Министерство образования Российской Федерации Амурский государственный университет

ФИЗИКА ПОЛУПРОВОДНИКОВ И ДИЭЛЕКТРИКОВ

Учебное пособие для студентов специальности 01.07.00 – физика

Благовещенск 2007 Учебное пособие по курсу «Физика полупроводников и диэлектриков». Под редакцией Ваниной Е.А.. Благовещенск: Амурский гос. Ун-т. 2007. - 57с.

Составители:

Ванина Е.А., Темников В.С., Копылова И.Б.

Содержит краткую теорию по основным разделам курса «Физика полупроводников и диэлектриков», примеры решения задач по теории полупроводников. Для студентов специальности 01.07.00 – физика.

Рецензент: С.В. Ланкин, профессор, д-р физ.-мат. наук, заведующий кафедры общей физики БГПУ,

Амурский государственный университет, 2007

СОДЕРЖАНИЕ

1. Распределение электронов и дырок	4
2. Рекомбинация носителей заряда	14
3. Диффузия и дрейф носителей заряда	21
4.Эффект Холла в полупроводниках	28
5. Поверхностные явления	34
6. Термоэлектрические явления	43
7. Фотоэлектрические явления	49
8. Задачи для самостоятельного решения	53
9. Литература	.54
Приложение 1	.55
Приложение 2	56

1. РАСПРЕДЕЛЕНИЕ ЭЛЕКТРОНОВ И ДЫРОК

Распределение электронов и дырок по уровням подчиняется статистике Дирака, т.к. их можно уподобить квантовым частицам. Концентрация электронов n в зоне проводимости и концентрация дырок p в валентной зоне равны соответственно

$$n = \frac{2}{\left(2\pi\right)^3} \int d\vec{k} f_n\left(E_n\left(\vec{k}\right)\right),\tag{1.1a}$$

$$p = \frac{2}{\left(2\pi\right)^3} \int d\vec{k} f_p\left(E_p\left(\vec{k}\right)\right); \qquad (1.16)$$

интегрирование производится по зоне Бриллюэна; $f_n(E)$ и $f_p(E)$ – функции распределения электронов и дырок по энергиям, равные

$$f_n(E) = \frac{1}{1 + e^{\beta(E-F)}}, \qquad f_p(E) = 1 - f_n(E); \tag{1.2}$$

 \vec{k} – квазиволновой вектор, который играет роль непрерывного квантового числа, $\beta = 1/kT$, F – уровень Ферми, $E_n(\vec{k})$ и $E_p(\vec{k})$ – закон дисперсии электронов и дырок.

Особый интерес в связи с формулами (1.1а) и (1.1б) представляет поведение функций $E_n(\vec{k})$ и $E_p(\vec{k})$ вблизи дна зоны проводимости и потолка валентной зоны. Если дну зоны проводимости соответствует одна точка в зоне Бриллюэна, то это (в кубическом кристалле) должна быть точка $\vec{k} = 0$. Тогда для невырожденной зоны

$$E_n\left(\vec{k}\right) = E_c + \frac{\hbar^2 k^2}{2m_n},\tag{1.3a}$$

где E_c и m_n – постоянные, $m_n > 0$.

Если дну зоны проводимости соответствует несколько точек в зоне Бриллюэна, \vec{k}^{α} ($\alpha = 1, 2...$), то (по-прежнему для невырожденной зоны)

$$E_{n,\alpha}(\vec{k}) = E_c + \sum_{i=x,y,z} \frac{\hbar^2 (k_i - k_i^{\alpha})^2}{2m_i}, \quad m_i > 0.$$
(1.36)

Величина *E_c* соответствует дну зоны, *m_n* называется эффективной массой электронов, в анизотропном случае (1.36) величины *m_i* представляют собой

компоненты тензора эффективных масс m_{ij} , $m_{ij}^{-1} = \frac{1}{\hbar^2} \cdot \frac{\partial^2 E_n(\vec{k})}{\partial k_i \partial k_j}$, приведенного к

главным осям. В системе главных осей имеем

$$m_{xx} = m_x, \qquad m_{yy} = m_y, \qquad m_{zz} = m_z, m_{xy} = m_{xz} = \dots = 0.$$
 (1.4)

Аналогичные соотношения имеют место для дырок в валентной зоне

$$E_p\left(\vec{k}\right) = E_v - \frac{\hbar^2 k^2}{2m_p} \tag{1.3B}$$

в изотропном случае и

$$E_{p,\alpha}(\vec{k}) = E_{\nu} - \sum_{i=x,y,z} \frac{\hbar^2 (k_i - k_i^{\alpha})^2}{2m_i}$$
(1.3r)

в анизотропном случае. Величина $E_g = E_c - E_v$ называется шириной запрещенной зоны. В случае вырожденных зон равенства (1.3а), (1.3б) несправедливы и зависимость $E(\vec{k})$ дается более сложными формулами.

Например, если у потолка валентной зоны имеются две вырожденные при $\vec{k} = 0$ изотропные зоны, то закон дисперсии $E_p(\vec{k})$ вблизи края зон имеет вид

$$E_{p}\left(\vec{k}\right) = E_{v} - \frac{\hbar^{2}}{2m_{0}} \left\{ Ak^{2} \pm \left[B^{2}k^{4} + C^{2}\left(k_{x}^{2}k_{y}^{2} + k_{x}^{2}k_{z}^{2} + k_{y}^{2}k_{z}^{2}\right) \right]^{\frac{1}{2}} \right\},$$
(1.3д)

причем знак плюс относится к зоне так называемых «легких» дырок, а знак минус – к зоне «тяжелых» дырок, m_0 – масса свободного электрона в вакууме.

В ряде полупроводников с узкой запрещенной зоной даже при небольшом удалении от экстремума существенно сказывается непараболичность зоны. Если предположить, что отклонения от параболичности связаны с взаимодействием двух зон – валентной зоны и зоны проводимости, а все остальные зоны расположены достаточно далеко, то закон дисперсии в рассматриваемых зонах можно приближенно записать в виде

$$E(\vec{k}) = E_c + \frac{\hbar^2 k^2}{2m_0} + \frac{1}{2} \left(\pm \sqrt{E_g^2 + \frac{8}{3}P^2 k^2} - E_g \right).$$
(1.3e)

Здесь знак плюс относится к зоне проводимости, знак минус – к валентной зоне, а P – параметр, характеризующий взаимодействие зон. Закон дисперсии (1.3е) был предложен Кейном. Вводя в (1.3е) $m(0) = \frac{3\hbar^2 E_g}{4P^2}$ – значение эффективной массы вблизи края зоны, при m(0) m_0 получаем

$$E(\vec{k}) = E_c + \frac{1}{2} \left(\pm \sqrt{E_g^2 + \frac{2\hbar^2 k^2 E_g}{m(0)}} - E_g \right).$$
(1.3x)

Закон дисперсии в таком виде выполняется достаточно хорошо для зон проводимости ряда полупроводников с узкими запрещенными зонами (например, антимонида индия).

Для простой параболической зоны (1.3а) концентрация электронов дается выражением

$$n = N_c F_{\frac{1}{2}}(\eta), \qquad \eta = \frac{F - E_c}{kT}, \qquad (1.5)$$

где величина

$$N_c = 2 \left(\frac{m_n kT}{2\pi\hbar^2}\right)^{\frac{3}{2}}$$
(1.6)

называется эффективной плотностью состояний в зоне проводимости, а $F_{\frac{1}{2}}(\eta)$ – интеграл Ферми (см. Приложение 1). В частности, в отсутствие вырождения формула (1.5) принимает вид (см. (П. 2))

$$n = N_c e^{\eta} \tag{1.7}$$

В случае более сложной зависимости $E(\vec{k})$ концентрация может, тем не менее, даваться выражениями (1.5) и (1.6) с заменой m_n на некоторую величину m_d ,

называемую эффективной массой плотности состояний. Так, в случае (1.36)

$$m_d = Q^{\frac{2}{3}} \left(m_x m_y m_z \right)^{\frac{1}{3}}, \qquad (1.8)$$

где Q – число эквивалентных минимумов в зоне проводимости (см. задачу 1). Выражения (1.5), (1.6), (1.7) и (1.8) после замены соответствующих индексов будут справедливы и для дырок. При этом $\eta = \frac{E_v - F}{kT}$.

Основным соотношением, используемым для определения уровня Ферми, служит условие электрической нейтральности:

$$p + \sum_{j} z_{j} N_{j} - n = 0.$$
 (1.9)

Здесь z_j – заряд локализованных примесей *j*-го сорта в единицах заряда электрона (с учетом знака), N_j – концентрация примеси сорта *j*.

Степени заполнения примесных уровней даются выражениями:

$$\frac{N_{\partial}^{0}}{N_{\partial}^{+}} = g_{\partial} e^{\frac{F-E_{\partial}}{kT}}, \qquad \frac{N_{a}^{-}}{N_{a}^{0}} = \frac{1}{g_{a}} e^{\frac{F-E_{a}}{kT}}, \qquad (1.10)$$

где N_{∂}^{0} , (N_{a}^{0}) и N_{∂}^{+} , (N_{a}^{-}) – число нейтральных и заряженных доноров (акцепторов),

 $g_{\partial}(g_{a}) - \phi$ актор вырождения примесного уровня

 E_{∂} (E_a) – энергия донорного (акцепторного) примесного уровня.

Параметры E_{∂} , E_{a} , g_{∂} и g_{a} в каждом отдельном случае должны определяться из опыта. В простейшем случае, когда вырождение примесного уровня связано только со спином электрона, фактор вырождения равен двум.

Примеры решения задач

Задача 1. Найти связь концентрации с уровнем Ферми и определить эффективную массу плотности состояний электронов в германии и кремнии; закон дисперсии в зоне проводимости имеет вид (1.36). Известно, что поверхности постоянной энергии в \vec{k} -пространстве имеют вид эллипсоидов

вращения, в германии Q = 4, поперечная масса $m_t = 1,64m_0$, продольная масса $m_l = 0,19m_0$, в кремнии Q = 6, $m_t = 0,19m_0$, $m_l = 0,98m_0$ (m_0 – масса покоя свободного электрона).

Решение.

Полная концентрация *n* электронов в зоне проводимости равна сумме концентраций n^{α} в отдельных под-зонах. Количество таких под-зон равно числу *Q* значений волнового вектора \vec{k}^{α} , соответствующих дну зоны проводимости,

$$n=\sum_{\alpha=1}^{Q}n^{\alpha}.$$

Согласно (1.3б) закон дисперсии электронов для под-зоны с номером α имеет вид

$$E_{n}(\vec{k}) = E_{c} + \frac{\hbar^{2}(k_{x} - k_{x}^{\alpha})^{2}}{2m_{t}} + \frac{\hbar^{2}(k_{y} - k_{y}^{\alpha})^{2}}{2m_{t}} + \frac{\hbar^{2}(k_{z} - k_{z}^{\alpha})^{2}}{2m_{l}}.$$

Концентрацию электронов в этой под-зоне найдем, используя соотношения (1.1а) и (1.2)

$$n^{\alpha} = \frac{2}{(2\pi)^{3}} \int d\vec{k} f_{n,\alpha} \left(E_{n,\alpha} \left(\vec{k} \right) \right) =$$

$$= \frac{2}{(2\pi)^{3}} \int d\vec{k} \left\{ 1 + \exp\left[\beta \left(E_{c} - F + \frac{\hbar^{2} \left(k_{x} - k_{x}^{\alpha} \right)^{2}}{2m_{t}} + \frac{\hbar^{2} \left(k_{y} - k_{y}^{\alpha} \right)^{2}}{2m_{t}} + \frac{\hbar^{2} \left(k_{z} - k_{z}^{\alpha} \right)^{2}}{2m_{t}} \right) \right] \right\}^{-1} =$$

$$= \frac{2}{(2\pi)^{3}} \frac{1}{\hbar^{3}} \left(8m_{t}^{2}m_{t} \right)^{\frac{3}{2}} \left(kT \right)^{\frac{3}{2}} \int_{-\infty}^{+\infty} dx dy dz \left\{ 1 + \exp\left[\beta \left(E_{c} - F + x^{2} + y^{2} + z^{2} \right) \right] \right\}^{-1} =$$

$$= \frac{2}{(2\pi)^{3}} \frac{\pi^{\frac{3}{2}}}{\hbar^{3}} \left(8m_{t}^{2}m_{t} \right)^{\frac{1}{2}} \left(kT \right)^{\frac{3}{2}} F_{\frac{1}{2}} \left[\beta \left(F - E_{c} \right) \right] = 2 \left(\frac{\left(m_{t}^{2}m_{t} \right)^{\frac{1}{3}} kT}{2\pi\hbar^{2}} \right)^{\frac{3}{2}} F_{\frac{1}{2}} \left[\beta \left(F - E_{c} \right) \right]$$

Результат интегрирования по \vec{k} не зависит от выбора пределов интегрирования, если эти пределы лежат вне области занятых состояний. Это имеет место в большинстве практически интересных случаев, поэтому мы не совершаем ошибки, выполняя интегрирование по \vec{k} в бесконечных пределах.

Таким образом, полная концентрация электронов в зоне проводимости равна

$$n = Q \cdot n^{\alpha} = 2 \left(\frac{Q^{\frac{2}{3}} \left(m_{t}^{2} m_{l} \right)^{\frac{1}{3}} kT}{2\pi \hbar^{2}} \right)^{\frac{3}{2}} F_{\frac{1}{2}} \left[\beta \left(F - E_{c} \right) \right]$$

ИЛИ

$$n = 2 \left(\frac{m_d kT}{2\pi\hbar^2}\right)^{3/2} F_{\frac{1}{2}} \left[\beta \left(F - E_c\right)\right]$$

(сравните с (1.5)), где величина

$$m_d = Q^{2/3} \left(m_t^2 m_l \right)^{1/3}$$

- есть эффективная масса плотности состояний. В германии (Ge)

 $m_d = 0,56m_0$.

В кремнии (Si)

$$m_d = 1,08m_0$$
.

Задача 2. Найти положение уровня Ферми и температурную зависимость концентрации в собственном полупроводнике в невырожденном случае. Как изменится концентрация электронов при изменении температуры от 200 до 300 К, если $E_g = (0,785 - \xi T)$ эВ? Изменением ширины запрещенной зоны с увеличением температуры пренебречь.

Решение.

Запишем условие электронейтральности (1.9) для собственного полупроводника. Примеси в собственном полупроводнике отсутствуют, поэтому

$$n = p$$
.

В невырожденном случае из соотношений (1.5), (1.6) и (1.7) получим

$$n = 2\left(\frac{m_n kT}{2\pi\hbar^2}\right)^{\frac{3}{2}} e^{\frac{F-E_c}{kT}}, \qquad p = 2\left(\frac{m_p kT}{2\pi\hbar^2}\right)^{\frac{3}{2}} e^{\frac{E_v-F}{kT}}.$$

Тогда

$$2\left(\frac{m_n kT}{2\pi\hbar^2}\right)^{\frac{3}{2}} e^{\frac{F-E_c}{kT}} = 2\left(\frac{m_p kT}{2\pi\hbar^2}\right)^{\frac{3}{2}} e^{\frac{E_v-F}{kT}}.$$

Отсюда

$$e^{\frac{2F-(E_c-E_v)}{kT}} = \left(\frac{m_p}{m_n}\right)^{3/2}$$

и, следовательно,

$$F = \frac{E_c + E_v}{2} + \frac{3}{4}kT\ln\frac{m_p}{m_n}$$

Концентрацию электронов проводимости можно получить, подставив энергию Ферми в выражение для концентрации, однако, проще заметить, что $n = n_i \equiv \sqrt{np}$. Получим

$$n = 2 \left(\frac{\sqrt{m_n m_p} kT}{2\pi\hbar^2}\right)^{\frac{3}{2}} e^{-\frac{E_g}{2kT}},\tag{1}$$

где $E_g = E_c - E_v$ – ширина запрещенной зоны полупроводника. Отношение концентраций при различных температурах равно

$$\frac{n_2}{n_1} = \left(\frac{T_2}{T_1}\right)^{3/2} e^{-\frac{E_g}{2k}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)},$$

$$\frac{n_{300}}{n_{200}} = \left(\frac{300}{200}\right)^{3/2} e^{-\frac{0.785}{2!1,38\cdot10^{-23}\cdot1.6\cdot10^{-19}}\left(\frac{1}{300} - \frac{1}{200}\right)} = 3, 6\cdot10^3.$$

Задача 3. Подвижность электронов в чистом Ge при комнатной температуре (300 К) равна 3800 см³/В·с. Найти удельное сопротивление такого материала при комнатной температуре и при 30 К, считая, что подвижность меняется с температурой по закону $\mu = aT^{-3/2}$, где *a* – постоянная. Эффективную массу электронов положить равной 0,56*m*₀, а эффективную массу дырок – равной 0,37*m*₀. При всех рассматриваемых температурах считать, что

ширина запрещенной зоны линейно меняется с температурой $E_g = (0,785 - 4 \cdot 10^{-4}T)$ эВ, а отношение подвижностей электронов и дырок для

простоты принять постоянным и равным $b = \frac{\mu_n}{\mu_p} = 2,1.$

Решение.

Удельная проводимость полупроводника обусловлена наличием электронов в зоне проводимости и дырок в валентной зоне:

$$\sigma = \sigma_n + \sigma_p = en\mu_n + ep\mu_p.$$

Для чистого германия (Ge) (*n* = *p*) с учетом отношения подвижностей электронов и дырок получим его удельное сопротивление

$$\rho = \frac{1}{\sigma} = \frac{b}{(b+1)en\mu_n}$$

Подставляя теперь выражение для концентрации электронов проводимости в невырожденном полупроводнике (см. задачу 2), получим

$$\rho = \frac{1}{\sigma} = \frac{b}{2(b+1)e\mu_n} \left(\frac{2\pi\hbar^2}{\sqrt{m_n m_p} kT}\right)^{\frac{3}{2}} e^{\frac{E_s}{2kT}}.$$

При 300 К $E_g = 0,665$ эВ, а при 30 К $E_g = 0,773$ эВ и, соответственно,

$$\rho_{300} = 57$$
 Ом·см,
 $\rho_{30} = 1, 2 \cdot 10^{61}$ Ом·см

Последнюю цифру, разумеется, нельзя принимать всерьез: в таких условиях играют роль примеси и, может быть, иные структурные дефекты. Однако проведенная оценка показывает, сколь сильно влияет температура на сопротивление собственного полупроводника.

Задача 4. Исследовать температурный ход уровня Ферми в примесной области для невырожденного полупроводника, содержащего один тип одновалентных доноров в концентрации N_{a} .

Решение.

Запишем условие электронейтральности (1.9) для полупроводника с донорной примесью

$$n = N_{\partial}^+ + p$$
.

Электроны проводимости в таком полупроводнике образуются за счет ионизации примеси и переходов из валентной зоны с образованием дырки.

При температурах, обуславливающих отсутствие вырождения донорного уровня лишь очень небольшая часть электронов способна попасть в зону проводимости из валентной зоны, таким образом, *p* « *n* и концентрацией дырок можно пренебречь,

$$n \approx N_{\partial}^+$$
.

Для концентрации электронов согласно (1.7) и (1.5) имеем

$$n = N_c e^{\eta}, \qquad \eta = \frac{F - E_c}{kT}.$$

Число заряженных доноров найдем из общего количества донорной примеси $N_{\partial} = N_{\partial}^{+} + N_{\partial}^{0}$. Воспользуемся формулой (1.10)

$$\frac{N_{\partial}-N_{\partial}^{+}}{N_{\partial}^{+}}=g_{\partial}e^{\frac{F-E_{\partial}}{kT}},$$

откуда

$$N_{\partial}^{+} = \frac{N_{\partial}}{1 + g_{\partial} e^{\frac{F - E_{\partial}}{kT}}} = \frac{N_{\partial}}{1 + g_{\partial} e^{\eta} e^{\frac{E_{c} - E_{\partial}}{kT}}}.$$

Таким образом,

$$N_c e^{\eta} = \frac{N_{\delta}}{1 + g_{\delta} e^{\eta} e^{\frac{E_c - E_{\delta}}{kT}}}.$$

Решение полученного уравнения, квадратичного относительно e^{η} , дает

$$e^{\eta} = \frac{1}{2g_{\partial}} e^{-\frac{E_c - E_{\partial}}{kT}} \left(\sqrt{1 + 4\frac{N_{\partial}}{N_c}g_{\partial}} e^{\frac{E_c - E_{\partial}}{kT}} - 1 \right),$$

откуда

$$F = E_{\partial} + kT \ln \left[\frac{1}{2g_{\partial}} \left(\sqrt{1 + 4\frac{N_{\partial}}{N_c}g_{\partial}e^{\frac{E_c - E_{\partial}}{kT}}} - 1 \right) \right].$$

При $T \rightarrow 0 N_c = N_{\partial} e^{\frac{E_c - E_{\partial}}{kT}}$ и

$$F = \frac{E_c + E_{\partial}}{2} + \frac{kT}{2} \ln \frac{N_{\partial}}{g_{\partial} N_c(T)}$$

При более высоких температурах, когда $N_c \ll N_d e^{\frac{E_c - E_d}{kT}}$, имеем

$$F = E_c - kT \ln \frac{N_c(T)}{N_{\partial}}$$

образом, Таким при повышении температуры уровень Ферми сначала возрастает от $\frac{E_c + E_{\partial}}{2}$, а затем, пройдя через максимум, начинает почти линейно убывать с температурой до тех пор, пока концентрация не станет заметной. дырок Примерный ход уровня Ферми показан на рис. 1.

Литература [1], глава 5; [3], §1; [4], глава 3,6; [5], §19; [6], глава 5, §1-5.

2. РЕКОМБИНАЦИЯ НОСИТЕЛЕЙ ЗАРЯДА

Рекомбинацией называется переход электрона из зоны проводимости в валентную зону. При отклонении концентраций носителей заряда от равновесных значений n_0 и p_0 нарушается баланс между процессами тепловой генерации, с одной стороны, и захватом носителей на локальные центры или убылью носителей за счет межзонных переходов, с другой стороны. Становятся отличными от нуля абсолютные скорости рекомбинации электронов u_p и дырок u_n , равные результирующему числу захватов носителей в 1 см³ в 1 сек. Равенствами

$$-\left(\frac{\partial\Delta n}{\partial t}\right)_{pe\kappa} = u_n = \frac{\Delta n}{\tau_n}; \qquad -\left(\frac{\partial\Delta p}{\partial t}\right)_{pe\kappa} = u_p = \frac{\Delta p}{\tau_p}$$
(2.1)

определяются времена жизни электронов и дырок τ_n и τ_p (в нестационарных условиях имеет смысл говорить только об их мгновенных значениях). Величины τ_n и τ_p зависят, в общем случае, от Δn и Δp . Так, если преобладают процессы прямой межзонной рекомбинации, то

$$u_{n} = u_{p} = a \left(np - n_{0} p_{0} \right), \qquad (2.2)$$

где а – постоянная.

Во многих случаях рекомбинация осуществляется путем захвата свободных носителей дефектами решетки (называемыми еще центрами захвата или ловушками), дающими локальные энергетические уровни в запрещенной зоне. В простом случае, когда в невырожденном полупроводнике имеются в концентрации N_t центры захвата одного типа, дающие один локальный уровень E_t , в стационарных условиях справедливо выражение

$$u_{n} = u_{p} = u = N_{t} \frac{\alpha_{n} \alpha_{p} (np - n_{0} p_{0})}{\alpha_{n} (n + n_{1}) + \alpha_{p} (p + p_{1})}.$$
(2.3)

Где
$$n_1 = N_c e^{\frac{E_t - E_c}{kT}}, \quad p_1 = \frac{p_0 n_0}{n_1} = \frac{n_i^2}{n_1}$$
 (2.4)

В значение E_t включено слагаемое $kT \ln g$, учитывающее вырождение

состояний ловушки (сравните с (1.10)), α_n и α_p – коэффициенты захвата электронов и дырок. Полезно ввести также сечения захвата

$$S_n = \frac{\alpha_n}{\nu_T}, \qquad S_p = \frac{\alpha_p}{\nu_T}, \qquad (2.5)$$

где $v_T = \sqrt{\frac{3kT}{m_0}}$ – «тепловая» скорость свободного электрона.

Пусть концентрация *N_t* мала, так что можно пренебречь неравновесной концентрацией электронов на ловушках,

$$\frac{\Delta n_t}{\Delta p} = -\frac{\Delta p_t}{\Delta p} = \frac{N_t}{n_0 + n_1} \cdot \frac{\alpha_n n_1 - \alpha_p n_0}{\alpha_p (p_0 + p_1) + \alpha_n \left(n + n_1 + \frac{N_t}{n_0 + n_1}\right)}.$$
(2.6)

Это – случай, когда отсутствует прилипание носителей. При этом

$$\tau = \frac{\tau_{n0} (p_0 + p_1 + \Delta n) + \tau_{p0} (n_0 + n_1 + \Delta n)}{n_0 + p_0 + \Delta n},$$
(2.7)

где величины

$$\tau_{n0} = \frac{1}{N_t \alpha_n}, \qquad \tau_{p0} = \frac{1}{N_t \alpha_n}$$
(2.8)

Являются временем жизни пар носителей при слабом возбуждении в униполярных материалах p- и n-типа соответственно. Если центр захвата создает в запрещенной зоне два локальных уровня E_1 и E_2 , то при небольшом отклонении от равновесия и в отсутствие заметного прилипания

$$\frac{1}{\tau} = \frac{1 + \frac{n_0}{p_0}}{1 + \frac{p_1}{p_0} + \frac{p_1 p_2}{p_0^2}} N_t \left(\frac{\frac{1}{1}}{\frac{1}{\alpha_{n1}} + \frac{1}{\alpha_{p1}} \frac{n_1}{p_0}} + \frac{\frac{p_1}{p_0}}{\frac{1}{\alpha_{n2}} + \frac{1}{\alpha_{p2}} \frac{n_2}{p_0}} \right)$$
(2.9)

где вторые индексы у коэффициентов захвата указывают, на какой уровень захватывается носитель, а величины n_1 , n_2 , p_1 , p_2 определены аналогично (2.4) с заменой E_t на E_1 или E_2 .

Пусть в полупроводнике помимо центров, через которые идет

рекомбинация и которые сами по себе не вызывают заметного прилипания, имеются еще ловушки, способные захватывать только, например, электроны из зоны проводимости и отдавать их обратно. Тогда в образце n-типа при малом отклонении от равновесия справедливы выражения

$$-\frac{\partial\Delta n}{\partial t} = u_n = \frac{\Delta n}{\tau_r} + \frac{\Delta n}{\tau_1} - \frac{\Delta n_t}{\tau_2},$$

$$-\frac{\partial\Delta p}{\partial t} = u_p = \frac{\Delta n}{\tau_r}, \qquad \Delta n_t = \Delta p - \Delta n,$$

(2.10)

где τ_r – рекомбинационное время жизни, среднее τ_1 – время захвата электрона на уровень прилипания, τ_2 – среднее время выброса обратно.

Примеры решения задач

Задача 1. В момент времени $t_1 = 10^{-4}$ с после выключения равномерной по объему генерации электронно-дырочных пар неравновесная концентрация носителей оказалась в 10 раз больше, чем в момент $t_2 = 10^{-3}$ с. Определить время жизни τ , если уровень возбуждения невелик и рекомбинация идет через простые дефекты.

Решение.

Релаксация неравновесной концентрации подчиняется уравнениям (2.1). Для дырок, например,

$$\frac{d\Delta p}{dt} = -\frac{\Delta p}{\tau},$$

откуда

$$\Delta p(t) = \Delta p(0) e^{-\frac{t}{\tau}},$$
$$\frac{\Delta p(t_1)}{\Delta p(t_2)} = e^{\frac{t_2 - t_1}{\tau}},$$

$$\tau = \frac{t_2 - t_1}{\ln \frac{\Delta p(t_1)}{\Delta p(t_2)}} = \frac{9 \cdot 10^{-4}}{2,31} \approx 4 \cdot 10^{-4} \text{ c.}$$

Задача 2. Вычислить относительное изменение проводимости $\Delta \sigma / \sigma_0$ для n-Ge при стационарном освещении с интенсивностью $I = 5 \cdot 10^{15}$ квантов на 1 см² в 1 с. Коэффициент поглощения $\alpha = 100$ см⁻¹; толщина образца мала по сравнению с α^{-1} ; рекомбинация происходит на простых дефектах; $n_0 = 10^{15}$ см⁻³, $\tau = 2 \cdot 10^{-4}$ с.

Решение.

В стационарных условиях процессы оптической генерации электронно-дырочных пар и их рекомбинации уравновешивают друг друга. Для дырок имеем

$$u_p = g_p, \qquad u_p = \frac{\Delta p}{\tau}, \qquad g_p = \alpha I,$$

где g_p – число дырок, генерируемых в единицу времени в единице объема. Поэтому

$$\Delta p = \alpha I \tau = 100 \cdot 5 \cdot 10^{15} \cdot 2 \cdot 10^{-4} = 10^{14} \text{ cm}^{-3}.$$

Аналогичные выражения можно записать и для электронов. Относительное изменение проводимости для n-Ge равно

$$\frac{\Delta\sigma}{\sigma_0} = \frac{e\Delta n\mu_n + e\Delta p\mu_p}{en_0\mu_n} = \frac{\Delta p}{n_0} \left(1 + \frac{1}{b}\right) = \frac{10^{14}}{10^{15}} \left(1 + \frac{1}{2,1}\right) = 0.15.$$

Здесь $b = \frac{\mu_n}{\mu_p}$ – отношение подвижностей электронов и дырок в германии.

Задача 3. В n-Ge с шириной запрещенной зоны $E_g = (0,785 - 4 \cdot 10^{-4}T)$ эВ имеются центры рекомбинации с $N_t = 5 \cdot 10^{12}$ см⁻³ и $E_t = (E_c + E_v)/2$. При 300 К сечения захвата электронов и дырок одинаковы, при малых отклонениях от равновесия $\tau = 10^{-4}$ с, $\rho = 5$ Ом·см. Найти сечение захвата *S*.

Решение.

В условиях слабого возбуждения величинами Δ*n* и Δ*p* в формуле (2.7) можно пренебречь, тогда, учитывая (2.8) запишем

$$\tau = \frac{1}{\alpha N_t} \frac{n_0 + n_1 + p_0 + p_1}{n_0 + p_0},$$

где $\alpha = \alpha_n = \alpha_p$, по условию задачи. Вычислим вошедшие сюда концентрации. Подавляющий вклад в проводимость образца n-типа при данной температуре (*T* « *E*_g/2*k*) вносит электронная составляющая

$$\frac{1}{\rho} = e n_0 \mu_n,$$

откуда

$$n_0 = \frac{1}{\rho e \mu_n} \approx 3.3 \cdot 10^{14} \text{ cm}^{-3}.$$

Концентрацию дырок найдем как

$$p_0 = \frac{n_i^2}{n_0},$$

где, (см. задачу 2 предыдущего раздела),

$$n_{i} = 2 \left(\frac{\sqrt{m_{n}m_{p}}kT}{2\pi\hbar^{2}} \right)^{3/2} e^{-\frac{E_{g}(T)}{2kT}} \approx 2 \cdot 10^{13} \text{ cm}^{-3}.$$

Значения эффективных масс электрона и дырки взяты из приложения 2. Получим

$$p_0 \approx 1, 2 \cdot 10^{12} \text{ cm}^{-3}.$$

Из (2.4) с учетом условий задачи следует

$$n_{1} = 2 \left(\frac{m_{n}kT}{2\pi\hbar^{2}}\right)^{\frac{3}{2}} e^{-\frac{E_{g}(T)}{2kT}} \approx 2,8 \cdot 10^{13} \text{ cm}^{-3},$$
$$p_{1} = \frac{n_{i}^{2}}{n_{1}} = 1,4 \cdot 10^{13} \text{ cm}^{-3}.$$

Таким образом,

$$\alpha = \frac{1}{\tau N_t} \frac{n_0 + n_1 + p_0 + p_1}{n_0 + p_0} \approx 2,3 \cdot 10^{-9} \text{ cm}^{3/c},$$
$$S = \frac{\alpha}{v_T} = \alpha \sqrt{\frac{m_0}{3kT}} \approx 2 \cdot 10^{-16} \text{ cm}^{2}.$$

Задача 4. Определить, как зависят от времени концентрации избыточных носителей в полупроводнике n-типа после прекращения стационарной генерации, создававшей слабое отклонение от равновесия. Считать известными рекомбинационное время τ_r , время захвата на уровни прилипания τ_1 и время обратного выброса τ_2 .

Решение.

По аналогии с уравнением (2.10) можно написать

$$\frac{d\Delta n}{dt} = g - u_n = g - \frac{\Delta p}{\tau_r},\tag{1}$$

$$\frac{d\Delta p}{dt} = g - \frac{\Delta p}{\tau_r} - \frac{\Delta p}{\tau_1} + \frac{\Delta p_t}{\tau_2}, \qquad \Delta p_t = \Delta n - \Delta p.$$
(2)

В стационарных условиях

$$\Delta p = g \tau_r, \qquad \Delta p_t = \frac{\tau_2}{\tau_1} \Delta p, \qquad \Delta n = \left(1 + \frac{\tau_2}{\tau_1}\right) \Delta p.$$

Поведение Δn и Δp в процессе релаксации описывается линейными комбинациями двух экспоненциальных функций времени:

$$\Delta n = Ae^{-k_1t} + Be^{-k_2t}, \qquad \Delta p = Ce^{-k_1t} + De^{-k_2t}.$$

Продифференцировав (2) и выразив $d\Delta n/dt$ из (1), получим характеристическое уравнение

$$k^2 - \frac{k}{\tau_g} + \frac{1}{\tau_2 \tau_r} = 0,$$

где

$$\frac{1}{\tau_g} = \frac{1}{\tau_r} + \frac{1}{\tau_1} + \frac{1}{\tau_2}.$$

Корни уравнения

$$k_{1,2} = \frac{1}{2\tau_g} \pm \sqrt{\frac{1}{4\tau_g^2} - \frac{1}{\tau_r \tau_2}} \,.$$

Из уравнения (1) следует, что

$$C = \tau_r k_1 A, \qquad D = \tau_r k_2 B,$$

а из начальных условий

$$C+D=g\tau_r, \qquad A+B=g\tau_r\left(1+\frac{\tau_2}{\tau_1}\right).$$

Отсюда и определяются коэффициенты; окончательный ответ имеет вид

$$\Delta n = \frac{g\tau_r}{k_1 - k_2} \left(1 + \frac{\tau_2}{\tau_1} \right) \left\{ \left[\frac{1}{\tau_r} - k_2 \left(1 + \frac{\tau_2}{\tau_1} \right) \right] e^{-k_1 t} + \left[k_1 \left(1 + \frac{\tau_2}{\tau_1} \right) - \frac{1}{\tau_r} \right] e^{-k_2 t} \right\},$$

$$\Delta p = \frac{g\tau_r^2}{k_1 - k_2} \left\{ k_1 \left[\frac{1}{\tau_r} - k_2 \left(1 + \frac{\tau_2}{\tau_1} \right) \right] e^{-k_1 t} + k_2 \left[k_1 \left(1 + \frac{\tau_2}{\tau_1} \right) - \frac{1}{\tau_r} \right] e^{-k_2 t} \right\}.$$

Литература

[1], глава 8, §4,13; [3], §2; [4], глава 5; [5], §24; [6], глава 5, §11.

3. ДИФФУЗИЯ И ДРЕЙФ НОСИТЕЛЕЙ ЗАРЯДА

При неоднородном распределении носителей заряда в образце возникают диффузионные токи. Плотности диффузионных электронного и дырочного токов определяются уравнениями:

$$\vec{j}_{n\,\partial u\phi\phi} = eD_n \operatorname{grad} n,$$

$$\vec{j}_{p\,\partial u\phi\phi} = -eD_p \operatorname{grad} p,$$
(3.1)

где *e* – абсолютная величина заряда электрона, *D_n* и *D_p* – коэффициенты диффузии электронов и дырок, *n* и *p* – их концентрации. Полные плотности электронного и дырочного токов в рассматриваемых условиях складываются из диффузионной и дрейфовой составляющих:

$$\vec{j}_n = eD_n \operatorname{grad} n + en\mu_n \vec{E},$$

$$\vec{j}_p = -eD_p \operatorname{grad} p + ep\mu_p \vec{E}.$$
(3.2)

Здесь μ_n и μ_p – подвижности электронов и дырок.

В состоянии равновесия ток в униполярном, например электронном, полупроводнике отсутствует:

$$\vec{j}_n = \vec{j}_{n\,\partial u\phi\phi} + \vec{j}_{n\,\partial p} = 0.$$
(3.3)

Вычислив концентрацию электронов по формуле (1.5) с учетом сдвига дна зоны проводимости на величину $-e\varphi(r)$, где φ – электростатический потенциал, найдем по формуле (3.1)

$$\vec{j}_{n\partial u\phi\phi} = \frac{e^2 D_n}{kT} \frac{dn}{d\eta} \operatorname{grad} \varphi, \qquad (3.4)$$

где $\eta = \frac{F - E_c}{kT}$.

Отсюда на основании уравнений (3.2) и (3.3) получаем

$$D_n = \frac{n\mu_n kT}{e\frac{dn}{d\eta}}.$$
(3.5)

Аналогичное соотношение получается и для дырок:

$$D_{p} = -\frac{p\mu_{p}kT}{e\frac{dp}{d\eta}}.$$
(3.6)

В случае невырожденных полупроводников, когда справедлива формула (1.7), равенства (3.5) и (3.6) переходят в соотношения Эйнштейна:

$$D_n = \frac{\mu_n kT}{e}, \qquad D_p = \frac{\mu_p kT}{e}. \tag{3.7}$$

Кинетика электронов и дырок описывается уравнениями непрерывности:

$$\frac{\partial n}{\partial t} = g - \frac{\Delta n}{\tau_n} + \frac{1}{e} \operatorname{div} \vec{j}_n,
\frac{\partial p}{\partial t} = g - \frac{\Delta p}{\tau_p} - \frac{1}{e} \operatorname{div} \vec{j}_p.$$
(3.8)

Где Δn и Δp – разности между концентрациями электронов и дырок *n* и *p* и их равновесными значениями n_0 и p_0 ; *g* – число электронно-дырочных пар, генерируемых в единицу времени в единице объема образца.

В случае оптической генерации

$$g = \gamma \alpha I e^{-\alpha x}, \qquad (3.9)$$

где γ – квантовый выход, α – коэффициент поглощения света, $Ie^{-\alpha x}$ – плотность потока квантов. Далее, τ_n и τ_p – времена жизни электронов и дырок (вычисляемые по формулам (2.1) и (2.3)). При рассмотрении процессов диффузии обычно вводят характерные величины размерности длины:

$$L_n = \sqrt{D_n \tau_n}, \qquad L_p = \sqrt{D_p \tau_p}, \qquad (3.10)$$

которые называются диффузионными длинами электронов и дырок соответственно.

К уравнениям (3.8) и (3.2) следует добавить еще в случае нарушения электрической нейтральности уравнение Пуассона

$$\operatorname{div} E = \frac{4\pi\rho}{\varepsilon},\tag{3.11}$$

где *р* – плотность электрического заряда, а *є* – диэлектрическая проницаемость полупроводника.

Заметим, однако, что довольно часто можно считать выполненным условие локальной электронейтральности полупроводника. В отсутствие прилипания, т. е. при $\tau_n = \tau_p = \tau$, это означает, что

$$\Delta n = \Delta p, \qquad \rho = 0, \qquad \operatorname{div}\left(\vec{j}_n + \vec{j}_p\right) = 0 \tag{3.12}$$

Диффузия и дрейф электронов и дырок взаимосвязаны. При диффузии возникает добавочное электрическое поле, тормозящее более быстро диффундирующие носители и подтягивающее более медленные. Распространение единого нейтрального фронта избыточных носителей описывается, согласно (3.8) и (3.12), следующим уравнением:

$$\frac{\partial \Delta p}{\partial t} = g - \frac{\Delta p}{\tau} + \operatorname{div}(D \operatorname{grad} \Delta p) - \mu \vec{E} \operatorname{grad} \Delta p, \qquad (3.13)$$

где *D* – коэффициент биполярной диффузии, *µ* – биполярная дрейфовая подвижность:

$$D = \frac{n+p}{\frac{n}{D_p} + \frac{p}{D_n}}, \qquad \mu = \frac{n-p}{\frac{n}{\mu_p} + \frac{p}{\mu_n}}.$$
(3.14)

Характерной длиной этого процесса является длина биполярной диффузии L:

$$L = \sqrt{D\tau} . \tag{3.15}$$

Уравнение биполярной диффузии значительно упрощается в тех случаях, когда D – константа. Это имеет место, когда сильно преобладают носители одного типа, при этом D есть коэффициент диффузии неосновных носителей, или в условиях собственной проводимости:

$$n = p, \qquad D = \frac{2D_n D_p}{D_n + D_p},$$
 (3.16)

при этом $\mu = 0$.

Наконец, необходимо сформулировать граничные условия к уравнению (3.13). У поверхности полупроводника происходит рекомбинация избыточных носителей заряда. Обозначим через u_s число пар, рекомбинирующих за 1 с на 1 см² поверхности. Определим скорость поверхностной рекомбинации *s* (с

размерностью см/с), связанную с и соотношением

$$s = \frac{u_s}{\Delta n} = \frac{u_s}{\Delta p},\tag{3.17}$$

где $\Delta n = \Delta p$ – концентрация избыточных носителей у поверхности. Электроны и дырки, рекомбинирующие на поверхности, поставляются туда поверхностной генерацией и потоками избыточных носителей, направленными к поверхности. Поэтому граничное условие на поверхности полупроводника р-типа имеет вид

$$g_s = \frac{1}{e}\vec{j}_n\vec{\nu} + s\Delta n\,,\tag{3.18}$$

где *v* – единичный вектор внешней нормали к поверхности.

Далее, граничное условие для плотностей тока носителей на контакте полупроводника будем формулировать, задавая значение коэффициента инжекции γ , определяемого как отношение плотности тока неосновных носителей к полной плотности тока.

Примеры решения задач

Задача 1. Вычислить коэффициент диффузии электронов в невырожденном германии при комнатной температуре ($\mu_n = 3800 \text{ сm}^2/\text{B}\cdot\text{c}$).

Решение.

Используя соотношение Эйнштейна (3.7), получим

$$D_n = \frac{\mu_n kT}{e} = 98 \text{ cm}^2/\text{c}.$$

Задача 2. Вычислить коэффициент диффузии электронов в случае полного вырождения. Закон дисперсии электронов имеет вид (1.3a), $\mu_n = 300 \text{ см}^2/\text{B}\cdot\text{c}$, $n = 10^{18} \text{ см}^{-3}$, $m_n = 0, 2m_0$.

Решение. Согласно формуле (3.5)

$$D_n = \frac{n\mu_n kT}{e\frac{dn}{d\eta}},\tag{1}$$

где $\eta = \frac{F - E_c}{kT}$. Далее, на основании (1.5) и (П.3) найдем

$$n = \frac{8\pi (2m_n kT)^{\frac{3}{2}}}{3h^3} \eta^{\frac{3}{2}},$$

откуда

$$\eta = \left(\frac{3h^3}{8\pi}\right)^{\frac{2}{3}} \frac{1}{2m_n kT} \cdot n^{\frac{2}{3}},$$

$$\frac{1}{kT} \frac{dn}{d\eta} = 3m_n \left(\frac{3h^3}{8\pi}\right)^{-\frac{2}{3}} n^{\frac{1}{3}}.$$
(2)

Подставляя (2) в (1), получим

$$D_n = \frac{h^2}{3e} \left(\frac{3}{8\pi}\right)^{\frac{2}{3}} \frac{\mu_n}{m_n} n^{\frac{2}{3}} = 3,6 \text{ cm}^2/\text{c}.$$

Задача 3. Найти концентрацию неравновесных носителей на поверхности толстого образца n-Ge (рис. 2), если генерация пар равномерна по объему; $g_0 = 2,5 \cdot 10^{17}$ см⁻³/с, время жизни дырок $\tau_p = 4 \cdot 10^{-6}$ с, скорость поверхностной рекомбинации $s = 5 \cdot 10^2$ см/с, $D_p = 49$ см²/с.

Решение.

Уравнение непрерывности (3.8) для данной задачи записывается следующим образом (см. рис. 2):

$$D_p \frac{d^2 \Delta p}{dx^2} + g_0 - \frac{\Delta p}{\tau_p} = 0.$$

Граничные условия таковы:

$$D_{p} \frac{d\Delta p}{dx} \bigg|_{x=0} = s \Delta p \bigg|_{x=0},$$

$$\Delta p \to g_{0} \tau_{p} \qquad \text{при} \qquad x \to \infty.$$

Решение уравнения имеет вид

$$\Delta p(x) = g_0 \tau_p + C_1 e^{-\frac{x}{L_p}} + C_2 e^{\frac{x}{L_p}}.$$

Из граничных условий, находим

$$C_2 = 0, \qquad -\frac{D_p}{L_p}C_1 = s(C_1 + g_0\tau_p), \qquad C_1 = -\frac{g_0\tau_p^2 s}{L_p + s\tau_p},$$

так что

$$\Delta p(x) = g_0 \tau_p \frac{s \tau_p \left(1 - e^{-\frac{x}{L_p}}\right) + L_p}{L_p + s \tau_p}$$

И

$$\Delta p(0) = g_0 \tau_p \frac{L_p}{L_p + s \tau_p}.$$

В рассматриваемых условиях имеем

$$\Delta p(0) = 0.88 \cdot 10^{12} \text{ cm}^{-3}.$$

Задача 4. Определить распределение неравновесных дырок в длинном нитевидном образце n-Ge при стационарной инжекции дырок в точке и при наличии электрического поля E = 5 В/см вдоль образца. Температура комнатная, полупроводник невырожден, $L_p = 0,09$ см.

Решение.

Уравнение непрерывности (3.13) в данном случае приводится к виду

$$D_p \frac{d^2 \Delta p}{dx^2} - E \mu \frac{d \Delta p}{dx} - \frac{\Delta p}{\tau_p} = 0, \qquad x \neq 0,$$

или

$$\frac{d^{2}\Delta p}{dx^{2}} - \frac{eE}{kT}\frac{d\Delta p}{dx} - \frac{\Delta p}{L_{p}^{2}} = 0, \qquad x \neq 0$$

На больших расстояниях от точки инжекции неравновесная концентрация Δp должна обращаться в нуль. Уравнению удовлетворяют решения вида (рис. 3)

$$\Delta p = \begin{cases} \Delta p_0 e^{k_1 x}, & x < 0, \\ \Delta p_0 e^{k_2 x}, & x > 0, \end{cases}$$

где

$$k_{1,2} = \frac{1}{2} \frac{eE}{kT} \pm \sqrt{\left(\frac{1}{2} \frac{eE}{kT}\right)^2 + \frac{1}{L_D^2}},$$

 Δp_0 – значение Δp в точке инжекции x = 0.

Введем обозначения l = kT/eE, $L_E = E\mu_p \tau_p$ (L_E – дрейфовая длина). Тогда легко найти

$$k_{1,2} = \frac{1}{2l} \left(1 \pm \sqrt{1 + \frac{4l}{L_E}} \right).$$

В наших условиях

$$l = 5, 2 \cdot 10^{-3}$$
 см,
 $L_E = \frac{eEL_p^2}{kT} = 1,57$ см

Так как $l/L_E \ll 1$, можно считать, что

$$k_1 \approx \frac{1}{l}, \qquad k_2 \approx -\frac{1}{L_E}.$$

Литература

[1], глава 8, §5,6; [3], §3; [4], глава 5; [6], глава 9, §11.

4. ЭФФЕКТ ХОЛЛА В ПОЛУПРОВОДНИКАХ

Если в полупроводнике течет ток, то помещение его в магнитное поле приведет к появлению э.д.с. на поверхностях, перпендикулярных направлению вектора напряженности магнитного поля. Этот эффект называется эффектом Холла. Так как в однородном и изотропном полупроводнике, находящемся под действием электрического поля \vec{E} и слабого магнитного поля \vec{H} , перпендикулярного \vec{E} имеется два вида зарядов, то можно определить плотности тока носителей следующим образом:

$$\vec{j}_n = ne\mu_n \left\{ \vec{E} \left[1 - \eta_n \left(\frac{\mu_{nH} H}{c} \right)^2 \right] - \frac{\mu_{nH}}{c} \left[\vec{E} \times \vec{H} \right] \right\},$$
(4.1)

$$\vec{j}_p = p e \mu_p \left\{ \vec{E} \left[1 - \eta_p \left(\frac{\mu_{pH} H}{c} \right)^2 \right] + \frac{\mu_{pH}}{c} \left[\vec{E} \times \vec{H} \right] \right\}.$$
(4.2)

Где μ_{nH} и μ_{pH} – холловские подвижности, а η_n и η_p – константы, зависящие от длин свободного пробега носителей энергии. Магнитное поле считается слабым, если выполняются условия $\mu_{nH}H/c \ll 1$ и $\mu_{nH}H/c \ll 1$, тогда

приведенных формулах, можно отбросить члены выше второго порядка.

На рис. 4 напряжение Холла возникает между боковыми торцами образца $V_{\rm H}$, холловское поле $E_{\rm y}$ действует в направлении оси у. Отношение

$$R = \frac{cE_y}{j_x H} \tag{4.3}$$

Называется постоянной Холла (j_x – плотность тока вдоль оси x). Связь между E_x и j_x имеет вид

$$j_x = (\sigma_0 + \Delta \sigma) E_x, \qquad (4.4)$$

где σ_0 – проводимость при H = 0, $\Delta \sigma$ - относительное изменение проводимости , которое в слабом магнитном поле выражается следующим образом:

$$-\frac{\Delta\sigma}{\sigma_0} = \xi R_0^2 \sigma_0^2 \frac{H^2}{c^2}.$$
(4.5)

Где R_0 – значение постоянной Холла при $H \to 0$, а ξ – коэффициент магнетосопротивления.

В случае неоднородного невырожденного полупроводника (*n* и *p* зависят от координат) в формуле (4.1) следует заменить

$$\vec{E} \to \vec{E}_n^* = \vec{E} + \frac{kT}{e} \operatorname{grad} \ln n ,$$
 (4.1a)

а в формуле (4.2)

$$\vec{E} \to \vec{E}_p^* = \vec{E} - \frac{kT}{e} \operatorname{grad} \ln p$$
. (4.2a)

Если магнитное поле велико, то соотношения (4.1)и (4.2) можно переписать следующим образом:

$$\vec{j}_n = \frac{ne\mu_n}{1 + \left(\frac{\mu_n H}{c}\right)^2} \left\{ \vec{E} - \frac{\mu_n}{c} \left[\vec{E} \times \vec{H}\right] \right\},\tag{4.6}$$

$$\vec{j}_{p} = \frac{pe\mu_{p}}{1 + \left(\frac{\mu_{p}H}{c}\right)^{2}} \left\{ \vec{E} + \frac{\mu_{p}}{c} \left[\vec{E} \times \vec{H}\right] \right\}.$$
(4.7)

Если грань образца осветить, то возникает поток носителей, отклоняемый магнитным полем, возникает без приложения внешнего поля E_x (рис. 5). Если одна грань изолированного прямоугольного образца освещается светом, возникают то неравновесные пары электронов и дырок,

Рис.5

неравномерно распределенные по объему. В направлении оси х создаются

диффузионные потоки, а под влиянием магнитного поля, отклоняющего их вдоль оси *у*, возникает напряжение фотоэлектромагнитного эффекта(ФЭМ) $V_{\phi_{\mathcal{F}M}}$ между торцами образца, перпендикулярными оси *у*. В стационарных условиях при достаточно больших размерах образца можно записать:

$$\operatorname{rot} \vec{E} = 0, \qquad \frac{dE_{y}}{dx} = 0,$$

т. е. поле *E_y* постоянно везде. Рассматриваемую систему можно описать уравнениями:

$$\frac{1}{e}\operatorname{div}\vec{j}_{n} = \frac{\Delta n}{\tau_{n}} = \frac{\Delta p}{\tau_{p}} = -\frac{1}{e}\operatorname{div}\vec{j}_{p}, \qquad (4.8)$$

$$j_{nx} + j_{px} = 0. (4.9)$$

Для данных выражений справедливо, что изменение заполнения уровней прилипания пропорционально избыточным концентрациям. При малых магнитных полях можно в выражениях для плотностей тока

$$\vec{j}_n = \vec{j}_n^* - \frac{\mu_{nH}}{c} \left[\vec{j}_n^* \times \vec{H} \right], \qquad \vec{j}_n^* = ne\mu_n \vec{E} + eD_n \operatorname{grad} n, \qquad (4.10)$$

$$\vec{j}_p = \vec{j}_p^* + \frac{\mu_{pH}}{c} \left[\vec{j}_p^* \times \vec{H} \right], \qquad \vec{j}_p^* = pe\mu_p \,\vec{E} - eD_p \,\text{grad}\,p \tag{4.11}$$

пренебречь в первом приближении членами с H. Определим Δn , Δp , решив одномерную задачу с граничными условиями (генерации на поверхности)

$$g = -\frac{1}{e}j_{nx} + s_0\Delta n, \qquad x = 0;$$
$$0 = \frac{1}{e}j_{nx} + s_d\Delta n, \qquad x = d.$$

Теперь плотность тока ФЭМ-эффекта j_y (или поле ФЭМ-эффекта E_y при $\int_{0}^{d} j_y dx = 0$) можно найти из уравнения

$$j_{y} = eE_{y}\left(n\mu_{n} + p\mu_{p}\right) + \frac{eH\left(\mu_{nH} + \mu_{pH}\right)}{c}D_{n}^{*}\frac{dn}{dx}.$$
(4.12)

Где $n = n_0 + \Delta n$, D – коэффициент биполярной диффузии (3.14) и

$$D_n^* = D \frac{n\tau_p + p\tau_n}{\tau_n(n+p)}.$$
(4.13)

Примеры решения задач

Задача 1. В образце п-типа плотность тока вдоль оси x (см. рис. 4) есть $j_x = 0,1$ А/см². Магнитное поле по оси z H = 796 А/см. В условиях рассеяния на колебаниях решетки $\mu_{nH} = 1,18\mu_n$. Определить холловское напряжение V_H и постоянную R, если $n_0 = 10^{15}$ см⁻³ и размер образца в направлении y равен a = 0,5 см.

Решение.

Напряжение V_H и поле E_y определяются из условия $j_y = 0$. Пренебрегая в уравнении (4.1) членами порядка H^2 , получаем

$$j_x = en_0\mu_n E_x,$$

$$j_y = 0 = en_0\mu_n \left(E_y + \frac{\mu_{nH}}{c}E_xH\right).$$

Отсюда

$$E_{y} = -\frac{\mu_{nH}H}{c}E_{x} = -\frac{\mu_{nH}H}{c}\frac{j_{x}}{en_{0}\mu_{n}}$$

И

$$R = -\frac{\mu_{nH}}{\mu_n} \frac{1}{n_0 e} = 7,38 \cdot 10^3 \text{ см}^3/\text{Кл},$$
$$V_H = -\frac{\mu_{nH}}{\mu_n} \frac{aj_x H}{n_0 ec} = 3,7 \cdot 10^{-3} \text{ B}.$$

Задача 2. При наложении на образец р-типа магнитного поля

 H_z = 3180 А/см, поперечного направлению тока, сопротивление увеличилось на 0,22%. Определить коэффициент магнетосопротивления ξ_p и коэффициент η_p (в формулах (4.1) и (4.2)), если μ_{pH} = 2240 см²/В·с.

Решение.

Из уравнения (4.2), в пренебрежении членами порядка H^3 , следует

$$E_{y} = \beta E_{x}, \qquad j_{px} = pe\mu_{p}E_{x}\left[1-\beta^{2}(\eta_{p}-1)\right],$$

где $\beta = \mu_{pH} H / c$.

Отсюда ввиду малости относительного изменения $ho = 1/\sigma$

$$-\frac{\Delta\sigma}{\sigma_0} = \frac{\Delta\rho}{\rho_0} = (\eta_p - 1)\beta^2, \qquad \beta^2 = \left(\frac{\mu_{pH}H}{c}\right)^2 = 8 \cdot 10^{-3}$$

и $\eta_p = 1,3$. По формуле (4.3) $R_0 = \frac{c\beta}{\sigma_0 H}$, поэтому $R_0^2 \sigma_0^2 \frac{H^2}{c^2} = \beta^2$ и, согласно

определению (4.5)

$$\xi_p = \eta_p - 1 = 0,3.$$

Задача 3. Определить постоянную Холла в InSb при 300 К, содержащем акцепторы в концентрации $N_a = 5 \cdot 10^{16}$ см⁻³, если отношение холловских подвижностей к дрейфовым равно 1,18; $\mu_n/\mu_p = 80$. Магнитное поле слабое, $n_i = 1, 6 \cdot 10^{16}$ см⁻³, акцепторы считать полностью ионизированными.

Решение.

Возьмем у-компоненту суммы уравнений (4.1) и (4.2):

$$0 = j_{ny} + j_{py} = e(n\mu_n + p\mu_p)E_y + e(n\mu_n\mu_{nH} - p\mu_p\mu_{pH})\frac{E_xH}{c}.$$

Отсюда

$$E_{y} = \frac{p - nb^{2}}{p + nb} \frac{\mu_{nH}H}{c} E_{x}.$$

По формуле (4.3)

$$R = \frac{cE_{y}}{\sigma_{0}E_{x}H} = \frac{cE_{y}}{H(ne\mu_{n} + pe\mu_{p})E_{x}} = \frac{cE_{y}}{HE_{x}}\frac{1}{e\mu_{p}(p+nb)} = \frac{p-nb^{2}}{(p+nb)^{2}}\frac{\mu_{pH}}{\mu_{p}}\frac{1}{e}.$$

Определим р и п из условия нейтральности:

$$p = n + N_a = \frac{n_i^2}{p} + N_a$$

Отсюда

$$p = \frac{N_a}{2} + \sqrt{\frac{N_a^2}{4} + n_i^2} = 5,47 \cdot 10^{16} \text{ cm}^{-3}.$$

Знак корня отвечает условию p > 0

$$n = 0,47 \cdot 10^{16} \text{ cm}^{-3}$$
.

Окончательно получаем

$$R = -1190 \text{ см}^3/\text{Кл}.$$

Задача 4. Определить напряжение ФЭМ-эффекта между торцами массивного кубического образца, если $\beta = 0.07$, максимальная концентрация избыточных носителей (на поверхности) $\Delta n(0) = 10^{14}$ см⁻³, образец п-типа, $\rho_0 = 1.6$ Ом·см, $D_p = 45$ см²/с, b = 2.1.

Решение.

Интегрируя уравнение (4.12) по x от x = 0 до x = d (см. рис. 5), получим

$$0 = \sigma_0 E_y d + \frac{eH(\mu_{nH} + \mu_{pH})}{c} D_p \Delta n(0).$$

Так как образец – куб, то $E_y d = V_{\phi \ni M}$, и

$$V_{\phi \ni M} = -\rho_0 e \beta (1+b) D_p \Delta n(0) = 2,5 \cdot 10^{-4} \text{ B}.$$

Литература

[2], глава 5, §2,3; [3], §4; [4], глава 11; [6], глава 6, §4.

5. ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ

Наличие на поверхности полупроводника поверхностных состояний приводит к образованию двойного слоя электрического заряда. В зависимости от того, являются ли они акцепторами или донорами, поверхность заряжается отрицательно или положительно. При этом в приповерхностной области возникает слой объемного заряда. Возникающее электрическое поле вызывает изгиб энергетических зон вверх, в случае акцепторных состояний, и вниз, в случае донорных поверхностных состояний;

$$E_{c}(\vec{r}) = E_{c0} - e\varphi(\vec{r}),$$

$$E_{v}(\vec{r}) = E_{v0} - e\varphi(\vec{r}).$$
(5.1)

В области объемного заряда концентрации электронов и дырок зависят от координат. Для невырожденных полупроводников эти зависимости имеют вид

$$n(\vec{r}) = N_c e^{\frac{F - E_{c0} + e\varphi(\vec{r})}{kT}} = n e^{\frac{e\varphi(\vec{r})}{kT}},$$

$$p(\vec{r}) = N_v e^{\frac{E_{v0} - F - e\varphi(\vec{r})}{kT}} = p e^{\frac{-e\varphi(\vec{r})}{kT}}.$$
(5.2)

Для определения электростатического потенциала $\varphi(\vec{r})$ следует решить уравнение Пуассона с граничными условиями, определяемыми условиями задачи:

div
$$\vec{D} = 4\pi\rho$$
, $\vec{D} = \varepsilon\vec{E} = -\varepsilon \operatorname{grad} \varphi$, (5.3)

где ρ – объемная плотность заряда, ε – диэлектрическая проницаемость,

$$\rho = e \left[N_{\partial}^{+}\left(\vec{r}\right) - N_{a}^{-}\left(\vec{r}\right) + p\left(\vec{r}\right) - n\left(\vec{r}\right) \right], \qquad (5.4)$$

величины $n(\vec{r})$ и $p(\vec{r})$ определяются формулами (5.2), а концентрации ионизованных доноров и акцепторов в области пространственного заряда вычисляются по формулам:

$$N_{\partial}^{+} = \frac{N_{\partial}}{1 + e^{\frac{F - E_{\partial} + e\varphi(\vec{r})}{kT}}},$$

$$N_{a}^{-} = \frac{N_{a}}{1 + e^{\frac{E_{a} - F - e\varphi(\vec{r})}{kT}}}.$$
(5.5)

Где $E_a = E_a^* + kT \ln g_a$, $E_{\partial} = E_{\partial}^* + kT \ln g_{\partial}$, E_a^* и E_{∂}^* – энергии акцепторных и донорных уровней в объеме полупроводника, g_a и g_{∂} – кратности вырождения акцепторного и донорного уровней.

Ширина области пространственного заряда характеризуется длиной экранирования, или дебаевской длиной L_D . Для электронного полупроводника она равна

$$L_D = \sqrt{\frac{\varepsilon kT}{4\pi e^2 n}},\tag{5.6}$$

для собственного полупроводника

$$L_D = \sqrt{\frac{\varepsilon kT}{8\pi e^2 n_i}} \tag{5.7}$$

Если нет внешнего электрического поля, то полупроводник в целом нейтрален. Условие электронейтральности для одномерного полубесконечного полупроводникового образца (этот случай и будет рассматриваться в дальнейшем) с поверхностью при x = 0 ($0 \le x \le \infty$) имеет вид

$$\int_{0}^{\infty} \rho(x) dx + Q_s = 0, \qquad (5.8)$$

где Q_s – поверхностная плотность заряда в поверхностных состояниях.

Избыточные концентрации электронов и дырок в слое пространственного заряда вычисляются по формулам:

$$\Delta N = \int_{0}^{\infty} \left[n(x) - n \right] dx, \qquad \Delta P = \int_{0}^{\infty} \left[p(x) - p \right] dx, \qquad (5.9)$$

где *п* и *р* – концентрации электронов и дырок в объеме.

Поверхностная проводимость G определяется как

$$G = e\mu_n^* \Delta N + e\mu_p^* \Delta P, \qquad (5.10)$$

где μ_n^* и μ_p^* – эффективные подвижности электронов и дырок в слое пространственного заряда. Часто полагают, что они равны значениям подвижности в объеме образца.

Примеры решения задач

Задача 1. Определить форму зон, если к полупроводнику с собственной проводимостью нормально к его поверхности приложено постоянное электрическое поле E (рис. 6), настолько слабое, что везде в полупроводнике $\frac{e \cdot \varphi}{kt} \ll 1$. Найти скачок потенциала на поверхности, если E = 160B/см, $n_i = 2,0 \cdot 10^{13}$ см⁻³, $\varepsilon = 16$, T = 300 K.

Решение.

Запишем уравнение Пуассона

$$\frac{\partial^2 \varphi}{\partial x^2} = -\frac{4\pi\rho}{\varepsilon},$$

$$\rho = e \Big[p(x) - n(x) \Big],$$
(1)

где

$$p(x) = n_i e^{\frac{-e\varphi(x)}{kT}}, \qquad n(x) = n_i e^{\frac{e\varphi(x)}{kT}}.$$

Здесь *n_i* – концентрация электронов (или дырок) в объеме под областью пространственного заряда.

Подставляя (2) в (1), находим

$$\frac{\partial^2 \varphi}{\partial x^2} = -\frac{4\pi e}{\varepsilon} n_i \left(e^{-\frac{e\varphi(x)}{kT}} - e^{\frac{e\varphi(x)}{kT}} \right) \approx \frac{8\pi e^2 n_i}{\varepsilon kT} \varphi.$$

Поскольку

$$L_D = \sqrt{\frac{\varepsilon kT}{8\pi e^2 n_i}},$$

получаем

$$\frac{\partial^2 \varphi}{\partial x^2} - \frac{\varphi}{L_D^2} = 0.$$
(3)

Так как потенциал определен с точностью до константы, мы можем считать его равным нулю в глубине образца. Далее, нормальная составляющая вектора электрической индукции должна быть непрерывна (нет поверхностных зарядов). Поэтому граничные условия имеют вид (см. рис. 6)

$$\begin{cases} \varphi = 0, & x \to \infty, \\ E = -\varepsilon \frac{d\varphi}{dx}, & x = 0. \end{cases}$$

Решение уравнения (3) имеет вид

$$\varphi(x) = C_1 e^{\frac{x}{L_D}} + C_2 e^{\frac{x}{L_D}}.$$

Из граничных условий находим

$$C_{2} = 0, \qquad C_{1} = \frac{EL_{D}}{\varepsilon},$$
$$\varphi(x) = \frac{EL_{D}}{\varepsilon} e^{-\frac{x}{L_{D}}}.$$

На основании (5.1) и (4) получаем

$$\begin{cases} E_c = E_{c0} - \frac{eL_D E}{\varepsilon} e^{-\frac{x}{L_D}}, \\ E_v = E_{v0} - \frac{eL_D E}{\varepsilon} e^{-\frac{x}{L_D}}. \end{cases}$$

Скачок потенциала на поверхности равен

$$\Delta \varphi = \frac{EL_D}{\varepsilon} = 0,76 \text{ mB}$$

Задача 2. Найти изменение работы выхода электронов, если на поверхности полупроводника адсорбированы молекулы с дипольным моментом $d = el = 10^{18}$ ед. CGSE и плотностью $N = 10^{12}$ см⁻² (рис. 7).

Полупроводник

Рис. 7.

Решение.

Изменение работы выхода равно величине загиба зон на поверхности

(см. рис. 7):

$$\Delta \Phi = -e\varphi$$

В рассматриваемом случае φ – скачок потенциала двойного слоя $\varphi = 4\pi m$, где m – мощность двойного слоя (m = Nd, d = el, l – плечо дипольной молекулы), т. е.

$$\varphi = 4\pi N d$$

Отсюда

$$\Delta \Phi = -4\pi eNd = -3,78 \cdot 10^{-3}$$
 3B.

Задача 3. Определить заряд в поверхностных состояниях, если к электронному полупроводнику нормально к его поверхности прикладывается постоянное электрическое поле $E = 5 \cdot 10^3$ В/см ($\varphi > 0$) и при этом поверхностная проводимость оказывается равной 10^{-6} Ом⁻¹. Считать, что всюду в полупроводнике выполнено условие $\frac{e \cdot \varphi}{kt} \ll 1$; $n = 5 \cdot 10^{14}$ см⁻³, $\varepsilon = 16$, $\mu^* = \mu_n = 3800$ см²/В·с, T = 300 К. Считать доноры в полупроводнике полностью ионизированными.

Решение.

Граничное условие в точке x = 0 к уравнению Пуассона имеет вид

$$4\pi Q_s = \varepsilon_1 E_1 - \varepsilon_2 E_2, \tag{1}$$

где $E_1 = E$ – внешнее электрическое поле, $\varepsilon_1 = 1$,

$$E_2 = -\frac{d\varphi}{dx}\Big|_{x=0}, \qquad \varepsilon_2 = \varepsilon = 16.$$

Уравнение Пуассона записывается в виде

$$\frac{\partial^2 \varphi}{\partial x^2} = -\frac{4\pi\rho}{\varepsilon}, \qquad \rho = e \left(n - n e^{\frac{e\varphi}{kT}} \right),$$
где $n = N_{\phi}$, или, поскольку $\frac{e \cdot \varphi}{kt} \ll 1$,

$$\frac{\partial^2 \varphi}{\partial x^2} \approx \frac{4\pi e^2 n \varphi}{\varepsilon kT} = \frac{\varphi}{L_D^2}.$$

Интегрируя это уравнение с граничными условиями

$$\begin{cases} x = 0, & \varphi = \varphi_s, \\ x \to \infty, & \varphi \to 0, \end{cases}$$

находим

$$\varphi = \varphi_s e^{-\frac{x}{L_D}},$$

откуда

$$\int_{0}^{\infty} \varphi dx = \varphi_{s} L_{D}.$$
 (2)

Запишем выражение для поверхностной проводимости:

$$G = e\mu_n \int_0^{\infty} \left[n(x) - n \right] dx + e\mu_p \int_0^{\infty} \left[p(x) - p \right] dx.$$

Вторым слагаемым здесь можно пренебречь, поскольку *n* » *p* и *n*(*x*) » *p*(*x*)(зоны загнуты вниз). Используя формулу (2), получим

$$G = e\mu_n n \int_0^\infty \frac{e\varphi}{kT} dx = e\mu_n n \frac{e\varphi_s}{kT} L_D.$$

Отсюда

$$\varphi_s = \frac{G\frac{kT}{e}}{e\mu_n nL_D} = \frac{4\pi GL_D}{\epsilon\mu_n} = 3.9 \cdot 10^{-3} \text{ B}.$$

Заряд в поверхностных состояниях найдем из граничного условия (1):

$$Q_s = eN = \frac{E - \varepsilon \frac{\varphi_s}{L_D}}{4\pi},$$

откуда

$$N = 1, 1 \cdot 10^9 \text{ cm}^{-2}.$$

Задача 4. Определить скорость поверхностной рекомбинации *s* для

тонкой и длинной пластины, длина и ширина которой много больше ее толщины 2a = 0,5 мм. Скорости поверхностной рекомбинации для обеих сторон пластины одинаковы. Эффективное время жизни неравновесных носителей в пластине $\tau_1 = 125$ мкс, объемное время жизни, измеренное для толстого образца, равно $\tau_p = 250$ мкс. Использовать условие $\frac{sa}{D_p} \ll 1$.

Решение.

Вычислим изменение со временем концентрации избыточных носителей после выключения источника генерации, который равномерно освещал образец:

$$\frac{\partial \Delta p}{\partial t} = -\frac{\Delta p}{\tau_p} - \operatorname{div} \vec{j}_p, \qquad \vec{j}_p = -D_p \operatorname{grad} \Delta p.$$
(1)

Граничные условия таковы:

$$D_p \frac{d\Delta p}{dx} = \mp s \Delta p \quad \text{при} \quad x = \pm a \tag{2}$$

(ось х направлена перпендикулярно поверхности пластины). Из (1) следует

$$\frac{\partial \Delta p}{\partial t} = D_p \frac{\partial^2 \Delta p}{\partial x^2} - \frac{\Delta p}{\tau_p}.$$
(3)

Уравнение (3) решаем методом разделения переменных

$$\Delta p = \varphi(t)\psi(x). \tag{4}$$

Имеем

$$\frac{\partial \varphi}{\partial t} \psi = D_p \frac{\partial^2 \psi}{\partial x^2} \cdot \varphi - \frac{\varphi \psi}{\tau_p},$$

откуда

$$\frac{\partial \varphi}{\partial t} \cdot \frac{1}{\varphi} + \frac{1}{\tau_p} = D_p \frac{\partial^2 \psi}{\partial x^2} \cdot \frac{1}{\psi} = \text{const}.$$

Эту постоянную обозначим через $-1/\tau_s$ и введем обозначение

$$\frac{1}{\tau} = \frac{1}{\tau_p} + \frac{1}{\tau_s}.$$

Тогда уравнение, зависящее от времени, примет вид

$$\frac{\partial \varphi}{\partial t} \cdot \frac{1}{\varphi} + \frac{1}{\tau} = 0.$$

Его частное решение

$$\varphi(t) = e^{-\frac{t}{\tau}}.$$
 (5)

Уравнение, зависящее от x, имеет вид

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{1}{\tau_s D_p} \psi = 0.$$

Его решение

$$\Psi(x) = A\cos\left(\frac{x}{\sqrt{\tau_s D_p}}\right) + B\sin\left(\frac{x}{\sqrt{\tau_s D_p}}\right).$$
(6)

Решение должно быть симметрично относительно точки x = 0, поскольку по условию задачи обе стороны пластины имеют одинаковые скорости поверхностной рекомбинации. Поэтому B = 0 и из формул (4), (5) и (6) следует

$$\Delta p = A \cos\left(\frac{x}{\sqrt{\tau_s D_p}}\right) e^{-\frac{t}{\tau}}.$$
(7)

Из граничных условий (2) на основании (7) получаем

$$D_p A \sin\left(\frac{a}{\sqrt{\tau_s D_p}}\right) e^{-\frac{t}{\tau}} \frac{1}{\sqrt{\tau_s D_p}} = s A \cos\left(\frac{a}{\sqrt{\tau_s D_p}}\right) e^{-\frac{t}{\tau}},$$

ИЛИ

$$\frac{a}{\sqrt{\tau_s D_p}} \operatorname{tg} \frac{a}{\sqrt{\tau_s D_p}} = \frac{sa}{D_p}.$$

Введем обозначение

$$\eta = \frac{a}{\sqrt{\tau_s D_p}}.$$

Тогда

$$\eta \operatorname{tg} \eta = \frac{sa}{D_p}.$$
(8)

Трансцендентное уравнение (8) имеет бесконечное число корней η (a

следовательно, и τ_s): η_1 , η_2 , ..., причем $\eta_1 < \eta_2 < \eta_3$, ... Решение уравнения (3) может быть записано теперь в виде

$$\Delta p = \sum_{j=1}^{\infty} A_j \cos\left(\frac{x}{\sqrt{\tau_{sj}D_p}}\right) e^{-\frac{t}{\tau_j}}.$$
(9)

Из (9) следует, что слагаемые, соответствующие корням высших порядков, затухают со временем быстрее, чем решение, отвечающее первому корню. Поэтому для не очень малых t (т. е. после начального переходного процесса) всеми слагаемыми, кроме соответствующего первому корню уравнения (8), можно пренебречь. Тогда

$$\frac{1}{\tau_1} = \frac{1}{\tau_p} + \frac{1}{\tau_{s1}},$$

где

$$\frac{1}{\tau_{s1}}=\frac{\eta_1^2 D_p}{a^2}.$$

В случае малых *s*, таких, что $\frac{sa}{D_p}$ « 1, в уравнении (8) для наименьшего корня

можно взять tg $\eta \approx \eta$. Тогда

$$\frac{a^2}{\eta_1^2 D_p} = \frac{sa}{D_p}$$

И

$$s = \frac{a}{\tau_{s1}} = a \left(\frac{1}{\tau_1} - \frac{1}{\tau_p} \right) = 100 \text{ cm/c}.$$

Литература

[1], глава 8, §11,12; [3], §5; [4], глава 8; [5], §32; [6], глава 7, §3.

6. ТЕРМОЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ

При наличии градиента температуры в образце может возникнуть термоэлектрическое поле. Основной характеристикой такого поля является дифференциальная термоэлектродвижущая сила, которую для одного типа носителей заряда можно определить выражением

$$\alpha = \pm \frac{k}{e} \left(\frac{Q^*}{kT} \pm \eta \right). \tag{6.1}$$

где знак совпадает со знаком носителей заряда, $\eta = F/kT$, F – уровень Ферми, Q^* – энергия переноса. В изотропном случае энергия переноса равна

$$Q^* = \frac{q}{\sigma}.$$
 (6.2a)

В последней формуле

$$\sigma = \left\langle \frac{e\tau}{m^*} \right\rangle,\tag{6.3a}$$

$$q = \left\langle \frac{e\tau}{m^*} \cdot E \right\rangle,\tag{6.36}$$

знак $\langle \rangle$ означает интегрирование по энергиям с весом $\frac{k^3(E)}{3\pi^2} \cdot \left(-\frac{\partial f}{\partial E}\right)$:

$$\langle A(E) \rangle = \frac{1}{3\pi^2} \int_0^\infty dE \cdot k^3 (E) \left(-\frac{\partial f}{\partial E}\right) A(E),$$

f – функция Ферми (1.2), *т* – время релаксации, зависящее от квазиимпульса
 (энергии) по закону

$$\tau = \tau_0 \cdot \frac{dE}{dk} \cdot k^{2(r-1)}, \tag{6.4}$$

а m^* – величина, имеющая размерность массы и определяемая соотношением

$$m^* \vec{v} = \hbar \vec{k} \qquad \left(\vec{v} = \frac{1}{\hbar} \nabla_{\vec{k}} E\left(\vec{k}\right) \right). \tag{6.5}$$

Вообще говоря, величина *m*^{*} зависит от энергии, однако в простейшем случае квадратичного закона дисперсии она постоянна и совпадает с эффективной

массой носителей m_d

$$m^* = \hbar^2 k \frac{dk}{dE} \bigg|_{E=F} = m_d$$

В формуле (6.4) величина *r* определяется механизмом рассеяния импульса носителей. При рассеянии носителей на акустических колебаниях решетки - r = 0, при рассеянии на оптических колебаниях решетки - r = 1, при температуре, превышающей температуру Дебая T_D , при $T < T_D - r = 1/2$, а при рассеянии на заряженных примесях - r = 2.

Если в системе имеется несколько типов носителей заряда, то полная термоэдс равна

$$\alpha = \sum_{i} \frac{\sigma_i}{\sigma} \alpha_i, \qquad (6.6)$$

где σ_i и α_i – проводимость и термоэдс, связанные с *i*-м сортом носителей, σ – полная проводимость, и суммирование проводится по всем типам носителей.

При низких температурах в чистых материалах термоэдс может значительно превышать величину, даваемую формулой (6.1), вследствие эффекта увлечения носителей фононами. Для «фононной» составляющей термоэдс в этом случае имеет место выражение

$$\alpha_{\phi} = a \frac{v_s l_{\phi}}{\mu T},\tag{6.7}$$

где v_s – скорость звука, l_{ϕ} – длина свободного пробега фононов, μ – подвижность носителей заряда, a – множитель, определяющий относительный вклад рассеяния на акустических колебаниях в полную вероятность рассеяния носителей. Если все рассеяние носителей происходит на акустических колебаниях решетки, то множитель a порядка единицы.

В магнитном поле термоэдс по-прежнему дается выражением (6.1), в котором

$$Q^* = \frac{\sigma_1 q_1 + \sigma_2 q_2}{\sigma_1^2 + \sigma_2^2},$$
 (6.26)

где

$$\sigma_1 = \left\langle \frac{e\tau}{m^*} \frac{1}{1 + \omega^2} \right\rangle, \qquad \sigma_2 = \left\langle \frac{e\tau}{m^*} \frac{\omega}{1 + \omega^2} \right\rangle, \tag{6.3B}$$

$$q_{1} = \left\langle \frac{e\tau}{m^{*}} E \frac{1}{1 + \omega^{2}} \right\rangle, \qquad q_{2} = \left\langle \frac{e\tau}{m^{*}} E \frac{\omega}{1 + \omega^{2}} \right\rangle, \tag{6.3r}$$
$$\omega = \frac{eH}{m^{*}c} \tau.$$

Здесь мы рассматриваем область не слишком сильных магнитных полей, когда можно пренебречь квантованием энергии электронов в магнитном поле. Условие применимости формул (6.2б), (6.3в) и (6.3г) имеет вид

$$\frac{eH}{m^*c} \le kT$$

Примеры решения задач

Задача 1. Получить выражение для термоэдс в отсутствие магнитного поля для носителей с квадратичным законов дисперсии. Оценить термоэдс типичного металла ($m_{mem} = m_0$, $n_{mem} = 2 \cdot 10^{22}$ см⁻³) при комнатной температуре и сравнить ее с термоэдс вырожденного полупроводника п-типа ($m_{nn} = 0, 2m_0$, $n_{nn} = 2 \cdot 10^{19}$ см⁻³). Считать, что рассеяние в обоих случаях происходит на заряженной примеси.

Решение.

Из формул (6.2а), (6.3а) и (6.3б) получаем

$$Q^* = \frac{\int\limits_{0}^{\infty} dE \cdot \frac{df}{dE} \cdot E^{r+2}}{\int\limits_{0}^{\infty} dE \cdot \frac{df}{dE} \cdot E^{r+1}} = kT(r+2) \cdot \frac{F_{r+1}(\eta)}{F_r(\eta)}.$$
(1)

Отсюда

$$\alpha = -\frac{k}{e} \left[(r+2) \frac{F_{r+1}(\eta)}{F_r(\eta)} - \eta \right].$$

В вырожденном случае выражение для α переходит в следующее

$$\alpha = \frac{\pi^2 k}{3e\eta} (r+1).$$

Для типичного металла, используя значение

$$\frac{k}{e} = 86,3 \text{ MKB/K},$$

получаем

$$\alpha_{_{Mem}} = -8,2$$
 мкВ/К.

Отношение термоэдс металла к термоэдс вырожденного полупроводника равно

$$\frac{\alpha_{\text{mem}}}{\alpha_{\text{nn}}} = \frac{m_{\text{mem}}}{m_{\text{nn}}} \left(\frac{n_{\text{nn}}}{n_{\text{mem}}}\right)^{2/3} = 5 \cdot 10^{-2} \,.$$

Таким образом, вследствие большой концентрации свободных электронов в металлах термоэдс металлов значительно меньше термоэдс полупроводников.

Задача 2. Качественно представить на графике температурную зависимость термоэдс германия р-типа в примесной и собственной областях.

Решение.

Когда температура не слишком велика, так что концентрация дырок много больше концентрации электронов, основной вклад в термоэдс дают дырки (см. формулу (6.6)). В примесной области концентрация дырок p_0 остается почти постоянной, а термоэдс положительна и равна

$$\alpha = \frac{k}{e} \left(\ln \frac{N_{\nu}(T_0)}{p_0} + \frac{3}{2} \ln \frac{T}{T_0} + \frac{Q_p^*}{kT} \right).$$

В этой области термоэдс медленно растет с температурой. В собственной области в термоэдс дают вклад оба типа носителей

$$\alpha = \frac{k}{e} \left(\frac{b-1}{b+1} \frac{E_g}{2kT} + \frac{3}{4} \ln \frac{m_n}{m_p} - \frac{b}{b+1} \frac{Q_n^*}{kT} - \frac{1}{b+1} \frac{Q_p^*}{kT} \right)$$

Здесь b – отношение подвижностей электронов и дырок, а Q_n^* и Q_p^* – энергии переноса для электронов и дырок соответственно. Вплоть до весьма высоких

температур основную роль в круглой скобке играет первый член, и поскольку в германии b > 1, то термоэдс отрицательна и убывает по абсолютной величине при возрастании температуры. Где-то в области промежуточных примесной температур при переходе ОТ проводимости к собственной термоэдс меняет знак. Примерный ход термоэдс представлен на рис. 8.

Рис. 8.

Задача 3. Оценить величину «фононной» составляющей термоэдс германия n-типа при температуре 20 К. В исследуемом образце подвижность электронов в основном определяется рассеянием на акустических колебаниях и равна $4 \cdot 10^5$ см²/В·с, а рассеяние фононов происходит на стенках образца. Поперечные размеры образца порядка 1 мм, а скорость звука $5 \cdot 10^5$ см/с.

Решение.

Поскольку подвижность электронов определяется рассеянием на акустических колебаниях, $a \approx 1$ и, полагая $l_{d} \sim 0.1$ см, из (6.7) получаем

$$\alpha_{\phi} \approx \frac{v_s l_{\phi}}{\mu T} \approx 10 \text{ MB/K}.$$

Задача 4. Измерения термоэдс в полупроводнике р-типа в сильном магнитном поле ($\omega \gg 1$) при комнатной температуре показали, что в исследуемой области полей термоэдс не зависит от магнитного поля и равна 475 мкВ/К. На основе этих измерений найти эффективную массу дырок, если концентрация их равна 5,6·10¹⁷ см⁻³. Закон дисперсии дырок считать квадратичным.

Решение.

Для носителей с квадратичным законом дисперсии из формул (6.26), (6.3в), (6.3г) получаем в случае сильных магнитных полей, когда $\sigma_2 \gg \sigma_1$, $q_2 \gg q_1$,

47

$$Q^* = \frac{q_2}{\sigma_2} = \frac{\int_0^\infty dE \cdot \left(-\frac{df}{dE}\right) \cdot E \cdot k^3(E)}{\int_0^\infty dE \cdot \left(-\frac{df}{dE}\right) \cdot k^3(E)} = \frac{5}{2}kT \cdot \frac{F_{5/2}(\eta)}{F_{3/2}(\eta)}.$$

Отсюда следует, что термоэдс

$$\alpha(\infty) = \frac{k}{e} \cdot \left[\frac{5}{2} \frac{F_{5/2}(\eta)}{F_{3/2}(\eta)} + \eta \right]$$

в области полей $\omega \gg 1$ не зависит от магнитного поля, а также от механизма рассеяния. Последнее обстоятельство делает измерения термоэдс в сильных полях удобных способом определения эффективных масс носителей заряда. Для невырожденного газа

$$\alpha(\infty) = \frac{k}{e} \cdot \left(\frac{5}{2} + \eta\right)$$

Из этой формулы находим $\eta = 3$; таким образом, предположение о том, что дырочный газ невырожден, хорошо оправдано. Зная концентрацию дырок, нетрудно найти эффективное число дырок $N_{\nu} = p \cdot e^{\eta} = 1,18 \cdot 10^{19}$ см⁻³, откуда $m_{\nu} = 0,6m_{0}$.

Литература

[1], глава 6; [2], глава 7, §4; [3], §6; [4], глава 9; [6], глава 6, §3.

7. ФОТОЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ

При освещении полупроводникового образца возможен переход носителей в зону проводимости. При этом даже в отсутствие внешнего электрического поля возможно существование тока, за счет появления фотоэдс. Этот эффект возникает на границе полупроводников с различным типом проводимости. Помимо дембер-эффекта, обусловленного неоднородным распределением избыточных носителей, фотоэдс может еще возникнуть вследствие неоднородности материала полупроводника. Для простоты будем рассматривать только одномерную задачу, когда как равновесные концентрации n_0 и p_0 , так и неравновесные $n = n_0 + \Delta n$ и $p = p_0 + \Delta p$ зависят только от координаты *x*. В этом случае фотоэдс выражается следующим образом:

$$\mathbf{E} = \int dx \frac{D_p \frac{dp}{dx} - D_n \frac{dn}{dx}}{\mu_n n + \mu_p p},$$
(7.1)

где интегрирование ведется вдоль всей цепи, включающей образец. Если справедливы соотношения Эйнштейна (3.7), то

$$\mathbf{E} = \frac{kT}{e} \int dx \frac{\frac{dp}{dx} - b\frac{dn}{dx}}{bn+p}, \qquad b = \frac{\mu_n}{\mu_p}.$$
(7.2)

Можно явно выделить из Е слагаемое E₁ (вентильную фотоэдс), связанное с неоднородностью образца (исходим из формулы (7.2)):

$$\mathbf{E} = \mathbf{E}_{1} + \mathbf{E}_{2},$$

$$\mathbf{E}_{1} = \frac{kT}{e} \int dx \frac{1+b}{bn+p} \Delta n \frac{d \ln n_{0}}{dx},$$
(7.3)

$$\mathbf{E}_2 = \frac{kT}{e} \int dx \frac{1-b}{bn+p} \frac{d\Delta n}{dx}.$$
 (7.4)

Примеры решения задач

Задача 1. Найти фотоэдс в полупроводнике с униполярной проводимостью при произвольной степени вырождения.

Решение.

Рассмотрим полупроводник, например, р-типа. Тогда в формуле (7.1) следует положить n = 0:

$$\mathbf{E} = \int \frac{D_p}{\mu_p} \frac{1}{p} \frac{dp}{dx} dx = \int \frac{D_p}{p\mu_p} dp$$

Подынтегральное выражение есть однозначная функция *p* (сравните с (3.6)), и интеграл по всему контуру тождественно равен нулю, что свидетельствует о существенно биполярном характере фотоэдс.

Задача 2. Вычислить фотоэдс в образце n-Ge при T = 300 K, если его средняя часть (рис. 9) освещена так, что в ней $\Delta \sigma = 0,2$ Om⁻¹cm⁻¹, а вне ее $\Delta \sigma = 0$. В отсутствие освещения удельное сопротивление в сечении В $\rho_{0,B} = 5$ Ом·см.

Решение.

Рис. 9.

Вычислим сначала вентильную фотоэдс E_1 по формуле (7.3), опустив в ней p_0 :

$$E_{1} = \frac{kT}{e} \int_{A}^{B} \frac{b+1}{bn_{0} + (b+1)\Delta n} \frac{\Delta n}{n_{0}} \frac{dn_{0}}{dx} dx = \frac{kT}{e} \Delta n \frac{b+1}{b} \int_{A}^{B} \frac{n_{0}^{-1} dn_{0}}{n_{0} + \frac{b+1}{b}\Delta n} =$$
$$= \frac{kT}{e} \ln \frac{1 + \frac{b+1}{b} \frac{\Delta n}{n_{0,A}}}{1 + \frac{b+1}{b} \frac{\Delta n}{n_{0,B}}} = \frac{kT}{e} \ln \frac{1 + \frac{\Delta \sigma}{\sigma_{0,A}}}{1 + \frac{\Delta \sigma}{\sigma_{0,B}}}.$$

Второе слагаемое E_2 вычислим, разбивая интеграл в (7.4) на два, по двум участкам малой ширины 2 ε вблизи *A* и *B*, где $\frac{d\Delta n}{dx} \neq 0$:

$$\mathbf{E}_{2} = -\frac{kT}{e} \frac{b-1}{b+1} \left[\int_{A-\varepsilon}^{A+\varepsilon} \frac{d\Delta n}{\Delta n + \frac{bn_{0}}{b+1}} + \int_{B-\varepsilon}^{B+\varepsilon} \frac{d\Delta n}{\Delta n + \frac{bn_{0}}{b+1}} \right] =$$

$$= -\frac{kT}{e} \frac{b-1}{b+1} \left[\ln \frac{\Delta n + \frac{bn_{0,A}}{b+1}}{\frac{bn_{0,A}}{b+1}} + \ln \frac{\Delta n + \frac{bn_{0,B}}{b+1}}{\frac{bn_{0,B}}{b+1}} \right] = -\frac{kT}{e} \frac{b-1}{b+1} \ln \frac{1 + \frac{b+1}{b} \frac{\Delta n}{n_{0,A}}}{1 + \frac{b+1}{b} \frac{\Delta n}{n_{0,B}}}$$

Складывая E_1 и E_2 , находим

$$E = \frac{2}{b+1} \frac{kT}{e} \ln \frac{1 + \Delta \sigma \rho_{0,A}}{1 + \Delta \sigma \rho_{0,B}} = 1,17 \cdot 10^{-2} B.$$

Задача 3. Вычислить для случая однородного возбуждения вентильную фотоэдс, возникающую в p-n-переходе в Ge при 75 К. Освещается (рис. 10) участок n-области, прилегающий к p-n-переходу; в нем $\Delta n = 10^{10}$ см⁻³, вне его $\Delta n = 0$. В глубине n-области $n = n_n = 10^{15}$ см⁻³, в p-области $p_p = 10^{14}$ см⁻³; $\mu_n = 3 \cdot 10^4$ см²/В·с; b = 0,5.

Рис. 10.

Решение.

По формуле (7.3) находим

$$E_{1} = \frac{kT}{e} \frac{b+1}{b} \Delta n \int_{-l}^{0} dx \frac{1}{n_{0} \left(n_{0} + \Delta n \frac{b+1}{b}\right)} \frac{dn_{0}}{dx} =$$
$$= \frac{kT}{e} \frac{b+1}{b} \Delta n \int_{n_{n}}^{n_{p}} \frac{dn_{0}}{n_{0} \left(n_{0} + \Delta n \frac{b+1}{b}\right)} = \frac{kT}{e} \ln \frac{n_{p} \left(n_{n} + \Delta n \frac{b+1}{b}\right)}{n_{n} \left(n_{p} + \Delta n \frac{b+1}{b}\right)}.$$

В рассматриваемых условиях (см. таблицу, приложение 2) на основании формулы (1) задачи 2 первого раздела имеем

$$n_i = 10^{-7} \text{ cm}^{-3},$$

 $n_p = \frac{n_i^2}{n_n} = 10^{-29} \text{ cm}^{-3},$
 $\frac{kT}{e} = 6,5 \cdot 10^{-3} \text{ B}.$

В результате получим

$$E_1 \approx -0.11$$
 B.

Задача 4. Вычислить фотоэдс в условиях задачи 2, но при наличии прилипания, считая $\tau_p/\tau_n = 10$.

Решение.

Подобно тому как получаются формулы (7.3) и (7.4) из (7.2), в нашем случае, при $\Delta p = \Delta n \tau_p / \tau_n$, находим

$$E_{1} = \frac{kT}{e} \int dx \frac{b + \tau_{p}/\tau_{n}}{bn_{0} + (b + \tau_{p}/\tau_{n})\Delta n} \frac{\Delta n}{n_{0}} \frac{dn_{0}}{dx},$$
$$E_{2} = \frac{kT}{e} \int dx \frac{\tau_{p}/\tau_{n} - b}{bn_{0} + (b + \tau_{p}/\tau_{n})\Delta n} \frac{d\Delta n}{dx}.$$

Далее, аналогично задаче 2 получаем

$$E_{1} = \frac{kT}{e} \ln \frac{1 + \Delta \sigma \rho_{0,A}}{1 + \Delta \sigma \rho_{0,B}},$$
$$E_{2} = \frac{\tau_{p}/\tau_{n} - b}{\tau_{p}/\tau_{n} + b} \frac{kT}{e} \ln \frac{1 + \Delta \sigma \rho_{0,A}}{1 + \Delta \sigma \rho_{0,B}}$$

Окончательно

$$\mathbf{E} = \mathbf{E}_{1} + \mathbf{E}_{2} = \frac{2\tau_{p}/\tau_{n}}{b + \tau_{p}/\tau_{n}} \frac{kT}{e} \ln \frac{1 + \Delta \sigma \rho_{0,A}}{1 + \Delta \sigma \rho_{0,B}} = 2, 7 \cdot 10^{-2} \text{ B}.$$

Литература

[1], глава 8, §15-17; [2], глава 6, § 5; [3], §7; [4], глава 10; [5], §25; [6]глава 8, §5,7,8.

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

1. Германиевый кристалл, ширина ΔE запрещенной зоны в котором равна 0,72 эВ, нагревают от температуры $t_1 = 0$ °С до температуры $t_2 = 15$ °С. Во сколько раз возрастет его удельная проводимость?

2. При нагревании кремниевого кристалла от температуры $t_1 = 0^\circ$ до температуры $t_2 = 10^\circ$ С его удельная проводимость возрастает в 2,28 раза. По приведенным Данным определить ширину ΔE запрещенной зоны кристалла кремния.

3. р-п-переход находится под обратным напряжением U = 0,1 В. Его сопротивление $R_1 = 692$ Ом. Каково сопротивление R_2 перехода при прямом напряжении?

4. Металлы литий и цинк приводят в соприкосновение друг с другом при температуре T = 0 К. На сколько изменится концентрация электронов проводимости в цинке? Какой из этих металлов будет иметь более высокий потенциал?

5. Сопротивление R_1 р-п-перехода, находящегося под прямым напряжением U=1 В, равно 10 Ом. Определить сопротивление R_2 перехода при обратном напряжении.

6. Найти минимальную энергию W_{min} , необходимую для образования пары электрон—дырка в кристалле CaAs, если его удельная проводимость γ изменяется в 10 раз при изменении температуры от 20 до 3°C.

7. Сопротивление *1* кристалла PbS при температуре $t_1 = 20^{\circ}$ C равно 10^4 Ом. Определить его сопротивление R_2 при температуре $t_2 = 80^{\circ}$ C.

8. Каково значение энергии Ферми *E_F* у электронов проводимости двухвалентной меди? Выразить энергию Ферми в джоулях и электрон-вольтах.

9. Прямое напряжение *U*, приложенное к p-n-переходу, равно 2 В. Во сколько раз возрастет сила тока через переход, если изменить температуру от $T_1 = 300$ К до $T_2 = 273$ К?

53

ЛИТЕРАТУРА

1.Смит Р.. Полупроводники. М.: Изд-во иностранной литературы. 1962. 468 с..

2.Иванов Г.А., Лужковский В.Г.. Полупроводники. Л.: ЛГПИ им. А.И.Герцена. 1975. 225 с..

З.Бонч-Бруевич В.Л., Звягин И.П., Карпенко И.В., Миронов А.Г.. Сборник задач по физике полупроводников. М.: изд-во «Наука». 1968. 112 с..

4.Петровский В.И. Электронная теория полупроводников. Минск: изд-во БГУ им. В.И. Ленина. 1973. 264 с..

5.Митрофанов В.В., Фогель В.А.. Физика и химия полупроводников. Л.: изд-во «Судостроение». 1965. 219с..

6. Данлэп У. Введение в физику полупроводников. М.: Изд-во иностранной литературы. 1959. 424 с..

Физика. Методические указания и контрольные задания. Под ред.
 А.Г.Чертова. М.: Высшая школа. 1987. 208 с..

Некоторые свойства интегралов Ферми

Интеграл Ферми $F_i(\eta)$ определяется соотношением

$$F_{j}(\eta) = \frac{1}{\Gamma(j+1)} \int_{0}^{\infty} \frac{\varepsilon^{j} d\varepsilon}{1 + e^{\varepsilon - \eta}}, \qquad (\Pi.1)$$

где $\Gamma(j+1)$ – гамма-функция. В классическом пределе, когда величина η отрицательна и достаточно велика по абсолютной величине,

$$F_j(\eta) \approx e^{\eta} \,. \tag{\Pi.2}$$

Для больших положительных η (в статистике этому соответствует случай почти полного вырождения) имеет место асимптотический ряд

$$F_{j}(\eta) = \frac{\eta^{j+1}}{\Gamma(j+2)} \left(1 + \frac{\pi^{2}}{6\eta^{2}} \frac{\Gamma(j+2)}{\Gamma(j)} + \dots \right). \tag{\Pi.3}$$

Для интеграла Ферми $F_{\frac{1}{2}}(\eta)$ часто бывает полезна следующая приближенная формула:

$$F_{\frac{1}{2}}(\eta) \approx \frac{e^{\eta}}{1+0,27e^{\eta}},$$
 (II.4)

дающая при $\eta \le 1,3$ ошибку, не превосходящую 3 %. При $\eta \ge 1$ приближенная формула

$$F_{\frac{1}{2}}(\eta) = \frac{4\eta^{\frac{3}{2}}}{3\sqrt{\pi}} \left(1 + \frac{1,15}{\eta^2}\right) \tag{\Pi.5}$$

также дает ошибку не более 3 %. Таким образом, приближенные формулы (П.4) и (П.5) перекрывают весь интервал значений от случая сильного вырождения до невырожденного классического случая.

Для оценки интегралов, содержащих функцию Ферми или ее производные, в случае сильного вырождения часто используется разложение

$$F_{j}(\eta) = \int_{-\infty}^{\infty} d\varepsilon \frac{dG(\varepsilon)}{d\varepsilon} \frac{1}{1 + e^{\varepsilon - \eta}} = -G(\infty) + G(\eta) + \frac{\pi^{2}}{6} \frac{d^{2}G(\eta)}{d\eta^{2}} + \cdots$$
(II.6)

Здесь $G(\varepsilon)$ – произвольная функция энергии, плавная вблизи точки $\varepsilon = \eta$.

	<i>Е_g</i> , эВ	m_{dn}/m_0	m_{dp}/m_0	μ_n , cm ² /B·c	μ_p , cm ² /B·c
Ge	0,74	0,56	0,37	3800	1800
Si	1,16	1,08	0,59	1450	500
InSb	0,22	0,013	0,4	78000	750
InAs	0,43	0,023	0,41	33000	460
InP	1,40	0,067		4600	150
GaSb	0,80	0,047	0,23	4000	1400
GaAs	1,52	0,068	0,5	8800	400

Некоторые параметры полупроводниковых материалов

Примечание 1. В таблице приведены значения ширины запрещенной зоны при 77 К, полученные из оптических измерений.

Примечание 2. В таблице приведены значения подвижностей электронов и дырок при комнатной температуре (300 К).

Сведения об авторах

Елена Александровна Ванина

И.о. зав. Кафедрой теоретической и экспериментальной физики АмГУ, канд. Физ.-мат. наук, доцент;

Валентин Сергеевич Темников

Ассистент кафедры теоретической и экспериментальной физики АмГУ;

Ирина Борисовна Копылова,

Доцент кафедры теоретической и экспериментальной физики АмГУ, канд. физ.-мат. наук.