Федеральное агентство по образованию РФ Государственное образовательное учреждение высшего профессионального образования АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГОУВПО «АмГУ»

	УТВЕРЖДАЮ
И.о. з	вав. кафедрой АПП и Э
	А.Н. Рыбалев
« <u></u> » _	2010г.

Энергетический факультет

Кафедра «Автоматизация производственных процессов и электротехники»

Учебно-методический комплекс дисциплины

КОНТРОЛЬ И РЕГУЛИРОВАНИЕ ТЕХНОЛОГИЧЕСКИХ ПАРАМЕТРОВ

для специальности <u>22.03.01 «Автоматизация технологических процессов и производств»</u>

Составитель: старший преподаватель Редозубов Р. Д.

Благовещенск 2010 г.

Печатается по решению редакционно-издательского совета энергетического факультета Амурского государственного университета.

Р.Д. Редозубов

Учебно-методический комплекс по дисциплине «Контроль и регулирование технологических параметров» для студентов очной формы обучения по специальности 22.03.01 - «Автоматизация технологических процессов и производств». – Благовещенск. Амурский государственный университет, 2010.

Учебно-методические рекомендации ориентированы на оказание помощи студентам очной формы обучения по специальности <u>22.03.01</u> – «Автоматизация технологических процессов и производств» для формирования знаний при изучении курса «Контроль и регулирование технологических параметров».

- © Амурский государственный университет, 2010
- © Кафедра автоматизации производственных процессов, 2010
- © Редозубов Роман Дмитриевич, 2010

СОДЕРЖАНИЕ

Предисловие	4
1. Рабочая программа дисциплины	5
2. План-конспект лекций	23
3. Самостоятельная работа студентов. Темы рефератов	28

ПРЕДИСЛОВИЕ

Учебно-методичес	кий комплек	с дисп	циплины ‹	«Контр	ОЛЬ И	і регу	лирование
технологических	параметров»	для с	пециально	сти 22	20301	«Авто	матизация
технологических	процессов	и про	изводств»	сост	авлен	на	основании
Государственного	образовате	ельного	стандар	та 1	и Уч	чебног	о плана
специальности 220	0301.						

,	жден на заседа. тротехники	нии кафедры автомати	изации производственных процессов и	
« <u> </u>		2010 г., проток	сол №	
И.о.	заведующего к	афедрой	А.Н. Рыбалев	
СОГ	ГЛАСОВАНО		СОГЛАСОВАНО	
Нача	альник УМУ		Председатель УМС факультета	
	(подпис	Г.Н. Торопчина	Ю.В. Мясоедов (подпись, И.О.Ф.)	•
··	<u>»</u>		«»2010 г.	
СОГ	ГЛАСОВАНО			
Заве	дующий выпуска	ающей кафедрой		
	(полпис	А.Н. Рыбалёв ъ. И.О.Ф.)		
« <u> </u>	»	2010 г.		

Федеральное агентство по образованию Российской Федерации Амурский государственный университет

	УТВЕРЖДА	Ю
Проректор	по учебной рабо	те
	В.В. Прокази	H
	*	
« »	20	Γ.
		_

РАБОЧАЯ ПРОГРАММА

по дисциплине <u>«Контроль и регулирование технологических параметров»</u> для специальности <u>22.03.01 «Автоматизация технологических процессов и</u> производств»

Курс	5	Семестр	9
Лекции (час.)	28 час.	Зачет	9
Практические	14 час.		
(семинарские)			
занятия (час.)			
СРС (час.)	58 час.		
Всего часов	100		

Составитель <u>Р.Д.Редозубов, ст. преподаватель кафедры автоматизации производственных процессов и электротехники (И.О.Ф., должность, ученое звание)</u>

Факультет Энергетический

Кафедра автоматизации производственных процессов и электротехники

2010 г.

Рабочая программа составлена на основании <u>учебного плана специальности</u> 22.03.01 «Автоматизация технологических процессов и производств»

Рабочая программа	а обсуждена на засе	едании кафедры <u>автоматизации</u>
производственных	процессов и элект	отехники
		л № А.Н. Рыбалев
Рабочая программа технологических п	_	ании УМС <u>22.03.01 «Автоматизация</u> одств»
« <u></u> »	200 г., проток	ол №
Председатель		А.Н. Рыбалев
СОГЛАСОВАНО Начальник УМУ (подпись, И.О.Ф.) «»		СОГЛАСОВАНО Председатель УМС факультета <u>Ю.В. Мясоедов</u> (подпись, И.О.Ф.) «»20 г.
СОГЛАСОВАНО Заведующий выпус ———————————————————————————————————	А.Н. Рыбалев	

ЦЕЛИ И ЗАДАЧИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ

Цель изучения дисциплины «Контроль и регулирование технологических параметров» заключается в формировании у студентов знаний и умений синтеза систем автоматического контроля, регулирования и управления на основе современных методов и средств.

В результате изучения этой дисциплины студент должен знать:

- современные методы получения, передачи и обработки информации о параметрах технологических процессов;
- основные принципы и концепции построения систем автоматического контроля, регулирования и управления;
- методы синтеза систем автоматического контроля, регулирования и управления;
- основные проблемы и перспективы направления развития автоматического контроля и регулирования;

Уметь:

- обосновывать выбор составляющих систем контроля, регулирования и управления;
- осуществлять анализ качества автоматических систем контроля, регулирования и управления;
- осуществлять экономическую оптимизацию контролирующих, регулирующих и управляющих систем;

Изучение данной дисциплины базируется в основном на учебном материале следующих дисциплин: «Метрология», «Электромеханотроника», «Программирование и основы алгоритмизации», (примеры составления и отладка программ), «Технические средства автоматизации», «Диагностика и надежность систем автоматизации», «Проектирование автоматизированных систем» (проектирование локальных АСР и АСУ), «Автоматизация технологических процессов и производств» (разработка локальных АСР и АСУ).

Изучение дисциплины предусматривает широкое применение сети Internet при выполнении самостоятельной работы.

СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

1. ЛЕКЦИОННЫЙ МАТЕРИАЛ (28 часов)

1.1. Контроль и регулирование температуры – 4 часа.

Приборы для измерения температуры. Бесконтактное (инфракрасное) измерение температуры. Система автоматического регулирования температуры в плавильной печи с тепловизорным датчиком температуры и управляемым выпрямителем для питания ТЭН. Оборудование для управления температурой технической установки (нагревательные элементы, холодильные установки), непосредственное и косвенное воздействие (регулирование подачи теплоносителя и хладагента).

1.2. Контроль и регулирование расхода – 4 часа.

Жидкие и газообразные среды. Расходомеры постоянного перепада давления: грузопоршневые, вихревые, ультразвуковые, на эффекте Физо-Френеля, на эффекте Доплера, на основе магнито-ядерного резонанса. Расходомеры переменного перепада давления. Средства дросселирования и дозирования: насосы и вентиляторы, регулирующие клапаны, золотники, заслонки, шиберы. Сыпучие среды. Средства прямого измерения расхода (крыльчатки, отклоняемые пластины). Изменение загрузки конвейеров. Дозаторы шнековые и лопастные. Питатели, шиберы. Система регулирования состава комбикорма с регулированием загрузки мельницы.

1.3. Контроль и регулирование давления – 4 часа.

Приборы измерения давления. Способы измерения: манометрический, дифференциальный, пьезокристаллический. Измерение вакуума. Системы регулирования с аккумулирующей емкостью (циклического действия) и система непрерывного действия (дросселирование и дозирование). Компрессорные и гидронасосные установки. Регулирование давления в системе питания пневматического инструмента.

1.4. Контроль и регулирование уровня – 2 часа.

Контроль и регулирование уровня жидких сред. Датчики: поплавковые, емкостные, индуктивные, оптические, манометрические. Непрерывное и циклическое регулирование. Одно-, двух-, трехимпульсные схемы регулирования уровня. Система регулирования уровня водонапорной башни.

1.5. Контроль и регулирование концентрации – 2 часа.

Способы измерения концентрации: кондуктометрический, оптический, тепловой (для газов), концентрация CO_2 , спирта.

1.6. Контроль и регулирование линейных и угловых расстояний и размеров – 2 часа.

Способы: ультразвуковой, оптический. Датчики измерения линейных размеров. Система управления манипулятором с обратной связью по положению.

1.7. Контроль деформаций – 2 часа.

Тензометрический метод измерения деформаций. Электронные весы тензометрического принципа действия.

- 1.8. Контроль и регулирование угловой и линейной скорости 2 часа. Датчики скорости: оптический, индукционный.
- 1.9. Контроль и регулирование вращающего момента 2часа.

Индукционные синхронный и асинхронный измерители вращающего момента.

1.10. Контроль и регулирование развиваемого усилия – 2 часа.

Пьезометрические датчики усилия. Системы управления гидравлическим прессом горячего и холодного штампования.

1.11. Контроль и регулирование электроэнергетических параметров – 2часа.

Контроль электрического напряжения, тока, мощности. Измерительные преобразователи для контроля напряжения и тока.

1.12. Современные каналы передачи данных. Промышленные интерфейсы – 2 часа.

2. ПРАКТИЧЕСКИЕ ЗАНЯТИЯ (14 часов)

- 1.1. Контроль и регулирование температуры 2 час.
- 1.2. Контроль и регулирование расхода 2 час.
- 1.3. Контроль и регулирование давления 1 час.
- 1.4. Контроль и регулирование уровня 1 час.
- 1.5. Контроль и регулирование концентрации 1 час.
- 1.6. Контроль и регулирование линейных и угловых расстояний и размеров 1 час.
 - 1.7. Контроль деформаций 1 час.
 - 1.8. Контроль и регулирование угловой и линейной скорости 1 час.
 - 1.9. Контроль и регулирование вращающего момента 1 час.
 - 1.10. Контроль и регулирование развиваемого усилия 1 час.
- 1.11. Контроль и регулирование электроэнергетических параметров 1 час.
- 1.12. Современные каналы передачи данных. Промышленные интерфейсы 1 час.

Практические занятия проводятся в виде семинаров, на которых студенты докладывают и обсуждают рефераты, подготовленные при выполнении самостоятельной работы.

3. САМОСТОЯТЕЛЬНАЯ РАБОТА (58 часов)

Самостоятельная работа студентов по дисциплине предусматривается в следующих формах:

- подготовка каждым студентом двух рефератов по темам практических занятий;
- подготовка доклада по темам рефератов на практических (семинарских) занятиях с обсуждением проблем и решений по теме наряду с учащимися группы.

Темы рефератов совпадают с темами практических занятий, и выбираются произвольно. Допускается комплексная подготовка рефератов с четким разграничением разделов между учащимися.

Защита реферата производится студентом в следующем порядке:

- реферат сдается преподавателю на предварительную проверку;
- после предварительной проверки преподаватель проводит собеседование с автором по теме реферата;
- доклад (не более 10 мин.) индивидуально или совместно (при комплексном выполнении) перед преподавателем и учащимися группы с последующим обсуждением проблем, решений по данной теме, и ответы на вопросы со стороны преподавателя и учащихся.

Реферат считается зачтенным при выполнении следующих условий:

- в реферате, представленном на предварительную проверку преподавателю, четко представлены проблема и варианты решения контроля и регулирования технологических параметров по заданной теме. Приведен ряд примеров технологических схем систем контроля и регулирования. Представленные современные изделия от производителей, их принцип действия, данные, внешний вид, найденные в справочном материале (включая Internet);
- при предварительном собеседовании с преподавателем учащийся показал знания по теме подготовленного им реферата;
 - на семинарском занятии студент ответил на вопросы,

непосредственно связанные с темой реферата, и предложил решения проблем контроля и регулирования при нераскрытых им вопросах в реферате.

4. ПЕРЕЧЕНЬ И ТЕМЫ ПРОМЕЖУТОЧНЫХ ФОРМ КОНТРОЛЯ ЗНАНИЙ

Промежуточный контроль знаний студентов по дисциплине предусматривает две контрольные точки, оценки по которым выставляются на основе информации о выполнении рефератов, участии в семинарских (практических) занятиях, а также на основе тестирования теоретических знаний, полученных за прошедший период обучения. Предусмотрено тестирование по темам прошедших лекционных занятий.

5. 3A4ET

Для получения зачета по дисциплине студенту необходимо подготовить и защитить рефераты по заданным темам и ответить на два теоретических вопроса из следующего списка.

Вопросы к зачету:

- 1. Характеристика основных способов контроля и регулирования температуры.
- 2. Приборы для измерения температуры. Бесконтактное измерение температуры (инфракрасные ПИП).
- 3. Система автоматического регулирования температуры в плавильной печи.
 - 4. Оборудование для управления температурой технической установки.
- 5. Принципы воздействия на объект регулирование температуры. Непосредственное и косвенное воздействие.
 - 6. Общие принципы контроля и регулирования расхода.
 - 7. Расходомеры постоянного перепада давления.
 - 8. Расходомеры переменного перепада давления.
 - 9. Средства воздействия на расход: дросселирование и дозирование.

- 10. Средства измерения расхода сыпучих сред.
- 11. Изменение загрузки конвейеров. Дозаторы, питатели, шиберы.
- 12. Система регулирования состава комбикорма с регулированием загрузки мельницы.
 - 13. Основные принципы контроля и регулирования давления.
- 14. Способы измерения: манометрический, дифференциальный, пьезокристаллический.
 - 15. Измерение вакуума.
- 16. Системы регулирования давления с аккумулирующей емкостью (циклического действия).
 - 17. Система непрерывного действия (дросселирование и дозирование).
 - 18. Компрессорные и гидронасосные установки.
- 19. Регулирование давления в системе питания пневматического инструмента.
 - 20. Основные принципы контроля и регулирования уровня.
 - 21. Способы контроль и регулирования уровня жидких сред.
- 22. Измерительные преобразователи уровня: поплавковые, емкостные, индуктивные, оптические, манометрические.
- 23. Непрерывное и циклическое регулирование уровня. Одно-, двух-, трехимпульсные схемы регулирования уровня.
 - 24. Система регулирования уровня водонапорной башни.
- 25. Способы измерения концентрации: кондуктометрический, оптический, тепловой (для газов), концентрация CO₂, спирта.
- 26. Способы контроля линейных и угловых расстояний и размеров: ультразвуковой, оптический.
 - 27. Датчики измерения линейных размеров.
- 28. Система управления манипулятором с обратной связью по положению.
 - 29. Тензометрический метод измерения деформаций.
 - 30. Электронные весы тензометрического принципа действия.

- 31. Контроль угловой и линейной скорости. Датчики скорости: оптический, индукционный.
- 32. Индукционные синхронный и асинхронный измерители вращающего момента.
 - 33. Пьезометрические датчики усилия.
- 34. Системы управления гидравлическим прессом горячего и холодного штампования.
- 35. Контроль электрического напряжения, тока, мощности. Измерительные преобразователи для контроля напряжения и тока.
- 36. Современные каналы передачи данных. Промышленные интерфейсы.

УЧЕБНО-МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

- 1. ПЕРЕЧЕНЬ ОБЯЗАТЕЛЬНОЙ (ОСНОВНОЙ) ЛИТЕРАТУРЫ
- 1.1. Овчаренко Н.И. Элементы автоматических устройств энергосистем. М.: Энергоатомиздат, 1995. В 2-х книгах, 250 стр.
- 1.2. Технические средства автоматизации химических производств. Спр. изд./ В.С. Балакирев, Л.А. Барский, А.В. Бугров и др. М.: Химия, 1991. 276 стр.
- 1.3. Бриндли К. Измерительные преобразователи. Справочное пособие: Пер. с англ. М.: Энергоатомиздат, 1991. 144 стр.: ил.

2. ПЕРЕЧЕНЬ ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ

2.1. В.С. Балакирев, А.А. Софиев. Применение средств пневмо- и гидроавтоматики в химических производствах: Учебное пособие для вузов. — М.: Химия, 1984. – 192 стр.

- 2.2. Родионов В.Д.. Терехов В.А.. Яковлев В.Б. . Технические средства автоматизации АСУ ТП. Учеб. пособие для вузов/ Под ред. В.Б. Яковлева. М.: Высшая школа, 1989 стр.
- 2.3. Коновалов Л.И., Петелин Д.П. Элементы и системы
 электроавтоматики: Учебн. пособие для студентов вузов. М.: Высшая школа,
 1980.
- 2.4. К.И. Хансуваров, В.Г. Цейтлин. Техника измерения давления, расхода, количества и уровня жидкости газа и пара. М.: Издательство стандартов, 1989.
- 2.5. В.С. Чистяков. Краткий справочник по теплотехническим измерениям. М.: Энергоатомиздат, 1990.
- 2.6. А.Н. Гордов, О.М. Жагулло, А.Г. Иванова. Основы температурных измерений. М.: Энергоатомиздат,1992.
- 2.7. Н.Г. Фарзане, Л.В. Илясов, А.Ю.Азим-Заде. Технологические измерения и приборы. Учебник для вузов. М.: В.Ш., 1989.

УЧЕБНО-МЕТОДИЧЕСКАЯ (ТЕХНОЛОГИЧЕСКАЯ) КАРТА ДИСЦИПЛИНЫ

Номер недели	Номер темы	Вопросы, изучаемые на лекции	Занятия (номера)		Занятия (номера) Используем Самостоятельная работа ые студентов			Формы контроля
			практич. (семин.)	лаборат.	наглядные и методически е пособия	содержание	час.	
1	2	3	4	5	6	7	8	9
1	1	Контроль и регулирование температуры. Приборы для измерения температуры. Бесконтактное измерение температуры (инфракрасные). Система автоматического регулирования температуры в плавильной печи с тепловизорным датчиком температуры и управляемым выпрямителем для питания ТЭН.				Подготовка рефератов	4	Контрольная точка №1, зачет, сдача и защита рефератов
2	1	Контроль и регулирование температуры. Оборудование для управления температурой технической установки (нагревательные элементы, холодильные установки), непосредственное и косвенное воздействие (регулирование подачи теплоносителя и хладагента).	Контроль и регулирование температуры.			Подготовка рефератов	4	Контрольная точка №1, зачет, сдача и защита рефератов

1	2	3	4	5	6	7	8	9
3	2	Контроль и регулирование расхода. Жидкие и газообразные среды. Расходомеры постоянного перепада давления: грузопоршневые, вихревые, ультразвуковые, на эффекте Физо-Френеля, на эффекте Доплера, на основе магнито-ядерного резонанса. Расходомеры переменного перепада давления. Средства дросселирования и дозирования: насосы и вентиляторы, регулирующие клапаны, золотники, заслонки, шиберы.				Подготовка рефератов	4	Контрольная точка №1, зачет, сдача и защита рефератов
4	2	Контроль и регулирование расхода. Сыпучие среды. Средства прямого измерения расхода (крыльчатки, отклоняемые пластины). Изменение загрузки конвейеров. Дозаторы шнековые и лопастные. Питатели, шиберы. Система регулирования состава комбикорма с регулированием загрузки мельницы.	Контроль и регулирование расхода.			Подготовка рефератов	4	Контрольная точка №1, зачет, сдача и защита рефератов

1	2	3	4	5	6	7	8	9
5	3	Контроль и регулирование давления. Приборы измерения давления. Способы измерения: манометрический, дифференциальный, пьезокристаллический. Измерение вакуума. Системы регулирования с аккумулирующей емкостью (циклического действия) и система непрерывного действия (дросселирование и дозирование). Контроль и регулирование давления. Компрессорные и гидронасосные установки. Регулирование давления в системе питания пневматического инструмента.				Подготовка рефератов	4	Контрольная точка №1, зачет, сдача и защита рефератов
6	4	Контроль и регулирование уровня. Контроль и регулирование уровня жидких сред. Датчики: поплавковые, емкостные, индуктивные, оптические, манометрические. Непрерывное и циклическое регулирование. Одно-, двух-, трехимпульсные схемы регулирования уровня. Система регулирования уровня водонапорной башни.	Контроль и регулирование давления — Контроль и регулирование уровня.			Подготовка рефератов		Контрольная точка №1, зачет, сдача и защита рефератов
7	5	Контроль и регулирование концентрации. Способы измерения				Подготовка рефератов	5	Контрольная точка №2, зачет, сдача и защита рефератов

концентрации:				
кондуктометрический,				
оптический, тепловой (дл	Я			
газов), концентрация СО	2,			
спирта.				

1	2	3	4	5	6	7	8	9
8	6	Контроль и регулирование линейных и угловых расстояний и размеров. Способы: ультразвуковой, оптический. Датчики измерения линейных размеров. Система управления манипулятором с обратной связью по положению.	Контроль и регулирование концентрации. Контроль и регулирование линейных и угловых расстояний и размеров.			Подготовка рефератов	4	Контрольная точка №2, зачет, сдача и защита рефератов
9	7	Контроль деформаций – 2 часа. Тензометрический метод измерения деформаций. Электронные весы тензометрического принципа действия.				Подготовка рефератов	4	Контрольная точка №2, зачет, сдача и защита рефератов
10	8	Контроль и регулирование угловой и линейной скорости. Датчики скорости: оптический, индукционный.	Контроль деформаций. Контроль и регулирование угловой и линейной скорости.			Подготовка рефератов	4	Контрольная точка №2, зачет, сдача и защита рефератов
11	9	Контроль и регулирование вращающего момента. Индукционные синхронный и асинхронный измерители вращающего момента стационарных воздействий.				Подготовка рефератов	4	Контрольная точка №2, зачет, сдача и защита рефератов
12	10	Контроль и регулирование развиваемого усилия. Пьезометрические датчики усилия. Системы управления гидравлическим прессом горячего и холодного штампования.	Контроль и регулирование вращающего момента. Контроль и регулирование развиваемого усилия.			Подготовка рефератов	4	Контрольная точка №2, зачет, сдача и защита рефератов

1	2	3	4	5	6	7	8	9
13	11	Контроль и регулирование				Подготовка	4	Зачет, сдача и защита
		электроэнергетических				рефератов		рефератов
		параметров.						
		Контроль электрического						
		напряжения, тока, мощности.						
		Измерительные						
		преобразователи для						
		контроля напряжения и тока.						
14	12	Современные каналы	Контроль и			Подготовка	5	Зачет, сдача и защита
		передачи данных.	регулирование			рефератов		рефератов
		Промышленные интерфейсы	электроэнергетичес					
			ких параметров.					
			Современные					
			каналы передачи					
			данных.					
			Промышленные					
			интерфейсы.					

Федеральное агентство по образованию РФ Государственное образовательное учреждение высшего профессионального образования АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГОУВП «АмГУ»

Энергетический факультет

Кафедра «Автоматизация производственных процессов и электротехники»

План-конспект лекций по дисциплине

КОНТРОЛЬ И РЕГУЛИРОВАНИЕ ТЕХНОЛОГИЧЕСКИХ ПАРАМЕТРОВ

для специальности <u>22.03.01 «Автоматизация технологических процессов и производств»</u>

Составитель: старший преподаватель Редозубов Р. Р.

Благовещенск 2010 г.

2. ПЛАН-КОНСПЕКТ ЛЕКЦИЙ

ЛЕКЦИОННЫЙ МАТЕРИАЛ -- 28 часов.

- 1. Контроль и регулирование температуры 4 часа.
- 1.1. Контактные методы и средства измерения температуры: манометрический, термоэлектрический, термосопротивления.

Принцип действия, конструкция, диапазон измерения, достоинства и недостатки контактных термометров.

- 1.2. Современные методы и средства повышения точности контактных измерителей температуры.
 - 1.3. Бесконтактные методы и средства измерения температуры.

Пирометры излучения: радиационный, цветовой, фотометрический. Принцип действия, конструкция, диапазон измерения, достоинства и недостатки пирометров.

- 1.4. Тепловизоры. Назначение, принцип действия, конструкция, диапазон измерения, достоинства и недостатки тепловизоров.
- 1.5. Система автоматического регулирования температуры в плавильной печи с тепловизорным датчиком температуры и управляемым выпрямителем для питания ТЭН. Оборудование для управления температурой технических установок (нагревательные элементы, холодильные установки), непосредственное и косвенное воздействие (регулирование подачи теплоносителя и хладагента).
 - 2. Контроль и регулирование расхода 4 часа.
- 2.1. Жидкие и газообразные и сыпучие среды. Объемный и массовый расходы.
- 2.2. Расходомеры постоянного перепада давления: грузопоршневые, вихревые, ультразвуковые, на эффектах Физо-Френеля и Доплера, на основе магнито-ядерного резонанса.
 - 2.3. Расходомеры переменного перепада давления.

- 2.4. Средства дросселирования и дозирования: насосы и вентиляторы, регулирующие клапаны, золотники, заслонки, шиберы.
- 2.5. Средства прямого измерения расхода сыпучих сред (крыльчатки, отклоняемые пластины и др.). Изменение загрузки конвейеров. Шнековые и лопастные дозаторы. Питатели, шиберы. Система регулирования состава комбикорма с регулированием загрузки мельницы.
 - 3. Контроль и регулирование давления 4 часа.
- 3.1. Единицы измерения давления. Шала давлений. Классификация приборов для измерения давлений.
- 3.2. Методы измерения: манометрический, дифференциальный, пьезокристаллический.
 - 3.3. Техника измерение вакуума.
- 3.4. Системы регулирования давления с аккумулирующей емкостью (циклического действия). Системы непрерывного действия (дросселирование и дозирование). Компрессорные и гидронасосные установки. Регулирование давления в системе питания пневматического инструмента.
 - 4. Контроль и регулирование уровня 2 часа.
- 4.1. Контактные методы и средства измерения уровня: поплавковые резистивные, емкостные, индуктивные и манометрические измерители уровня. Их достоинства и недостатки.
- 4.2. Бесконтактные методы и средства измерения уровня: оптические, ультразвуковые и акустические измерители уровня. Их достоинства и недостатки.
 - 4.3. Контроль и регулирование уровня жидких сред.
 - 4.4. Контроль и регулирование уровня сыпучих сред.
- 4.5. Непрерывное и циклическое регулирование. Одно-, двух-, трехимпульсные схемы регулирования уровня. Система регулирования уровня водонапорной башни.

5. Контроль и регулирование концентрации – 2 часа.

Методы измерения концентрации: кондуктометрический, оптический, тепловой (для газов), концентрация CO_2 , спирта.

- 6. Контроль и регулирование линейных и угловых расстояний и размеров 2 часа.
 - 6.1. Методы измерения: ультразвуковой, оптический.
- 6.2. Датчики измерения линейных и угловых размеров. Линейные и поворотные шифраторы.
- 6.3. Система управления манипулятором с обратной связью по положению.
- 6.4. Система установки толщины распиливаемых древесных материалов комбинационным гидроприводом.
 - 7. Контроль деформаций 2 часа.
 - 7.1. Тензометрический метод измерения деформаций.
- 7.2 Проволочные и полупроводниковые тензометры. Вторичные схемы включения тензометров.
 - 7.3. Электронные весы тензометрического принципа действия.
 - 7.4. Резонансно-струнный метод измерения деформаций.
 - 7.5. Системы контроля гидротехнических сооружений (на примере ГЭС).
 - 8. Контроль и регулирование угловой и линейной скорости 2 часа. Датчики скорости: оптический, индукционный.
 - 9. Контроль и регулирование вращающего момента 2часа.
- 9.1. Индукционные синхронный и асинхронный измерители вращающего момента

- 9.2. Гидротрансформаторные измерители для измерения динамического вращающего момента мощных двигателей различных типов.
 - 10. Контроль и регулирование развиваемого усилия 2 часа.
- 10.1. Прямой и косвенный методы измерения развиваемого усилия. Пьезометрические датчики усилия.
- 10.2. Системы управления гидравлическим прессом горячего и холодного штампования.
- 11. Контроль и регулирование электроэнергетических параметров 2часа.
- 11.1. Контроль электрического напряжения, тока, мощности на электрических станциях и подстанциях.
- 11.2. Традиционные измерительные преобразователи измерения напряжения и тока (измерительные трансформаторы). Назначение, варианты применения, режимы работы и схемы их включения.
- 11.3. Современные измерительные преобразователи для контроля напряжения и тока.
- 11.4. Системы АСКУЭ. Особенности построения. Каналы передачи данных АСКУЭ.
- 12. Современные каналы передачи данных. Промышленные интерфейсы 2 часа.
 - 12.1. Требования, предъявляемые к промышленным интерфейсам.
- 12.2. Традиционные промышленные интерфейсы передачи данных (RS-485, RS-422 и др.).
- 12.3. Основы построения промышленных систем контроля и управления, основанные на сетевых технологиях.
 - 12.4. Беспроводные промышленные интерфесы.

Федеральное агентство по образованию РФ Государственное образовательное учреждение высшего профессионального образования АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГОУВП «АмГУ»

Энергетический факультет

Кафедра «Автоматизация производственных процессов и электротехники»

Самостоятельная работа студентов по дисциплине

КОНТРОЛЬ И РЕГУЛИРОВАНИЕ ТЕХНОЛОГИЧЕСКИХ ПАРАМЕТРОВ

для специальности <u>22.03.01 «Автоматизация технологических процессов и производств»</u>

Составитель: старший преподаватель Редозубов Р. Р.

3. САМОСТОЯТЕЛЬНАЯ РАБОТА -- 58 часов.

Самостоятельная работа студентов по дисциплине предусматривается в следующих формах:

- подготовка каждым студентом двух рефератов по темам практических занятий;
- доклады рефератов на практических (семинарских) занятиях с обсуждением проблем и решений по теме наряду с учащимися группы.

Темы рефератов совпадают с темами практических занятий, и выбираются произвольно. Допускается комплексная подготовка рефератов с четким разграничением разделов между учащимися.

Защита реферата производится студентом в следующем порядке:

- реферат сдается преподавателю на предварительную проверку;
- после предварительной проверки преподаватель проводит собеседование с автором по теме реферата;
- доклад (не более 10 мин.) индивидуально или совместно (при комплексном выполнении) перед преподавателем и учащимися группы с последующим обсуждением проблем, решений по данной теме, и ответы на вопросы со стороны преподавателя и учащихся.

Реферат считается зачтенным при выполнении следующих условий:

- в реферате, представленном на предварительную проверку преподавателю, четко представлены проблема и варианты решения контроля и регулирования технологических параметров по заданной теме. Приведен ряд примеров технологических схем систем контроля и регулирования. Представленные современные изделия от производителей, их принцип действия, данные, внешний вид, найденные в справочном материале (включая Internet);
- при предварительном собеседовании с преподавателем учащийся показал знания по теме подготовленного им реферата;
- на семинарском занятии студент ответил на вопросы,
 непосредственно связанные с темой реферата, и предложил решение проблем

контроля и регулирования при нераскрытых им вопросах.

Примерные темы рефератов

- 1. Традиционные и современные методы и средства измерения температуры.
- 2. Бесконтактное измерение температур. Пирометры и тепловизоры.
- 3. Современные расходомеры постоянного перепада давления.
- 4. Измерение расхода сыпучих материалов.
- 5. Современные методы и средства измерения давлений.
- 6. Регулирование давления в коммунальных сетях водоснабжения.
- 7. Техника измерения вакуума.
- 8. Поршневые и ротационные компрессоры. Автоматизация промышленных компрессорных установок.
- 9. Традиционные и современные измерители уровня.
- 10. Автоматическое регулирование уровня воды в водонапорных башнях.
- 11. Традиционные и современные измерители концентрации.
- 12. Обратные связи по положению в станках с ЧПУ. Энкодеры.
- 13. Традиционные и современные тензометрические измерители деформации.
- 14. Контроль состояния плотин гидротехнических сооружений (ГЭС).
- 15. Получение тахометрической информации в электроприводах.
- 16. Методы и средства измерения вращающего момента.
- 17. Регулирование развиваемого усилия в гидравлических прессах.
- 18. Системы автоматического контроля и передачи энергетических параметров на электрических подстанциях.
- 24. Промышленные интерфейсы на основе сетевых технологий.
- 25. Оптико-волоконные каналы передачи данных промышленности.

Литература для выполнения рефератов

- 1. «Современные технологии автоматизации». Научно-технический журнал. http://www.cta.ru/
- 2. «Мир компьютерной автоматизации». Научно-технический журнал. http://www.mka.ru/

- 3. «Контрольно-измерительные приборы и системы». Научно-технический журнал. http://www.kipis.ru/
- 4. «Датчики и системы». Ежемесячный научно-технический и производственный журнал. http://datsys.starnet.ru/
- 5. «Мир автоматизации». Инновационный всеукраинский журнал. http://automationworld.com.ua/
- 6. «Автоматика и Телемеханика» Журнал Российской академии наук. www.ipu.rssi.ru/period/ait/ait.htm
- 7. «Автоматизация в промышленности». Научно-технический журнал. http://avtomprom.narod.ru/
- 8. «Промышленные АСУ и контроллеры». Ежемесячный производственный и научно-технический журнал. http://www.asucontrol.ru/

Материалы Web-сайтов:

- 1. http://www.asutp.ru/— средства и системы компьютерной автоматизации (множество ссылок на производителей оборудования, программного обеспечения систем автоматизации, печатные издания и т.д).
- 2. http://www.siemens.ru/ русскоязычный Web-сайт концерна Siemens.
- 3. http://www.adastra.ru/— Web-сайт компании Adastra (производитель системы Trace Mode).
- 4. http://www.owen.ru/ Web-сайт компании «Овен».
- 5. http://www.zeim.ru/ Web-сайт компании «ЗэиМ» (производитель промышленных контроллеров, в. т. ч. Р130 и другого оборудования для автоматизации).
- 6. http://tecon.ru/ Web-сайт группы компаний «Текон» (производители промышленных контроллеров).
- 7. http://prosoft.ru/ Web-сайт компании ПРОСОФТ, ведущего российского дистрибьютора решений для автоматизации технологических процессов.
- 8. http://www.edu.ru/ Российское образование. Федеральный портал.