЭЦ (генераторов, трансформаторов или реакторов СН, шин повышенных напряжений);
- 2) выбрать для схемы ТЭЦ измерительные трансформаторы в цепях генератора, повышающего трансформатора, в цепях отходящих линий, а также на сборных шинах генераторного и повышенных напряжений;
- 3) выбрать сечение токопровода ответвления от генератора к рабочему трансформатору СН.

Задание № 4

На основании исходных данных (табл.1), главной электрической схемы станции и оборудования, полученных на основании заданий 1-3 требуется:

- 1) выбрать тип и число элементов аккумуляторной батареи;
- 2) выбрать тип, мощность и схему зарядно-подзарядных устройств;
- 3) произвести расчет молниезащиты и заземления ОРУ.

Рекомендации

В соответствии с принятыми решениями, в заданиях 1-4, выполнить следующее:

- Разобрать вычертить полную однолинейную схему проектируемой И электрической станции указанием генераторов, трансформаторов, c силовых трансформаторов CH, реакторов, выключателей, разъединителей разрядников, измерительных трансформаторов, измерительных приборов и т.п. Схема должна включать: РУ генераторного напряжения 6-10 кВ и повышенных напряжений, реакторы и кабельные линии, отходящие от ТЭЦ на генераторном напряжении, а также схему рабочего и резервного питания СН для одного генератора в пределах напряжения 6 кВ;
- 2. Для ТЭЦ выбрать конструкцию РУ генераторного напряжения, разработать и вычертить: а) схемы заполнения ГРУ; б) поперечный разрез по заданию ГРУ по ячейке генератора.
- 3. Вычертить трехлинейную схему коммутации генератора и включение электроизмерительных приборов, а также схему дистанционного управления выключателем.

В объем заданий входит разработка электрической схемы, выбор которой был сделан ранее, и разработка конструктивных чертежей РУ генераторного или повышенного напряжений. На однолинейной схеме электростанции указываются сборные шины, все присоединения к сборным шинам, коммутационные аппараты во всех цепях, реакторы, измерительные трансформаторы тока, напряжения и электроизмерительные приборы (присоединения последних к измерительным трансформаторам, а также подключение релейной защиты не показываются). Приборы выбираются в соответствии с ПУЭ.

Схема питания собственных нужд электростанции всех напряжений 10, 6, 3 и 0,4/0,23 кВ должна содержать источник питания и схему соединения до групповых секций и щитков включительно (число приемников СН обозначается условно). Схема выполняется на листе формата АЗ. Условные графические обозначения должны быть сделаны в соответствии с Единой системой конструкторской документации (ЕСКД). Компоновка элементов схемы должна быть выбрана такой, чтобы чертеж был наглядным, с правильным соотношением размеров обозначений электрических машин, аппаратов, измерительных приборов и четкими надписями к ним. На чертеже указываются типы, номинальные значения мощности, напряжения генераторов и трансформаторов и типы выбранных аппаратов. Для упрощения чертежа измерительные трансформаторы и приборы можно показывать только для одного присоединения каждого типа: генератора, трансформатора, секционного выключателя и т.п.

Трансформаторы напряжения сборных шин следует показывать на всех напряжениях и секциях сборных шин. Если нейтрали обмотки высшего напряжения заземляются (рабочее заземление), то это заземление должно быть отражено в чертеже. Вторичные обмотки трансформаторов напряжения тоже заземляются (защитное заземление), но на чертеже эт можно не показывать. На схеме должны быть показаны все нелинейные ограничители перенапряжений (ОПН), защищающие трансформаторы и аппараты от перенапряжений, и указаны их типы. К сборным шинам ОПН присоединяют вместе с трансформаторами напряжения через общий разъединитель. Автотрансформаторы и удаленные от РУ трансформаторы должны быть защищены дополнительными ОПН, устанавливаемыми непосредственно у трансформаторов и присоединяемыми без разъединителей.

Если нулевая точка трансформатора заземляется через разъединитель, то параллельно разъединителю включается ОПН для защиты обмотки трансформатора в период работы с разомкнутым разъединителем. Номинальное напряжение этого ОПН должно быть на класс ниже номинального напряжения обмотки трансформатора.

При необходимости установки дугогасящих катушек их включают через разъединители в нейтрали обмоток трансформаторов, которые устанавливаются специально для этого на шинах ГРУ. Необходимость установки катушек должна быть проверена расчетом. Параметры катушки должны быть выбраны и показаны на схеме.

Схема заполнения должна соответствовать схеме электрических соединений генераторного напряжения. При большом количестве присоединений к сборным шинам можно предусматривать их двухрядное расположение. При этом необходимо учесть, что вводы токопроводов генератора и выводы токопроводов к трансформаторам связи должны быть (при отдельно стоящих РУ) в противоположных сторонах схемы заполнения.

Рекомендуется применять комплектные распределительные устройства (КРУ) 6-10 кВ для питания отходящих линий генераторного напряжения и в схеме собственных нужд. Чертеж РУ должен содержать основные размеры конструкций. Схема заполнения и конструктивные чертежи РУ необходимо выполнять на миллиметровой бумаге. В трехлинейной схеме коммутации генераторной цепи должны быть показаны схемы: включения всех контрольно-измерительных приборов; синхронизации; дистанционного управления выключателем.

Необходимо обосновать принятые системы сборных шин, наличие и назначение секционирования (реактирования), перечислить особенности выбранных трансформаторов и их коммутации, степень надежности схем повышенного напряжения и собственных нужд.

Таблица 1. Исходные параметры.

таолица т. ислод	пыс параметры.					
Параметры оп	релеляющие исхолные ланные	1	2	3	Цифры шифра	
тараметры, оп	ределиющие исходиые данные	1	2	3	студента	
Мош	ность агрегата, МВт	30	60	100	последняя	
1	Число агрегатов	2	3	4	предпоследняя	
Т		ДЄТ	ДЄТ	ДЄТ	H00H0H1444	
ТИІ	і станции, топливо	уголь	уголь уголь уголь		последняя	
Удельное сог	противление грунта 10 ² ,Омм	0,6	0,7	0,8	предпоследняя	
Общее соп	ротивление естественных	2	2.5	2		
3	аземлителей, Ом	2	2,5	3	предпоследняя	
	Максимальная нагрузка P_{MAX} ,	80	60		последняя	
Harmynya	в % к установленной мощности			40		
Нагрузка	генераторов станции					
на шинах	Минимальная нагрузка P_{MIN} , в		20	10		
генераторного напряжения	% к установленной мощности	30			последняя	
напряжения	ность агрегата, МВт ность агрегата ность агре					
	Число отходящих линий	16	8	10	предпоследняя	
	Напряжение, кВ	16	8	10	предпоследняя	
Charry	Длина линий, км	35	110	220	последняя	
Связь с	Число ВЛ	20	40	62	последняя	
системой	Мощность системы, МВА	2	4	2	предпоследняя	
	Относительное сопротивление	1000	1100	2200	предпоследняя	

Таблица 2. Область применений линий разного напряжения

$U_{\rm Л}$, к ${ m B}$	Тип линии	Р _{ПРЕД,} КВт	L, км
	Воздушная	2	10
6			
	Кабельная	3	8
	Воздушная	3	15
10			
	Кабельная	5	10
35	Воздушная	10-25	50-30

110	Воздушная	50-70	120-50
220	Воздушная	150-400	400-200

Таблица 3. Приближенная максимальная мощность потребляемая на СН электростанций, %.

Тип станции	Характерные показатели станции	Потребляемая мощность на СН, %
ТЭЦ	Пылеугольная	8-14
19Ц	Газомазутная	5-7

Задание № 5

Определить электрические нагрузки подстанции для выбора силовых трансформаторов. Исходные данные приведены в таблице вариантов.

Составить схему электрических соединений подстанции, выбрать мощность понизительных трансформаторов, если известно, что потребителей первой категории – 30%, второй – 30%, третьей – 40%. Рассчитать токи короткого замыкания на шинах проектируемой подстанции и выбрать основное оборудование подстанции (выключатели, отделители, короткозамыкатели, разъединители, трансформаторы тока и напряжения, проходные и опорные изоляторы, сборные шины и т.д.). Произвести проверку выбранного оборудования на действие токов короткого замыкания. Выбрать систему оперативного тока. Произвести расчет молниезащиты и заземления подстанции. Графический материал должен содержать два листа чертежей формата А3: принципиальная однолинейная схема коммутации подстанции; в соответствии с заданием преподавателя.

Hомер варианта -A.B.C.

А. Данные о напряжениях на ПС и мощности КЗ на шинах системы

№	0	1	2	3	4	5	6	7	8	9	10
$U_{_{\it GH}}, \kappa B$	220	220	110	220	220	110	220	220	110	220	110
U_{cH} , κB	110	35	35	110	35	35	110	110	35	35	35
$U_{_{\it HH}}, \kappa B$	6	10	6	10	6	10	10	10	6	10	10
S_K, MBA	1800	1500	900	2200	1000	1200	3500	6000	1000	2100	1800

В. Данные о количестве отходящих линий от РУВН, линиях связи с системой и мощности транзита через РУВН.

No	0	1	2	3	4	5	6	7	8	9	10
Кол. линий	0	1	2	0	1	2	3	4	3	0	4
транзита											
$S_{mpansuma}, MBA$	0	50	80	0	45	90	85	160	70	0	70
Система, n_l	2	1	2	2	1	2	2	2	1	2	2
l,км	240	80	115	280	100	220	190	400	200	300	185

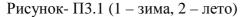
С. Данные о количестве отходящих линий и мощности нагрузки на среднем и низком напряжениях подстанции

No		0	1	2	3	4	5	6	7	8	9	10
S_{CH}, MBA	n_{ϕ}	3	4	5	6	4	3	7	8	5	6	4
CH >	S_{Σ}	60	80	110	30	25	18	75	120	70	90	30
S_{HH} , MBA	n_{ϕ}	8	14	10	24	10	8	12	7	8	10	12
IIII.	S_{Σ}	12	18	14	25	8	10	15	11	7	8	10

Для закрепления материала курса программой предусмотрено выполнение двух контрольных работ, которые представляют собой элементы проектирования.

В установленные сроки контрольные работы должны быть выполнены студентом и представлены преподавателю для проверки. Для сдачи экзамена по курсу студент должен иметь зачет по контрольным работам.

Номер варианта определяется по двум последним цифрам шифра студента.


КОНТРОЛЬНАЯ РАБОТА 1

На основании исходных данных (табл. 1) и суточных графиков нагрузки (рис. ПЗ.1) выбрать экономически целесообразную мощность трансформаторов двухтрансформаторной подстанции с учетом надежности электроснабжения (рис. ПЗ.2).

Таблица 1.

Параметры		Варианты и исходные данные										
		2	3	4	5	6	7	8	9	0		
1. Максимальная нагрузка ПС, МВт		Последняя цифра шифра										
11. Максимальная нагрузка 11С, МВ1	10	15	20	25	30	35	40	45	50	55		
$2. \cos(\varphi)$	0.81	0.82	0.83	0.84	0.85	0.86	0.87	0.88	0.89	0.90		
3. Доля потребителей 1-й категории, %	10	12	14	16	18	20	22	24	26	28		

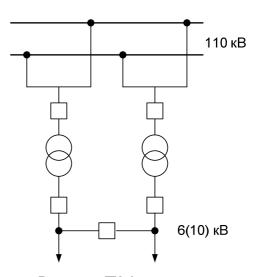


Рисунок- ПЗ.2

Указания

1. Для выбора экономически целесообразной мощности трансформаторов с учетом надежности электроснабжения необходимо провести сопоставление трех вариантов по приведенным затратам

$$3 = p_{H} \cdot K + M + \Delta W_{Heo} \cdot y_{0},$$

где K – капиталовложений на сооружение электроустановки,

 $p_{_{\scriptscriptstyle H}} = 0.12\,$ — нормативный коэффициент эффективности,

U – годовые эксплуатационные издержки,

 $\Delta W_{\scriptscriptstyle{ned}}$ – математическое ожидание недоотпуска электроэнергии,

 y_0 – удельный ущерб от недоотпуска.

- 2. Тип и параметры трансформаторов, устанавливаемых на подстанции, выбираются на основании заданной мощности согласно справочной литературе [4, 8, 9].
- 3. Определить загрузку трансформаторов в нормальном режиме для каждого из трех вариантов по следующей формуле:

$$\frac{P_{\text{max}}}{2 \cdot S_T \cdot \cos \varphi} \cdot 100,$$

где S_T – мощность предварительно выбранного трансформатора, $MB \cdot A$.

4. Определить загрузку при вынужденном простое одного из трансформаторов

$$\frac{P_{\text{max}}}{S_{\tau} \cdot \cos \varphi} \cdot 100.$$

5. Выделить варианты, в которых при вынужденном простое одного из трансформаторов нагрузка потребителя ограничивается. Мощность потребителей, которые при этом будут снабжаться электроэнергией, определяется исходя из 40%-й перегрузки оставшегося в работе трансформатора

$$P_{as} = 1.4 \cdot S_T \cdot \cos \varphi$$
.

При этом предусматривается отключение лишь части нагрузки потребителей второй категории.

6. Чтобы сопоставить рассматриваемые варианты мощностей трансформаторов по приведенным затратам необходимо определить для каждого варианта недоотпуск энергии с учетом продолжительности работы по зимнему и летнему графикам (рис. ПЗ.3).

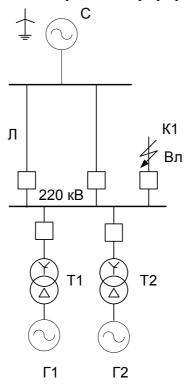


Рисунок- ПЗ.3

$$\Delta W_{{\scriptscriptstyle He}{\scriptscriptstyle \partial}} = (F_{\scriptscriptstyle \Im{\scriptscriptstyle 3}} \cdot d_{\scriptscriptstyle 3} + F_{\scriptscriptstyle \Im{\scriptscriptstyle A}} \cdot d_{\scriptscriptstyle A}) \cdot k_{\scriptscriptstyle 6} \,,$$

где $F_{_{93}}$ и $F_{_{9n}}$ — суточная недоотпущенная электроэнергия для зимних и летних суток (определяется из графиков);

 $d_{_{3}}=200\,$ дн.; $d_{_{A}}=165\,$ дн. — соответственно число дней работы по зимнему и летнему графикам;

 $k_{\scriptscriptstyle g}$ – коэффициент вынужденного простоя.

7. Коэффициент k_{s} соответствует режиму, когда один из двух трансформаторов находится в вынужденном простое из-за его собственного отказа или отказа выключателя на низшей стороне трансформатора [5]:

$$\mathbf{k}_{e} = 2 \cdot \left(\mathbf{k}_{em} + \mathbf{k}_{ee}\right) = 2 \cdot \left(\frac{\omega_{m} \cdot T_{em}}{8760} + \frac{\omega_{e} \cdot T_{ee}}{8760}\right),$$

где k_{sm} и k_{se} — коэффициенты вынужденного простоя трансформатора и выключателя на стороне низшего напряжения;

 $\omega_{_{\!\mathit{m}}}$ и $\omega_{_{\!\mathit{g}}}$ — соответственно параметры потоков отказов трансформатора и выключателя;

 $T_{\it sm}$ и $T_{\it ss}$ — соответственно средние времена восстановления трансформатора и выключателя.

Значения параметров потока отказов и среднее время восстановления $T_{\rm em}$ и $T_{\rm em}$ определяются по [4, 5, 10].

Результаты расчетов для всех вариантов рекомендуется свести в таблицу-2 по приведенной ниже форме.

Таблица-2

Показатели	Варианты		
	1	2	3
S_{TP} , MB·A			
К, тыс. р.			
P_{as} , MBT			
$F_{33} \cdot d_3 + F_{3n} \cdot d_n$, к $B_T \cdot \Psi$			
$\Delta W_{_{\mathit{He}\partial}}$, $\kappa \mathrm{B}_{\mathrm{T}} \cdot \mathrm{Y}$			
$p_{_H} \cdot K + M$, тыс. р.			

8. Ежегодные издержки U состоят из стоимости потерь энергии в трансформаторах U_{nom} и отчислений на амортизацию, ремонт и обслуживание — U_{α} :

$$\mathbf{W}_{\alpha} = \alpha \cdot \mathbf{K}$$
,

где α – норма амортизационных отчислений.

При расчете стоимости потерянной в трансформаторах электроэнергии принимается, что трансформаторы все время находятся в нормальном режиме работы.

Стоимость потерянной энергии в стали равна 0.5 $\kappa/(\kappa B \cdot \Psi)$, а в меди – 0.6 $\kappa/(\kappa B \cdot \Psi)$.

9. По данным таблицы построить зависимость приведенных затрат для рассматриваемых вариантов в функции удельного ущерба от недоотпуска электроэнергии потребителям и определить область экономически целесообразного применения трансформаторов различных мощностей.

Граничное значение удельного ущерба, при котором целесообразен переход от одного варианта к другому, определяется:

$$\mathbf{y}_{0zp} = \frac{\mathbf{p}_{u} \cdot \mathbf{K}_{2} + \mathbf{N}_{2} - \mathbf{p}_{u} \cdot \mathbf{K}_{1} - \mathbf{N}_{1}}{\Delta \mathbf{W}_{neol} - \Delta \mathbf{W}_{neol}}.$$

КОНТРОЛЬНАЯ РАБОТА 2

Для энергосистемы, схема которой представлена на рис. ПЗ.3, выбрать выключатель $B\pi$ и определить скорость восстанавливающегося напряжения на его полюсах при отключении к. з. в точке KI (при условии, что линия, на которой произошло к. з., со стороны системы отключена). Считаем, что турбогенераторы ΓI и $\Gamma 2$ одинаковой мощности и протяженность всех линий связи с системой одинакова. Параметры, определяющие исходные данные, приведены в табл. 3.

Таблица 3

Параметры	Варианты и сходные данные									
	1	2	3	4	5	6	7	8	9	0
	Последняя цифра шифра									
Мощность турбогенераторов ΓI ,	500	300	200	160	150	120	100	63	60	25
Γ 2, MBT										
Длина линии связи l , км	100	150	200	100	150	200	100	150	200	100
$X_{y\partial 1} = 0.4$, Om/km, $X_{y\partial 0} = 2 \cdot X_{y\partial 1}$										
	Предпоследняя цифра шифра									
Мощность системы С, МВ · А	10000	9000	8000	7000	6000	3000	2000	1000	900	800
$X_{C1} = X_{C2}$	0.5	0.6	0.6	0.7	0.8	0.9	0.75	0.65	0.85	0.69

- где $X_{C1}-$ относительное номинальное сопротивление системы (прямой последовательности);
 - $X_{C2}-$ относительное номинальное сопротивление системы (обратной последовательности);
 - l длина линии связи с системой;
 - $X_{v\partial 1}$ индуктивное сопротивление линии на 1 км длины (прямой последовательности);
 - $X_{v > 0}$ индуктивное сопротивление линии на 1 км длины (нулевой последовательности).

Указания к выполнению контрольной работы

- 1. Выбрать тип и параметры генераторов $\Gamma 1$, $\Gamma 2$ и трансформаторов T 2, T 2 по справочной литературе [4, 8, 9].
- 2. Составить схемы замещения прямой и нулевой последовательностей и рассчитать токи к.з., выбрать выключатель B и проверить его по восстанавливающемуся напряжению.
- 3. Подробно методика расчета восстанавливающегося напряжения приведена в [1], с. 129—141.

Литература для выполнения контрольных работ

- 1. Электрическая часть станций и подстанций. / Под ред. А. А. Васильева. М.: Энергия, 1980. 608 с.
- 2. Справочник по проектированию электроэнергетических систем. / Под ред. С. С. Рокотяна и Н. М. Шапиро. М.: Энергия, 1977. 286 с.
- 3. Электрическая часть электростанций и подстанций: Справочные материалы для курсового и дипломного проектирования. / Под ред. Б. Н. Неклепаева. М.: Энергия, 1978. 456 с.
- 4. Электротехнический справочник. Т. 3, книга 1: Производство, передача и распределение электрической энергии. / Под общ. ред. проф. МЭИ В. Г. Герасимова, ІІ. Г. Грудинского и др. М.: Энергоиздат, 1982. 656 с.
- 5. Гук Ю. Б. Основы надежности электроэнергетических установок. Л.: Изд. ЛГУ, 1978.-192 с.

7. Перечень программных продуктов, используемых студентами при изучении данной дисциплины

При изучении данной дисциплины целесообразно пользоваться следующими программными продуктами: MathCad; Visio; SДО-6; RASTR; ExseL.

Все выше перечисленные ПВК широко используются в практической деятельности выпускников и изучаются ранее.

Методические указания по данным программным продуктам изложены в УМКД дисциплин «Информатика», «Пакеты прикладных программ», поэтому в данном УМКД не приводятся.

8. Методические указания по применению современных информационных технологий

Состав информационных технологий, используемых при изучении данной дисциплины:

- 1. Презентации лекций, слайды, каталоги с техническими характеристиками оборудования 3 компакт диска.
- 2. Электронные варианты электрических схем энергетических компаний Дальневосточного региона.
 - 3. Схемы, рисунки, таблицы под медиакомплекс.
 - 4. Лазерные пленки к проектоскопу 16 штук.
- 5. Комплект индивидуальных заданий по дисциплине: домашних и выдаваемых на лекциях.
- 6. Промышленные программно-вычислительные комплексы «SДО-6», "RASTR", пакет автоматизации математических расчетов «MathCad».
 - 7. Презентации практических занятий.
- 8. Электронный подбор материалов по тематике «Конструктивное исполнение воздушных и кабельных линий».
 - 9. Электронные варианты учебников и учебных пособий в библиотеке кафедры.
 - 10. Справочные материалы.

К информационной составляющей УМК относятся учебники, учебные пособия методические разработки. Т.е. их электронные издания (ИЭ). Информационная составляющая является электронным аналогом с:

возможностью использования наряду со статическими текстами и изображениями мультимедийных ресурсов (звука и видео);

наличием встроенных средств навигации, позволяющих пользователю переходить к основной странице издания, предыдущей, следующей странице издания, просмотреть оглавление всего издания или его раздела;

возможность оперативного внесения изменений после публикации.

Электронные издания существуют в различных представлениях. Возможно представление изданий в формате текстового процессора, например Word, публикация издания в переносимом формате, например Adobe PDF. Следующей формой публикации ЭИ является публикация во Всемирной паутине в формате HTML с использованием других технологий, например CSS для стилевого оформления, динамического HTML – для создания динамических документов, Macromedia Flash для анимации.

ЭИ допускает многовариантное представление с различной функциональностью для работы с помощью различных пользовательских агентов. Состав версий ЭИ обеспечивает работу с ним на персональном компьютере и распечатку его на бумаге. Электронное представление ЭИ позволяет хранить его на любых электронных носителях и доставлять через сеть.

Разница проведения практических занятий при очном и дистанционном видах обучения определяется организацией взаимодействия между обучаемым и преподавателем, а также степенью взаимодействия между обучаемыми. В очном образовании преподаватель может управлять ходом решения задач в реальном времени, направляя обучаемых, комментируя и объясняя типичные ошибки. Взаимодействие между обучаемыми позволяет быстрее находить решения, кроме того, обучаемые получают опыт совместной работы. В заочном образовании, обучаемый получает комплект, состоящий из задачника, задания, методических указаний, примеров решения задач, справочных материалов. Участие

преподавателя сводится к проверке полученных по почте решений. Дистанционный вариант проведения практических занятий отличается от заочного возможностью оперативного общения между обучаемыми и преподавателем.

Способы общения между преподавателем и обучаемыми в заочной и сокращенной заочной формах обучения:

общение по электронной почте — этот способ является предпочтительным, позволяя его участникам читать и подготавливать сообщения в удобное для них время;

общение через web-форумы, организуемые на web-серверах учебного заведения; общение с помощью служб мгновенных сообщений и чатов.

Способ доставки учебного контента: лично; по почте; электронные средства доставки (ftp, http, E-mail); комбинированные средства доставки.

Средства взаимодействия между преподавателем и обучаемыми вынесены из состава УМК, например электронную почту, форумы, чаты целесообразно совместно использовать под несколько ЭУМК.

9. Контроль качества образования

9.1. Методические указания профессорско-преподавательскому составу по организации межсессионного и экзаменационного контроля знаний студентов.

В процессе изучения дисциплины используются следующие виды контроля знаний студентов:

входной контроль; текущий контроль; рубежный контроль; экзаменационный (итоговый) контроль; самоконтроль знаний.

Виды и цели контроля

Входной контроль зависит от цели обучающего курса и его специфики. Он определяет готовность студента к работе по курсу (роль допуска к обучению), выполняет диагностические функции, выявляет пробелы в знаниях, компенсируемые процессом дополнительного обучения. Обучающий курс становится адаптивным (каждый учащийся идет своим путем в зависимости от его начального уровня). Работа по тестовым заданиям настраивает студента на предметную область, вводит в терминологию, способствует актуализации знаний, становится стартовой площадкой для новой темы. Обычно входной контроль редок (вступительные экзамены, допуск к лабораторной работе), но при компьютеризации обучения его частота повышается.

Текущий контроль – диагностика знаний, умений и навыков (ЗУН) и коррекция обучения в процессе усвоения темы, позволяющая исправлять недостатки обучения и достигать необходимого уровня его усвоения.

Рубежный контроль — это проверка уровня усвоения очередного раздела курса. Студенту предлагается творческая задача, задача повышенной сложности или задача, предусматривающая перенос усвоенных знаний на другой материал. Успешное решение задачи показывает, что учащийся овладел всей системой знаний и действий, предусмотренных целями обучения по данной теме. Рубежная проверка позволяет обучаемому запрашивать необходимый справочный или информационный материал, советы, разъяснения ошибок, наводящие вопросы. Задания должны быть адекватны этапу познавательной деятельности, элементу которого соответствует серия нескольких заданий.

Рубежный контроль может быть входным для изучения последующего материала и поддержки уровня знаний при перерывах в обучении, что характерно для студентов заочной и сокращенной заочной форм. Итогом рубежного контроля являются результаты контрольных точек.

Экзаменационный (итоговый) контроль. Если проверка исходного уровня — «входной» контроль, то заключительный контроль показывает полученные результаты «на выходе». Он представляет собой серию заданий по всему материалу, которую обучаемый должен решить самостоятельно. По результатам экзаменационного контроля учащийся получает отметку.

Самоконтроль знаний — наиболее простой вид. Обычно это вопросы и задачи, на которые учащийся пытается ответить самостоятельно. При затруднении он может обратиться к учебнику и найти в нем ответы. Основная цель самоконтроля — самоутверждение, достижение уверенности в усвоении учебного материала, хотя это может и не соответствовать действительности.

Таким образом, основные цели разных видов контроля следующие: самоутверждение; готовность к изучению нового материала; проверка уровня усвоения; поддержка адаптивного обучения и уровня знаний; формирование базы оценок для определения рейтинга обучаемых. Программные средства контроля знаний должны обеспечивать все стадии его проведения: от идентификации до выдачи результатов.

Контроль (диагностика) знаний, умений, навыков (ЗУН) включает в себя выполнение некоторого множества заданий, характеризуемых трудностью и сложностью. Трудность задания определяется уровнем усвоения, на диагностику которого оно направлено. Сложность характеризуется числом существенных операций в нем, в т.ч. и свернутых.

Педагогически корректное задание для контроля знаний студентов должно быть: содержательно валидным (построенным на содержании предшествующего обучения); функционально валидным (проверка того, для чего его используют); объективным; однозначным; специфичным (требующим конкретных ЗУН, а не общей эрудиции); способным разделить учащихся на знающих и незнающих.

Подбор заданий в группу основан на репрезентативности (полноте охвата дисциплины или ее раздела ограниченной выборкой); однородности (равноценности содержания и трудности наборов заданий); рандомизации (гарантии не предъявления одного и того же набор заданий).

Входной контроль выполняется в виде тестовых заданий. Формами текущего контроля являются блиц-опрос студентов на каждой лекции по пройденному материалу (5-7 минут), опрос на практических занятиях, защита индивидуальных домашних заданий, рефераты.

Рубежный контроль предусматривает выполнение контрольных работ, комплексных заданий, направленных на проверку эвристических способностей студентов, углубленного изучения материала, коллоквиум.

Итоговый контроль — это экзамен по дисциплине. Экзаменационный билет должен включать два теоретических вопроса и задачу. Предусмотрено три типа сложности задач: простой, средней и повышенной сложности. Студенту предлагается выбор задачи по сложности в зависимости от того, на какую оценку он претендует. Если студент не справляется с задачей средней или повышенной сложности, то предлагается простая задача, отсутствие решения которой приводит к неудовлетворительной оценке на экзамене.

Рекомендуется при оценке знаний студентов на экзамене учитывать его работу в семестре.

9.2. Фонды тестовых и контрольных заданий для оценки качества знаний

Тесты для самопроверки по разделу «Внешняя изоляция электроустановок»

1. Какие параметры влияют на разрядные напряжения воздушных промежутков? Возможные ответы:

- 1) напряжённость электрического поля;
- 2) давление и температура;
- 3) температура и абсолютная влажность;
- 4) давление, температура и абсолютная влажность.
- 2. Какие требования предъявляются к диэлектрикам?

Возможные ответы:

- 1) низкая стоимость;
- 2) механическая и электрическая прочность;
- 3) негигроскопичность и трекингостойкость;
- 4) 1) и 2); 5) 2) и 3);
- 3. От чего может быть нарушена электрическая прочность изолятора?

Возможные ответы:

- 1) пробой изолятора высоким напряжением;
- 2) развитие разряда вдоль поверхности изолятора;
- 3) загрязнением изолятора;
- 4) 2) и 3); 5) 1), 2) и 3).
- 4. Толщина стенки фарфорового диэлектрика 1,5 мм. С увеличением толщины стенки его электрическая прочность в однородном электрическом поле:

Возможные ответы:

- 1) увеличивается; 2) уменьшается; 3) не изменяется.
- 5. От чего зависит механическая прочность фарфоровых и стеклянных изоляторов? Возможные ответы:
- 1) от вида нагрузки; 2) от срока эксплуатации; 3) от типа изолятора.
- 6. Изоляторы из фарфора обладают улучшенной механической прочностью:
- 1) при сжатии; 2) при изгибе; 3) при растяжении.
- 7. Чем достигается механическая прочность полимерных изоляторов?

Возможные ответы:

- 1) армирование стеклопластиком; 2) добавка второпласта.
- 8. Для чего служат рёбра у опорно-стержневых изоляторов?

Возможные ответы:

- 1) для увеличения пути утечки (повышение разрядного напряжения);
- 2) для уменьшения пути утечки (уменьшения разрядного напряжения).
- 9. Чему равно число изоляторов в гирлянде подвесных изоляторов в ЛЭП 110 кВ? Возможные ответы:
- 1) 3 шт.; 2) 6-7 шт.; 3) 7-9 шт.; 4) 12-14 шт.
- 10. Назовите основной недостаток подвесных стержневых изоляторов.

Возможные ответы:

- 1) высокая стоимость; 2) низкая механическая прочность;
- 3) низкая электрическая прочность.
- 11. Расшифруйте марку изолятора: ПНШ-35/3000-2000.

Возможные ответы:

- 1) подвесной, наружный, шинный, на напряжение 35 кВ, номинальный ток 3 кА, год выпуска 2000;
- 2) проходной, наружный, шинный, на напряжение 35 кВ, номинальный ток 3 кА, механическая прочность 20 кН;
- 3) полимерный, наружный, штыревой, на напряжение 35 кВ, номинальный

Тесты для самопроверки по разделу «Грозовые перенапряжения и молниезащита»

1. Что является источником грозовых перенапряжений:

<u>Варианты ответа:</u> 1) короткое замыкание; 2) молния; 3) перегрузка.

2. Чем осуществляется защита от прямых ударов молнии?

<u>Варианты ответа:</u> 1) антенной; 2) трубчатым разрядником; 3) молниеотводом.

- 3. Какие элементы лектрической сети защищают стержневые молниеотводы? Варианты ответа:
- 1) линии электропередачи; 2) открытые распределительные устройства; 3) 1) и 2).
- **4.** Какие элементы электрической сети защищают тросовые молниеотводы? Варианты ответа:
- 1) комплектные трансформаторные подстанции; 2) комплектные РУ;
- 3) линии электропередачи; 4) открытые распределительные устройства; 5) 1) и 2).
- 5. Какую величину необходимо определить для расчёта заземляющего устройства? <u>Варианты ответа:</u>
- 1) сопротивление вертикального стержня; 2) сопротивление горизонтальных полос;
- 3) сопротивление железобетонного фундамента; 4) 1) и 2); 5) 2) и 3); 6) 1), 2) и 3).
- 6. Какую функцию выполняют разрядники?

<u>Варианты ответа:</u> 1) защитную; 2) коммутационную; 3) сигнальную.

7. За счёт чего происходит гашение дуги в трубчатом разряднике? Варианты ответа:

- 1) фильтрации высших гармонических составляющих импульсного напряжения;
- 2) минимального сопротивления заземляющего устройства; 3) газогенерирования.
- 8. Расшифровать аббревиатуру: РТВ-35-2/10У1.

Варианты ответа:

- 1) разрядник трубчатый, винипластовый, 35кВ, нижний предел тока отключения 2кА, верхний предел тока отключения 10кА, для умеренного климата, на открытом воздухе;
- 2) разрядник вентильный, на 35 кВ, номинальный ток до 200 А, ток отключения 10 кА, тропического исполнения, унифицированный, для закрытых помещений;
- 3) разрядник трубчатый, внутренней установки, рабочее напряжение 35 кВ, ток отключения от 2 до 10 кА, унифицированный, 1-й категории.
- 9. Что является основным элементом вентильного разрядника?

Варианты ответа:

- 1) многократный искровой промежуток и соединённый с ним последовательно резистор с нелинейной вольтамперной характеристикой;
- 2) многократный искровой промежуток и соединённый с ним параллельно резистор с нелинейной вольтамперной характеристикой;
- 3) дугогасительная камера.

10. Для чего предназначен вентильный разрядник?

Варианты ответа:

- 1) защиты линий электропередачи от токов короткого замыкания;
- 2) защиты изоляции электрооборудования станций и подстанций от перегрузок;
- 3) защиты изоляции электрооборудования станций и подстанций от перенапряжений;
- 11. Что называется напряжением гашения?

Варианты ответа:

1) наибольшее напряжение промышленной частоты; 2) наименьшее импульсное напряжение; 3) наибольшее импульсное напряжение.

12. Расшифровать аббревиатуру: РВРД-10Т1.

Варианты ответа:

1) разрядник вентильный, с растягивающейся дугой, на 10 кВ, тропического исполнения, 1 категории размещения;

2) разрядник вентильный, радиальный, для защиты электродвигателей, номинальное напряжение 10 кВ, термостойкий, для работы на открытом воздухе.

Тесты для самопроверки по разделу «Комплектные распределительные устройства»

1. Расшифруйте аббревиатуру КРУ.

Варианты: 1) комплексные разрядные установки; 2) комплекс ремонтных устройств;

3) комплектное распределительное устройство.

2. Для чего предназначены КРУ?

<u>Варианты:</u> 1) приёма и преобразования электрической энергии; 2) преобразования электрической энергии; 3) приёма и распределения электрической энергии; 4) преобразования и распределения электрической энергии.

3. В каких КРУ устанавливаются маломасляные выключатели?

Варианты ответа: 1) КРУ внутренней установки; 2) КРУ наружной установки.

4. Какую установку имеют шкафы КРУ серии К-63?

Варианты ответа: 1) внутреннюю; 2) наружную.

5. Сколько отсеков имеет шкаф КРУН серии K-VI-У1?

Варианты ответа: 1) 2; 2) 3; 3)5.

6. Какой выключатель может располагаться шкафа КРУН серии K-VI-У1?

в отсеке выкатной тележки

<u>Варианты ответа:</u> 1) АП-50; 2) ВМП-10 К; 3)ВМ-35; 4) ВС-10-63-2,5.

7. Сколько отсеков входит в состав ячейки КСО-6(10)-Э1?

Варианты ответа: 1) 2; 2) 3; 3)5.

8. Какой выключатель используется в ячейке КСО-6(10)-Э1?

Варианты: 1) многообъёмный масляный; 2) вакуумный; 3) маломасляный; 4) элегазовый.

Тесты для самопроверки по разделу «Комплектные трансформаторные подстанции»

1. Каково назначение КТП?

Возможные ответы:

- 1) приём и распределение электрической энергии;
- 2) приём и преобразование электрической энергии;
- 3) приём и распределение электрической энергии;
- 4) приём, преобразование и распределение электрической энергии.
- 2. Назовите классы номинальных мощностей КТП.

<u>Возможные</u> <u>ответы:</u>

1) 16,25,100,250,630 κBA; 2) 63,160,250 κBA; 3) 25,40,63,100,160,250,400,630,750,1000 κBA.

3. Что входит в состав вводного устройства КТП?

Возможные ответы:

- 1) силовые предохранители и проходные изоляторы;
- 2) разъединитель и проходные изоляторы;
- 3) силовые предохранители и силовой трансформатор.

4. Какие изоляторы входят в состав вводного устройства?

Варианты: 1) аппаратные; 2) опорно-стержневые; 3) опорно-штыревые; 4)проходные.

5. Какими аппаратами осуществляется защита отходящих линий от токов короткого замыкания?

<u>Возможные</u> ответы: 1) разрядниками; 2) разъединителями; 3) автоматическими выключателями; 4) магнитными пускателями.

6. Каким образом происходит управление уличным освещением?

<u>Возможные</u> <u>ответы:</u> 1) фотореле с магнитным пускателем; 2) автоматическим выключателем с фотореле; 3) фотореле.

7. Какие коммутационные аппараты входят в состав КТП?

Возможные ответы:

- 1) выключатель нагрузки, разъединитель, предохранители, заземляющий разъединитель, автоматические выключатели, рубильники, магнитный пускатель;
- 2) разъединитель, разрядник, автоматический выключатель;
- 3) предохранитель, рубильник, магнитный пускатель.

<u>Тесты для самопроверки по разделу</u> «Разъединители, отделители, короткозамыкатели»

1. Для чего предназначены разъединители?

Возможные ответы:

- 1) для создания видимого разрыва;
- 2) для включения и отключения электрических цепей высокого напряжения;
- 3) для защиты от токов короткого замыкания;
- 4) 1) и 2);
- 5) 1), 2) и 3).
- 2. Какое основное условие должно выполняться при работе с разъединителем?

Возможные ответы:

- 1) отсутствие токов нагрузки;
- 2) обязательное наложение переносного заземлителя;
- 3) отключение электрической энергии на головной ТП;
- 4) 1) и 2).
- 3. Какое значение рабочего тока допускается без отключения токов нагрузки? Возможные ответы:
- 1) 50 A; 2) 25 A; 3) 15 A; 4) 10 A; 5) 5 A.
- 4. Перечислите требования, предъявляемые к разъединителям?

Возможные ответы:

- 1) создание видимого разрыва, электродинамическая и термическая прочность, чёткое включение и отключение в экстремальных условиях, простота конструкции;
- 2) простота конструкции, низкая стоимость, термическая устойчивость, блокировка ножей разъединителя;
- 3) низкая стоимость, электродинамическая устойчивость, заземление, простота конструкции.
- **5.** Сколько медных полос содержит нож разъединителя при токе до 1 кА? Возможные ответы:
- 1) 2; 2) 3-4; 3) 5-6.
- 6. Чем фиксируется положение разъединителя рубящего типа?

Возможные ответы:

- 1) системой специальных блокирующих контактов;
- 2) системой рычагов привода;
- 3) автоматическим блокирующим устройством.
- 7. По какой величине проверяется разъединитель на электродинамическую и термическую стойкость?

Возможные ответы:

- 1) по номинальному рабочему току;
- 2) по номинальному напряжению;
- 3) по току короткого замыкания.

8. Какой тип привода применяется для главных ножей разъединителя рубящего типа наружной установки?

Возможные ответы:

- 1) электродвигательный;
- 2) пневматический;
- 3) пневмогидравлический;
- 4) ручной.
- 9. Какой тип привода применяется для заземляющих ножей разъединителя рубящего типа наружной установки?

Возможные ответы:

- 1) электромагнитный; 2) пружинный; 3) ручной.
- 10. Расшифровать аббревиатуру РВЗ-10/630 І УХЛ2.

Возможные ответы:

- 1) разъединитель внутренней установки, для работы в умеренном и холодном климате, с заземлёнными ножами, на напряжение 10 кВ, номинальный ток— 630A, проходные изоляторы установлены со стороны наружных контактов;
- 2) разъединитель вертикально-поворотного типа с заземлителем, усиленный, с растяжением контактов, номинальные ток и напряжение, соответственно 6,3кA и 10 кB, для работы в холодном климате, с размещением проходных изоляторов с двух сторон.
- 11. Какой аппарат называется короткозамыкателем?

Возможные ответы:

- 1) автоматически включающийся разъединитель, предназначенный для искусственного короткого замыкания;
- 2) автоматически включающийся отделитель, предназначенный для создания искусственного короткого замыкания;
- 3) аппарат, предназначенный для защиты от короткого замыкания в сетях с изолированной нейтралью.
- 12. Что обеспечивает включение заземлённого ножа короткозамыкателя в сетях с изолированной нейтралью?

Возможные ответы:

- 1) пружина привода выключателя;
- 2) отделитель; 3) блокирующий автоматический выключатель.
- **13.** Каким образом осуществляется отключение короткозамыкателя? Возможные ответы:
- 1) вручную; 2) автоматически.
- 14. Для какой цели необходимо обеспечивать максимальную скорость движения ножа разъединителя?

Возможные ответы:

- 1) во избежание возникновения дуги;
- 2) во избежание повреждения аппарата; 3) 1) и 2).
- 15. Какое время допускается на включение короткозамыкателя, в с.?

Возможные ответы:

- 1) 0,1-0,2; 2) 0,4-0,5; 3) 0,5-1,0; 4) 0,6-1,5.
- **16.** Чем заполняется полость контактной камеры короткозамыкателя К3-110? Возможные ответы:
- 1) маслом; 2) вакуумом; 3) элегазом.
- 17. Каково отношение короткозамыкателя K3-110 к взрыво- и пожароопасности?

Возможные ответы:

1) взрыво- и пожароопасен; 2) пожароопасен; 3) взрывоопасен; 4) взрыво- и пожаробезопасен.

18. Для чего предназначены отделители?

Возможные ответы:

- 1) для отделения линии электропередачи от масляных выключателей;
- 2) для отключения и включения токов намагничивания силовых трансформаторов;
- 3) для отключения зарядных токов линии;
- 4) б) и в).

19. Как происходит отключение отделителя?

Возможные ответы:

1) вручную; 2) автоматически.

Тесты для самопроверки по разделу «Выключатели»

1. Для чего предназначен выключатель?

Возможные ответы:

- 1) для коммутации электрических цепей высокого напряжения под нагрузкой;
- 2) для коммутации электрических цепей высокого напряжения без токов нагрузки;
- 3) для отключения электрических цепей при коротких замыканиях;
- 4) 1) и 2); 5) 1) и 3); 6) 2) и 3).
- 2. Чем характеризуется устойчивость выключателя при сквозных токах K3? <u>Возможные</u> ответы:
- 1) током термической устойчивости; 2) предельным сквозным током; 3) 1) и 2).
- 3. Что такое время отключения выключателя?

Возможные ответы:

- 1) время от подачи команды на отключение до размыкания дугогасительных контактов;
- 2) время от подачи команды на отключение до погасания дуги на всех полюсах.
- 4. Что устанавливают последовательно с выключателями нагрузки?

Варианты: 1) предохранители; 2) разрядники; 3) разъединители; 4) короткозамыкатель.

5. Какой ток электродинамической стойкости выдерживает корпусно-изоляционная система выключателя нагрузки?

Возможные ответы: 1) 5 кА; 2) 10 кА; 3) 25 кА; 4) 81 кА.

6. Каково собственное время отключения выключателя нагрузки?

<u>Возможные ответы:</u> 1) ≤ 0.1 c; 2) ≤ 0.5 c; 3) ≤ 1 c; 4) ≤ 2.5 с.

7. Для какой цели служит масло в баковых выключателях?

Возможные ответы: 1) для изоляции токоведущих частей; 2) для гашения дуги; 3) 1) и 2).

8. Почему в баковых выключателях масло заливается не полностью?

Возможные ответы: 1) произойдёт взрыв; 2) может быть повреждена крышка бака.

9. Какой принцип гашения дуги используется в выключателе ВМ-35?

Варианты: 1) автодутьё; 2) принудительное масляное дутьё; 3) магнитное гашение дуги.

10. Каково время гашения дуги в малообъёмных (горшковых) выключателях?

Возможные ответы: 1) 0,1 с; 2) 0,15 с; 3) 0,025 с; 4) 0,05 с; 5) 0,02 с.

11. Для чего используется масло в малообъёмных выключателях?

Возможные ответы: 1) для гашения дуги; 2) для изоляции токоведущих частей; 3) 1) и 2).

12. Как осуществляется гашение дуги в воздушных выключателях?

Возможные ответы: 1) сжатым воздухом; 2) элегазом; 3) гидравлической системой.

13. Что используется для гашения дуги в элегазовых выключателях?

Варианты: 1) устройство вращения дуги; 2) -//- дробления дуги; 3) -//- растягивания дуги.

14. Что применяется для гашения дуги в вакуумных выключателях?

<u>Возможные ответы:</u> 1) газ; 2) элегаз; 3) электромагнитный контур; 4) поршневое устройство; 5) катушка магнитного дутья; 6) 1) и 3); 7) 2) и 4); 8) 3), 4) и 5).

15. Отношение вакуумных выключателей к взрыво- пожароопасности?

Варианты: 1) взрывоопасен; 2) пожароопасен; 3) 1) и 2); 4) взрыво- пожаробезопасен.

16. Основной недостаток вакуумных выключателей?

Варианты: 1) взрыво-пожароопасность; 2) невозможность УАПВ; 3) перенапряжения.

17. Где расположена дугогасительная камера у колонковых выключателей?

Возможные ответы: 1) в изоляторе; 2) в баке.

18. Как осуществляется выбор выключателя любого типа?

Варианты: 1) по длительному току; 2) по напряжению; 3) по отключающей способности; 4) 1) и 2); 5) 2) и 3); 6) 1) и 3); 7) 1), 2) и 3).

19. Расшифровать аббревиатуру: ВПМ?

<u>Варианты:</u> 1) выключатель с пружинным приводом малогабаритный; 2) выключатель подстанционный, маломасляный; 3) воздушный подстанционный выключатель, модернизированный; 4) выключатель с пружинным приводом, маломасляный.

Тесты для самопроверки по разделу «Трансформаторы напряжения»

1. Для чего предназначен трансформатор напряжения?

- 1) повышения напряжения в сети переменного тока; 2) понижения напряжения в сети переменного тока; 3) 1) и 2); 4) преобразования напряжения постоянного тока в напряжение переменного тока; 5) преобразования напряжения постоянного тока в напряжение переменного тока.
- **2.** Трансформатор напряжения будет повышающим, если: 1) k > 1; 2) k < 1; 3) k = 1.
- 3. Обмотка ВН трансформатора напряжения имеет (по сравнению с обмоткой НН):
- 1) большее число витков, провод большего сечения; 2) большее число витков, провод меньшего сечения; 3) меньшее число витков, провод большего сечения; 4) меньшее число витков, провод меньшего сечения.

4. Что применяется для компенсации угловой погрешности трансформатора?

- 1) компенсирующая обмотка; 2) уменьшение числа витков первичной обмотки; 3) уменьшение числа витков вторичной обмотки; 4) увеличение числа витков вторичной обмотки.
- 5. Чем определяется нагрузочная способность трансформатора?
- 1) совокупностью допустимых нагрузок; 2) совокупностью допустимых перегрузок; 3) 1)и2).
- 6. Что определяется по значению напряжения короткого замыкания?

<u>Варианты:</u> 1) возможность параллельной работы трансформаторов; 2) возможность перегрузки трансформатора; 3) токи короткого замыкания; 4) 1) и 2); 5) 2) и 3); 6) 1) и 3).

7. Из какого опыта определяется коэффициент трансформации трансформатора? Возможные ответы: 1) опыта холостого хода; 2) опыта короткого замыкания.

8. Что такое коэффициент загрузки трансформатора?

- 1) отношение действительной нагрузки к номинальной; 2) отношение номинальной нагрузки к действительной; 3) отношение первичного напряжения к вторичному.
- 9. Какие потери трансформатора являются постоянными?

Возможные ответы: 1) потери в стали; 2) потери короткого замыкания.

Тесты для самопроверки по разделу «Приводы выключателей»

- 1. Каково назначение привода выключателя?
- 1) обеспечивать надёжное включение цепей; 2) обеспечивать надёжное отключение цепей;
- 3) обеспечивать надёжное отключение цепей в аварийных режимах; 4) 1) и 2); 5) 1) и 3).
- 2. Из каких основных частей состоит привод выключателя?
- 1) включающий, запирающий и расцепляющий механизмы; 2) включающий, запирающий и удерживающий механизмы; 3) включающий и расцепляющий механизмы.
- 3. В зависимости от использования источника энергии приводы делятся на:
- 1) гидромоторные и ручные; 2) двигательные и электромагнитные;
- 3) ручные и двигательные; 4) пневматические и гидравлические.
- 4. Пружинный привод относится к приводам:

Возможные ответы: 1) прямого действия; 2) косвенного действия.

5. Электромагнитный привод относится к приводам:

Возможные ответы: 1) прямого действия; 2) косвенного действия.

- 6. С какими выключателями работает привод ППМ-10?
- 1) ВМ-35 и ВМГ-10; 2) ВМ-35 и ВС-10-63-2,5; 3) ВМГ-10 и ВМП-10; 4) ВМП-10 и ВМ-35.

7. Основной недостаток пружинных приводов?

- 1) уменьшение тягового усилия в конце хода включения; 2) увеличение тягового усилия в начале хода включения; 3) уменьшение тягового усилия в начале хода включения; 4) увеличение тягового усилия в конце хода включения.
- 8. За счёт чего происходит уменьшение тягового усилия в конце хода включения пружинного привода? Ответы: 1) действия электрической дуги; 2) деформации пружины.
- 9. Основной недостаток электромагнитного привода?
- 1) высокая стоимость; 2) сложность конструкции; 3) мощный источник постоянного тока.
- 10. Время действия пневмогидравлического привода? 1) 1с; 2) до 1,5с; 3) 0,1с; 4) 0,2с.

10. Список использованных источников

ЧАСТЬ І

- а) основная литература:
- 4. Герасименко А.А. Передача и распределение электрической энергии : учеб. пособие: рек. Мин. обр. РФ/ А. А. Герасименко , В. Т. Федин. -Ростов н/Д: Феникс; Красноярск: Издат. проекты, 2006. -719 с.
- 5. Основы современной энергетики в 2 т : Учеб. : рек. Мин. обр. РФ. : Т2. Современная электроэнергетика/ под ред. Е.В. Аметистова. М.: Издат. дом МЭИ, 2010. 632 с.
- 6. Электропитающие системы и сети : учеб.-метод. комплекс для спец. 140211 Электроснабжение, Ч. 1/ АмГУ, Эн.ф.; сост. Н. В. Савина . Благовещенск: Изд-во Амур. гос. ун-та, 2012. -240 с.
 - б) дополнительная литература:
- 12. Лыкин А.В. Электрические системы и сети : учеб.пособие / А.В.Лыкин . Новосибирск : Изд-во НГТУ, 2002. 247 с.
- 13. Идельчик В.И. Электрические системы и сети [Текст] : учеб./ В. И. Идельчик. -М.: Энергоатомиздат, 1989. 592 с.
- 14. Электрические системы. Электрические сети. : Учеб. для электроэнерг. спец. вузов/ ред. В. А. Веников. -2-е изд., перераб. и доп.. -М.: Высш. шк., 1998. -512 с.
- 15. Кужеков С.Л. Практическое пособие по электрическим сетям и электрооборудованию/ С. Л. Кужеков, С. В. Гончаров. -3-е изд.. -Ростов н/Д: Феникс, 2009. -493 с.
- 16. Пособие к курсовому и дипломному проектированию для электроэнергетических специальностей вузов [Текст] : учеб. пособие / В.М. Блок, Г.К. Обушев, Л.В. Паперно; Ред. В.М. Блок. 2-е изд., перераб. и доп. М. : Высш. шк., 1990. 384 с.
- 17. Электротехнический справочник : В 4 т./ Под общ. ред. В.Г. Герасимов, Под общ. ред. А.Ф. Дьяков, Под общ. ред. Н.Ф. Ильинский, Гл. ред. А.И. Попов Т. 3 : Производство, передача и распределение электрической энергии : справочное издание. -2002. -964 с.
- 18. Справочник по проектированию электрических сетей [Текст] / под ред. Д. Л. Файбисовича. -3-е изд., перераб. и доп. -М.: ЭНАС, 2009. -391 с.
- 19. Поспелов Г.Е. Электрические системы и сети: проектирование [Текст] : учеб. пособие / Г. Е. Поспелов, В. Т. Федин. 2-е изд., испр. и доп. Минск : Высш. шк., 1988. 308 с.
- 20. Шелухина Т.И. Расчеты нормальных и предельных по мощности установившихся режимов сложных энергосистем : учеб. пособие/ Т. И. Шелухина. -М.: Изд-во Моск. энергет. ин-та, 2005. 52 с.
- 21. Савина Н.В. Системный анализ потерь электроэнергии в электрических распределительных сетях [Текст] : моногр. / Н.В. Савина; Отв. ред. Н.И. Воропай. Новосибирск : Наука, 2008. 228 с.

- 22. Кочкин В.И. Применение статических компенсаторов реактивной мощности в электрических сетях энергосистем и предприятий [Текст] : УЧЛ К изучению дисциплины / Кочкин В.И., Нечаев О.П. М. : Изд-во НЦ ЭНАС, 2000. 248с.
 - в) периодические издания (журналы):
- 22. Электричество;
- 23. Известия РАН. Энергетика;
- 24. Электрические станции;
- 25. Энергетик;
- 26. Электрика;
- 27. Вестник МЭИ;
- 28. Промышленная энергетика;
- 29. Энергетика. Сводный том;
- 30. Вестник ИГЭУ;
- 31. IEEE Transaction on Power Systems;
- 32. International Journal of Electrical Power & Energy Systems.

г) программное обеспечение и Интернет-ресурсы

No	Наименование ресурса	Краткая характеристика
1	http://www.iqlib.ru	Интернет-библиотека образовательных изданий, в
		которой собраны электронные учебники,
		справочные и учебные пособия. Удобный поиск
		по ключевым словам, отдельным темам и
		отраслям знания
2	Консультант +	Справочно-правовая система. Содержит
		законодательную базу, нормативно-правовое
		обеспечение, статьи.
3	http://www.twirpx.com/files/tek/	Twirpx.com - это служба, обеспечивающая с
		помощью веб-интерфейса, расположенного только
		по адресу http://www.twirpx.com, и
		специализированного аппаратно-программного
		обеспечения хранение, накопление, передачу и
		обработку материалов Пользователей,
		представленной в электронном виде в публичный
		доступ. Интернет-библиотека, в которой собраны
		электронные учебники, справочные и учебные
		пособия. Удобный поиск по ключевым словам,
		отдельным темам и отраслям знания

На практических занятиях и в самостоятельной работе студентов используется система компьютерной математики Mathcad и графический редактор VISIO.

При работе над курсовым проектом применяются следующие виды программновычислительных комплексов и пакетов прикладных программ: CURS.PM, KRNET, СДО-6, RastrWin, Mathcad, VISIO.

ЧАСТЬ ІІ

- а) основная литература:
- 4. Мясоедов Ю.В. Электрическая часть станций и подстанций [Текст] : учеб. пособие: рек. ДВ РУМЦ / Ю. В. Мясоедов, Н. В. Савина, А. Г. Ротачева, 2007. 192 с.
- 5. Стерман, Л. С. Тепловые и атомные электрические станции [Текст] : учеб. / Л. С. Стерман, В. М. Лавыгин, С. Г. Тишин. 5-е изд., стер. М. : Изд-во Моск. энергет. ин-та, 2010. 464 с.

- 6. Ополева, Г. Н. Схемы и подстанции электроснабжения [Текст] : справ.: учеб. пособие: рек. УМО / Г. Н. Ополева. М. : ФОРУМ : ИНФРА М, 2006. 480 с. : рис., табл. Библиогр.: с. 473 .
 - б) дополнительная литература:
- 11. Мясоедов, Ю. В. Проектирование электрической части электростанций и подстанций: учеб. пособие/ Ю. В. Мясоедов, Н. В. Савина , А. Г. Ротачева; АмГУ, Эн.ф. Благовещенск: Изд-во Амур. гос. ун-та, 2002. 140 с. : табл., рис.
- 12. Балаков, Ю. Н. Проектирование схем электроустановок [Текст] : учеб. пособие: доп. УМО / Ю. Н. Балаков, М. Ш. Мисриханов, А. В. Шунтов. М. : Изд-во Моск. энергет. ин-та, 2004. 288 с. : рис., табл. Библиогр.: с. 286 .
- 13. Балаков, Ю. Н. Схемы выдачи мощности электростанций [Текст] : методологические аспекты формирования / Ю.Н. Балаков, М.Ш. Мисриханов, А.В. Шунтов. М. : Энергоатомиздат, 2002. 286 с. : рис., табл.
- 14. Справочник по энергоснабжению и электрооборудованию предприятий и общественных зданий [Текст] / ред. С. И. Гамазин, Б. И. Кудрин, С. А. Цырук. М. : Изд-во Моск. энергет. ин-та, 2010.
- 15. Электротехнический справочник [Текст] : в 4 т. / Под общ. ред. В.Г. Герасимов, Под общ. ред. А.Ф. Дьяков, Под общ. ред. Н.Ф. Ильинский, Гл. ред. А.И. Попов. 8-е изд., испр. и доп. М. : Изд-во Моск. энергет. ин-та, 2002, 2004 Т. 3 : Производство, передача и распределение электрической энергии
- 16. Козлов А.Н. Графическая часть курсовых и дипломных проектов [Текст] : учеб. метод. пособие: рек. ДВ РУМЦ / А. Н. Козлов, В. А. Козлов, Ю. В. Мясоедов, 2007. 119 с.
- 17. Мясоедов, Ю. В. Повышение точности учета электроэнергии в сетях энергосистем и предприятий [Текст] : моногр. / Ю. В. Мясоедов ; АмГУ, Эн.ф. Благовещенск : Изд-во Амур. гос. ун-та, 2003. 195 с. : табл. Библиогр.: с. 166-183.
- 18. Мясоедов, Ю. В. Повышение качества электроэнергии и компенсация реактивной мощности в системах электроснабжения [Текст] : [моногр.] / Ю. В. Мясоедов ; АмГУ, Эн.ф. Благовещенск : Изд-во Амур. гос. ун-та, 2007. 212 с. : рис., табл. Библиогр.: с. 202 .
- 19. Савина, Н. В. Потери электроэнергии и их анализ в условиях неопределенности [Текст] : моногр. / Н. В. Савина ; АмГУ, Эн.ф. Благовещенск : Изд-во Амур. гос. ун-та, 2006. 244 с. : рис., табл. Библиогр.: с. 228.
- 20. Савина, Н. В. Системный анализ потерь электроэнергии в электрических распределительных сетях [Текст] : моногр. / Н. В. Савина ; отв. ред. Н. И. Воропай. Новосибирск : Наука, 2008. 228 с. Библиогр. : с. 215.
 - в) периодические издания (журналы):
- 33. Электричество;
- 34. Известия РАН. Энергетика;
- 35. Электрические станции;
- 36. Энергетик;
- 37. Электрика;
- 38. Вестник МЭИ;
- 39. Промышленная энергетика;
- 40. Энергетика. Сводный том;
- 41. Вестник ИГЭУ;
- 42. IEEE Transaction on Power Systems;

г) программное обеспечение и Интернет-ресурсы

3.0	1) hporpassimoe oceane tenne	1 1 71	
№	Наименование ресурса	Краткая характеристика	
1	1 1	Интернет-библиотека образовательных изданий, в	
		которой собраны электронные учебники, справочные и	
		учебные пособия. Удобный поиск по ключевым словам,	
		отдельным темам и отраслям знания	
2	http://www.twirpx.com/files/tek/	Twirpx.com - это служба, обеспечивающая с помощью	
		веб-интерфейса, расположенного только по адресу	
		http://www.twirpx.com, и специализированного	
		аппаратно-программного обеспечения хранение,	
		накопление, передачу и обработку материалов	
		Пользователей, представленной в электронном виде в	
		публичный доступ. Интернет-библиотека, в которой	
		собраны электронные учебники, справочные и учебные	
		пособия. Удобный поиск по ключевым словам,	
		отдельным темам и отраслям знания	
3	Консультант +	Справочно-правовая система. Содержит	
		законодательную базу, нормативно-правовое	
		обеспечение, статьи.	