Печатается по решению редакционно-издательского совета инженерно-физического факультета Амурского государственного университета

В.Н. Аверьянов

Учебно-методический комплекс по дисциплине «Основы акустики и волновых процессов» для студентов очной формы обучения специальности 010701 «Физика» - Благовещенск: Амурский гос. ун-т, 2007. – 156 с.

Учебно-методические рекомендации ориентированы на оказание помощи студентам очной формы обучения по данной специальности в изучении: закономерностей распространения волн в упругих средах; основных акустических параметров и методов их исследования; особенностей распространения волн в жидких, газообразных и твердых средах; закономерностей отражения и прохождения волн на границе двух сред.

СОДЕРЖАНИЕ

1. Рабочая программа для специальности 010701 «Физика»	3
2. Конспект лекций	10
3. Практические занятия	151
4. Самостоятельная работа студентов	155

Федеральное агентство по образованию РФ Амурский государственный университет

УТВЕРЖДАЮ Проректор по УНР Е.С. Астапова и.о.ф

«__»____2007 г.

РАБОЧАЯ ПРОГРАММА

по основам акустики и волновых процессов

(наименование дисциплины)

для специальности <u>010701 – Физика</u> (шифр и наименование специальности)

Курс <u>3</u> (дневная форма обучения) Семест Лекции <u>36</u> (час.) Практические (семинарские) занятия - <u>18</u> (час.) Самостоятельная работа – <u>36 (</u>час.) Всего часов <u>90 (</u>час.)

Семестр <u>6</u> (дневная форма обучения) Экзамен <u>6 семестр</u> <u>3</u> (час.) Зачет <u>нет</u>

Составитель В.Н. Аверьянов, ассистент (И.О.Ф., должность, ученое звание)

Факультет инженерно-физический

Кафедра БЖД

2007 г.

Рабочая программа составлена на основании Государственного образовательного стандарта ВПО

Рабочая программа обсуждена на заседании кафедры <u>ТиЭФ</u>

/ >>	_2007 г., протоко	л Nº	
аведующий кафед	рой	Е.А. Ванина	
абочая программа	о одобрена на засе	сдании УМС <u>010701 (Физика)</u> (наименование специаль	ности)
>»	_2007 г., протоко	л №	
Іредседатель			
	(подпись, и.О.Ф.)		
абочая программа ротокол № ав кафелрой	переутверждена 	на заседании кафедры от	
абочая программа ротокол № Зав.кафедрой	(подпись, и.о.Ф.) переутверждена 	на заседании кафедры от	Ф.И.О.
Рабочая программа протокол № Зав.кафедрой СОГЛАСОВАНО Іачальник УМУ (подпись, И.О.Ф.)	(подпись, и.о.Ф.) подпись подпись подпись	на заседании кафедры от 	Ф.И.О.

СОГЛАСОВАНО

Заведующий выпускающей кафедрой

(подпись, И.О.Ф.)

«__»____2007 г.

1. Цели и задачи дисциплины

1.1. Цель преподавания дисциплины

Целью дисциплины «Основы акустики и волновых процессов» является создание, на основе ознакомления с общими закономерностями поведения упругих волн в различных акустических средах, первичного теоретического фундамента необходимого для изучения различных акустических явлений, для проведения исследований в различных областях современной акустики, использования акустических методов при исследовании свойств материалов.

1.2. Задачи изучения дисциплины

- выяснение физической сущности волновых процессов;
- установление единого подхода при рассмотрении разнородных акустических явле-

ний;

• выработка "акустической интуиции".

Требования к уровню освоения содержания дисциплины

В результате освоения дисциплины студент должен знать:

- закономерности распространения волн в упругих средах;
- основные акустические параметры и методы их исследования;
- особенности распространения волн в жидких, газообразных и твердых средах;
- закономерности отражения и прохождения волн на границе двух сред. уметь:

• использовать знания, полученные при изучении курсов «Методы математической физики» и «Механики сплошных сред», для описания основных акустических процессов;

• объяснить физическую сущность разных акустических явлений;

• применить полученные знания для решения прикладных задач (изучение свойств материалов, процессов звуковой эмиссии),

• моделировать акустические процессы.

1.3. Перечень дисциплин, усвоение которых студентами необходимо при изучении данной дисциплины

Дисциплина базируется на знаниях, полученных при изучении естественно научных дисциплин «Методы математической физики» и «Механики сплошных сред».

2. Содержание дисциплины

2.1. Наименование тем, их содержание, объем в часах лекционных занятий

Тема 1. Свободные колебания. (4 часа) Незатухающие гармонические колебания систем с одной степенью свободы. Метод векторных диаграмм. Сложение взаимноперпендикулярных колебаний. Фазовый портрет колебательной системы. Негармонические колебания математического маятника. Свободные колебания в диссипативных системах с вязким трением. Затухание колебаний в системах с сухим трением.

Тема 2. Вынужденные колебания. (6 часов) Вынужденные колебания под действием гармонической силы. Режимы медленных, быстрых и резонансных колебаний. Амплитудно-частотные и фазочастотные характеристики. Баллистический режим колебаний. Установление колебаний. Характеристики различных колебательных систем. Параметрические колебания. Автоколебания.

Тема 3. Колебательная система с двумя степенными свободы. (6 часов) Свободные незатухающие колебания в системах с двумя степенями свободы. Нормальные колебания (моды). Парциальные и нормальные частоты. Биения. Понятие спектра колебаний. Методика анализа колебаний 2-х связанных осцилляторов. Затухание колебаний и диссипация энергии. Вынужденные колебания. Резонанс. Колебания систем со многими степенями свободы. Дисперсионное соотношение.

Тема 4. Колебания в системах с большим числом степеней свободы (системы с распределенными параметрами). (8 часов) Распространение возмущений в системе с большим числом степеней свободы. Скорость распространения. Возбуждение волн. Группа волн и ее скорость. Волновое уравнение. Волны в сплошном шнуре. Отражение волн. Возбуждение стоячих волн в шнуре. Моды колебаний. Волны в упругих телах. Поперечные волны. Энергия, переносимая волной. Вектор Умова. Продольные волны. Скорость волн в тонком и толстом стержнях. Отражение и прохождение волн на границах двух сред. Удельное волновое сопротивление.

Тема 5. Волны в жидкостях и газах. Акустические явления. (8 часов) Акустические фононы. Объемные сейсмические волны. Современная модель Земли. Волны Рэлея и Лява. Волны в жидкостях и газах. Звук. Интенсивность звука. Поглощение звука. Излучатели звука. Применение акустических методов. Основные характеристики звука. Закон Вебера-Фехнера. Диаграмма слуха. Акустические резонаторы. Музыкальные инструменты. Эффект Доплера и бинауральный эффект. Интерференция и дифракция волн.

Тема 6. Особые случаи распространения волн. Элементы нелинейной акустики. (4 часа) Волны на поверхности жидкости. Гравитационные волны. Капиллярные волны. Цунами. Внутренние волны. Акустические волны большой амплитуды. Линейный и нелинейный режимы распространения. Уединенные волны (солитоны).

2.2. Вопросы к экзамену

- 1. Акустические волны и поля: причины возникновения, источники, характеристики.
- 2. Основные акустические величины, единицы измерения, связь друг с другом.
- 3. Общие уравнения акустики для жидких и газообразных сред.
- 4. Понятие уровня физической величины. Уровень звука, правило сложения уров-

ней.

- 5. Закон Гука для жидких и газообразных сред. Понятие скорости звука.
- 6. Свободные колебания простого осциллятора, общее решение, энергия.
- 7. Затухающие колебания осциллятора, импеданс, энергия системы.

8. Вынужденные колебания осциллятора, установившееся колебание и переходной процесс, условие резонанса.

9. Импеданс колебательных систем: управление массой, упругостью, трением.

10. Связанные системы, общее уравнение колебаний, нормальные моды колебаний, резонанс, передача энергии в осцилляторе.

11. Уравнение плоской волны и его решение для жидких и газообразных сред.

12. Гармонические волны: уравнение Гельмгольца, комплексная запись гармонических волн.

13. Плоские гармонические волны.

14. Сохранение формы бегущих гармонических плоских волн.

15. Энергия звуковой волны: звуковая энергия, плотность потока мощности в звуковой волне.

16. Отражение волн на границе двух сред при нормальном падении (абсолютно жест-кая стенка).

- 17. Прохождение волн через границу двух сред. Формулы Френеля.
- 18. Проводимость и импеданс линейного препятствия.
- 19. Отражение звуковых волн от резонатора. Согласование двух сред.
- 20. Рассеяние звука на препятствии.
- 21. Рассеяние звука резонатором Гельмгольца.
- 22. Поглощение звука: механизмы поглощения, коэффициенты поглощения.
- 23. Тензоры деформации и напряжения. Обобщенный закон Гука. Модули упругости.
- 24. Продольны волны в твердом теле.
- 25. Поперечные волны в твердом теле.
- 26. Общие уравнения распространения волн в твердом теле.
- 27. Скалярный и векторный потенциал для волнового уравнения в твердых средах.
- 28. Отражение волн в твердых средах от идеальных стенок (свободная граница).
- 29. Отражение волн в твердых средах от идеальных стенок (абсолютно жесткая стен-

ка).

- 30. Отражение и прохождение звука на границе жидкости и твердой среды.
- 31. Волны Рэлея.
- 32. Вывод эффекта Доплера.

3. Учебно-методические материалы по дисциплине

Список рекомендуемой литературы

Основная литература

- 1. Исакович М.А. Общая акустика. Учеб. пособие. М.: Наука, 1973г. 496с.
- 2. Лепендин Л.Ф. Акустика. Учеб. пособие для вузов. М.: Высш.школа, 1978.-448 с.
- 3. Ржевкин С.Н. Курс лекций по теории звука. М.: Изд. МГУ.1960

4. Тематический план лекций и практических занятий

Объем дисциплины и виды учебной работы

Виды учебной работы	Всего часов	Семестр
Общая трудоемкость дисциплины	90	
Аудиторные занятия	54	
Лекции	36	6
Практические занятия	18	
Самостоятельная работа	36	

	Количество часов		
Разделы дисциплины		Практиче-	Самостоя-
	Лекции	ские занятия	тельная ра-
		(семинары)	бота
1. Свободные колебания.	4	3	6
2. Вынужденные колебания.	6	3	7
3. Колебательная система с двумя степенными сво- боды.	6	2	5
4. Колебания в системах с большим числом степе- ней свободы (системы с распределенными парамет- рами).	8	4	6
5. Волны в жидкостях и газах. Акустические явле- ния.	8	4	8
6 Особые случаи распространения волн. Элементы нелинейной акустики.	4	2	4
Итого	36	18	36

5. Основные критерии оценки знаний студентов по дисциплине «Основы акустики и волновых процессов»

Студенты обязаны сдать зачет в строгом соответствии с учебным планом, а также утвержденным программами, едиными для всех форм обучения.

Экзамен по дисциплине «Основы акустики и волновых процессов» служит формой контроля усвоения дисциплины в целом.

К экзамену допускаются студенты, имеющие не более одного пропуска аудиторных занятий, сдавшие расчетно-графическую работу.

Сроки проведения экзамена устанавливаются графиком учебного процесса, утвержденным проректором по учебной работе.

Знания, умения и навыки обучающегося определяются оценками «отлично», «хорошо», «удовлетворительно» и «неудовлетворительно». Критерии приведены в таблице.

Оценка	Полнота, системность, прочность знаний	Обобщенность знаний
«отлично»	Изложение полученных знаний в устной, письменной или графиче- ской форме, полное, в системе, в соответствии с требованиями учебной программы; допускаются единичные несущественные	Выделение существенных при- знаков изученного с помощью операций анализа и синтеза; вы- явление причинно-следственных связей; формулировка выводов и обобщений; свободное опериро-

Основные критерии оценки знаний студентов

	ошибки, самостоятельно исправ- ляемые студентами	вание известными фактами и све- дениями с использованием сведе- ний из других предметов
«хорошо»	Изложение полученных знаний в устной, письменной и графиче- ской форме, полное, в системе, в соответствии с требованиями учебной программы; допускаются отдельные несущественные ошибки, исправляемые студента- ми после указания преподавателя на них	Выделение существенных при- знаков изученного с помощью операций анализа и синтеза; вы- явлений причинно-следственных связей; формулировка выводов и обобщений, в которых могут быть отдельные несущественные ошибки; подтверждение изучен- ного известными фактами и све- дениями
«удовлетворительно»	Изложение полученных знаний неполное, однако это не препят- ствует усвоению последующего программного материала; допус- каются отдельные существенные ошибки, исправленные с помо- щью преподавателя	Затруднения при выполнении су- щественных признаков изученно- го, при выявлении причинно- следственных связей и формули- ровке выводов
«неудовлетворитель- но»	Изложение учебного материала неполное, бессистемное, что пре- пятствует усвоению последую- щей учебной информации; суще- ственные ошибки, неисправляе- мые даже с помощью преподава- теля	Бессистемное выделение случай- ных признаков изученного; не- умение производить простейшие операции анализа и синтеза; де- лать обобщения, выводы

конспект лекций

Тема 1. Свободные колебания.

Незатухающие гармонические колебания систем с одной степенью свободы.

Если положение системы может быть описано одним единственным параметром f(t), зависящим от времени, то такая система имеет одну степень свободы. Примерами таких систем являются хорошо известные из школьного курса математический и пружинный маятники, изображенные на рис. 1.1, если первый из них движется в одной плоскости, а второй - по прямой.

Рис. 1.1.

Для математического маятника f(t) может характеризовать либо угловое смещение ($f(t) = \alpha(t)$), либо линейное смещение вдоль траектории (f(t) = s(t))точечной массы тот положения равновесия, а для пружинного маятника f(t) = s(t).где s(t)- смещение массы m от ее равновесного положения, изображенного пунктиром.

Движение таких и подобных им систем можно описать на основе второго закона Ньютона:

$$ma = F \tag{1.1}$$

Если пренебречь вначале силами сопротивления (в дальнейшем мы учтем их действие), то на массу и математического маятника будет действовать результирующая сила $\mathbb{F} = \mathbb{N} + m_{\mathbb{K}}(\mathbb{N} - сила натяжения нити)$, направленная, вообще говоря, под углом к траектории, а на массу пружинного маятника, лежащего на гладкой горизонтальной поверхности, - горизонтальная сила $\mathbb{F}_{\mathbb{P}}$, являющаяся функцией смещения вот положения равновесия.

Так как смещение «ПВ случае математического маятника определяется тангенциальным ускорением, то уравнение (1.1) для обоих маятников запишется в виде

$$m\frac{d^{2}s}{dt^{2}} = F_{\tau}(s) = -mg\sin\frac{s}{\ell}; \quad m\frac{d^{2}s}{dt^{2}} = F_{\tau}(s),$$
(1.2)

где «- длина нити.

В первом уравнении использована проекция $F_{\sigma}(s)$ результирующей силы к на направление скорости в виде $F_{\sigma} = -mg\sin\alpha = -mg\sin\frac{s}{\ell}$.

В рассматриваемых примерах возвращающая сила *F*_o(*s*)является, вообще говоря, нелинейной функцией смещения *s*. Поэтому точное решение уравнений (1.2), которые являются нелинейными, получить не удается. Далее мы рассмотрим некоторые примеры таких нелинейных колебаний.

Здесь же мы будем считать смещения малыми по сравнению с длиной нити или длиной недеформированной пружины. При таких предположениях возвращающая сила пропорциональна смещению:

$$F_{\sigma}(s) = -mg_{\ell}^{s}; \quad F_{\sigma}(s) = -ks.$$

$$(1.3)$$

Выражение слева записано при учете условия $\sin \frac{\pi}{\ell} \approx \frac{\pi}{\ell}$ а справа - с использованием закона Гука, справедливого при малых деформациях пружины с жесткостью *k*.

C учетом (1.3) уравнения (1.2) примут одинаковый вид:

$$\frac{d^2s}{dt^2} = -\frac{g}{\ell} s, \quad \frac{d^2s}{dt^2} = -\frac{k}{m} s.$$
(1.4)

Различаются лишь коэффициенты в правых частях этих уравнений, которые численно равны отношению возвращающей силы при единичном смещении к массе колеблющегося тела и имеют размерность [c⁻²]. Если использовать обозначения

$$\omega_0^2 = \frac{g}{\ell}, \quad \omega_0^2 = \frac{k}{m},\tag{1.5}$$

то уравнения (1.4) примут вид уравнения незатухающих гармонических колебаний, или уравнения гармонического осциллятора:

$$\frac{d^2s}{dt^2} = -\omega_0^2 s. \tag{1.6}$$

Решением уравнения (1.6) является семейство гармонических функций $s(t) = s_0 \sin(\omega_0 t + \varphi_0),$ (1.7)

в чем легко убедиться, дважды продифференцировав функцию *(*)по времени:

 $\frac{ds}{dt} = s_0 \omega_0 \cos(\omega_0 t + \varphi_0), \quad \frac{d^2 s}{dt^2} = -s_0 \omega_0^2 \sin^2(\omega_0 t + \varphi_0) = -\omega_0^2 s.$

Заметим, что если уравнение движения приводится к виду (1.6), то его решением являются гармонические функции (1.7) с частотой ываравной корню квадратному из коэффициента при ».

Значения этих гармонических функций в начальный момент времени (при *t*=0) определяются начальной фазой ¹(см. ниже) и амплитудой колебаний ¹У одной и той же системы эти значения могут быть различными при разных способах возбуждения колебаний. Чтобы возбудить собственные колебания, надо вначале (при t = 0) либо отклонить тело (задать начальное смещение s(0)), либо толкнуть его (задать начальную скорость $\frac{ds}{dt}(0) = s(0)$), либо сделать и то, и другое одновременно. Знание начальных условий (смещения и скорости) позволяет определить амплитуду s_0 и начальную фазу колебаний s_0 из очевидных уравнений:

$$s(0) = s(t)|_{t=0} = s_0 \sin(\omega_0 t + \varphi_0)|_{t=0} = s_0 \sin\varphi_0; \tag{1.8}$$

$$v(0) = \frac{ds}{dt}\Big|_{t=0} = s_t \omega_0 \cos(\omega_0 t + \varphi_0)\Big|_{t=0} = s_0 \omega_0 \cos\varphi_0.$$
(1.9)

Решение этих уравнений имеет вид:

$$s_0 = \sqrt{s^2(0) + \frac{v^2(0)}{\omega_0^2}}; \quad \varphi_0 = \arg \frac{\omega_0 s(0)}{v(0)}.$$
(1.10)

Важно отметить, что амплитуда колебаний заравная величине максимального смещения тела от положения равновесия, может превосходить начальное смещение зопри наличии начального толчка.

Наряду с круговой частотой жоколебания характеризуются циклической частотой $\nu_0 = \omega_0/2\pi$ равной числу колебаний за единицу времени, и периодом колебаний $T = 1/\nu_0$ равным длительности одного колебания.

Период гармонических колебаний (равно как и частоты чый на зависит от начальных условий и равен

$$T = 2\pi \sqrt{\frac{\ell}{g}}, \quad T = 2\pi \sqrt{\frac{m}{k}}.$$
(1.11)

Другим примером являются колебания физического маятника - тела произвольной формы массы ^m, закрепленного на горизонтальной оси {\displaystyle O}' так, что его центр масс находится в точке O, удаленной от оси на расстояние ^в. При отклонении маятника от вертикали на небольшой угол ^вон будет совершать свободные гармонические колебания под действием силы тяжести, приложенной к центру масс (рис. 1.2).

Рис. 1.2.

Если известен момент инерции тела "Јотносительно оси вращения, то уравнение вращательного движения запишется в виде

$$J\frac{d^{*}\alpha}{dt^{2}} = M = -mga\sin\alpha.$$
(1.12)

Если считать, что при вращении, например, против часовой стрелки угол увеличивается, то момент силы тяжести мвызывает уменьшение этого угла и, следовательно, при ∞> ⊍момент м < 0.Это и отражает знак минус в правой части (1.12).

Для малых углов отклонения уравнение (1.12) переходит в уравнение гармонических колебаний

$$\frac{d^2\alpha}{dt^2} = -\frac{mga}{J}\alpha,$$
(1.13)

из вида которого сразу ясно, что частота за период тколебаний соответственно равны

$$\omega_0^2 = \frac{mga}{J}; \quad T = 2\pi \sqrt{\frac{J}{mga}}.$$
 (1.14)

Сравнивая выражения для периода колебаний физического (1.14) и математического (1.11) маятников, легко видеть, что оба периода совпадают, если

$$\frac{J}{ma} = \ell. \tag{1.15}$$

Поэтому физический маятник характеризуется приведенной длиной (1.15), которая равна длине математического маятника с таким же периодом колебаний.

Период колебаний физического маятника (а, следовательно, и его приведенная длина ℓ) немонотонно зависит от расстояния «. Это легко заметить, если в соответствии с теоремой Гюйгенса-Штейнера момент инерции *з*выразить через момент инерции *з*относительно параллельной горизонтальной оси, проходящей через центр масс: $J = J_0 + ma^2$. Тогда период колебаний (1.14) будет равен:

$$T = 2\pi \sqrt{\frac{J_0 + ma^2}{mga}}.$$
 (1.16)

Изменение периода колебаний при удалении оси вращения от центра масс О в обе стороны на расстояние а показано на рис. 1.3.

Рис. 1.3.

Легко видеть, что один и тот же период колебаний может реализоваться относительно любой из четырех осей, расположенных попарно по разные стороны от центра масс. Можно показать, что сумма расстояний «†и «‡равна приведенной длине физического маятника: $\ell = a_1^+ + a_2^+$.В силу симметрии графика ясно, что

$$\ell = a_2^+ + a_1^-. \tag{1.17}$$

.....

Это обстоятельство позволяет для любой оси вращения O⁺ определить сопряженную ось O⁻. Период колебаний относительно этих осей одинаков, а расстояние между ними равно приведенной длине физического маятника.

На рис. 1.4 изображены положения осей O^+ и O^- , при этом ось вращения, удаленная на расстояние a_2^- при такой форме маятника находится вне его.

Рис. 1.4.

Физический маятник применяется для измерения ускорения свободного падения. С этой целью измеряют зависимость периода колебаний маятника от положения оси вращения и по этой экспериментальной зависимости находят в соответствии с формулой (1.17) приведенную длину. Определенная таким образом приведенная длина в сочетании с измеренным с хорошей точностью периодом колебаний относительно обеих осей позволяет рассчитать ускорение свободного падения. Важно отметить, что при таком способе измерений не требуется определение положения центра масс, что в ряде случаев повышает точность измерений.

Метод векторных диаграмм.

Гармонические колебания (1.7) допускают наглядную графическую интерпретацию. Ее смысл состоит в том, что каждому гармоническому колебанию с частотой эможно поставить в соответствие вращающийся с угловой скоростью эмовектор, длина которого равна амплитуде за его начальное (стартовое) положение задается углом эмосовпадающим с начальной фазой (рис. 1.5).

Рис. 1.5.

Вертикальная проекция вектора изменяется со временем: $s(t) = s_0 \sin \varphi(t)$. Мгновенное положение вектора попределяется углом $\varphi(t)$, который называется фазой и равен:

$$\varphi(t) = \omega_0 t + \varphi_0. \tag{1.18}$$

При угловой скорости (круговой частоте) ω_0 вектор совершает $\omega_0 = \omega_0/2\pi$ оборотов (циклов) в секунду, а продолжительность одного оборота (период) равна отношению угла 2π к угловой скорости $\omega_0 : T = 2\pi/\omega_0$.

С помощью векторных диаграмм легко осуществить сложение гармонических колебаний. Так, если необходимо сложить два гармонических колебания с одинаковыми частотами

$$s(t) = s_1(t) + s_2(t) = s_{01} \sin(\omega_0 t + \varphi_1) + s_{02} \sin(\omega_0 t + \varphi_2) = s_0 \sin(\omega_0 t + \varphi_0),$$

то амплитуду *•и начальную фазу *•суммарного колебания *(*)с той же частотой •••можно легко рассчитать из рис. 1.6а, на котором графически изображена операция сложения векторов *• = *••• + *•28 момент времени * = ••

$$s_0 = \sqrt{(s_{01}\cos\varphi_1 + s_{02}\cos\varphi_2)^2 + (s_{01}\sin\varphi_1 + s_{02}\sin\varphi_2)^2},$$

$$\varphi_0 = \operatorname{arctg} \frac{s_{01} \sin \varphi_1 + s_{02} \sin \varphi_2}{s_{01} \cos \varphi_1 + s_{02} \cos \varphi_2}$$

Ясно, что вертикальная проекция вектора «будет также изменяться по гармоническому закону с частотой «поскольку взаимное расположение векторов «ии »шене изменяется с течением времени.

Рис. 1.6а.

Рис. 1.6б.

Сложение взаимно-перпендикулярных колебаний.

Рассмотрим колебательную систему, состоящую из точечного груза массы ми четырех связанных с ним пружин (рис. 1.7) - усложненный вариант рассмотренного выше пружинного маятника.

Рис. 1.7.

Если масса движется по гладкой горизонтальной поверхности (на рисунке показан вид сверху), то ее мгновенное расположение описывается двумя смещениями из положения равновесия - точки О: $s_1(t)$ и $s_2(t)$. Такая система обладает двумя степенями свободы. Будем считать смещения малыми, чтобы, во-первых, выполнялся закон Гука, а, во-вторых, при смещении вдоль направления s_1 деформации пружин с жесткостью k_2 не приводили к сколько-нибудь заметному вкладу в возвращающую силу $F_1 = -2k_1s_1$. Аналогично, при смещении в перпендикулярном направлении s_2 возвращающая сила $F_2 = -2k_2s_2$. При таких условиях колебания в двух взаимно перпендикулярных направлениях происходят независимо друг от друга:

$$s_1(t) = s_{01}\sin(\omega_{01}t + \varphi_1), \quad s_2(t) = s_{02}\sin(\omega_{02}t + \varphi_2). \tag{1.19}$$

$$\omega_{01} = \sqrt{\frac{2\kappa_1}{m}}, \quad \omega_{02} = \sqrt{\frac{2\kappa_2}{m}}, \quad (1.20)$$

а амплитуды и начальные фазы определяются начальными условиями.

При возбуждении колебаний в такой системе при произвольном соотношении собственных частот эми аметраектория колеблющегося груза может быть чрезвычайно сложной. Ее, в принципе, можно проанализировать, принимая во внимание тот факт, что результирующее движение груза является суперпозицией двух взаимно-перпендикулярных независимых колебаний.

Рассмотрим вначале движение груза, если $\omega_{01} = \omega_{02} = \omega_0$ (жесткости всех пружин одинаковы). Чтобы получить траекторию движения, исключим из (1.19) текущее время. Для этого перепишем (1.19) в виде:

$$\frac{\frac{s_1}{s_{01}}}{\frac{s_2}{s_{02}}} = \sin \omega_0 t \cos \varphi_1 + \cos \omega_0 t \sin \varphi_1,$$

$$\frac{s_1}{s_{02}} = \sin \omega_0 t \cos \varphi_2 + \cos \omega_0 t \sin \varphi_2.$$
(1.21)

Умножим первое уравнение (1.21) на сов φ_2 ; а второе - на сов φ_1 и вычтем второе уравнение из первого. В результате получим

$$\frac{s_1}{s_{01}}\cos\varphi_2 - \frac{s_2}{s_{02}}\cos\varphi_1 = \cos\omega_0 t\sin(\varphi_1 - \varphi_2).$$
(1.22a)

Теперь умножим первое уравнение на ^{sim} φ_2 , а второе - на ^{sim} φ_1 , повторим вычитание и получим

$$\frac{s_1}{s_{01}}\sin\varphi_2 - \frac{s_2}{s_{02}}\sin\varphi_1 = \sin\omega_0 t\sin(\varphi_2 - \varphi_1).$$
(1.226)

Наконец, возведем в квадрат каждое из равенств (1.22) и сложим их. В результате время будет исключено, а уравнение траектории движущегося груза будет уравнением эллипса:

$$\left(\frac{s_1}{s_{01}}\right)^2 + \left(\frac{s_2}{s_{02}}\right)^2 - 2\frac{s_1}{s_{01}}\frac{s_2}{s_{02}}\cos(\varphi_2 - \varphi_1) = \sin^2(\varphi_2 - \varphi_1). \tag{1.23}$$

Таким образом, в общем случае груз будет совершать периодические движения по эллиптической траектории. Направление движения вдоль траектории и ориентация эллипса относительно осей Os_1 и Os_2 зависят от начальной разности фаз $\Delta \varphi = \varphi_2 - \varphi_1$. На рис. 1.8 изображены траектории движения груза при различных значениях $\Delta \varphi$.

Рис. 1.8.

Все траектории заключены в прямоугольник со сторонами $2s_{01}$ И $2s_{02}$.При $\Delta \varphi = 0_{\rm H} \Delta \varphi = \pi_{\rm Г}$ руз движется по прямой линии. При $\Delta \varphi = \pi/2_{\rm H} \Delta \varphi = 3\pi/2_{\rm П}$ полуоси эллипса совпадают с Os₁ и Os₂ (при $s_{10} = s_{20}$ Эллипс вырождается в окружность). При разности фаз $0 < \Delta \varphi < \pi_{\rm Г}$ руз движется по часовой стрелке, а при $\pi < \Delta \varphi < 2\pi_{\rm -}$ против часовой стрелки.

Типичным примером двумерного осциллятора (маятника) является электрон в атоме, который движется вокруг ядра по эллиптической орбите с периодом обращения $T \sim 10^{-15}$ Можно считать, что такой электрон одновременно совершает два взаимно-перпендикулярных колебания с частотой $\omega_0 = 2\pi/T \sim 10^{16}$ с

Если частоты двух взаимно-перпендикулярных колебаний не совпадают, но являются кратными: ^{тищо2} = ^{тищо1}где ^{тищ}и ^{ти}- целые числа, то траектории движения

представляют собой замкнутые кривые, называемые фигурами Лиссажу (рис. 1.9). Отметим, что отношение частот колебаний равно отношению чисел точек касания фигуры Лиссажу к сторонам прямоугольника, в который она вписана.

Если кратность между частотами отсутствует, то траектории не являются замкнутыми и постепенно заполняют весь прямоугольник, напоминая нить в клубке.

Фазовый портрет колебательной системы.

В любой колебательной системе с одной степенью свободы смещение *(t)и скорость w(t) = ds/dtменяются со временем. Состояние системы в каждый момент времени можно характеризовать двумя значениями su w_{0} и на плоскости этих переменных это состояние однозначно определяется положением изображающей точки Р с координатами su w_{0} . С течением времени изображающая точка Р будет перемещаться по кривой, которую называют фазовой траекторией движения (рис. 1.10).

Рис. 1.10.

Плоскость переменных «и «называется фазовой плоскостью. Семейство фазовых траекторий образует фазовый портрет колебательной системы. Анализ фазового портрета дает хотя и не полную, но обширную информацию о колебательной системе. К построению такого портрета прибегают тогда, когда не удается решить аналитически уравнение, описывающее сложные колебания. В первую очередь это относится к нелинейным колебаниям, анализ которых затруднен из-за отсутствия точных решений нелинейных уравнений.

Вначале проиллюстрируем сказанное на примере простейших гармонических колебаний вида $s(t) = s_0 \sin(\omega_0 t + \varphi_0)$. Поскольку скорость $v(t) = \frac{ds}{dt} = s_0 \omega_0 \sin\left(\omega_0 t + \varphi_0 + \frac{\pi}{2}\right)$ опережает смещение по фазе на $\pi/2$ то фазовая траектория будет эллипсом. Точка Р будет двигаться по эллиптической траектории по часовой стрелке (при *и* > 0) смещение *«*увеличивается, а при *и* < 0- уменьшается (рис. 1.11)).

Рис. 1.11.

Параметры эллипса определяются энергией, запасенной гармоническим осциллятором. Потенциальная энергия пружинного маятника пропорциональна квадрату смещения:

$$E_{nor} = \frac{1}{2}ks^2 = \frac{1}{2}ks_0^2 \sin^2(\omega_0 t + \varphi_0).$$
(1.24)

Кинетическая энергия пропорциональна квадрату скорости:

$$E_{\rm KHI} = \frac{1}{2}mv^2 = \frac{1}{2}m\omega_0^2 s_0^2 \cos^2(\omega_0 t + \varphi_0). \tag{1.25}$$

Если принять во внимание равенство $k - m\omega_0^2$ то легко видеть, что взаимопревращения одного вида энергии в другой за период происходят дважды. При этом полная энергия системы остается постоянной:

$$E_0 = E_{\text{mor}} + E_{\text{mor}} = \frac{1}{2} m(\omega_0^2 s^2 + v^2). \tag{1.26}$$

Равенство (1.26) как раз и является уравнением эллипса, которое можно переписать в более удобном виде:

$$s^{2} + \frac{v^{2}}{\omega_{0}^{2}} = \frac{2E_{0}}{m\omega_{0}^{2}}.$$
(1.27)

Фазовый портрет гармонического осциллятора представляет собой семейство эллипсов, каждому из которых соответствует энергия шазапасенная осциллятором. Положение равновесия в точке 0 на фазовой плоскости является особой точкой и называется особой точкой типа "центр".

С увеличением энергии Евозрастают амплитуды колебаний смещения ни скорости вые Колебания, как правило, перестают быть гармоническими, а фазовые траектории - эллипсами.

Рис. 1.12.

Проанализируем на фазовой плоскости колебания математического маятника при произвольных углах иотклонения от положения равновесия. При этом будем считать, что точечная масса паприкреплена не к нити, а к жесткому невесомому стержню длины «Первое из уравнений (1.2) запишем в виде

$$\frac{d^2\alpha}{dt^2} = -\omega_0^2 \sin\alpha. \tag{1.28}$$

Это нелинейное уравнение не имеет точного аналитического решения, поэтому позднее мы приведем его приближенное решение. Однако многие закономерности таких колебаний можно проанализировать с использованием фазового портрета на плоскости $(\alpha; \dot{\alpha} = \frac{d\alpha}{dt}) \cdot C$ этой целью уравнение (1.28) надо преобразовать к такому виду, чтобы в нем остались только эти переменные, а время было бы исключено. Для этого угловое ускорение в левой части (1.28) преобразуем к виду:

$$\frac{d^2\alpha}{dt^2} = \frac{d\dot{\alpha}}{dt} = \frac{d\dot{\alpha}}{d\alpha} \cdot \frac{d\alpha}{dt} = \frac{d\dot{\alpha}}{d\alpha} \cdot \dot{\alpha} = \frac{1}{2} \frac{d(\dot{\alpha}^2)}{d\alpha}.$$
(1.29)

Подставляя (1.29) в (1.28), получим

$$\frac{1}{2}d(\dot{\alpha}^2) = -\omega_0^2 \sin \alpha d\alpha.$$
 (1.30)

Уравнение (1.30) отражает тот факт, что приращение кинетической энергии маятника равно убыли его потенциальной энергии в поле силы тяжести. Интегрируя (1.30), получим

$$\frac{\dot{\alpha}^2}{2} - \omega_0^2 - \text{"so} = \text{const.}$$
(1.31)

Если принять, что потенциальная энергия маятника в положении равновесия равна нулю, то константа выражается через запасенную маятником энергию $E_0 = \frac{m\ell^2 \dot{\alpha}_0^2}{2} (\dot{\alpha}_0$ - угловая скорость маятника в положении равновесия): const $= \frac{E_0}{m\ell^2} - \omega_0^2$. (1.32)

Уравнение фазовой траектории (1.31) окончательно запишется в виде: $\frac{1}{2} \cdot \frac{\dot{a}^2}{\omega_0^2} + (1 - \cos \alpha) = \frac{E_0}{m\ell^2 \omega_0^2}.$ (1.33)

При этом потенциальная и кинетическая энергии задаются выражениями $E_{\text{клая}} = \frac{1}{2}m\ell^2 \dot{\alpha}^2; \quad E_{\text{клая}} = m\ell^2 \omega_0^2 (1 - \cos \alpha).$ (1.34)

Используя (1.33), построим фазовый портрет системы (рис. 1.13).

Рис. 1.13.

Отчетливо видны два типа фазовых траекторий, соответствующие двум типам движения. Замкнутые траектории, окружающие особые точки типа "центр" с координатами $delta = 0, delta = 2\pi m (n - целое число)$, соответствуют колебаниям маятника относительно устойчивого нижнего положения равновесия. Такие колебания имеют место, если энергия системы $E_0 < m\ell^2 \omega_0^2 = 2mg\ell$ (см. рис. 1.13). При этом, если $E_0 < mg\ell$, то колебания будут гармоническими, а фазовые траектории - эллипсами. Если $E_0 \sim mg\ell$, то колебания будут негармоническими. При увеличении энергии, а, значит, и амплитуды колебаний осциллятора, их период будет возрастать, поскольку возвращающая сила в уравнении (1.28) меньше, чем в случае гармонического осциллятора.

Верхнему положению равновесия с координатами $\dot{\alpha} = 0, \alpha = (2m-1)\pi$ соответствуют особые точки типа "седло". Фазовые кривые, проходящие через "седла", соответствуют энергии $E_0 = 2mg\ell u$ называются сепаратрисами.

Если, наконец, *E*₀ > 2^{mgl}, то получаются незамкнутые (убегающие) траектории, соответствующие вращательному движению маятника.

Таким образом, сепаратрисы разделяют фазовую плоскость на две области: область замкнутых траекторий и область траекторий, приходящих из бесконечности и уходящих в бесконечность.

Отметим, что для негармонических колебаний нельзя употреблять термин "круговая частота", поскольку, как будет показано ниже, такие колебания являются, как правило, суперпозицией гармонических колебаний с различными частотами. Период же является по-прежнему одной из главных характеристик колебаний. Фазовый портрет не позволяет определить, как быстро движется точка Р по траектории. Однако период нелинейных колебаний математического маятника можно получить на основе приближенного решения уравнения (1.28).

Негармонические колебания математического маятника.

Колебания математического маятника при больших амплитудах, как уже отмечалось, не будут гармоническими. Это происходит потому, что возвращающая сила в правой части уравнения (1.28) пропорциональна за си при больших остановится меньше той "линейной" силы (пропорциональной осторая возвращает колеблющуюся массу в положение равновесия за неизменное

время, равное четверти периода колебаний. Такая "линейная" сила обеспечивает независимость этого времени от амплитуды 40% т.е. изохронность колебаний.

Для анализа колебаний при больших амплитудах запишем разложение за оказанием разложение за оказанием в ряд:

$$\sin \alpha = \alpha - \frac{1}{6}\alpha^3 + \dots \quad , \tag{1.35}$$

в котором отброшены члены более высокого порядка: «^в, «^ти т.д. Подстановка (1.35) в (1.28) приводит к нелинейному уравнению колебаний:

$$\frac{d^2\alpha}{dt^2} + \omega_{\rm E}^2 \alpha = \frac{\omega_{\rm B}^2}{6} \alpha^3. \tag{1.36}$$

Решением этого уравнения уже не будет гармоническая функция. Действительно, допустим, что решением уравнения (1.36) будет гармоническое колебание вида $\alpha(t) = \alpha_0 \sin(\omega t + \varphi_0)$.Подставляя это выражение в правую часть (1.36) и учитывая тригонометрическое тождество

$$\sin^3 \omega t \equiv \frac{3}{4} \sin \omega t - \frac{1}{4} \sin 3\omega t, \qquad (1.37)$$

приходим к противоречию. Получается так, что нелинейный член в правой части уравнения изменяется во времени не только с основной частотой «но также и с утроенной частотой за (частотой третьей гармоники). Чтобы устранить это противоречие, будем считать, что колебания маятника происходят одновременно на частотах «и зытак, что

$$\alpha(t) = \alpha_0 \sin(\omega t + \varphi_0) + \varepsilon \alpha_0 \sin 3(\omega t + \varphi_0), \qquad (1.38)$$

где - безразмерный параметр.

Подставляя (1.38) в (1.36), снова обнаруживаем, что нелинейный член, помимо двух частот им заменяется во времени и на частоте зи. Это говорит о том, что решение (1.38) не является полным (в нем отсутствуют высшие гармоники $\mathfrak{G}_{\omega,27\omega}$ и т.д.). Между тем, если амплитуда колебаний сене очень велика, то параметр $\mathfrak{s} \ll \mathfrak{1}_{*}$ и отсутствующие члены с высшими гармониками имеют амплитуды $\mathfrak{s}^{2}\alpha_{0,*}\mathfrak{s}^{3}\alpha_{0}$ и т. д., которые много меньше амплитуды третьей гармоники $\mathfrak{s}\alpha_{0}$.

Теперь рассчитаем частоту ы.Для простоты положим № = ⁰(маятник получает начальный толчок в положении равновесия). Используя (1.38), запишем каждый из трех членов уравнения (1.36), опуская слагаемые, имеющие порядок малости е^зи выше:

$$\frac{d^{2}\alpha}{dt^{2}} = -\omega^{2}\alpha_{0}\sin\omega t - 9\omega^{2}\varepsilon\alpha_{0}\sin3\omega t;
\omega_{0}^{2}\alpha = \omega_{0}^{2}\alpha_{0}\sin\omega t + \omega_{0}^{2}\varepsilon\alpha_{0}\sin3\omega t;
-\frac{1}{6}\omega_{0}^{2}\alpha^{3} = -\frac{3\omega_{0}^{2}}{24}\alpha_{0}^{3}\sin\omega t + \frac{\omega_{0}^{2}}{24}\alpha_{0}^{3}\sin3\omega t - \frac{\omega_{0}^{2}}{2}\alpha_{0}^{3}\varepsilon\sin^{2}\omega t\sin3\omega t.$$
(1.39)

Заметим, что в последнем равенстве третье слагаемое в правой части, содержащее множитель « мало по сравнению с двумя предыдущими, и его также можно отбросить. Сложим полученные три равенства. В силу (1.36), сумма левых частей равенств (1.39) равна нулю. Поэтому

$$0 = \alpha_0 \left(-\omega^2 + \omega_0^2 - \frac{3}{24} \omega_0^2 \alpha_0^2 \right) \sin \omega t + \alpha_0 \left(-9\omega^2 \varepsilon + \omega_0^2 \varepsilon + \frac{\omega_0^2}{24} \alpha_0^2 \right) \sin 3\omega t.$$
 (1.40)

Поскольку равенство (1.40) должно выполняться для любого момента времени, то каждое из выражений, стоящих в круглых скобках, должно равняться нулю. Из равенства нулю первого выражения легко определить квадрат частоты основной гармоники

$$\omega^2 = \omega_0^2 \left(1 - \frac{1}{8} \alpha_0^2 \right). \tag{1.41}$$

Если
$$\frac{\alpha_0^2}{8} \ll 1$$
, то для частоты получим
 $\omega = \omega_0 \left(1 - \frac{\alpha_0^2}{8}\right)^{1/2} \approx \omega_0 \left(1 - \frac{\alpha_c^2}{16}\right).$
(1.42)

Последнее выражение показывает, что с возрастанием амплитуды колебаний их частота уменьшается (период увеличивается), т.е. нарушается изохронность колебаний.

Приравняем далее нулю второе выражение в круглых скобках в формуле (1.40):

$$-\vartheta\omega^{2}\varepsilon + \omega_{0}^{2}\varepsilon - \frac{\omega_{0}^{2}}{24}a_{0}^{2} = 0.$$
(1.43)

Считая, что и на находим величину малого коэффициента е:

$$\varepsilon = \frac{\alpha_0}{192}.\tag{1.44}$$

Если положить $\alpha_0 = 15^{\circ} = 0,26$ рад то $\varepsilon = 3,5 \cdot 10^{-4}$ и вклад третьей гармоники в колебания ничтожно мал. Отличие частоты \omega от частоты гармонических колебаний ω_0 составит величину

$$\frac{\omega_0 - \omega}{\omega_0} = \frac{\alpha_0^2}{16} = 4.2 \cdot 10^{-3}. \tag{1.45}$$

Даже при ∞₀ ~ 1рад ε ≈ 5 · 10⁻³,а $\frac{\omega_0 - \omega}{\omega_0}$ ~ 6%. Таким образом, приближенным решением уравнения (1.36) будет (1.38), где частота ∞определяется (1.41), а параметр енаходится из (1.44).

Заметим, что негармонические колебания могут возникать не только при больших отклонениях от положения равновесия системы. Например, если в разложении возвращающей силы *F*_σ(*s*)по степеням *s*отсутствует линейный член, и оно начинается с члена, пропорционального *s*³ то колебания будут ангармоническими при любых, даже сколь угодно малых отклонениях.

Свободные колебания в диссипативных системах с вязким трением.

В реальных системах всегда происходит диссипация энергии. Если потери энергии не будут компенсироваться за счет внешних устройств, то колебания с течением времени будут затухать и через какое-то время прекратятся вообще.

Формально затухающие колебания описываются уравнением

$$m\bar{s} = F_{\sigma}(s) + F_{vp}(\bar{s}), \tag{1.46}$$

которое, в отличие от (1.2), помимо возвращающей силы F_{π} содержит и силу трения F_{π} -Сила сопротивления движению, вообще говоря, зависит как от направления скорости (например, при сухом трении), так и от величины скорости (при движении в вязкой среде). Если возвращающая сила пропорциональна смещению: $F_{\pi}(s) = -ks$ -где k- коэффициент пропорциональности (для пружинного маятника - жесткость пружины), то уравнение (1.46) можно переписать в виде

$$\bar{s} - \frac{F_{\pi p}}{m} + \omega_0^2 \bar{s} = 0,$$
 (1.47)

где $\omega_0 = \sqrt{\frac{k}{m}}$ собственная частота незатухающих гармонических колебаний.

Вначале мы рассмотрим затухающие колебания в случае, когда на колеблющееся тело действует сила вязкого трения, пропорциональная скорости: $F_{ap} = -\Gamma \& T$ акая ситуация может иметь место, например, при колебательном движении тела в воздухе или жидкости, когда число Рейнольдса $\mathbb{R}_{e} \sim I$ или $\mathbb{R}_{e} < I$. Тогда уравнение (1.47) можно записать в виде:

$$\ddot{s} + 2\delta \dot{s} + \omega_0^2 s = 0,$$
 (1.48)

где $\delta = \Gamma/2m$ - коэффициент, или показатель затухания.

Общая идея решения однородных линейных уравнений типа (1.48) заключается в следующем: в качестве функциональной зависимости *«*(!)надо выбрать такую, которая при дифференцировании по времени переходит в саму себя, то есть экспоненту: *«*(!) = *««*^{*}.Подставим ее в уравнение (1.48):

$$s_0 e^{\lambda t} (\lambda^2 + 2\delta \lambda + \omega_0^2) = 0.$$
 (1.49)

Поскольку ^{е^м} ≠ 0, получаем так называемое "характеристическое" уравнение:

$$\lambda^2 + 2\delta\lambda + \omega_0^2 = 0, \tag{1.50}$$

которое в данном случае (для уравнения второго порядка) имеет два кор-

ΗЯ

$$\lambda_{1,2} = -\delta \pm \sqrt{\delta^2 - \omega_0^2},\tag{1.51}$$

а само уравнение (1.48) - два независимых решения: $s_1(t) = s_{01}e^{s_{01}t}$ $M s_2(t) = s_{02}e^{s_{02}t}$. В силу линейности уравнения (1.48) сумма любых его решений также является решением, то есть справедлив так называемый "принцип суперпозиции" решений, и общим решением данного уравнения является

$$s(t) = s_{01}e^{(-\delta_{+}^{q}}\overline{\delta^{2} - \omega_{0}^{2}}\mu_{+} s_{02}e^{(-\delta_{-}^{q}}\overline{\delta^{2} - \omega_{c}^{2}}\mu_{-}$$
(1.52)

Решение содержит две независимые константы ³⁶01 ³⁶²,которые определяются из начальных условий ⁸(0), 12(0).

В зависимости от соотношения и инвозможны три случая.

Если $\delta < \omega_0$.то $\sqrt{\delta^2 - \omega_0^2} = i\sqrt{\omega_0^2 - \delta^2}$.где $i = \sqrt{-1}$ - "мнимая" единица. Решение является комплексным1, но, поскольку начальные условия действительные, то с помощью формулы Эйлера:

$$e^{i\varphi} = \cos\varphi + i\sin\varphi \tag{1.53}$$

нетрудно показать, что общее решение будет действительно и может быть записано в виде:

$$s(t) = s_0 e^{-\delta t} \sin(\omega t + \varphi_0), \qquad (1.54)$$

то есть представляет собой затухающие колебания, частота которых и меньше, чем у собственных незатухающих колебаний:

 $\omega = \sqrt{\omega_0^2 - \delta^2}.\tag{1.55}$

Колебания, описываемые (1.54), не являются гармоническими (рис. 1.14). Под их амплитудой будем понимать величину

 $A(t) = s_0 e^{-\delta t}, (1.56)$

которая монотонно убывает со временем. "Длительность" колебаний характеризуется временем затухания

 $r = \frac{1}{\delta}.\tag{1.57}$

Рис. 1.14.

Если подставить rв (1.56), то легко видеть, что по истечении времени затухания гамплитуда убывает в *е* раз. Количество совершенных системой колебаний за время гравно отношению этого времени к периоду затухающих колебаний $T = 2\pi/\omega$. Если затухание в системе мало ($d \ll \omega_0$), то период колебаний $T \approx 2\pi/\omega_0$, и число этих колебаний велико:

$$N = \frac{\tau}{T} \approx \frac{\omega_0}{2\pi\delta} \gg 1. \tag{1.58}$$

Экспоненциальный закон убывания амплитуды со временем позволяет ввести безразмерный параметр - логарифмический декремент затухания [#]который равен логарифму отношения двух последовательных отклонений в одну и ту же сторону:

$$\vartheta = \ln \frac{A(t)}{A(t+T)} = \delta T. \tag{1.59}$$

Из (1.57), (1.58) и (1.59) находим:
$$\emptyset = \frac{1}{N}$$
. (1.60)

Логарифмический декремент затухания можно оценить, если подсчитать число колебаний, совершенных системой за время затухания то есть до уменьшения амплитуды колебаний примерно в 3 раза. Чем больше число этих колебаний, тем меньше потери энергии в системе.

Проследим за убыванием энергии, запасенной осциллятором, с течением времени. Используя (1.54), запишем по аналогии с (1.24) и (1.25) выражения для потенциальной и кинетической энергий осциллятора:

$$E_{\rm nor} = \frac{1}{2} k s_0^2 e^{-2\delta t} \sin^2(\omega t + \varphi_0), \qquad (1.61)$$

$$E_{\text{scans}} = \frac{1}{2} m \omega^2 s_0^2 e^{-2\delta t} \cos^2(\omega t + \varphi_0). \tag{1.62}$$

Заметим, что, строго говоря, скорость равна

$$v = \dot{s} = -s_0 \delta e^{-\delta t} \sin(\omega t + \varphi_0) + s_0 \omega e^{-\delta t} \cos(\omega t + \varphi_0).$$
(1.63)

Очевидно, что если «« что первым слагаемым в (1.63) можно пренебречь и записать выражение для кинетической энергии в виде (1.62). Суммарная энергия осциллятора убывает со временем:

$$E(t) = E_{\text{nor}} + E_{\text{nor}} = \frac{1}{2} s_0^2 e^{-2\delta t} \left[k \sin^2(\omega t + \varphi_0) + m\omega^2 \cos^2(\omega t + \varphi_0) \right].$$
(1.64)

Примем во внимание, что при *в*≪ щчастота *w* ≈ щ. Так как *k* – *m*ω₀²то (1.64) окончательно запишется в виде

$$E(t) = \frac{1}{2}s_0^2 m \omega_0^2 e^{-2\delta t} = E_0 e^{-2\delta t}.$$
(1.65)

Полная энергия осциллятора, равная вначале $E_0 = \frac{1}{2} \operatorname{server}_0^2$, монотонно убывает со временем по экспоненциальному закону и уменьшается в *e* раз за время $\overline{z_0} = \frac{1}{2} = \overline{z_0}$ (1.66)

$$\tau_E = \frac{1}{2\delta} = \frac{1}{2}.$$
 (1.66)

"Качество" колебательной системы характеризуют безразмерным параметром @называемым добротностью. Добротность пропорциональна отношению запасенной энергии *E*(!)к энергии *ΔE*_{*T*};теряемой за период (рис. 1.15):

$$Q = 2\pi \frac{E(t)}{\Delta E_T} = 2\pi \frac{E_0 e^{-2\delta t}}{E_0 e^{-2\delta t} - E_0 e^{-2\delta (t+T)}} = \frac{2\pi}{1 - e^{-2\delta T}}.$$
(1.67)

Если число колебаний велико, то
$$\delta T = \frac{1}{N} \ll 1$$
.

$$Q = \frac{2\pi}{1 - e^{-2\delta T}} = \frac{2\pi}{1 - (1 - 2\delta T + \dots)} \approx \frac{\pi}{\theta} = \pi N.$$
(1.68)

При экспоненциальном законе убывания энергии со временем добротность Фоказывается постоянной величиной, которую, как и логарифмический декремент затухания Фможно легко оценить по числу колебаний $N_Q = \pi N \approx 3N$; совершенных системой до их полного прекращения (за время зтамплитуда колебаний уменьшается в $e^3 \approx 20$ раз, то есть колебания практически полностью затухают).

Рис. 1.15.

Следует отметить, что добротность не только характеризует затухание колебаний, но и является важной величиной, определяющей параметры вынужденных колебаний, осуществляемых под действием внешней периодической силы (см. далее).

¹Более подробно метод комплексных амплитуд будет обсуждаться ниже, при рассмотрении вынужденных колебаний.

Рассмотрим теперь случай $\delta = \omega_0$ когда корни характеристического уравнения кратные: $\lambda_1 - \lambda_2 - -\delta$.При этом частота $\omega = \sqrt{\omega_0^2 - \delta^2} = 0$.то есть колебания отсутствуют. Общее решение, как нетрудно проверить подстановкой, имеет следующий вид:

$$s(t) = (s_0 + Ct)e^{-\delta t}, (1.69)$$

где независимые постоянные «и сопределяются, как и раньше, начальными условиями. Возможный вид зависимости «При разных начальных условиях изображен на рисунке 1.16.

Рис. 1.16.

Их характерной особенностью является то, что они пересекают ось Ot не более одного раза, и возврат к равновесному состоянию у системы, выведенной из него, происходит за время порядка нескольких *г*. Такой режим движения называется критическим.

Наконец, если $\delta > \omega_0$ то общее решение (1.52) является суммой двух убывающих с течением времени экспонент, поскольку - $\delta \pm \sqrt{\delta^2} - \omega_0^2 < 0$.Возможный вид зависимостей s(t)похож на то, что изображено на рис. 1.16, но возврат к равновесию осуществляется медленнее, чем в критическом режиме, поскольку

вязкое трение больше. Данный режим движения называется апериодическим, или закритическим.

Отметим, что наиболее быстрое возвращение системы к положению равновесия происходит в критическом режиме, а в колебательном и апериодическом режимах этот процесс длится дольше. Поэтому, например, гальванометры - приборы для электрических измерений - работают обычно в режиме, близком к критическому, когда процесс установления их показаний, то есть смещения s рамки к устойчивому отклонению ^врателимеет наименьшую длительность (см. рис. 1.17).

Рис. 1.17.

Иллюстрацией к рассмотренным закономерностям затухающих колебаний являются фазовые портреты, построенные для колебательного (& < ω₀);а также критического и апериодического (< ≥ ω₀)режимов (рис. 1.18).

Рис.1.18.

При *в* < щфазовый портрет представляет собой совокупность спиралей, стягивающихся в особую точку типа "фокус". На рис. 1.18 изображена одна из таких спиралей. За каждый оборот радиус спирали уменьшается в *в* раз. Для критического и апериодического режимов *в* ≥ щфазовые траектории сходятся в особую точку типа "узел".

Затухание колебаний в системах с сухим трением.

На практике мы часто имеем дело с системами, в которых главную роль играет сила сухого трения, не зависящая от скорости. Типичный пример - пружинный маятник, груз которого скользит по шероховатой горизонтальной поверхности, или колебательная система у стрелочных измерительных приборов, основу которой составляет вращающаяся рамка, испытывающая действие сил сухого трения в оси вращения. Хотя сила *F*_{тр}сухого трения и не меняется по величине, тем не менее она меняет свое направление при изменении направления скорости. В силу этого необходимо записать два уравнения

$$\bar{s} + \omega_{\sigma}^2 s = -\frac{F_{vp}}{m} \operatorname{Arr} \quad \bar{s} > 0; \tag{1.70}$$

$$\ddot{s} + \omega_0^2 s = + \frac{F_{vp}}{m} \operatorname{gas} \quad \dot{s} < 0. \tag{1.71}$$

Если в (1.70) использовать переменную $s_1 = s + \frac{F_{v_2}}{m\omega_0^2}$, в (1.71) - $s_2 = s - \frac{F_{v_3}}{m\omega_0^2}$, оба уравнения примут одинаковый вид:

$$\bar{s}_{1,2} + \omega_0^2 s_{1,2} = 0. \tag{1.72}$$

Фазовые траектории, соответствующие этому уравнению, представляют собой эллипсы с центрами, имеющими координаты $s_{-} = -\frac{F_{vp}}{m\omega_0^2}(s_1 = 0)$ для верхней полуплоскости s > 0.4 $s_{+} = +\frac{F_{vp}}{m\omega_0^2}(s_2 = 0)$ для нижней полуплоскости s < 0.4 Чтобы нарисовать фазовый портрет, необходимо сомкнуть фазовые траектории верхней и нижней полуплоскостей на их общей границе s = 0.

Из построенного на рис. 1.19 фазового портрета видно, что движение прекращается после конечного числа колебаний. Чрезвычайно важно, что система не обязательно придет к состоянию * = 0 а может остановиться, попав в зону застоя $*_{+} = *_{-}$ Зона застоя тем больше, чем больше сила F_{-} . Из фазового портрета легко определить убывание амплитуды колебаний за один период. Это изменение амплитуды в два раза превышает протяженность зоны застоя:

$$\Delta A = A(t) - A(t - T) = 2(s_{+} - s_{-}) = \frac{4F_{\text{TP}}}{m\omega_{0}^{2}}.$$
(1.73)

Таким образом, в отличие от экспоненциального закона (1.56), характерного для вязкого трения, амплитуда колебаний убывает со временем линейно.

Рис. 1.19.

На рис. 1.20 показана зависимость от времени смещения колеблющегося тела при сухом трении. Число совершаемых системой колебаний до их прекращения зависит от начальной амплитуды *А*_в,и его можно оценить по формуле:

$$N = \frac{A_0}{\Delta A} = \frac{A_0}{2(s_+ - s_-)}$$
(1.74)

и зависит от начальной амплитуды A_0 .Частота колебаний $\omega_0 = \sqrt{\frac{k}{m}}$ остается такой же, как и при отсутствии силы трения (см. (1.72)).

Рис. 1.20.

Колебания продолжаются до тех пор, пока их амплитуда остается больше половины ширины зоны застоя $s_+ - s_-$.При этом в реальных условиях колеблющаяся масса останавливается в случайном положении внутри этой зоны (в точке P на рис. 1.20).

Тема 2. Вынужденные колебания.

Вынужденные колебания под действием гармонической силы. Режимы медленных, быстрых и резонансных колебаний. Амплитудно-частотные и фазо-частотные характеристики. Баллистический режим колебаний. Установление колебаний. Характеристики различных колебательных систем. Параметрические колебания. Автоколебания.

В предыдущей лекции были рассмотрены свободные затухающие колебания, возникающие при начальном кратковременном воздействии внешних сил на колебательную систему. Между тем, в повседневной практике мы сталкиваемся с незатухающими колебаниями, для поддержания которых необходимо подводить энергию к колебательной системе, чтобы компенсировать ее энергетические потери.

Одним из распространенных способов поддержания незатухающих колебаний является непрерывное воздействие на колеблющуюся массу периодической силы (вынуждающей силы)

$$F(t) = F(t+T),$$
 (2.1)

меняющейся во времени *t*, вообще говоря, произвольно в пределах периода длительностью *т*. Если, например, такую силу приложить к колеблющейся массе описанного выше пружинного маятника (рис. 2.1), то уравнение ее движения примет вид:

$$m\ddot{s} = -\Gamma\dot{s} - ks + F(t). \tag{2.2}$$

Опыт показывает, что если сила внезапно начинает действовать (например, в момент времени t=0), то маятник начнет постепенно раскачиваться, и спустя какое-то время его колебания установятся. По порядку величины время установления таких вынужденных колебаний будет совпадать с временем затухания $\tau = \delta^{-1} = 2m/\Gamma$. Далее мы сконцентрируем внимание именно на установившихся колебаниях. Естественно, что параметры таких колебаний будут зависеть от конкретного вида силы *F*(*P*). Из математики хорошо известно, что любую периодическую функцию можно представить в виде ряда Фурье:

$$F(t) = \sum_{n=0}^{\infty} F_{0n} \sin\left(\frac{2\pi}{T}nt + \psi_n\right).$$
 (2.3)

Физический смысл этого представления состоит в том, что периодическое воздействие *F*(#)эквивалентно одновременному воздействию постоянной силы *F*₀₀ и набора гармонических сил с соответствующими амплитудами *F*₀₀-начальными фазами ψ_{5} и частотами $\omega_{6} = \frac{2\pi}{T} \pi = \omega_{7}$, кратными низшей (основной) частоте $\omega = \frac{2\pi}{T}$.

Чтобы получить полную картину вынужденных колебаний под действием силы (2.3), необходимо принять во внимание линейность уравнения (2.2). Это позволяет представить его решение *«*(!) как сумму гармонических колебаний:

$$s(t) = \sum_{n=0}^{\infty} s_{0n} \sin\left(\frac{2\pi}{T}nt + \varphi_n\right),\tag{2.4}$$

происходящих с установившимися амплитудами вали фазами вали чали кототах изсоответствующих гармоник вынуждающей силы (2.3). Каждое слагаемое в (2.4) может рассматриваться как вынужденное гармоническое колебание, происходящее под действием внешней гармонической силы с амплитудой исходящее под действием внешней сармонической силы с амплитудой исходящее под действием внешней сармонической силы с амплитудой исходящее под в с амплитудой исходящее под действием внешней сармонической силы с амплитудой исходящее под с исходящее с амплитудой исходящее под в исхода исходящее под в исхода исходящее под с исхода исхода исходящее под в исхода и исхода и исхода и и и и и и и и и

Амплитуды 🕬 и фазы 🕬 требуют определения, и мы перейдем сейчас к их нахождению.

Вынужденные колебания под действием гармонической силы.

Пусть внешняя сила меняется по гармоническому закону

 $F(t) = F_0 \sin \omega t. \tag{2.5}$

Уравнение (2.2) в этом случае принимает вид:

$$m\ddot{s} = -\Gamma\dot{s} - ks + F_0 \sin \omega t. \tag{2.6}$$

Под действием этой силы маятник в установившемся режиме будет совершать гармонические колебания

$$s(t) = s_0 \sin(\omega t + \varphi_0). \tag{2.7}$$

Как показывает опыт, амплитуда «и начальная фаза » (т.е. сдвиг фазы между смещением «и силой ») установившихся колебаний зависят не только от амплитуды силы » (что очевидно из уравнения (2.6)), но и от того, насколько частота вынуждающей силы » отличается от собственной частоты колебаний маятника $\omega_0 = \sqrt{k/m}$. Наиболее сильно маятник будет раскачиваться, когда эти частоты практически совпадают: » « ω_0 .

Прежде чем приступить к нахождению *ои ϕ_0 ; Заметим, что для механических колебательных систем не так просто с технической точки зрения осуществить воздействие гармонической силы непосредственно на движущуюся массу. Гораздо проще это сделать для электрических и оптических колебательных систем, например, для колебательного контура, подключенного к внешнему источнику переменного напряжения. Легко, однако, видеть, что можно поддерживать вынужденные колебания маятника, изображенного на рис. 2.1, иным способом, не прикладывая непосредственно внешнюю силу F(t)к массе m.Достаточно лишь эту силу приложить к левому концу свободной пружины так, чтобы этот конец двигался по гармоническому закону $\xi(t) = \xi_0 \sin \omega t$ (рис. 2.2). Тогда удлинение пружины составит величину $s - \xi_a$ сила упругости, приложенная к массе m , будет равна $-k(s - \xi)$.Поэтому уравнение движения массы mзапишется в виде:

$$m\ddot{s} = -\Gamma\dot{s} - k(s - \xi). \tag{2.8}$$

Если принять во внимание, что сила упругости пружины в отсутствие смещения груза (s = 0) равна

$$F(t) = k\xi(t) = k\xi_0 \sin \omega t, \qquad (2.9)$$

то уравнение (2.8) полностью эквивалентно уравнению (2.6). Сила (2.9) выполняет роль внешней гармонической силы в классической схеме, изображенной на рис. 2.1. Эта сила легко может быть визуализирована, поскольку ее величина и направление однозначно определяется смещением подвижного левого конца пружины. Это, в свою очередь, дает возможность наглядно продемонстрировать фазовые соотношения между силой *К*(4)(или смещением *§*(4)) и смещением *в*(4) смещением массы.

Перепишем уравнение (2.8) следующим образом:

$$\bar{s} + 2\delta \dot{s} + \omega_0^2 \bar{s} = \frac{F_0}{m} \sin \omega t, \qquad (2.10)$$

где $F_0 = k\xi_0$.

Решение этого уравнения будем искать в виде гармонического колебания (2.7), где амплитуда **и фаза **могут быть определены, если подставить (2.7) в (2.10). Мы сделаем это несколько позднее, а пока рассмотрим три важных режима вынужденных колебаний.

Медленные колебания.

Если частота вынуждающей силы «значительно меньше «то скорость «и ускорение колеблющейся массы будут очень малыми. Поэтому можно пренебречь первыми двумя членами в левой части уравнения (2.10) и записать его в приближенном виде:

$$\omega_0^2 s = \frac{F_0}{m} \sin \omega t. \tag{2.11}$$

Его решение очевидно:

$$s(t) = \frac{F_0}{m\omega_0^2}\sin\omega t = \frac{F_0}{k}\sin\omega t.$$
(2.12)

В этом режиме смещение груза пропорционально внешней силе и не зависит от величины его массы т. Решение (2.12) является, по существу, математическим выражением закона Гука для статической деформации пружины. Поэтому этот режим можно назвать квазистатическим (почти статическим). Амплитуда колебаний в соответствии с этим законом равна $s_0 = F_0/k_0$ смещение s(t)изменяется в фазе с внешней силой.

В схеме, изображенной на рис. 2.2, это эквивалентно тому, что смещение массы тапрактически повторяет смещение левого конца пружины:

$$s(t) = \frac{F_0}{k} \sin \omega t = \frac{k\xi_0}{k} \sin \omega t = \xi(t), \qquad (2.13)$$

поскольку $F_0 = k\xi_0$. Это и не удивительно, т.к. для движения массы тс пренебрежимо малым ускорением вне требуется больших деформаций пружины: $s(t) - \xi(t) \approx 0$.

Быстрые колебания.

Если $\omega \gg \omega_{h}$ то период вынужденных колебаний $T = 2\pi/\omega$ мал. Это означает, что масса миспытывает действие лишь внешней силы F(t)-а сила упругости k-яи вязкого трения Г*малы. Действительно, за половину короткого периода колебаний, когда масса движется в одном направлении, она не успевает набрать как заметную скорость *так и сместиться на достаточною величину *от положения равновесия. Поэтому в уравнении (2.10) можно опустить члены, содержащие *и *и записать его в другом приближенном виде:

$$\bar{s} = \frac{F_0}{m} \sin \omega t. \tag{2.14}$$

Интегрируя это уравнение два раза, находим закон движения колеблющейся массы:

$$s(t) = -\frac{F_0}{m\omega^2} \sin \omega t = \frac{F_0}{m\omega^2} \sin(\omega t - \pi).$$
(2.15)

Из (2.15) следует, что смещение по отношению к внешней силе запаздывает по фазе на $\pi(\varphi_0 = -\pi)$ а амплитуда, как мы и предполагали, убывает с увеличением частоты.

В схеме, изображенной на рис. 2.2, в таком режиме левый подвижный конец пружины и масса твсегда движутся в противоположных направлениях:

$$s(t) = -\frac{k\xi_0}{m\omega^2}\sin\omega t = -\frac{\omega_0^2}{\omega^2}\xi(t).$$
 (2.16)

По абсолютной величине смещение массы имв ^{ш2}/ш²/ш² раз меньше смещения левого конца пружины, т.е. практически не будет заметным.

Резонансный режим.

Если частота *w w* to вынужденные колебания происходят на собственной частоте колебаний. Это означает, что

$$\bar{s} + \omega_0^2 s = 0.$$
 (2.17)

Следовательно, уравнение (2.10) при учете (2.17) примет вид: $2\delta s = \frac{F_0}{m} \sin \omega_0 t.$ (2.18)

Интегрируя его, получаем выражение для смещения:

$$s(t) = \frac{F_0}{2\delta m\omega_0} \sin(\omega_0 t - \pi/2). \tag{2.19}$$

Последнее выражение удобно переписать в виде $s(t) = \frac{F_0}{k}Q\sin(\omega_0 t - \pi/2),$ (2.20) где $Q = \frac{\pi}{\delta T}$ - добротность маятника. Если добротность $Q \gg 1$ -то амплитуда колебаний может во много раз превышать амплитуду медленных квазистатических колебаний (ср. с (2.12)). Поэтому такой режим называется резонансным.

Велики также амплитуды скорости и ускорения. Поскольку скорость «как следует из (2.18), изменяется в фазе с внешней силой, то с энергетической точки зрения это весьма благоприятно для "подкачки" энергии в колебательную систему. Работа внешней силы за период колебаний равна:

$$A = \int_{0}^{T} F(t) \cdot \dot{s}(t) dt = \frac{F_{0}^{2}}{2\delta m} \int_{0}^{T} \sin^{2} \omega_{0} t dt = \frac{F_{0}^{2}T}{4\delta m}$$
(2.21)

и значительно превосходит работу этой силы в обоих рассмотренных выше режимах. Такая большая работа необходима для компенсации значительных потерь из-за силы вязкого трения.

Для большей наглядности последнего результата обратимся к схеме с подвижным левым концом пружины, где, как это видно из решения (2.20),

$$s(t) = \xi_0 Q \sin(\omega_0 t - \pi/2). \tag{2.22}$$

Амплитуда смещения правого конца пружины в Фраз превосходит амплитуду смещения левого конца. При прохождении массой «положения равновесия » = 0, когда ее скорость максимальна, левый конец пружины смещен на максимальную величину в направлении скорости движущейся массы. В этот момент времени мощность силы упругости пружины имеет максимально возможное положительное значение при заданной величине so-B последующие моменты времени эта мощность будет оставаться положительной, что, естественно, обеспечивает наиболее эффективную передачу энергии движущемуся с трением телу.

Если сила (2.5) меняется с произвольной частотой жто амплитуда «и фаза ков входящие в решение (2.7), могут быть найдены, как было сказано выше, подстановкой решения (2.7) в уравнение (2.10). Такую подстановку можно осуществить наиболее просто, если воспользоваться методом комплексных амплитуд, широко применяемым в различных областях физики: теории колебаний, теории волн, электромагнетизме, оптике и др.

Метод комплексных амплитуд.

Если в формуле Эйлера (1.53): e^{i#} = ∞sφ + isin #под #понимать фазу гармонических колебаний

$$\varphi = \omega t + \varphi_0, \tag{2.23}$$

то каждому такому колебанию «(*)можно поставить в соответствие комплексное число

$$\hat{s}(t) = s_0 e^{i\varphi} = s_0 e^{i\varphi_0} e^{i\omega t} = s_0 \cos(\omega t + \varphi_0) + is_0 \sin(\omega t + \varphi_0)$$
(2.24)

Из (2.24) видно, что решение (2.7) является мнимой частью комплексного выражения:

$$s(t) = s_0 \sin(\omega t + \varphi_0) = Im \hat{s}_0 e^{i\omega t},$$
(2.25)

(a a a)

где $\hat{s}_0 = s_0 e^{i s_0}$ - комплексная амплитуда, которая несет информацию об амплитуде s_0 и начальной фазе s_0 колебаний. Надо отметить, что метод комплексных амплитуд является, фактически, аналитическим выражением метода векторных диаграмм. Если в последнем методе колебание с частотой ыполностью задается вектором s_0 то в методе комплексных амплитуд колебание задается числом s_0 на комплексной плоскости. Поскольку с комплексными числами удобно и просто производить математические операции, то мы используем это обстоятельство для получения решения уравнения вынужденных колебаний (2.10).

Вынужденные колебания с произвольной частотой.

Будем искать решение уравнения (2.10) в комплексном виде:

 $\hat{s}(t) = \hat{s}_0 e^{t\omega t} \tag{2.26}$

Вынуждающую силу в правой части (2.10) также запишем в комплексной форме:

$$\hat{F}(t) = \hat{F}_0 e^{i\omega t},$$
 (2.27)

где $\hat{F}_{0} = F_{0}$ - действительное число, поскольку для простоты мы положили, что начальная фаза в выражении для силы (2.5) равна нулю.

Тогда уравнение (2.10) можно записать в виде:

$$\ddot{\hat{s}} + 2\delta\dot{\hat{s}} + \omega_0^2 \hat{s} = \frac{\hat{F}_0}{m} e^{\delta\omega t}.$$
(2.28)

Комплексную амплитуду 🕯 = 🚛 🖓 легко находим подстановкой (2.26) в (2.28):

$$(-\omega^2 + 2i\delta\omega - \omega_0^2)\hat{s}_0 e^{i\omega t} = \frac{\hat{F}_0}{m} e^{i\omega t}.$$
 (2.29)

Отсюда получаем:

$$\hat{s}_{\alpha} = \frac{F_{\alpha}}{m(\omega_{\alpha}^2 - \omega^2 + 2i\delta\omega)}.$$
(2.30)

Из (2.30) нетрудно найти амплитуду колебаний
$$s_0 = |\hat{s}_0|$$
:
 $s_0 = \frac{F_0}{m\sqrt{(\omega_0^2 - \omega^2)^2 + 4\delta^2 \omega^2}}$ (2.31)

$$H \ \Phi a_{3}y \ \varphi_{0} = \arg s_{0} :$$

$$tg\varphi_{0} = \frac{Ims_{0}}{Res_{0}} = \frac{2\delta\omega}{\omega^{2} - \omega_{0}^{2}},$$
(2.32)

полностью определяющие вынужденные колебания (2.25).
Зависимость амплитуды *•от частоты #•задаваемая формулой (2.31), называется амплитудно-частотной характеристикой (АЧХ), а зависимость #••[#]•описываемая формулой (2.32), называется фазо-частотной характеристикой (ФЧХ). На рис. 2.3 изображена АЧХ, которая отображает нарастание амплитуды *•при приближении ык #••Это явление получило название резонанса смещений. Интересно, что максимальное значение амплитуды, в Фраз превосходящее статическое смещение F•/k-достигается на частоте

$$w_s = \sqrt{u_0^2 - 2\delta^2},\tag{2.33}$$

которая несколько меньше как собственной частоты жытак и частоты затухающих колебаний $\sqrt{\omega_0^2 - \delta^2}$. Для практических целей для частот жлежащих вблизи частоты жыформула (2.31) может быть значительно упрощена. Так, можно положить

$$\frac{(\omega_0^2 - \omega^2)^2 - (\omega_0 - \omega)^2 (\omega_0 + \omega)^2 \approx (\omega_0 - \omega)^2 \cdot 4\omega_0^2}{4\delta^2 \omega^2 \approx 4\delta^2 \omega_0^2},$$
(2.34)

Рис. 2.3.

С учетом приближений (2.34) формула (2.31) примет вид:

$$s_0(\omega) = \frac{F_0}{k} Q \frac{1}{\sqrt{\left(\frac{\omega_0 - \omega}{\delta}\right)^2 + 1}}.$$
(2.35)

В физике безразмерную функцию

$$L(\omega) = \frac{1}{\sqrt{\left(\frac{\omega_0 - \omega}{\delta}\right)^2 + 1}}$$
(2.36)

называют Лоренцевой, а график этой функции называют Лоренцевым контуром. Ширину Диэтого контура, определяющую остроту резонанса, находят из условия убывания вдвое энергии колебательной системы, пропорциональной квадрату амплитуды **** (2.35), что эквивалентно приближенному соотношению

$$\frac{1}{\sqrt{\left(\frac{\Delta\omega/2}{\delta}\right)^2 + 1}} = \frac{1}{\sqrt{2}} \approx 0.7,$$
(2.37)

которое поясняется рисунком 2.4. При этом условии $\frac{\Delta\omega}{2} = \delta_{T.e.} \Delta\omega = 2$ Ширина Лоренцева контура характеризует полосу пропускания колебательной системы, т.е. такую область частот внешней силы, для которых система эффективно откликается на гармоническое внешнее воздействие. Легко видеть, что добротность системы равна

$$Q = \frac{\pi}{\delta T} = \frac{\omega_0}{\Delta \omega},\tag{2.38}$$

т.е. обратно пропорциональна полосе пропускания.

Рис. 2.4.

С уменьшением коэффициента вАЧХ меняет свою форму, как это изображено пунктиром на рис. 2.3 для в < в.Полоса пропускания △шуменьшается, добротность @возрастает, и резонанс становится более острым.

Фазо-частотная характеристика для двух различных коэффициентов затухания изображена на рис. 2.5. Физическое содержание зависимости Фасиймы подробно обсудили для трех различных режимов вынужденных колебаний. Отметим лишь, что с уменьшением затухания «кривая Фасийстановится более "чувствительной" к изменению частоты вблизи резонанса.

Рис. 2.5.

Наряду с резонансом смещений, можно говорить о резонансе скоростей и резонансе ускорений .

Скорость колеблющейся массы равна:

 $\dot{s} = s_0 \omega \sin(\omega t + \varphi_0 + \pi/2),$ (2.39)

а ее ускорение:

 $\bar{s} = s_0 \omega^2 \sin(\omega t + \varphi_0 + \pi), \qquad (2.40)$

т.е. амплитудно-частотная характеристика для скорости получается умножением АЧХ (2.31) на ша для ускорения - на ш²:

$$w_{0} = s_{0}\omega = \frac{F_{0}}{m\sqrt{\left(\frac{\omega_{0}^{2} - \omega^{2}}{\omega}\right)^{2} + 4\delta^{2}}},$$
$$w_{0} = s_{0}\omega^{2} = \frac{F_{0}}{m\sqrt{\left(\frac{\omega_{0}^{2}}{\omega^{2}} - 1\right)^{2} + 4\frac{\delta^{2}}{\omega^{2}}}}.$$

На рис. 2.6 изображены частотные зависимости амплитуд скорости $w_0 = s_0 \omega$ и ускорения $w_0 = s_0 \omega^2$.

Рис. 2.6.

Характерно, что резонанс скорости происходит на частоте *w*_# −*w*_ba резонанс ускорения - при *w*_# > *w*_b. Отметим, что все резонансные частоты связаны между собой:

$$\omega_{g} \cdot \omega_{g''} - \omega_{g'}^2 - \omega_0^2. \tag{2.41}$$

Отметим также, что по причинам, рассмотренным ранее, в области низких частот малы как ускорение, так и скорость. В области высоких частот ускорение конечно ($s_0\omega^2 \rightarrow F_0/m$)и обеспечивается лишь внешней силой. Однако скорость по-прежнему незначительна, поскольку тело не успевает разогнаться.

Не представляет труда нарисовать самостоятельно фазо-частотные характеристики для скорости и для ускорения, пользуясь формулами (2.39) и (2.40), поскольку они получаются простым сдвигом ФЧХ для смещения (2.32), изображенной на рис. 2.5, вверх соответственно на л.

В заключение рассмотрим вопрос о подводе энергии к осциллятору при произвольной частоте вынуждающей силы. Средняя за период мощность этой силы равна

$$N = \frac{1}{T} \int_{0}^{T} F(t)\dot{s}(t)dt = \frac{1}{T} \int_{0}^{T} F_0 \sin \omega t \cdot v_0 \sin \left(\omega t + \varphi_0 + \frac{\pi}{2}\right) dt = \frac{1}{T} F_0 v_0 \int_{0}^{T} \sin \omega t \sin(\omega t + \psi_0)$$
$$\frac{1}{T} F_0 v_0 \int_{0}^{T} \sin^2 \omega t \cos \psi_0 dt + \frac{1}{T} F_0 v_0 \int_{0}^{T} \sin \omega t \cos \omega t \sin \psi_0 dt = \frac{1}{2} F_0 v_0 \cos \psi_0,$$

где $\psi_0 = \varphi_0 + \frac{\pi}{2}$ - сдвиг фаз между скоростью и силой. Мы видим, что максимум подводимой к осциллятору мощности достигается на частоте ω_0 -поскольку при этом максимальны и амплитуда скорости v_0 , и v_0 , $\psi_0(\psi_0 = 0)$. При других частотах вынуждающей силы эта мощность быстро уменьшается и стремится к нулю, как при $\omega \to 0$, так и при $\omega \to \infty$.

Баллистический режим колебаний.

Рассмотрим колебания системы, к которой приложена произвольная сила *F*(*t*), действующая в течение промежутка времени Δt_3 начительно меньшего периода собственных колебаний: $\Delta t \ll T$.Отклик системы на такое воздействие будет пропорционален импульсу действующей силы:

$$p = \int_{0}^{M} F(t)dt.$$
 (2.42)

В самом деле, при кратковременном воздействии (в течение времени маятник не успевает заметно сместиться из положения равновесия, однако будет обладать ускорением

$$\bar{s} = \frac{F(t)}{m}.\tag{2.43}$$

При записи (2.43) мы пренебрегли силой вязкого трения. По окончании действия силы маятник приобретет скорость

$$v_0 = \dot{s} = \int_0^{\infty} \bar{s} dt = \frac{p}{m},$$
 (2.44)

пропорциональную импульсу силы.

Далее маятник будет совершать собственные гармонические колебания с амплитудой

 $s_0 = \frac{v_0}{\omega_0} = \frac{p}{m\omega_0}.$ (2.45)

Если параметры жи жизвестны, то измеряя амплитуду первого колебания после воздействия, можно определить ».

В качестве примера рассмотрим процедуру измерения заряда, протекающего по электрической цепи, с использованием баллистического гальванометра. Этот гальванометр содержит рамку, которая может совершать крутильные колебания. Рамка имеет увеличенный (по сравнению с обычным гальванометром) момент инерции, что увеличивает период ее собственных колебаний до нескольких секунд. Т.к. рамка находится в магнитном поле постоянного магнита, то при протекании через нее электрического тока на рамку будет действовать момент сил, пропорциональный току. При протекании кратковременного тока рамка приобретает угловую скорость и затем за четверть периода колебаний отклоняется на некоторый максимальный угол, который пропорционален интегралу от протекшего через рамку тока, т.е. величине протекшего заряда.

Установление колебаний.

Мы уже отмечали, что если приложить к покоящемуся маятнику гармоническую силу в момент времени *=0 то маятник начнет постепенно раскачиваться, как это качественно изображено на рис. 2.7а. Установление колебаний связано с тем фактом, что наряду с вынужденными колебаниями на частоте ω будут возбуждены и собственные колебания на частоте $\sqrt{\omega_0^2} - \delta^2$ которые, конечно, будут затухать.

Рис. 2.7а.

Из математики известно, что общее решение линейного неоднородного уравнения (2.10) при ^в < чыимеет вид:

$$s(t) = s_{0e}e^{-\delta t}\sin(\sqrt{\omega_0^2 - \delta^2 t} + \varphi_e) + s_0\sin(\omega t + \varphi_0), \qquad (2.50)$$

представляющий собой суперпозицию собственных затухающих колебаний на частоте $\sqrt{\omega_0^2 - \delta^2}$ и незатухающих вынужденных колебаний на частоте ω .Из (2.50) видно, что колебания установятся лишь тогда, когда затухнут собственные колебания. Это произойдет по истечении времени

$$\Delta t_{\text{yest}} \sim r = \frac{1}{\delta}.$$
 (2.51)

За это время в систему "закачивается" энергия, поскольку до установления колебаний работа внешней силы превышает работу сил трения. В установившемся режиме имеет место баланс поступающей и расходуемой энергий.

В частности, если $\omega = \sqrt{\omega_0^2 - \delta^2}$, то (2.50) при s(0) = 0, $\delta \ll \omega_0$, как нетрудно показать, имеет вид

(2.52)

$$s(t) = s_0(1 - e^{-\delta t})\sin(\omega t - \pi/2),$$

поскольку при этих условиях $s_{0e} = s_0, \varphi_0 = -\varphi_0 \approx \frac{\pi}{2}$.

Отметим, что формула (2.51) определяет лишь порядок величины (временной масштаб) Δt_{per} . Для практических целей время установления (равно как и время затухания) колебаний принимают равным $\Delta t_{per} = (3 \div 5)r$.

На фазовой плоскости (рис. 2.76) фазовая траектория будет постепенно "раскручиваться" из начала координат и стремиться к предельному циклу - эллипсу, изображенному на рисунке пунктирной линией.

Рис. 2.7б.

Характеристики различных колебательных систем (осцилляторов).

Интересно сопоставить основные характеристики различных колебательных систем (иногда их для краткости называют осцилляторами) Примерами та-

ких осцилляторов могут быть механические (рассмотренные выше), электрические (известные из школьного курса физики, например, колебательный контур), оптические (например, электрон в атоме) и другие системы.

Вначале обратимся к характеристикам наиболее распространенного осциллятора - маятника, представляющего собой тело, подвешенное на нити.

Маятник является одним из древнейших физических приборов. С помощью крутильных маятников были открыты законы гравитационного и электрического взаимодействий, измерено давление света, выполнено множество других физических экспериментов. В последнее время предложен и реализуется ряд новых экспериментов для изучения фундаментальных свойств материи, в которых очень малые силы измеряются с помощью крутильных маятников. Чувствительность таких экспериментов зависит от того, насколько ослаблены сейсмические возмущения, действующие на маятник, а также от стабильности его параметров, например, упругих свойств нити подвеса. Но даже если устранены все внешние возмущающие воздействия, остается один принципиальный источник флуктуаций его амплитуды и фазы колебаний. Это хаотическое тепловое движение молекул в нити подвеса и подвешенном теле. Действующая на него флуктуационная сила зависит от температуры и от добротности маятника. Чем выше добротность маятника, тем медленнее затухают его колебания и диссипирует его энергия, превращаясь в тепло, т.е. хаотическое движение молекул. Это означает, что ослабевает и обратный процесс раскачки маятника хаотическим движением молекул, т.е. уменьшается флуктуационная сила, действующая на маятник. Для того, чтобы уменьшить затухание, тело и нить подвеса изготовляют из высококачественного плавленого кварца - материала с низкими потерями упругой энергии, а также принимают специальные меры для исключения других источников диссипации энергии. В результате добротность крутильных маятников достигает величины ~10⁷.

В настоящее время в нескольких странах строятся лазерные гравитационные антенны для регистрации гравитационного излучения от космических объектов. Принцип действия антенны основан на том, что гравитационная волна действует на свободные массы, помещенные в разные точки пространства, изменяя расстояние между ними. Это изменение пропорционально интенсивности волны и расстоянию между массами. По этой причине в гравитационных антеннах пробные массы располагают в нескольких километрах друг от друга в специальных вакуумных камерах, а расстояние между ними измеряют уникальным лазерным интерферометром. Каждая пробная масса подвешивается на тонких нитях, образуя маятник качания. С массами связывают два зеркала, отражающие лазерный луч, распространяющийся вдоль прямой, соединяющей эти массы. По сдвигу интерференционной картины, даваемой такой сложной оптической системой, можно "почувствовать" взаимное смещение масс на величину порядка 10⁻¹⁷ см, что на 7 порядков меньше размеров атома! Чувствительность гравитационной антенны ограничена тепловыми флуктуациями колебаний такого маятника, а значит, также определяется его добротностью. В отличие от крутильных, добротность маятников качания зависит не только от потерь в упругом элементе - нити подвеса, но и от ее натяжения. За счет этого эффекта

можно значительно увеличить добротность маятника качания. Так, добротность маятников качания, целиком изготовленных из плавленого кварца, может превышать 10⁸, т.е. время затухания их колебаний достигает нескольких лет. Конечно, при столь малой диссипации энергии маятника на его добротность влияют весьма слабые внешние воздействия, например, электрические и магнитные поля, или частицы пыли, осевшие на нити подвеса, и т. д.

При таких высоких значениях добротности и соответствующем подавлении сейсмических возмущений проявляются квантовые свойства маятника. В этом случае поведение вполне макроскопического объекта будет определяться принципом неопределенности Гейзенберга. Правда, необходимые условия реализуются пока для малых временных интервалов (около 10⁻³ с), и для наблюдения квантовых особенностей поведения маятников требуются очень чувствительные регистрирующие устройства, но именно такие маятники, обладающие предельно высокой добротностью, предполагается использовать в будущих гравитационных антеннах.

Камертон, служащий для настройки музыкальных инструментов, также является высокодобротным осциллятором. Звук, издаваемый вибрирующими ножками камертона, затихает за достаточно длительное время по сравнению с периодом их колебаний. Если, например, собственная частота камертона лежит в диапазоне $\nu = 300 \div 400\Gamma$ я, а продолжительность звучания (весьма грубо) составляет время порядка $\tau \sim 100$, то камертон совершит $\nu \tau \sim 3000 \div 4000\Gamma$ я. Это означает, что его добротность по порядку величины равна $Q \sim 10^4$.

Как это ни покажется парадоксальным, электрический колебательный контур является менее добротной системой, хотя частота его собственных колебаний имеет порядок величины $\nu \sim (10^5 \div 10^8)\Gamma_{R}$.Добротность контура ограничена, главным образом, омическими потерями и имеет порядок величины $Q \sim 10^2$.Это, в свою очередь, означает, что полоса пропускания $\Delta \nu = Q^{-1} \cdot \nu_{\gamma}$ введенная ранее при рассмотрении вынужденных колебаний, равна $\Delta \nu \sim (10^3 \div 10^8)\Gamma_{R}$.

Если частота радиопередающей станции и высока ($\nu_e > 10^{6}\Gamma n$) то ее преобразовывают в радиоприемных устройствах до низкой (называемой промежуточной) частоты $\nu_n \sim 10^{6}\Gamma n$. Тогда колебательный контур радиоприемника будет иметь очень малую полосу пропускания $\Delta \nu \sim Q \cdot \nu_n \sim 5 \cdot 10^{6}\Gamma n$. Это значит, что если частоты двух станций ν_{16} и ν_{26} соответственно различаются более, чем на величину полосы пропускания $\langle |\nu_{16} - \nu_{26}| > \Delta \nu \rangle$ то, перестраивая собственную частоту колебательного контура приемника, можно по отдельности настроиться на каждую из этих передающих станций.

Оптический электрон в атоме, осуществляя переходы с одной орбиты на другую, в соответствии с постулатами Бора излучает квант света с энергией $\hbar\omega = E_2 - E_1 \cdot C$ классической точки зрения это можно интерпретировать таким образом, что электрон совершает колебания на этой частоте *w*-т.е. является оптическим осциллятором. Поскольку электрон теряет энергию на излучение, то амплитуда его колебаний должна затухать в течение некоторого характерного времени т.Для уединенного атома (не взаимодействующего с сосседними атомами) это время определяется зарядом и массой электрона и зависит от частоты *w*. Однако для всех атомов оно имеет один и тот же порядок величины:

 $\tau \sim 10^{-8} \div 10^{-9} c.$ Учитывая, что в видимом оптическом диапазоне период колебаний $T = 2\pi/\omega \sim 10^{-15} c.$ легко подсчитать число колебаний до их затухания. Оно имеет порядок величины $\frac{\tau}{T} \sim 10^{6} \div 10^{3}$. Поэтому добротность оптического осциллятора $(Q \sim 10^{7}).$ будучи высокой, все же уступает добротности прецизионных кварцевых маятников.

Параметрические колебания.

В повседневной жизни мы сталкиваемся с незатухающими колебаниями, для поддержания которых требуется периодически менять какой-либо параметр колебательной системы. Одним из ярких примеров являются колебания качелей. Хорошо известно, что можно поддерживать колебания длительное время, если быстро приседать в момент наибольшего отклонения качелей и также быстро вставать при прохождении положения равновесия. Благодаря этому параметр физического маятника (качелей) - расстояние имежду осью вращения и центром масс - меняется скачкообразно на величину $\pm \Delta a (\Delta a \ll a)$. Величина Δa должна быть такой, чтобы обеспечить баланс энергии системы: потери энергии маятника за период должны компенсироваться за счет совершения работы, осуществляемой при приседании и вставании.

Напишем условие энергетического баланса для простейшего случая колебаний математического маятника с длиной нити а, которая меняется на величину ±∆а(рис. 2.8.). Это можно осуществить, если пропустить нить маятника через отверстие в точке Р (точке подвеса) и затем, прикладывая внешнюю силу ⊮к концу нити, периодически менять ее длину.

Рис.2.8.

Рассмотрим установившиеся параметрические колебания маятника с не слишком большими амплитудами и будем считать, что затухание мало 🌾 🏎 Поскольку Δa « «то приближенно можно считать, что угол «отклонения маятника от положения равновесия меняется во времени по гармоническому закону

$$\alpha(t) = \alpha_0 \sin \omega t,$$

(2.53)

где согласно (1.42) $\omega \approx \omega_0 \left(1 - \frac{\omega_0^2}{16}\right)$, $u_0 = \sqrt{g/a}$.

В момент наибольшего отклонения на угол сосила натяжения нити равна $N_1 = mg \cos \alpha_0$. Поэтому, удлиняя нить на величину $\Delta \alpha_0$ внешняя сила $F_1 = N_1$ совершает отрицательную работу $A_- = -mg \cos \alpha_0 \cdot \Delta \alpha_0$. Раскладывая $\cos \alpha_0$ в ряд $\cos \alpha_0 \approx 1 - \frac{\alpha_0^2}{2} + \frac{\alpha_0^4}{24} + \dots$, получим

$$A_{-} \approx -mg\left(1 - \frac{\alpha_0^2}{2} + \frac{\alpha_0^4}{24}\right)\Delta a. \tag{2.54}$$

При прохождении маятником положения равновесия $(\alpha = 0)F_2 = N_2 = mg + \frac{mv_0^2}{a}$, где и = на Поэтому положительная работа при укорачивании нити с точностью до членов порядка «фравна:

$$A_{+} = (mg + m\alpha_{0}^{2}\alpha^{2}a)\Delta a \approx mg\left(1 + \alpha_{0}^{2} - \frac{\alpha_{0}^{4}}{8}\right)\Delta a, \qquad (2.55)$$

где учтено, что $\omega_0^2 a = g$.

Полная работа, совершаемая за период внешней силой в будет положительной и равной

$$A = 2(A_{+} + A_{-}) = 3mg\alpha_{0}^{2}\Delta a - \frac{mg\alpha_{0}^{2}}{3}\Delta a = 3mg\alpha_{0}^{2}\Delta a \left(1 - \frac{\alpha_{0}^{2}}{9}\right).$$
(2.56)

Потери энергии за период численно равны работе силы трения:

$$A_{up} = \int_{0}^{T} F_{up} v dt = -\int_{0}^{T} \Gamma v^{2} dt, \qquad (2.57)$$

где $F_{vp} = -\Gamma v$. При гармонических колебаниях (2.53) скорость (2.58) $v(t) = a\dot{\alpha}(t) = a\alpha_0\omega\cos\omega t.$

Подставляя (2.58) в (2.57) и выполняя интегрирование, получаем:

$$A_{\tau p} = -\Gamma a^2 \alpha_0^2 \omega^2 \int_0^T \cos^2 \omega t dt = -\Gamma a^2 \alpha_0^2 \omega^2 \frac{T}{2} \approx -\Gamma \alpha_0^2 g a \left(1 - \frac{\alpha_0^2}{16}\right) \frac{T_0}{2},$$
(2.59)

поскольку $\omega T = \omega_0 T_0 = 2\pi$.

Следовательно, условие баланса энергии состоит в равенстве нулю суммы работ: $A + A_{rp} = 0, ИЛИ$

$$3mga_0^2 \Delta a \left(1 - \frac{\alpha_0^2}{9}\right) = \Gamma \alpha_0^2 g a \frac{T_0}{2} \left(1 - \frac{\alpha_0^2}{16}\right).$$
(2.60)

Проводя сокращения и используя определение выражение ДЛЯ добротности $Q \approx \frac{\pi}{\delta T_0}$ получаем приближенное выражение для амплитуды «установившихся параметрических колебаний:

$$\alpha_0 = \frac{12}{\sqrt{7}} \sqrt{1 - \frac{\pi}{3Q(\Delta a/a)}}.$$
(2.61)

Отношение △а/аназывают глубиной модуляции параметра а.Из (2.61) видно, что для возникновения параметрических колебаний глубина модуляции должна превзойти некоторое минимальное (пороговое) значение, примерно равное величине, обратной добротности:

$$\frac{\Delta a}{a} \ge \frac{1}{Q} \tag{2.62}$$

Чем более добротна система, тем меньше пороговая глубина модуляции. С повышением величины ∆а/аамплитуда колебаний щькак это следует из формулы (2.61), будет увеличиваться. Однако при больших амплитудах (∞ > 1)формула (2.61) становится мало приемлемой, поскольку сделанные нами приближения становятся неприменимыми.

Следует отметить, что параметрическое возбуждение является существенно нелинейным эффектом. Это видно, в частности, из уравнения (2.60): если пренебречь в нем малыми слагаемыми $\sim \alpha_{0}^{\mathbb{Z}}$ которые описывают нелинейность, то α_{0} из уравнения выпадает, и получается соотношение $\frac{\Delta a}{a} = \frac{\pi}{3Q}$. Физически это означает, что при этом значении глубины модуляции энергетический баланс в системе обеспечивается при любых амплитудах α_{0} ,что неверно.

Заметим, что возбуждение параметрических колебаний, вообще говоря, может происходить не только на удвоенной частоте собственных колебаний системы, когда параметр меняется один раз за каждые полпериода, но и при более редком воздействии: через один, два, три и т. д. полпериодов колебаний, т.е. на частотах ²ша/п.где п- любое целое число. Возбуждение также возможно внутри некоторой области - вблизи каждой из этих частот, но пороговые значения глубины модуляции для разных частот будут различны.

Автоколебания.

Наблюдая колебания листьев деревьев, дорожных знаков над проезжей частью улиц, полотнищ на ветру и др., мы понимаем, что во всех перечисленных случаях незатухающие колебания происходят за счет энергии постоянно дующего ветра. При этом сама колебательная система производит отбор энергии ветра в нужный момент времени и в количестве, требуемом для компенсации неизбежно присутствующих энергетических потерь. Колебания в этих системах начинаются самопроизвольно за счет начальных флуктуаций (дрожаний) колеблющихся предметов. Частота и амплитуда установившихся колебаний определяется как параметрами самой системы, так и параметрами ее взаимодействия с ветром. Такие колебания являются примерами автоколебаний, а сами системы - примерами автоколебательных систем.

Классическим примером автоколебательной системы служат механические часы с маятником и гирями. Эти часы периодически "черпают" энергию при опускании гирь, подвешенных к цепочке, перекинутой через шестерню часового механизма.

Принцип работы всех автоколебательных систем можно понять, обратившись к схеме, изображенной на рис. 2.9а.

Рис. 2.9а.

Периодическим поступлением энергии в колебательную систему от источника энергии по каналу АВ управляет сама колебательная система посред-

ством обратной связи. Схематически это изображено в виде некоторого запирающего канал AB устройства (ключа), который управляется самой системой. Так, в зависимости от положения и скорости колеблющегося листа на ветру будет различной мощность сил аэродинамического давления. В конструкции часового механизма (рис. 2.9б) присутствует специальное устройство - анкер, выполняющий роль ключа. Этот анкер, представляющий собой коромысло, приводится в колебание самим маятником часов. При определенных положениях он "отпирает" одну из шестерен часового механизма. В этот момент времени шестерня проворачивается за счет момента сил, приложенного со стороны натянутой цепи с грузом. Груз при этом опускается на небольшую величину. Количество энергии, поступающей в часовой механизм, равно по величине уменьшению потенциальной энергии груза в поле силы тяжести.

Рис. 2.9б.

Важно отметить, что любая автоколебательная система нелинейна. На схеме это отражено наличием в системе обратной связи нелинейного ограничителя сигнала, управляющего ключом. Нелинейность системы проявляется в том, что при начальном нарастании амплитуды колебаний, порожденных флуктуациями, поступление энергии в систему за каждый последующий период колебаний увеличивается нелинейно, т.е. прирост поступающей энергии становится все меньше и меньше. Естественно, что амплитуда колебаний достигнет такой установившейся величины, при которой приток энергии и ее потери будут равны по величине.

Маятник на вращающемся валу (маятник Фруда).

Для более углубленного изучения принципа действия автоколебательной системы проанализируем колебания маятника, подвес которого скреплен с муфтой 1, одетой на горизонтальный вал 2 (рис. 2.10).

Рис. 2.10.

Пусть вал вращается с постоянной угловой скоростью апо часовой стрелке. Если угол отклонения маятника от вертикали $\beta(\phi)$ меняется с течением времени, то сила сухого трения в подвесе, нелинейно зависящая от относительной скорости муфты и вала $\Omega = \beta_{\phi}$ также будет меняться во времени (β - угловая скорость муфты). Момент этой силы ^М_{тр}будет оказывать периодическое воздействие на маятник, поддерживая его колебания. На рис. 2.11 изображена нелинейная зависимость ^М_{тр}от относительной угловой скорости муфты и вала. На изображенной кривой имеется точка перегиба Р. Подберем скорость вращения вала птакой, чтобы в отсутствие колебаний ($\beta = 0$)попасть в эту точку. В этом случае к муфте маятника будет приложен постоянный момент силы трения: ^М_{тр} = M_0 .Для дальнейшего анализа более удобно воспользоваться зависимостью ^М_{тр}(β)-изображенной на рис. 2.12. Следует подчеркнуть, что начальное (линейное) нарастание ^М_{тр}с угловой скоростью ^Вобеспечивает условие для самопроизвольного нарастания колебаний из флуктуации, что эквивалентно наличию положительной обратной связи, а последующее замедление роста ^М_{тр}при увеличении ^Вявляется причиной нелинейного ограничения нарастания колебаний: амплитуда смещения маятника (а значит и амплитуда его скорости ^β_{так})достигнет максимальной (установившейся) величины, что эквивалентно наличию нелинейного ограничителя.

Рис. 2.12.

Отклоним осторожно маятник от вертикали на угол B_0 такой, чтобы момент силы трения, действующий на неподвижный маятник, $M_0 = M_{rp}(0)$.был уравновешен моментом силы тяжести $M(\beta_0) = mga \sin \beta_0$:

 $M_{\pi p}(0) = M(\beta_0),$ илн $M_0 = mga \sin \beta_0.$

(2.63)

Здесь *т*- масса маятника, *т*- расстояние от вала до центра масс маятника.

На первый взгляд, может показаться, что маятник так и останется висеть под углом β_{0} к вертикали. На самом деле это положение будет неустойчивым. Представим, что в результате ничтожного толчка маятник приобретет небольшую угловую скорость $\beta > 0$.При этом возрастут моменты сил тяжести ми трения M_{sp} , и условие (2.63) может нарушиться. Если начальный наклон кривой $M_{sp}(\beta)$ на рис. 2.12 достаточно велик (сильная положительная обратная связь), то $M_{sp}(\beta) > M(\beta_{0})$.Это означает, что угловая скорость β будет нарастать. Однако затем это нарастание прекратится, т.к. из-за нелинейного загиба кривой $M_{sp}(\beta)$ равенство моментов опять восстановится (сработает механизм нелинейного ограничения):

$$M_{\rm rp}(\beta_{\rm max}) = M(\beta). \tag{2.64}$$

Условию (2.64) соответствует точка ^{*R*}₄на кривой ^{*M*}₄₇(^{*β*}). После этого угловая скорость начнет уменьшаться, поскольку с ростом угла ^{*β*}момент ^{*M*}(^{*β*})продолжает расти, а ^{*M*}₄₇(^{*β*})- убывать. Следовательно, маятник спустя какое-то время остано-

вится, а его угол отклонения достигнет максимальной величины β_{max} .Поскольку в этот момент $M(\beta_{\text{max}}) > M_{\text{sp}} = M_{0}$ то маятник начнет двигаться в обратном направлении. Момент силы тяжести начнет уменьшаться, а момент силы трения будет также уменьшаться, но быстрее, чем момент силы тяжести (опять срабатывает положительная обратная связь). Сначала это движение будет ускоренным, пока $M > M_{\text{sp}}$ (до точки R. на рис. 2.12), а затем при $M < M_{\text{sp}}$ - замедленным (до точки P на рис. 2.12). Остановившись при некотором угле наклона β_{mia} .маятник опять движется влево, т.к. все еще $M < M_{\text{sp}}$ -Наконец, он достигает стартовой позиции, однако приобретенная им скорость будет больше скорости начального толчка. Таким образом, в течение одного периода колебаний увеличилась энергия маятника за счет ее заимствования от устройства, вращающего вал.

В последующие периоды колебаний точки R_+ и R_- на кривой $M_{m}(\hat{\rho})$ будут сдвигаться в разные стороны, однако из-за нелинейности кривой этот сдвиг прекратится (срабатывает механизм нелинейного ограничения), и колебания установятся.

Чтобы количественно проанализировать автоколебания маятника, запишем уравнение вращательного движения маятника с моментом инерции *J*:

$$J\bar{\beta} = M_{\rm rp}(\beta) - mga\sin\beta. \tag{2.65}$$

В этом уравнении мы пока пренебрежем моментом силы вязкого трения, действующей на движущийся маятник. Момент силы сухого трения в подвесе, нелинейно зависящий от угловой скорости ⁽²⁾(см. рис. 2.12), можно аппроксимировать следующим выражением

$$M_{\eta\eta}(\beta) = M_0 + k_1 \beta - k_2 \beta^3, \tag{2.66}$$

где k_1 и k_2 - размерные коэффициенты, определяющие обратную связь и нелинейное ограничение соответственно. Если колебание описывать углом отклонения «от положения неустойчивого равновесия, задаваемого углом β_0 ($\alpha = \beta - \beta_0$),то

$$mga\sin\beta = mga(\sin\beta_0\cos\alpha + \cos\beta_0\sin\alpha). \tag{2.67}$$

Для малых углов $\alpha \cos \alpha \approx 1, \sin \alpha \approx \alpha$ Если учесть далее, что $\dot{\beta} = \dot{\alpha}$, то уравнение (2.65) примет вид:

$$J\ddot{\alpha} + mga\cos\beta_0\alpha = k_1\dot{\alpha} - k_2\dot{\alpha}^3. \tag{2.68}$$

Это уравнение является нелинейным дифференциальным уравнением и не имеет аналитического решения. В теории колебаний развиты методы, позволяющие решить его приближенно, исследовать условия, при которых возможно самовозбуждение колебаний, и найти амплитуду и частоту шустановившихся колебаний:

$$\alpha(t) = o_0 \sin \omega t. \tag{2.69}$$

Мы же поступим более просто и определим чеиз условия энергетического баланса. Поскольку правая часть (2.68) мала, то частота колебаний приближенно равна: $\omega = \sqrt{mga\cos\beta_0/J}$.

Подсчитаем работу за период колебаний $T = 2\pi/\omega_{+}$ совершаемую устройством (например, электродвигателем), вращающим вал. Она, очевидно, равна:

$$A = \int_{0}^{T} M_{vp}(\dot{\beta}) \Omega dt = M_{0} \Omega T.$$
(2.70)

Здесь учтено, что интегралы по времени от ^{*β*}и ^{*β*³}равны нулю, поскольку $\beta = \dot{\alpha} = \alpha_0 \omega \cos \omega t.$ (2.71)

Потери энергии в скользящем подвесе за это время составят величину

$$q = \int_{0}^{1} M_{vp}(\dot{\beta})(\Omega - \dot{\beta})dt = \left(M_{0}\Omega - \frac{k_{1}\alpha_{0}^{2}\omega^{2}}{2} + \frac{3k_{2}\alpha_{0}^{4}\omega^{4}}{8}\right)T.$$
 (2.72)

На рис. 2.13 изображены зависимости *А*и чот амплитуды ча Видно, что при случайных флуктуациях, когда чамало, *А* > ч.Это означает, что колебания будут нарастать. Однако с ростом амплитуды начинают расти потери ч. Колебания установятся при *А* = ч(точка R на графике). Амплитуда установившихся колебаний определится из равенства

$$M_0\Omega T = M_0\Omega T - \frac{k_0\alpha_{0yes}^2\omega^2}{2} + \frac{3k_2\alpha_{0yes}^4\omega^4}{8}.$$
 (2.73)

Отсюда

$$\alpha_{\text{Gyper}} = \frac{2}{\omega} \sqrt{\frac{k_1}{3k_2}}.$$
(2.74)

Рис. 2.13.

Заметим, что теперь мы можем легко учесть силы вязкого трения, для чего в правую часть уравнения (2.68) следует добавить член - га.Это приведет к тому, что k_{1B} (2.74) будет уменьшен на величину г.Поэтому (2.74) изменится:

$$\alpha_{\text{egaw}} = \frac{2}{\omega} \sqrt{\frac{k_1 - \Gamma}{3k_2}}.$$
(2.)

Из последнего выражения следует, что при Г≥ кколебания не могут само-произвольно начаться.

Автоколебательные системы находят широчайшее применение в технике. Так, например, духовые и смычковые инструменты, органные трубы, генераторы электромагнитного излучения в приемно-передающих линиях связи, оптические квантовые генераторы (лазеры) и др. представляют примеры автоколебательных систем. Однако, автоколебания могут играть и негативную роль, начиная от безобидных колебаний деталей кранов водопроводных систем, "ревущих" при достаточном напоре воды, до опасных колебаний крыльев самолетов, получивших название "флаттер". В ноябре 1940 г. подвесной мост через реку Такома в США разрушился из-за крутильных автоколебаний, возникших под действием дувшего вдоль реки ветра.

Тема 3. Колебательная система с двумя степенными свободы.

Свободные незатухающие колебания в системах с двумя степенями свободы. Нормальные колебания (моды). Парциальные и нормальные частоты. Биения. Понятие спектра колебаний. Методика анализа колебаний 2-х связанных осцилляторов. Затухание колебаний и диссипация энергии. Вынужденные колебания. Резонанс. Колебания систем со многими степенями свободы. Дисперсионное соотношение.

Наблюдая колебания массы подвешенной на легкой пружине жесткости нельзя не обратить внимание на то, что, наряду с вертикальными колебаниями груза, возникают и так называемые маятниковые колебания (из стороны в сторону) (рис. 3.1).

Рис. 3.1.

Наиболее сильными эти маятниковые колебания будут тогда, когда частота вертикальных колебаний $\sqrt{k_1/m}$ будет равна удвоенной частоте маятниковых колебаний $\sqrt{y/a}$ (а - длина растянутой пружины при неподвижном грузе). Такой результат легко понять, если рассматривать маятниковые колебания как резонансные параметрические колебания, при этом параметр маятника - длина пружины и- меняется при вертикальных колебаниях на величину ±∆и(см. предыдущую лекцию). В течение некоторого времени маятниковые колебания могут усиливаться за счет уменьшения энергии вертикальных колебаний. Затем процесс пойдет в обратном направлении: маятниковые колебания начнут ослабевать, "возвращая" энергию усиливающимся вертикальным колебаниям. Следовательно, вертикальные колебания не будут гармоническими, что связано с наличием маятниковых колебаний, соответствующих возбуждению второй степени свободы. При определенных условиях могут возникать и крутильные колебания груза вокруг вертикальной оси пружины. Опыт показывает, что наиболее сильными эти колебания будут в том случае, когда их частота $\sqrt{\frac{k_2}{J(k_2)}}$ коэффициент жесткости пружины при ее скручивании, рассмотренный в лекции по деформации твердого тела, л- момент инерции тела относительно вертикальной оси) будет примерно в два раза меньше частоты вертикальных колебаний. В общем случае в этой системе могут происходить четыре типа колебаний, соответствующих четырем степеням свободы: одно вертикальное, два маятниковых в двух взаимно-перпендикулярных плоскостях и одно крутильное.

Таким образом, перед нами возникает задача изучения основных закономерностей колебаний в системах с двумя, тремя и более степенями свободы, затем можно рассмотреть и колебания сплошной среды, как системы с бесконечно большим числом степеней свободы.

52

Свободные незатухающие колебания в системах с двумя степенями свободы.

На рис. 3.2 изображены три различные колебательные системы с двумя степенями свободы. Первая из них (а) - это два различных пружинных маятника, связанные пружиной с жесткостью № Вторая (б) - два груза с массами ти те закрепленные на натянутом некоторой силой гневесомом резиновом шнуре. Третья (в) - два связанных пружиной № различных маятника, каждый из которых состоит из груза, подвешенного на невесомом стержне.

Рис. 3.2.

Колебания грузов в каждой из трех систем описываются двумя временными зависимостями их смещений *1(#)и *2(#).Положительное направление смещения *на рисунке указано стрелками.

Опыт показывает, что при произвольном способе возбуждения колебания не будут гармоническими: амплитуда колебаний каждой из масс будет периодически меняться во времени. Однако можно создать такие начальные условия, при которых каждый груз будет совершать гармонические колебания с одной и той же частотой »:

 $\begin{array}{l} (3.1) \\ s_1(t) = s_{01} \sin(\omega t + \varphi); \\ s_2(t) = s_{02} \sin(\omega t + \varphi). \end{array}$

Частота этих колебаний \omega определяется свойствами системы. Отношение

(3.2) $\varsigma = s_{02}/s_{01}$

также определяется параметрами системы. Эта безразмерная алгебраическая величина зназывается коэффициентом распределения амплитуд при гармоническом колебании. Отметим, что заи замогут иметь любой знак. Если с > 4, то смещения обеих масс всегда происходит в одну сторону (синфазные колебания), а при с < 0- в противоположные стороны (противофазные колебания). Гармонические колебания (3.1) называются нормальными колебаниями, или модами, а частота иназывается нормальной частотой. Таким образом, мода характеризуется двумя параметрами: частотой и коэффициентом зопределяющим "конфигурацию" моды.

Практика показывает, что в системе с двумя степенями свободы могут существовать синфазные гармонические колебания с частотой *wr*и противофазные гармонические колебания с частотой *wr*.

Следовательно, в системе могут быть возбуждены две моды:

I мода

$$s_{1}^{i}(t) = s_{01}^{i} \sin(\omega_{I}t + \varphi_{I});$$

$$s_{2}^{I}(t) = s_{02}^{I} \sin(\omega_{I}t + \varphi_{I});$$

$$\varsigma_{I} = s_{02}^{I}/s_{01}^{I} > 0.$$
(3.3)

II мода
$$s_{I}^{II}(t) = s_{II}^{II} \sin(\omega_{II}t - \varphi_{II});$$

$$s_{2}^{II}(t) = s_{II}^{II} \sin(\omega_{II}t - \varphi_{II});$$

$$\varsigma_{II} = s_{02}^{II} / s_{01}^{II} < 0.$$
(3.4)

Нетрудно теперь понять, что любое колебание связанной линейной системы с двумя степенями свободы (а именно такие системы мы будем далее рассматривать) может быть представлено в виде суперпозиции двух нормальных колебаний (3.3) и (3.4):

 $\begin{array}{l} (3.5)\\ s_1(t) = s_1^t(t) + s_1^{II}(t) = s_{01}^I \sin(\omega_I t + \varphi_I) + s_{01}^{II} \sin(\omega_{II} t + \varphi_{II});\\ s_2(t) = s_2^I(t) + s_2^{II}(t) = s_{02}^I \sin(\omega_I t + \varphi_I) + s_{02}^{II} \sin(\omega_{II} t + \varphi_{II}). \end{array}$

Не прибегая пока к детальному математическому исследованию, проанализируем поведение системы с двумя степенями свободы, пользуясь основными идеями, развитыми в предыдущих лекциях. Представим любую из систем, изображенных на рис. 3.2, как сложную систему, состоящую из двух парциальных систем. Эти парциальные системы, соответствующие случаю (а) рис. 3.2, показаны на рис. 3.3: каждая из этих парциальных систем имеет собственную частоту колебаний, которая называется парциальной частотой.

Рис. 3.3.

Величины этих парциальных частот, соответственно, равны: (3.6)

$$\omega_1 = \sqrt{\frac{k_1 + k'}{m_1}}; \quad \omega_2 = \sqrt{\frac{k_2 + k'}{m_2}}.$$

Совершенно очевидно, что частота ω_1 - это частота колебаний массы m_1 в системе двух связанных маятников, когда масса m_2 неподвижна (заблокирована вторая степень свободы). Аналогично, с частотой ω_2 будет колебаться масса m_2 -когда неподвижна масса m_1 -

Теперь перейдем к определению нормальных частот $w_1 u w_1 \cdot B$ спомним, что квадрат частоты гармонических колебаний равен отношению возвращающей силы к смещению груза я величине его массы *m*.Подберем начальные смещения масс *m*₁*u m*₂таким образом, чтобы для обеих масс эти отношения (а, следовательно, и частоты) были бы одинаковы. Такой подбор легко угадывается для симметричной системы (*m*₁ = *m*₂ = *m*, *k*₁ = *k*₂ = *k*), (рис. 3.4), у которой парциальные частоты совпадают:

(3.7)

$$\omega_{1} = \omega_{2} = \sqrt{\frac{k+k'}{m}}.$$

Рис. 3.4

Если оба груза сместить вправо на одинаковые расстояния $s_{01}^{l} = s_{02}^{l}$ то средняя пружина k'(пружина связи) не будет деформирована (позиция б). После отпускания пружина будет оставаться недеформированной. Поэтому каждый из грузов будет совершать гармонические колебания с одной и той же частотой

$$(3.8)$$
$$\omega_{\rm I} = \sqrt{\frac{k}{m}},$$

которая и является первой нормальной частотой. Конфигурация этого синфазного колебания (моды) задается коэффициентом распределения амплитуд $s_r = +1$.

Если теперь обе массы сместить в разные стороны на одинаковые расстояния $s_{02}^{II} = -s_{01}^{II}$ (позиция в), то пружина *к*удлинится на величину $2s_{02}^{II}$.Поэтому к правой массе будет приложена возвращающая сила, равная $-(ks_{02}^{II} + 2k's_{02}^{II})$.а на левую массу будет действовать в противоположном направлении сила $-(ks_{01}^{II} + 2k's_{01}^{II})$. После отпускания грузы будут совершать противофазные гармонические колебания со второй нормальной частотой

$$(3.9)$$

$$\omega_{II} = \sqrt{\frac{k+2k}{m}}$$

Конфигурация второй моды характеризуется коэффициентом распределения зыт = -1.

Если грузы, изображенные на рис. 3.5а, сместить на произвольные расстояния (например, в одну сторону на величины ^{жон}и ^{жон}как это изображено на рис. 3.5б), то это эквивалентно суперпозиции двух типов начальных смещений: в одну сторону на одинаковые величины (позиция в)

$$(3.10) s_{01}^{i} = s_{02}^{i} = \frac{1}{2}(s_{01} + s_{02});$$

и в разные стороны (позиция г) на величины (3.11)

$$-s_{01}^{II} = s_{02}^{II} = \frac{1}{2}(s_{02} - s_{01}).$$

Поскольку колебательная система линейна, то синфазные колебания, возникающие после отпускания грузов в позиции (в), будут происходить независимо от присутствия противофазных колебаний, возникающих при отпускании грузов в позиции (г). Смещения обоих грузов с течением времени будут описываться формулами (3.5), в которых амплитуды определяются равенствами (3.10) и (3.11), а начальные фазы $\varphi_I = \varphi_{II} = \pi/2$.

Проанализируем более подробно колебания в системе, изображенной на рис. 3.5. Пусть мы сдвинули левую массу вправо на расстояние ⁸914 правую массу оставим в несмещенном положении (892 = 0).После отпускания обоих грузов в системе возникнут колебания. Из (3.10) и (3.11) определяем амплитуды мод: $s_{01}^{t} = s_{02}^{t} = s_{01}/2; -s_{01}^{t} = s_{02}^{t} = -s_{01}/2$.Поскольку фазы $\varphi_{I} = \varphi_{II} = \pi/2$ (т.к. начальные скорости у грузов отсутствуют), то смещения

$$\begin{array}{l} (3.12)\\ s_1(t) = \frac{s_{01}}{s_{01}^2} \cos \omega_I t + \frac{s_{01}}{2} \cos \omega_I t;\\ s_2(t) = \frac{s_{01}^2}{2} \cos \omega_I t - \frac{s_{01}^2}{2} \cos \omega_I t. \end{array}$$

Производя суммирование тригонометрических функций в (3.12), получим:

 $\begin{array}{l} (3.13)\\ s_1(t) = s_{01}\cos\frac{\omega_{II} - \omega_I}{2}t \cdot \cos\frac{\omega_{II} + \omega_I}{2}t;\\ s_2(t) = s_{01}\sin\frac{\omega_{II} - \omega_I}{2}t \cdot \cos\frac{\omega_{II} + \omega_I}{2}t. \end{array}$

Временные зависимости (3.13) изображены на рис. 3.6.

Видно, что колебания каждой из масс имеют форму биений. Период этих биений равен1

$$(3.14)$$

$$T_6 = \frac{2\pi}{\omega_{II} - \omega_I} = \frac{2\pi}{\Omega_G},$$

где частота биений (3.15)

 $\Omega_6 = \Delta \omega = \omega_{II} - \omega_I.$

Если ввести среднюю частоту (3.16) $\omega_0 = \frac{\omega_I + \omega_{II}}{2},$

то с этой частотой связан период колебаний $T = \frac{2\pi}{\omega_0}$.

Если частота биений $\Omega_6 \ll \omega_{0}$ как это изображено на рис. 3.6, то $T_6 \gg T.B$ этом случае колебания обоих грузов будут почти гармоническими (квазигармоническими). Если переписать (3.13) с использованием средней частоты ω_{0} и частоты биений Ω_{6} в виде:

(3.17) $s_1(t) = s_{01} \cos \frac{\Omega_6}{2} t \cos \omega_0 t = A_1(t) \cos \omega_0 t;$ $s_2(t) = s_{01} \sin \frac{\Omega_6}{2} t \cos \omega_0 t = A_2(t) \cos \omega_0 t;$

то при 🕰 « «колебания (3.17) можно трактовать как колебания с частотой и медленно меняющейся амплитудой A(t).

В теории колебаний и в других разделах физики для анализа колебательного процесса используют спектральное представление, или спектр колебаний. Этот спектр изображают графически, где по оси абсцисс указывают частоты колебаний, а по оси ординат откладывают квадраты их амплитуд. Так, в частности, для колебаний, изображенных на рис. 3.6 (*1 или *2) и описываемых формулами (3.17), легко нарисовать спектр, поскольку уже известно спектральное разложение этого колебания (представление в виде суммы гармонических колебаний), задаваемое формулами (3.12).

Такой спектр изображен на рис. 3.7.

Рис. 3.7.

Этот спектр содержит две спектральные компоненты. Его можно охарактеризовать средней частотой ими шириной Ди.В соответствии с формулой (3.14) произведение Дина период Таравно постоянной величине:

(3.18)

 $\Delta \omega \cdot T_0 = 2\pi.$

Формула (3.18) имеет глубокое физическое содержание. Так, если происходит некоторое квазигармоническое колебание вида

(3.19) $s(t) = A(t) \cos[\omega_0 t + \varphi(t)],$

для которого амплитуда ми фаза имедленно меняются на масштабе времени т(рис. 3.8а), то спектр такого колебания может состоять из большого числа частот.

Рис. 3.8.

Эти частоты группируются вблизи центральной (основной) частоты $u = 2\pi/T$ в пределах характерного интервала частот Δu обратно пропорционального временному масштабу т. На рис. 3.86 изображен этот спектр, где по оси ординат отложен квадрат амплитуды ^закаждой из гармонических составляющих, причем между ги Δωсуществует связь: Δω г ~ 2π.

Количественная связь между колебательным процессом *(*)и его спектром представляется (по аналогии с формулами (3.12)) в виде суммы конечного или бесконечного числа гармонических составляющих (в виде ряда или интеграла Фурье). Такое представление будет широко использоваться в курсе "Оптика".

¹Колебания (3.12), вообще говоря, не являются периодическими, т.е. нельзя указать такое время *T**,спустя которое они точно повторяются (отношение частот ω_I/ω_{II} - чаще всего иррациональное число, а случаи их рационального отношения: $m\omega_I = m\omega_{II}$ будут исчезающе редки). Поэтому периодом биений *T*₆мы называем период (3.14) повторения огибающей суммарного колебания, равный половине периода колебания с частотой $\frac{\omega_{II} - \omega_{I}}{2}$, $\alpha\Omega_G = \frac{2\pi}{T_G} = \omega_{II} - \omega_{I}$.

Методика анализа колебаний связанных осцилляторов.

Выше мы рассмотрели колебания двух одинаковых связанных пружинных маятников, не прибегая к решению уравнений их движения. Однако, если жесткости пружин и массы тел имеют произвольные величины, то зачастую бывает трудно догадаться о конфигурации мод и их частотах. Поэтому представляется важным вооружиться универсальным методом, позволяющим по единой схеме провести последовательный анализ любой колебательной системы с двумя степенями свободы, являющейся системой любых связанных осцилляторов.

Запишем уравнения движения двух связанных пружинных маятников в виде:

 $\begin{array}{l} (3.20) \\ m_1 \bar{s}_1 = -k_1 s_1 - k' s_1 + k' s_2; \\ m_2 \bar{s}_2 = -k_2 s_2 - k' s_2 + k' s_1. \end{array}$

Разделив первое уравнение на ^{та}а второе - на ^{та}и используя выражения (3.6) для парциальных частот, перепишем (3.20) следующим образом:

```
(3.21) \\ \bar{s}_1 = -\omega_1^2 s_1 - \alpha_1 s_2, \\ \bar{s}_2 = -\alpha_2 s_1 - \omega_2^2 s_2,
```

где а₁ = -k/m₁, а₂ = -k/m₂- коэффициенты, зависящие от жесткости к/пружины связи. Обратим внимание, что уравнения (3.21) не могут решаться по отдельности, т.к. каждое из них содержит *₁и *₂.Поэтому целесообразно перейти от смещений *₁и *₂к новым функциям [§]1и [§]2-называемым нормальными координатами. Смысл перехода состоит в получении двух независимых уравнений движения, которые можно решать по отдельности.

Однако, в общем случае эти координаты найти не просто. Поэтому для иллюстрации такого перехода рассмотрим систему с одинаковыми массами $(m_1 = m_2 = m)_{\text{И}}$ пружинами $(k_1 = k_2 = k)$.Поскольку парциальные частоты совпадают $(\omega_1 = \omega_2 = \omega = \sqrt{\frac{k+k'}{m}})_{\text{a}}$ также $a_1 = a_2 = \alpha = -\frac{k'}{m}$ то система уравнений (3.21) становится более простой. Сложив оба уравнения, получаем:

(3.22a)

 $\tilde{\xi}_1=-(\omega^2+\alpha)\xi_1,$

где $\xi_1 = s_1 + s_2$ - первая нормальная координата. Вычитая второе уравнение из первого, находим:

$$(3.226)$$

$$\tilde{\xi}_2 = -(\omega^2 - \alpha)\xi_2,$$

где $\xi_2 = s_1 - s_2$ - вторая нормальная координата. Теперь уравнения (3.22) независимы. Первое из них описывает колебание центра масс системы с частотой

$$(3.23)$$
$$\omega_I^2 = \omega^2 - \frac{k'}{m},$$

меньшей парциальной частоты
Второе уравнение описывает изменение расстояния между двумя массами с частотой

$$(3.24)$$
$$\omega_{II}^2 = \omega^2 + \frac{k'}{m},$$

превышающей парциальную частоту. Решения уравнений (3.22) очевид-

ны:

(3.25a) $\xi_1(t) = s_1(t) + s_2(t) = \xi_{01} \sin(\omega_F t + \varphi_F);$

(3.256)

 $\xi_2(t) = s_1(t) - s_2(t) = \xi_{02} \sin(\omega_{II} t + \varphi_{II}).$

Возвращаясь к функциям $*_{1}$ и $*_{2}$ -получаем: (3.26a) $*_{1}(t) = \frac{\xi_{01}}{2} \sin(\omega_{I}t + \varphi_{I}) + \frac{\xi_{02}}{2} \sin(\omega_{II}t + \varphi_{II});$

(3.266)

$$s_2(t) = rac{\xi_{01}}{2} \sin(\omega_I t + \varphi_I) - rac{\xi_{02}}{2} \sin(\omega_{II} t + \varphi_{II}).$$

Четыре величины $\xi_{01}, \xi_{02}, \varphi_I и \varphi_I п$ определяются из начальных условий: $s_1(t=0), s_2(t=0), \dot{s}_1(t=0), \dot{s}_2(t=0).$

Проиллюстрировав переход к нормальным координатам, вернемся к методике анализа колебаний в произвольных системах, описываемых уравнениями (3.21).

Пусть в системе происходит нормальное колебание с неизвестной пока частотой ыи коэффициентом распределения амплитуд $s = \frac{300}{800}$:

(3.27) $s_1(t) = s_{01} \sin(\omega t + \varphi), \quad s_2(t) = s_{02} \sin(\omega t + \varphi).$ Подставим (3.27) в систему уравнений (3.21). Тогда получим систему из двух алгебраических уравнений:

$$\begin{array}{l} (3.28) \\ (\omega_1^2 - \omega^2) s_{01} + \alpha_1 s_{02} = 0; \\ \alpha_2 s_{01} + (\omega_2^2 - \omega^2) s_{02} = 0. \end{array}$$

Система линейных однородных уравнений (3.28) имеет отличные от нуля решения только в том случае, если ее определитель равен нулю:

 $\begin{array}{c|c} (3.29) \\ & \left| \begin{array}{cc} \omega_1^2 - \omega^2 & \alpha_1 \\ & \alpha_2 & \omega_2^2 - \omega^2 \end{array} \right| = (\omega_1^2 - \omega^2)(\omega_2^2 - \omega^2) - \alpha_1 \cdot \alpha_2 = 0. \end{array}$

Это - квадратное уравнение относительно ω^2 причем $\omega > 0$.Поэтому, решая уравнение (3.29), можно найти нормальные частоты $\omega_{II} u \omega_{II}$.После нахождения частот не составляет труда найти конфигурацию мод, т.е. коэффициенты распределения амплитуд чи чи.Их можно определить, например, из первого уравнения (3.28), причем очевидно, что для каждой нормальной частоты (ω_{I} или ω_{II}) эти коэффициенты различны:

$$(3.30)_{\varsigma_{I}} = \left(\frac{s_{02}}{s_{01}}\right)_{I} = \frac{\omega_{I}^{2} - \omega_{1}^{2}}{\alpha_{1}}, \quad \varsigma_{II} = \left(\frac{s_{02}}{s_{01}}\right)_{II} = \frac{\omega_{II}^{2} - \omega_{1}^{2}}{\alpha_{1}}.$$

Таким образом, уравнение (3.29) и равенство (3.30) позволяют полностью рассчитать параметры каждой из двух мод. Движение каждой из масс, как уже неоднократно отмечалось, является суперпозицией двух нормальных колебаний:

$$s_1(t) = s_{01_I} \sin(\omega_I t + \varphi_I) + s_{01_{II}} \sin(\omega_{II} t + \varphi_{II}),$$

 $s_2(t) = \varsigma_I \cdot s_{01_I} \sin(\omega_I t + \varphi_I) + \varsigma_{II} \cdot s_{01_{II}} \sin(\omega_{II} t + \varphi_{II}),$

где амплитуды ^{*}онги ^{*}онги начальные фазы *Ф*и *Ф*иопределяются, как и раньше, из начальных условий: ^{*}(0), ^{*}₂(0), ^{*}₂(0).

Расчет мод для любой системы двух связанных осцилляторов читатель может проделать самостоятельно.

Соотношение между парциальными и нормальными частотами.

Для установления связи между парциальными и нормальными частотами перепишем (3.29) в виде

(3.31)

$$(\omega_1^2 - \omega^2)(\omega_2^2 - \omega^2) - \gamma^2 \omega_1^2 \omega_2^2 = 0,$$

ГЛЕ

(3.32)

$$\gamma = \frac{\alpha_1 \alpha_2}{\omega_1^2 \omega_2^2} = \frac{k'^2}{(k_1 + k')(k_2 + k')}.$$

Безразмерный коэффициент связи \gamma между двумя системами может принимать значения I < 7 < 1. Если из (3.31) определить нормальные частоты ши жило они будут выражаться через парциальные частоты ши ши и и и коэффициент 7-Эти четыре частоты будут располагаться на оси частот в последовательности, изображенной на рис. 3.9.

$$0 \quad \omega_t \quad \omega_1 \quad \omega_2 \quad \omega_{tt} \quad \omega_{tt}$$

Рис. 3.9.

При слабой связи ($\gamma \ll 1$)нормальные частоты близки к парциальным, а при сильной связи ($\gamma \le 1$)различие в частотах становится существенным. Это хорошо видно, если парциальные частоты совпадают ($\omega_1 = \omega_2 = \omega_0$). Тогда (3.31) примет вид:

$$(\omega_0^2 - \omega^2)^2 - \gamma^2 \omega_0^2 = 0.$$

Отсюда
(3.33)
 $\omega_T^2 - \omega_0^2 (1 - \gamma), \quad \omega_{T}^2 - \omega_0^2 (1 + \gamma)$

Затухание колебаний.

Если энергия не подводится извне, то колебания связанных осцилляторов будут затухать. Поскольку сила вязкого трения пропорциональна скорости, то уравнения (3.21) с учетом затухания примут вид:

$$\begin{array}{l} (3.34)\\ \bar{s}_1 = -\omega_1^2 \bar{s}_1 - 2 \delta_1 \bar{s}_1 - \alpha_1 \bar{s}_2,\\ \bar{s}_2 = -\alpha_2 \bar{s}_1 - \omega_2^2 \bar{s}_2 - 2 \delta_2 \bar{s}_2. \end{array}$$

Здесь $\delta_1 = \Gamma_1/2m_1 M \delta_2 = \Gamma_2/2m_2$ - коэффициенты затухания для первого и второго осцилляторов. Если искать решение этой системы в виде нормальных затухающих колебаний:

(3.35)
$$s_1(t) = s_{01}e^{-\delta t}\sin(\omega t + \varphi), \quad s_2(t) = s_{02}e^{-\delta t}\sin(\omega t + \varphi)$$

то после подстановки (3.35) в (3.34) можно найти нормальную частоту и, коэффициент затухания и конфигурацию каждой из двух мод. Опуская промежуточные выкладки, отметим, что при и жащи и жаще слабое затухание) нормальные частоты и распределение амплитуд в модах будут близки к тем, что и в отсутствие затухания. Для коэффициента затухания и получается выражение:

Можно видеть, что при произвольном соотношении между $u_1, u_2, \delta_1 u \delta_2$ коэффициенты затухания мод $\delta_1 u \delta_{11}$ получаемые из (3.36) при $\omega = \omega_1 u \omega = \omega_{11}$ будут различными.

Если парциальные частоты совпадают ($\omega_1 = \omega_2$), то

(3.37)

$$\delta_I = \delta_{II} = \frac{1}{2} (\delta_1 + \delta_2).$$

ECJIM $\omega_1 \neq \omega_{2:a} \ \delta_1 = \delta_2 = \delta_{TO}$
(3.38)
 $\delta_r = \delta_{rr} = \delta_r$

Последним результатом мы воспользуемся при рассмотрении диссипации энергии в связанной колебательной системе.

Энергия колебательной системы и ее диссипация.

Рассмотрим колебания двух одинаковых масс (рис. 3.10а), закрепленных на растянутом легком резиновом шнуре.

Рис. 3.10.

Если один из грузов оттянуть на расстояние $2s_0(6)$ и затем одновременно отпустить обе массы, то их колебания будут иметь вид биений. С другой стороны, при этих начальных условиях будут возбуждены две моды (в и г) с одинаковыми амплитудами колебаний обеих масс, равными s_0 . Энергия, запасенная в первой моде, равна сумме кинетических энергий обеих масс при прохождении ими положения равновесия со скоростью $s_0^{i} - s_0 \omega_1$.т.е.:

$$(3.39a) E_0^I = 2\frac{m}{2} (v_0^I)^2 = m s_0^2 \omega_I^2,$$

а энергия второй моды, аналогично, равна (3.39б) $E_0^{II} = 2\frac{m}{2}(v_0^{II})^2 = ms_0^2 \omega_{II}^2$.

Важно отметить, что энергообмен между модами отсутствует, а полная энергия системы равна сумме энергий ее мод. В то же время в процессе биений энергия первого осциллятора за время, равное половине периода биений, "перетекает" ко второму осциллятору и затем за такое же время возвращается обратно. Полный энергообмен между осцилляторами возможен лишь тогда, когда обе массы одинаковы и отношение $[\omega_I + \omega_{II}]/[\omega_{II} - \omega_{I}]$ равно целому числу ¹⁶.

$$(3.40)$$
$$\frac{\omega_{I}+\omega_{II}}{\omega_{II}-\omega_{I}}=\frac{2\omega_{0}}{\Omega_{6}}=n.$$

Следовательно, частота эндолжна быть кратной частоте биений. В самом деле, при выполнении условия (3.40) каждая из масс будет периодически останавливаться в положении равновесия (как следует из формул (3.17)). С течением времени колебания будут затухать, и будет экспоненциально уменьшаться энергия, запасенная в модах:

(3.41a) $E'(t) = ms_0^2 e^{-2st} \omega_I^2 = E_0' e^{-2st},$

(3.416)

 $E^{H}(t) = m s_{\theta}^{2} e^{-2\delta t} \omega_{H}^{2} = E_{\phi}^{H} e^{-2\delta t}.$

Важно подчеркнуть, что через время $r_{E} = \frac{1}{26}$ энергия каждой из мод уменьшится в *е* раз, при этом противофазная мода "потеряет" больше энергии, чем синфазная, поскольку начальная энергия E_{0}^{H} у нее была больше, чем E_{0}^{I} (см. (3.39)).

Вынужденные колебания.

Рассмотрим основные закономерности вынужденных установившихся колебаний в системе, изображенной на рис. 3.11, если на левую массу тадействует сила $F(t) = F_0 \sin \omega t$. Уравнения движения в этом случае будут отличаться от (3.34) наличием этой силы в правой части первого уравнения:

(3.42)

$$\ddot{s}_1 = -\omega_1^2 s_1 - 2\delta_1 \dot{s}_1 - \alpha_1 s_2 + \frac{F_0}{m_1} \sin \omega t,$$

 $\ddot{s}_2 = -\alpha_2 s_1 - \omega_2^2 s_2 - 2\delta_2 \dot{s}_2.$

Нетрудно догадаться, что решениями этой системы в установившемся режиме являются гармонические функции

(3.43)

 $s_1(t) = s_{01}\sin(\omega t + \varphi_1), \quad s_2(t) = s_{02}\sin(\omega t + \varphi_2),$

которые отражают тот факт, что обе массы колеблются на частоте вынуждающей силы. Подставляя (3.43) в (3.42), можно вычислить амплитуды и фазы вынужденных колебаний. Мы ограничимся лишь обсуждением результатов.

Рис. 3.11.

клика системы на действие внешней силы. В радиотехнике, где используются связанные колебательные контуры, их применяют как фильтры и демпферы.

Рис. 3.12.

Два резонанса имеют место и для смещения *2второй массы. Если проанализировать отношение амплитуд *22/*2018 зависимости от частоты 2017го оказывается, что это отношение вблизи частоты 2017го коэффициенту распределения амплитуд 517для первой моды, а вблизи частоты 2017го коэффициенту распределения амплитуд 517для второй моды. Это используется для определения этих коэффициентов, поскольку при вынужденных колебаниях это сделать проще, чем при собственных.

Колебания систем со многими степенями свободы.

Основные идеи, сформулированные при рассмотрении колебаний систем с двумя степенями свободы, теперь могут быть с успехом использованы для анализа колебаний систем с тремя, четырьмя, …, N степенями свободы, и в пределе, при $N \rightarrow \infty$,для анализа колебаний в сплошных средах, т.е. волн.

Обратимся вначале к колебаниям трех одинаковых масс *т*изакрепленных на равных расстояниях ана натянутом легком резиновом шнуре, как показано на рис. 3.13а. Любое колебание этой системы может быть представлено как суперпозиция трех нормальных колебаний с частотами $\omega_{II}, \omega_{III} \omega_{III}$. Опуская на время вопрос о величине частот, найдем конфигурацию этих мод. Примем во внимание, что квадрат частоты колебаний каждой массы в данной моде должен быть одинаков. Этого можно добиться в случае, когда отношения возвращающей силы к величине массы *m*и ее смещению *s*у всех грузов будут одинаковыми. Такие условия реализуются при смещении масс тремя способами (б, в и г на рис. 3.13). При отпускании грузов из положения (б) в системе будет происходить первое нормальное колебание на частоте ω_{II} , из положения (в) - второе на частоте ω_{III} , из положения (г) - третье на частоте ω_{IIII} .

Рис. 3.13.

Конфигурация каждой из мод может быть описана с помощью двух коэффициентов распределения амплитуд. Забегая вперед, отметим, что для четырех масс таких коэффициентов должно быть три, и т.д.

Однако ситуация может быть упрощена, если обратить внимание, что расположение масс в позициях (б), (в) и (г) на рис. 3.13 напоминает "синусоидальное" (пунктиром изображен фрагмент функции sin ker, где k- некоторый параметр, характеризующий период этой функции). Тогда конфигурация первой моды будет описана следующим образом:

(3.44a) $s_0^I(x) = s_0 \sin k_I x; \quad k_I = \frac{\pi}{4a}.$

Для второй моды: (3.44б) $s_0^{II}(x) = s_0 \sin k_{II}x; \quad k_{II} = 2k_{I}.$ Для третьей моды: (3.44в)

 $s_0^{III}(x) = s_0 \sin k_{III} x; \quad k_{III} = 3k_I.$

Роль безразмерных коэффициентов звыполняет функция $\sin k_p x(p=1,II,III)$, вычисленная в точках $x = x_1 = a, x = x_2 = 2a, x = x_3 = 3a$.

Другими примерами связанных осцилляторов являются атомы в молекулах CO₂, H₂O и т. д. На рис. 3.14 изображены конфигурации мод и приведены значения частот нормальных колебаний молекул. Обратим внимание, что эти частоты имеют порядок величины ^{10¹³} ÷ ^{10¹⁴} c⁻¹ и значительно превышают (на несколько порядков) частоты механических колебаний макроскопических систем. Резонансные колебания этих (и других) молекул можно возбудить при взаимодействии разноименно заряженных ионов, составляющих эти молекулы, с электрическим полем световой электромагнитной волны инфракрасного (ИК) диапазона, имеющей близкую частоту.

Рис. 3.14.

В курсе "Оптика" мы познакомимся с таким взаимодействием, приводящим, в частности, к ослаблению (поглощению) энергии световой волны и ее

рассеянию в среде с колеблющимися молекулами (комбинационному рассеянию).

Будем увеличивать число масс, закрепленных на шнуре через равные промежутки а. Если *N*-число этих масс, то полная длина шнура равна $\ell = \mathfrak{a}(N+1)$ (рис. 3.15). Рассчитаем нормальные частоты всех мод и их конфигурации. Будем считать, что невесомый шнур натянут с силой *F*-и при малых отклонениях масс от положения равновесия *s* « *l*эта сила не меняется. Каждая масса испытывает действие сил натяжения шнура по обе стороны от нее.

Рис. 3.15.

На рис. 3.16 показано мгновенное положение фрагмента шнура и трех масс. Если углы ^ви ^в малы, то возвращающая сила, действующая на среднюю массу, равна:

(3.45) $f = -F \cdot (\sin\theta_1 + \sin\theta_2) \approx -F(\theta_1 + \theta_2).$

Рис. 3.16.

Величины углов [#]1и [#]20пределяются взаимным расположением масс: (3.46)

 $\theta_1\approx \frac{s_{\mathrm{ss}}-s_{\mathrm{ss}-1}}{a}; \quad \theta_2\approx \frac{s_{\mathrm{ss}}-s_{\mathrm{ss}+1}}{a}.$

С учетом (3.45) и (3.46) уравнение движения средней массы примет вид: (3.47)

$$mar{s}_{\mathtt{k}}=-F\left(rac{s_{n}-s_{n-1}}{a}+rac{s_{n}-s_{n+1}}{a}
ight).$$

Если колебания являются нормальными, то (3.48) $s_{n-1}(t) = s_{0,n-1} \sin \omega t,$ $s_n(t) = s_{0,n} \sin \omega t,$ $s_{n+1}(t) = s_{0,n+1} \sin \omega t,$

где частоту жи распределение амплитуд предстоит определить. Подставляя (3.48) в (3.47), получим (3.49) $-s_{0,n-1} + \left(2 - \frac{ma\omega^2}{F}\right) s_{0,n} - s_{0,n+1} = 0.$ Поскольку n = 1, 2, 3, ..., Nто (3.49) представляет собой систему млинейных однородных уравнений. Из условия равенства нулю ее определителя можно рассчитать все мнормальных частот, а затем для каждой из этих частот определить распределение амплитуд в каждой моде, число которых, очевидно, будет равно м.

Мы же используем уже описанный ранее более легкий путь и будем искать конфигурацию каждой моды в виде "синусоидальной" конфигурации:

(3.50)

 $s_0(x) = s_0 \sin kx$, или $s_{0n} = s_0(x_n)$,

ГДЕ $x_1 = a, x_2 = 2a, \dots, x_n = na, \dots, x_N = Na.$

Убедимся, что конфигурация (3.50) удовлетворяет уравнению (3.49), которое перепишем в виде:

(3.51)

$$\frac{s_{0,n+1} + s_{0,n-1}}{s_{0,n}} = \frac{2\Omega^2 - \omega^2}{\Omega^2},$$

где $\Omega^2 = \frac{F}{ma}.$
Подставим (3.50) в левую часть (3.51)
(3.52)
 $\frac{\sin k(n+1)a + \sin k(n-1)a}{\sin kma} = 2 \cos ka = \frac{2\Omega^2 - \omega^2}{\Omega^2}.$

Очевидно, что (3.50) удовлетворит уравнению (3.49), если подобрать для данного *к*подходящую частоту *м*.

Параметр кназовем волновым числом. Объяснение этому будет дано в последующих лекциях. Этот параметр должен быть таким, чтобы на концах закрепленного шнура удовлетворялись граничные условия. При x = 0эти условия выполняются: sin(k · 0) = 0. На другом конце, где x = a(N + 1),потребуем, чтобы

```
(3.53)

\sin ka(N+1) = 0,

ОТКУДА ПОЛУЧАЕМ:

(3.54)

k_p a(N+1) = p \cdot \pi, или k_p = \frac{3\pi}{a(N+1)},
```

где целое число p = I, II, ..., N характеризует номер моды (количество мод, как было показано выше, равно N). Каждой p-ой моде соответствует своя частота, которая легко находится из уравнения (3.52):

(3.55) $\omega_p^2 = 2\Omega^2 (1 - \cos k_p a) = 2\Omega^2 \left(1 - \cos \frac{p\pi}{N+1}\right).$ Зная волновые числа ^кри нормальные частоты ^жрне составляет труда записать выражения для смещений всех масс, как функций времени. Для *p*-ой моды можно записать:

$$(3.56)$$

$$s_p(x_n,t) = s_{0p} \sin k_p x_n \cdot \sin(\omega_p t + \varphi_p);$$

здесь $x_8 = na; n = 1, 2, ..., N.$

Амплитуда ^{*}^wи начальная фаза [#]^pопределяются начальными условиями, а ^{*}^pи ^w_p- свойствами самой системы (формулы 3.54 и 3.55).

В силу линейности колебательной системы в самом общем случае колебаний получаем для смещения всех частиц выражение:

$$(3.57)$$
$$s(x_n,t) = \sum_p s_p(x_n,t),$$

где суммирование проводится только по тем модам, которые "участвуют" в колебаниях.

Так, например, удерживая все время среднюю массу в положении равновесия, мы не можем возбудить моды с нечетными номерами *p* = *I*, *III*,..., поскольку эти моды "требуют" смещения центральной массы.

Пользуясь формулой (3.55), нетрудно вычислить нормальные частоты колеблющихся масс на шнуре.

На рис. 3.17 изображены моды колебаний в системе с одной, двумя и тремя массами и для каждой моды указаны величины нормальных частот.

Рис. 3.17.

В заключение отметим, что связь типа (3.55) между частотой и волновым числом кназывается дисперсионным соотношением. Это соотношение будет далее использовано при анализе распространения волн в периодических структурах.

Тема 4. Колебания в системах с большим числом степеней свободы (системы с распределенными параметрами).

Распространение возмущений в системе с большим числом степеней свободы. Скорость распространения. Возбуждение волн. Группа волн и ее скорость. Волновое уравнение. Волны в сплошном шнуре. Отражение волн. Возбуждение стоячих волн в шнуре. Моды колебаний. Волны в упругих телах. Поперечные волны. Энергия, переносимая волной. Вектор Умова. Продольные волны. Скорость волн в тонком и толстом стержнях. Отражение и прохождение волн на границах двух сред. Удельное волновое сопротивление.

Распространение возмущений в системе с большим числом степеней свободы.

Рассмотрим колебания $N \gg 1$ масс на резиновом шнуре (рис. 4.1а). Отклоним несколько масс в середине шнура от положения равновесия (рис 4.1б), и затем отпустим их в момент времени t=0.Как показывает опыт, эта начальная конфигурация, представляющая собой по форме импульс, с течением времени трансформируется в два одинаковых импульса, которые побегут в разные стороны с некоторой конечной скоростью с (рис. 4.1в). Эти импульсы добегут до концов шнура, изменят свою полярность при отражении и побегут в обратном направлении (рис. 4.1г). После встречи в середине шнура они отразятся еще раз, восстановят исходную полярность и спустя время $\Delta t = 2 t/t$ вновь встретятся в середине, сформировав исходный импульс. Затем этот процесс с периодом Δt будет повторяться до тех пор, пока импульсы не затухнут из-за диссипации энергии.

Рис. 4.1.

С точки зрения повседневного опыта в этом нет ничего удивительного, поскольку смещения группы масс ведут к возникновению упругих сил, стремящихся вернуть эту группу в положение равновесия и одновременно вывести соседние частицы из положения равновесия.

С точки зрения описания колебаний "на языке мод" также понятно, что отклонив, а затем отпустив группу частиц, мы возбуждаем много мод. Колебания всех мчастиц происходят одновременно на нескольких нормальных частотах \mathscr{P}_{P} Все эти частоты различны, и сумма нормальных колебаний представляет собой биения. Поскольку через время, равное периоду биений, колебания группы частиц в центре шнура восстановятся, то очевидно, что период биений равен упоминавшемуся несколько ранее времени $\Delta t = 2\ell/\epsilon$.

Определим скорость с, исходя из представления о биениях, как суперпозиции нормальных колебаний. Для этого вначале перепишем дисперсионное соотношение (3.55) в виде

$$\omega_p = 2\Omega \sin \frac{k_p a}{2} = 2\Omega \sin \frac{1}{2} \left(\frac{p\pi}{N+1} \right). \tag{4.1}$$

Строго говоря, при наличии многих частот в спектре колебаний, даваемых формулой (4.1), биения не будут периодическими - начальная конфигурация не повторяется. Визуально это будет проявляться в искажении формы бегущих импульсов, если длина импульса $\ell_n \ge \alpha$ (импульс "накрывает" мало частиц), а шнур достаточно длинный. Говорят, что искажение импульса связано с дисперсией "среды" (шнура с массами), по которой импульс распространяется.

Это искажение будет ничтожным, если $\ell_n \gg a$ (группа состоит из большого числа колеблющихся масс). Так обычно и происходит при распространении возмущений в твердом теле, где $a \sim 10^{-10}$ м (расстояние между узлами кристаллической решетки, около которых колеблются атомы).

Если $\ell_{m} \gg \alpha$ то в спектре колебаний доминируют низшие моды, которые характеризуются волновыми числами k_{p} где $p = I, II, III, ... \ll N$.Частоты этих мод получаются из формулы (4.1):

$$\omega_p = \Omega ak_p = \frac{\Omega \pi}{N+1} \cdot p; p = I, II, III, \dots$$
(4.2)

Здесь использовано приближение $\sin x \approx x$ при $x \ll 1$.Эта зависимость $\omega_p(k_p)$ изображена на рис. 4.2.

Обратим внимание, что низшие частоты располагаются эквидистантно: $\Delta \omega = \omega_{II} - \omega_{I} = \omega_{III} - \omega_{II} = \dots$ Поэтому период биений (см. также формулу (3.14)) получается равным:

$$\Delta t = \frac{2\pi}{\Delta \omega} = \frac{2(N+1)}{\Omega}.$$
(4.3)

Если учесть, что длина шнура $\ell = a(N+1)$,то скорость движения импульса в среде без дисперсии равна:

$$c_0 = \frac{2\ell}{\Delta t} = a\Omega = \sqrt{\frac{Fa}{m}}.$$
(4.4)

Если мы будем увеличивать число масс мна шнуре фиксированной длины, тем самым уменьшая расстояние «то мы сделаем предельный переход к непрерывному распределению масс - т.е. к однородному весомому шнуру, при этом

$$\rho_1 = m/a \tag{4.5}$$

является массой единицы длины однородного шнура (иногда употребляют термин "плотность единицы длины"). Поэтому окончательно для скорости распространения импульса произвольной формы по шнуру имеем

$$c_0 = \sqrt{\frac{F}{\rho_1}}.\tag{4.6}$$

Например, в случае тонкого резинового шланга с линейной плотностью $\rho_1 \sim 0, 1 \text{кг/м}, \text{натянутого с силой } F \sim 10^2 \text{ H}, \text{скорость движения импульса получается равной с <math>c_0 \sim 30 \text{ м/e}.$ Такая сравнительно небольшая величина скорости позволяет легко наблюдать распространение и отражение импульса.

Итак, подведем некоторые итоги.

1. Если пренебречь периодической структурой среды, то скорость фраспространения импульса не зависит от его формы, а сам импульс при распространении не искажается (нет дисперсии).

2. Если ось х направить вдоль шнура и задать начальное возмущение (в момент t = 0) в виде s(x) то с течением времени возмущение шнура будет иметь вид:

$$\frac{1}{2}s(x-c_0t) + \frac{1}{2}s(x+c_0t). \tag{4.7}$$

Первое слагаемое описывает возмущение, бегущее со скоростью в положительном направлении оси *x*, указанном на рис. 4.1, а второе соответствует импульсу, распространяющемуся в противоположном направлении.

3. У концов невесомого шнура с массами оба импульса отражаются. Отраженный импульс имеет противоположную полярность (направление смещения «) по сравнению с падающим.

Аналогичные граничные условия реализуются для сплошного массивного шнура с закрепленными концами (рис. 4.3).

Рис. 4.3.

4. В области перекрытия бегущих импульсов образуется колебание, называемое стоячей волной. Так мы приходим к понятиям бегущих и стоячих волн, при этом стоячая волна может рассматриваться как суперпозиция волн, бегущих в противоположных направлениях.

Возбуждение волн.

Рассмотрим колебания невесомого шнура с грузами, правый конец которого закреплен, а левый под действием внешней силы в момент времени *t* = 0начинает смещаться по гармоническому закону:
Под действием этой силы грузы, связанные друг с другом отрезками натянутого шнура, рано или поздно начнут совершать вынужденные гармонические колебания с частотой ш.Естественно, что систему грузов (по аналогии с системой с двумя грузами) можно заметно раскачать лишь в случае резонанса, когда частота шсовпадает с одной из нормальных частот шр.

Вначале придут в движение грузы вблизи левого подвижного конца шнура, а с течением времени в колебания будут вовлекаться все новые грузы.

Такие колебания представляют собой волновой процесс (волну), распространяющийся "слева - направо" с некоторой скоростью ^сР-На рис. 4.4 изображены положения колеблющихся масс в некоторый момент времени ^сР-Поскольку грузы колеблются "поперек" направления распространения (оси Ox), то волна называется поперечной. Эта волна добежит до правого закрепленного конца шнура и отразится. После этого будут существовать две волны: исходная бегущая (иногда ее называют падающей волной) и отраженная волна, которая бежит навстречу падающей. Спустя время $\Delta t - 2\ell/c_P$ отраженная волна достигнет левого конца, снова отразится, и "сформируется" мода колебаний. Конфигурация этой моды задается волновым числом ^кP(см. соотношение (4.1)).

Рис. 4.4.

Рассмотрим подробнее падающую волну с этим *-Пространственный период риод эриод эр

 $k_{\mu} - 2\pi / \lambda_{\mu}. \tag{4.9}$

Если силы вязкого трения, приложенные к каждому из грузов, малы, то амплитуды колебаний всех грузов будут одинаковы и равны *0. Теперь мы можем записать *уравнение бегущей волны* - уравнение, описывающее смещение любой из масс в произвольный момент времени. Для частоты ** волнового числа ** и амплитуды *00но имеет вид:

$s_p(x_n,t) = s_0 \sin(\omega_p t - k_p x_n);$	(1 10)
$x_n = a; 2a; \ldots; na; \ldots; Na.$	(4.10)

Выражение $= \omega_p t - k_p x_3$ называется фазой волны. Уравнение (4.10) отражает тот факт, что все массы колеблются с одинаковой частотой ω_p имеют одинаковую амплитуду $*\omega$ однако эти колебания различаются по фазе *.

Определим теперь скорость ^вдвижения этой волны. Для этого проследим за движением гребня волны, вершина которого в некоторый момент времени находится в точке м.Пусть за время *Де*этот гребень сместится на расстояние

$$\omega_{p}t - k_{p}z_{n} = \frac{a}{2}.$$
(4.11)
Поэтому
 $\omega_{p}\Delta t - k_{p}\Delta x_{n} = 0.$
(4.12)
Отсюда скорость % получается равной

$$c_p = \frac{\Delta x_n}{\Delta t} = \frac{\omega_p}{k_p} = \nu_p \cdot \lambda_p. \tag{4.13}$$

Скорость ^с_иназывается фазовой скоростью гармонической волны с частотой $\omega_p = 2\pi \nu_p$. Проанализируем зависимость этой скорости от волнового числа, пользуясь дисперсионным соотношением (4.1). Для этого перепишем его с учетом (4.4) в виде:

$$\omega_p = c_0 k_p \cdot \left(\frac{\sin\frac{k_p a}{2}}{\frac{k_p a}{2}}\right). \tag{4.14}$$

График зависимости (4.14) называется дисперсионной кривой и изображен на рис. 4.5а.

Рис. 4.5а.

На этой кривой точками отмечены значения частот w_{PU} волновых чисел k_{P} . Пунктиром изображена прямая $w_{P} = c_0 k_{P}$. Она получается из (4.14) предельным переходом при $a \to 0$ (непрерывная среда).

Из формулы (4.14) или из рис. 4.5а можно сделать ряд принципиально важных выводов.

1) Из нелинейной зависимости $\omega_p = \omega(k_p)$ описываемой формулой (4.14), следует, что фазовая скорость гармонической волны $e_p = \omega_p/k_p$ зависит от k_p (или от ω_p):

$$c_p = c_0 \cdot \frac{\sin \frac{k_p a}{2}}{\frac{k_p a}{2}}.$$
 (4.15)

Зависимость (4.15) изображена на рис. 4.5б.

Рис. 4.5б.

Это явление носит название дисперсии среды по отношению к распространяющейся в ней волне. Эквивалентным является выражение "дисперсия волны в среде". Если фазовая скорость волны не зависит от какак, например, в случае непрерывной среды, то говорят, что дисперсия отсутствует.

2) Для маленьких волновых чисел ($k_{p^a} \ll 1$, или $\lambda_p \gg a$) дисперсия мала. Скорость таких "длинных волн" $k_p \approx c_0$ -и среда может считаться сплошной.

3) С увеличением волнового числа *(а значит и *) скорость *** как это следует из (4.15), убывает. Такое поведение скорости называется нормальной дисперсией. Следует отметить, что в оптике, помимо этой, реализуется и другая ситуация, когда фазовая скорость света в некотором диапазоне частот может возрастать с увеличением частоты. В этом случае дисперсия называется аномальной.

4) Дисперсионная кривая заканчивается, когда волновое число и частота достигают максимальных значений к_№и №_№ Они получаются из (4.14) и (4.1) при № ≫ 1:

 $k_N = \frac{\pi}{a}; \quad \omega_N = 2\Omega.$

Это означает, что волны с частотой $\omega > \omega_N в$ такой среде распространяться не могут. Действительно, при частоте $\omega = \omega_N д$ лина волны $\lambda_N = 2\pi/k_N = 2a$.Волны с меньшей длиной волны не могут существовать, поскольку на длине распространяющейся волны должно находиться не меньше двух колеблющихся грузов.

Заметим, что в некоторых случаях, например, при распространении электромагнитных волн в твердом теле и в плазме, кривая дисперсии может начинаться с некоторой точки на оси частот $\omega(0)$.В таких средах могут распространяться электромагнитные волны только с частотами жлежащими внутри интервала $\omega(0) < \omega \le \omega_N$.

В качестве примера укажем, что для кристаллов величина $F/a \sim 15 \text{H/m}(F -$ упругая сила, величина которой определяется межатомным взаимодействием). Если принять массу иона равной $m \sim 6 \cdot 10^{-29} \text{кг.то} = 2\sqrt{\frac{F}{ma}} \sim 3 \cdot 10^{13} \text{c}^{-1}$. Эта частота, как и частоты колебаний молекул CO₂ и H₂O, лежит в инфракрасной области электромагнитного спектра. Поэтому при распространении ИК излучения в кристаллах ионы могут совершать резонансные колебания. В этом частотном оптическом диапазоне может существовать сильная дисперсия света.

Отметим, что при распространении волн в протяженных средах проблемы "настройки" частоты "внешнего воздействия, порождающего волну, на частоту "одной из мод среды не существует. Любое воздействие внешней силы, даже сколь угодно близкой к гармонической, на самом деле всегда будет квазигармоническим, характеризуемым узким интервалом частот $\Delta \omega \ll \omega$.С другой стороны, для протяженной среды к частоте ω будут близки частоты ω_{P} мод с большими номерами $\mathfrak{P}(P \gg 1)$.Разность частот двух соседних мод $\Delta \omega_{P} = \omega_{P+1} - \omega_{P}$ как это легко видеть из рисунка 4.5, будет настолько малой, что $\Delta \omega_{P} \ll \Delta \omega$.Следовательно, для любой частоты ω внешнего воздействия, прикладываемого к границе среды, по ней побежит волна, которую в ряде случаев можно приближенно считать гармонической:

$$s(x,t) = s_0 \sin(\omega t - kx).$$
 (4.16)

Группа волн и ее скорость.

Как и внешнее воздействие, волна, возникающая в среде, будет, строго говоря, квазигармонической, т. к. $\Delta \omega_p \ll \Delta \omega$.Поэтому вместо (4.16) следует записать уравнение волны в более усложненном виде:

$$s(x,t) = s_0(x,t)\sin[\omega_0 t - k_0 x + \varphi_0(x,t)].$$
(4.17)

Здесь амплитуда *•(*,*)и фаза *•(*,*)являются медленно меняющимися функциями времени на некотором масштабе времени *(сравните с формулой (3.19)). Естественно, что такая волна представляет собой группу гармонических волн, частоты которых располагаются вблизи основной частоты *•в пределах интервала $\Delta \omega \approx 2\pi/\pi$.Каждая из волн группы в среде с дисперсией имеет собственную фазовую скорость. В среде с нормальной дисперсией волны большей частоты будут двигаться медленнее, чем волны меньшей частоты. Возникает естественный вопрос: что является скоростью группы волн, и если такая скорость существует, то как ее вычислить? Какой физический смысл имеет эта скорость и в чем ее отличие от фазовой скорости ?

Чтобы ответить на эти вопросы, рассмотрим для простоты группу из двух волн с одинаковыми амплитудами *9и с близкими частотами $\omega_1 u \omega_2$, бегущих в положительном направлении оси *x*. Будем считать, что $\Delta \omega = \omega_2 - \omega_1 \ll \omega_0 = \frac{\omega_1 + \omega_2}{2}$. С такой ситуацией мы уже встречались при анализе биений двух связанных осцилляторов. Зададим дисперсионные свойства среды дисперсионным соотношением $\omega = \omega(k)$. С его помощью вычислим значения $k_1 u k_2$ двух волновых чисел, соответствующих частотам $\omega_1 u \omega_2$. Тогда уравнение группы волн примет вид:

$$s(x,t) = s_0 \sin(\omega_1 t - k_1 x) + s_0 \sin(\omega_2 t - k_2 x) = 2s_0 \cos\left(\frac{\Delta\omega}{2} t - \frac{\Delta k}{2} x\right) \sin(\omega_0 t - k_0 x).$$
(4.18)

Здесь $\Delta k = k_2 - k_1, k_0 = \frac{k_1 + k_2}{2}.$

На рис. 4.6 изображена группа из двух волн в некоторый фиксированный момент времени $t_{@}$.Выделим две точки: М и R. Первая из них отвечает фиксированному значению фазы $\varphi_{M} = \omega_{0}t - k_{0}x_{M}$,при которой $\sin \varphi_{M} = 1$.Очевидно, что скорость этой точки, определяемая из условия $d\varphi_{M} = \omega_{0}dt - k_{0}dx_{M} = 0$,равна

$$c = \frac{dx_M}{dt} = \frac{\omega_0}{k_0} \tag{4.19}$$

и совпадает с фазовой скоростью волны с частотой же

Рис. 4.6.

Амплитуда квазигармонической волны (4.18) определяется как $s_0(x,t) = 2s_0 \cos\left(\frac{\Delta\omega}{2}t - \frac{\Delta k}{2}x\right),$ (4.20)

и ее распределение на рис. 4.6 изображено пунктиром в виде медленно меняющейся вдоль когибающей волны основной частоты коточка R на вершине этой огибающей будет двигаться со скоростью, отличающейся от «.Действительно, для координаты коточки, как это следует из (4.20), можем записать условие

$$\frac{\Delta\omega}{2}t - \frac{\Delta k}{2}x_R = const. \tag{4.21}$$

За время dt она сместится на расстояние dx_R которое находится из равенст-

ва:

$$\frac{\Delta\omega}{2}dt - \frac{\Delta k}{2}dx_R = 0. \tag{4.22}$$

Следовательно, скорость движения вершины огибающей будет равна $u = \frac{dx_R}{dt} = \frac{\Delta \omega}{\Delta k}.$ (4.23)

Эта скорость характеризует движение группы волн и называется групповой скоростью. Ее смысл станет еще более понятным, если в пределах интервала $\Delta \omega$ в группе будут находиться волны с близко расположенными частотами, как, например, изображено на рис. 4.7а.

Рис. 4.7.

Сама группа имеет вид одного импульса длительностью тираспространяющегося вдоль оси x (рис. 4.76). Импульс будет двигаться с групповой скоростью $u = d\omega/dk$.На дисперсионной кривой (рис. 4.7в) эта скорость равна угловому коэффициенту касательной прямой в точке А. "Синусоида" внутри импульса будет его обгонять и двигаться с фазовой скоростью $e = \omega_0/k_0$.Численно эта скорость будет равна угловому коэффициенту отрезка ОА. В среде без дисперсии дисперсионная кривая является прямой линией $\omega = ek. Поэтому$

$$c = \frac{\omega_0}{k_0} = \frac{\Delta\omega}{\Delta k} = u, \tag{4.24}$$

т.е. фазовая и групповая скорости совпадают. В среде с нормальной дисперсией, как это видно из рис. 4.7в, w < e.В среде с аномальной дисперсией кривая w = w(k)должна загибаться вверх и, формально, w > e.Однако обычно эта зависимость настолько нелинейна, что понятие групповой скорости теряет смысл.

Действительно, когда импульс, изображенный на рис. 4.76, пройдет очень большое расстояние в диспергирующей среде, то форма его исказится, и он растянется в пространстве. В среде с сильной аномальной дисперсией это искажение происходит уже на малых расстояниях, поэтому говорить о распространении импульса как целого с групповой скоростью жнекорректно.

Дисперсионное уширение импульсов негативно сказывается, например, на скорости передачи информации (количество бит в единицу времени) посредством коротких световых импульсов, бегущих по волоконно-оптическим линиям связи, длина которых достигает нескольких тысяч километров. Два следующих друг за другом импульса могут расшириться настолько, что сольются в один (станут неразличимыми). Естественно, что приемник, установленный в конце линии, "воспримет" два импульса как один, и часть передаваемой информации будет утеряна.

Волновое уравнение.

Уравнение бегущей гармонической волны в однородном шнуре, где дисперсия отсутствует $\omega = e_{0}k$, по аналогии с (4.16) имеет вид:

$$s(x,t) = s_0 \sin(\omega t \mp kx) = s_0 \sin\left[\omega \left(t \mp \frac{x}{c_0}\right)\right].$$
(4.25)

Знак "-" соответствует волне, бегущей в положительном направлении по оси Ox, а знак "+" - в отрицательном.

В более общем случае распространения произвольного импульса (группы волн), двигающегося с той же скоростью ^{каз}уравнение волны можно записать в виде:

$$s(x,t) = s\left(t \mp \frac{x}{c_0}\right),\tag{4.26}$$

где $*(\theta)$ - произвольная функция своего аргумента $\theta = t \mp x/c_0$.

Покажем, что закон движения шнура (4.26) и, конечно, его частный случай (4.25) являются решениями некоторого уравнения движения, которое называется волновым уравнением. Это волновое уравнение можно получить предельным переходом из уравнения (3.47). На рис. 4.8 показан фрагмент колеблющегося шнура. На этом фрагменте изображены три отрезка шнура длиной Δx и массой *drn*каждый. Смещения этих отрезков в некоторый произвольный момент времени равны $s_{n-1} = s(x - \Delta x, t), s_n = s(x, t), s_{n+1} = s(x + \Delta x, t).$ Ускорение центрального отрезка $\bar{s}_n = \frac{\partial^2 s(x, t)}{\partial t^2}$. Оно записано в виде второй частной производной функции s(x, t) по времени. Учтем далее, что

$$\lim_{s \to 0} \frac{s_{n+1} - s_n}{a} = \lim_{\Delta x \to 0} \frac{s(x + \Delta x, t) - s(x, t)}{\Delta x} = \frac{\partial s}{\partial x} \Big|_{x+\frac{1}{2}} dx$$
(4.27a)

$$\lim_{\alpha \to 0} \frac{s_n - s_{n-1}}{a} = \lim_{\Delta x \to 0} \frac{s(x, t) - s(x - \Delta x, t)}{\Delta x} = \frac{\partial s}{\partial x} \Big|_{x = \frac{\partial s}{2}}$$
(4.276)

Обратим внимание, что сила $F \cdot \frac{\partial s}{\partial x}\Big|_{x+dx/2}$ является проекцией на направление смещения s силы *F*-приложенной к центральному элементу справа (в точке x + dx/2). Аналогично, слева (в точке x - dx/2) проекция этой силы равна $-F \cdot \frac{\partial s}{\partial x}\Big|_{x-dx/2}$. Равнодействующая этих сил, очевидно, определяется приращением первой производной на длине бесконечно малого элемента dx:

$$\frac{\partial^2 s}{\partial t^2} = \frac{F}{dm} \left(\frac{\partial s}{\partial x} \Big|_{x + dx/2} - \frac{\partial s}{\partial x} \Big|_{x - dx/2} \right). \tag{4.28}$$

Если теперь учесть, что $dm = \rho_1 dx (\rho_1 - плотность единицы длины, или линей$ ная плотность шнура), то (4.28) примет вид волнового уравнения:

$$\frac{\partial^2 s}{\partial t^2} = \frac{F}{\rho_1} \frac{\partial^2 s}{\partial x^2}.$$
(4.29)

Это волновое уравнение является математическим выражением второго закона Ньютона, в котором ускорение единицы длины шнура и действующая на него сила записаны в виде вторых частных производных смещения «по времени и координате соответственно. С математической точки зрения оно является линейным дифференциальным уравнением с частными производными второго порядка. Его решение хорошо известно: им может быть любая функция «(@) аргумент которой "сконструирован" в виде (4.26), а скорость $e_0 = \sqrt{\frac{F}{\rho_1}}$. Убедимся в справедливости этого утверждения. Для этого вычислим вторые производные в соответствии с правилами дифференцирования функции со сложным аргументом

$$\frac{\partial s}{\partial t} = \frac{ds}{d\theta} \cdot \frac{\partial \theta}{\partial t} = \frac{ds}{d\theta}; \frac{\partial s}{\partial x} = \frac{ds}{d\theta} \cdot \frac{\partial \theta}{\partial x} = \frac{ds}{d\theta} \cdot \left(\mp \frac{1}{c_0} \right)$$
(4.30)

$$\frac{\partial^2 s}{\partial t^2} = \frac{d^2 s}{d\theta^2}; \frac{\partial^2 s}{\partial x^2} = \frac{d^2 s}{d\theta^2} \cdot \left(\mp \frac{1}{c_c}\right)^2. \tag{4.31}$$

Подставляя вторые производные из (4.31) в (4.29), приходим к выводу, что при $c_0 = \sqrt{\frac{F}{\rho_1}}$ уравнение (4.29) тождественно удовлетворяется, т.е. функция $s(\emptyset)$ действительно является его решением.

Волновое уравнение является одним из фундаментальных уравнений. В разных областях физики это уравнение получается как результат применения соответствующих законов, описывающих поведение систем различной природы (механических, электромагнитных и др.). В общем случае оно описывает распространение волн в трехмерном пространстве и имеет более сложный вид:

 $\frac{\partial^2 s}{\partial t^2} = c^2 \left(\frac{\partial^2 s}{\partial x^2} + \frac{\partial^2 s}{\partial y^2} + \frac{\partial^2 s}{\partial z^2} \right). \tag{4.32}$

Под «может подразумеваться любая колеблющаяся величина: смещение, скорость, плотность, давление, электрический ток, электрическое напряжение, напряженность электрического и индукция магнитного полей и др.

Важно подчеркнуть, что если нам удается получить волновое уравнение (вывести его) для какого-либо процесса, то стоящий перед вторыми пространственными производными множитель сразу определяет квадрат скорости распространения волны в среде без дисперсии. Этим приемом часто пользуются для вычисления скорости распространения волн различной природы. Ниже мы тоже так поступим, когда будем рассматривать волны в твердых телах, жидкостях и газах.

Отражение волны на конце шнура.

Мы уже упоминали в начале этой лекции, что волна, достигнув конца шнура, отразится. Характер этого отражения зависит от условий закрепления конца шнура (граничных условий).

Рассмотрим вначале более подробно процесс отражения импульса от закрепленного конца шнура.

На рис. 4.9 показаны последовательные стадии отражения импульса треугольной формы, где пунктиром изображены "падающий" и "отраженный" импульсы. Если длительность импульса равна тыто его протяженность вдоль струны равна тыты времени времени t = 0 он добежит до конца струны. В последующие моменты времени шнур будет воздействовать на кронштейн, к которому прикреплен его конец, с переменной силой, перпендикулярной направлению движения импульса. Эта сила в момент времени t > 0 начинает тянуть кронштейн вверх. В течении времени $0 < t < \tau_0/2$ она остается постоянной, и в момент времени $t = \tau_0/2$ становится равной нулю. По третьему закону Ньютона с такой же силой кронштейн действует вниз на конец шнура. В момент времени $t = \tau_0/2$ шнур становится прямым. Однако часть шнура длиной $\frac{1}{2}$ становитает двигаться вниз по инерции. При $t > \frac{1}{2} \tau_{w}$ шнур тянет кронштейн вниз, и это действие прекращается при $t = \tau_{w}$. Естественно, что кронштейн воздействует на конец шнура с силой, направленной вверх, тормозя движение его элементов вниз. Окончательно поперечное действие шнура на кронштейн прекратится при $t > \tau_{w}$. Когда сформируется отраженный импульс, имеющий противоположную (по отношению к падающему) полярность.

Если по шнуру бежит гармоническая волна, то по достижении закрепленного конца шнура возникает обращенная отраженная волна. Чтобы учесть изменение ее полярности, в аргумент уравнения отраженной волны добавляют фазовый сдвиг $\varphi_{orp} = \pi \cdot \Pi$ оэтому говорят, что в этом случае при отражении фаза волны скачком меняется на π_{i} или "теряется полволны". В общем случае при произвольных граничных условиях сдвиг фазы φ_{orp} может меняться в интервале $\Psi \leq \varphi_{orp} \leq \pi \cdot \Pi$ оясним сказанное простейшим расчетом.

Пусть по шнуру бежит гармоническая волна. Достигнув конца шнура при $x = \ell_0$ она будет отражаться (рис. 4.10). Смещение любого участка струны, имеющего координату $x \le \ell_0$ определяется как суперпозиция бегущей и отраженной волн:

$$s(x,t) = s_0 \sin(\omega t - kx) + s_0 \sin[\omega t - k](2\ell - x) + \varphi_{comp}].$$
(4.33)

Рис. 4.10.

В (4.33) учтено, что отраженная волна, во-первых, проходит расстояние "туда и обратно", равное $\ell + (\ell - x) = 2\ell - x \cdot \mu$, во-вторых, приобретает сдвиг фазы φ_{orp} при ее отражении. Проведем суммирование в (4.33) и получим:

$$s(x,t) = 2s_0 \cos\left[k(\ell-x) + \frac{\varphi_{orp}}{2}\right] \sin\left[\omega t - k\ell + \frac{\varphi_{orp}}{2}\right].$$

$$(4.34)$$

Полагаем, что амплитуда волны востается постоянной при распространении и не меняется при отражении.

Это выражение является уравнением стоячей волны. Основные ее характеристики могут быть сведены к следующим:

1. В стоячей волне все участки шнура колеблются с одинаковой частотой и в фазе, однако амплитуда этих колебаний меняется вдоль шнура, т.е. стоячая волна является модой колебаний.

2. Амплитуда колебаний в стоячей волне получается из (4.34) равной: $A(x) = 2s_0 \cos \left[k(\ell - x) + \frac{\varphi_{orp}}{2}\right].$ (4.35)

Из этого выражения видно, что некоторые участки шнура колеблются с амплитудой, равной ²⁸ Это так называемые "пучности" стоячей волны. С другой стороны, существуют участки, которые остаются неподвижными, т. к. для них амплитуда A = 0.9то так называемые "узлы" стоячей волны.

На рис 4.11 изображены смещения фрагмента струны для трех последовательных моментов времени t_1, t_2 и t_3 . Нетрудно показать, что расстояния между двумя соседними узлами, указанными точками, равно расстоянию между двумя соседними пучностями, отмеченными крестиками, и составляет величину $\Delta x = \frac{\pi}{k} = \frac{\lambda}{2}$.

Рис. 4.11.

3. Все части шнура, лежащие между двумя соседними узлами, совершают колебания в фазе. При переходе через узел фаза колебаний скачком изменяется на π ,что соответствует изменению знака A(x).

4. На конце шнура $(x - \ell)$ амплитуда $A(\ell) = 2s_0 \cos \frac{\varphi_{oup}}{2}$.

(4.36)

Для закрепленного конца шнура $A(\ell) = \mathbb{G}_{\mathbf{H}} \varphi_{omp} = \pi$.На рис. 4.10 показан участок в полволны, который "теряется" при таком отражении. Расположенная правее этого участка часть волны, изображенная пунктиром в области $x > \ell_{1}$ после поворота направления распространения как раз и будет являться волной, отраженной в закрепленной точке $x = \ell_{1}$.

Обратимся теперь к отражению волны от свободного конца шнура. Технически это можно реализовать, если конец шнура привязать к тонкой и легкой нити, которая служит лишь для создания натяжения шнура с силой *F*. Процесс отражения треугольного импульса от свободного конца шнура показан на рис. 4.12. Обращают на себя внимание два обстоятельства:

Отраженный импульс сохраняет ту же полярность, что и падающий. Это связано с тем, что при движении свободный конец будет тянуть вверх прилегающие к нему слева участки шнура, и, в результате, будет возбужден отраженный импульс, в котором элементы шнура также смещены вверх. В случае гармонической волны отраженная волна находится в фазе с падающей. Образующаяся стоячая волна будет описываться уравнением (4.34), в котором $\varphi_{orp} = 0$.

Конец шнура совершает "взмах", величина которого вдвое превышает амплитуду импульса в его середине. Для гармонической волны на конце шнура $(x=\ell)$ образуется пучность стоячей волны. Это следует из формулы (4.36), в которой следует положить $\varphi_{orp} = 0$.

Рис. 4.12.

Возбуждение стоячих волн в шнуре. Моды колебаний.

Пусть кронштейн, к которому привязан левый конец шнура, совершает гармонические колебания *s*(*t*) = *s*₀*si*n*ωt*,где *s*₀- очень малая амплитуда. Поэтому левый конец шнура можно считать закрепленным. По шнуру побежит гармоническая волна (рис. 4.13), которая после отражения от правого закрепленного конца приобретет сдвиг фазы, равный *π*.Добежав до левого конца, она еще раз отразится, а сдвиг фазы станет равным ²*π*.

Рис. 4.13.

Двукратно отраженная волна наложится на постоянно бегущую вправо гармоническую волну. Если сдвиг фазы колебаний у этих волн будет кратным

величине ^{2π}то результатом наложения будет волна, амплитуда которой превышает амплитуду сисходной бегущей волны. Таким образом, бегущая волна усилится. Если бы не было потерь энергии, то нарастание амплитуды при многократном отражении было бы неограниченным. Однако потери, как мы не раз видели, также увеличатся с ростом амплитуды. Поэтому колебания установятся: в систему будет закачано некоторое количество энергии, а дальнейший приток ее будет равен диссипации.

Определим частоту внешнего воздействия 44с которой следует двигать левый кронштейн, чтобы обеспечить максимальное усиление волны. Поскольку бегущая гармоническая волна может рассматриваться как набор следующих друг за другом со скоростью фимпульсов разной полярности, то мы проследим за усилением любого из них (например, заштрихованного на рис. 4.13). Время движения импульса (для определенности точки A в его начале) по шнуру туда и обратно равно $\Delta t = 2t/c_0$. Учтем далее, что после двух отражений этот импульс два раза обратится. Для его усиления необходимо, чтобы в момент $t = \Delta t$ левый конец шнура проходил положение равновесия и двигался при этом вверх:

 $s(\Delta t) = \xi_0 \sin(\omega \Delta t) = 0,$ $\dot{s}(\Delta t) = \xi_0 \omega \cos(\omega \Delta t) = +\xi_0 \omega.$ (4.37)

Поэтому частота ω должна удовлетворять условию $\omega_{g}\Delta t = 2\pi p,$ (4.38) где p = I, II, III, ...Отсюда $\omega_{g} = \frac{\pi v_0}{\ell} p.$ (4.39)

Конфигурацию колеблющейся струны на частотах (4.39) можно легко нарисовать, когда амплитуды бегущей и отраженной волн не меняются вдоль шнура и равны между собой. Очевидно, что это будут стоячие волны, рассмотренные нами выше и соответствующие одинаковым граничным условиям: на обоих концах шнура должны быть узлы смещения.

Для примера на рис. 4.14 изображены три возможные конфигурации шнура в момент времени, когда смещения элементов шнура максимальны. Колебания, соответствующие этим конфигурациям, являются нормальными колебаниями (модами), а частоты и, шт, шт- нормальными частотами. Если действие внешней силы прекратится, то эти колебания будут продолжаться как собственные, пока не затухнут.

Рис. 4.14.

Условие (4.39) можно переписать в более наглядном виде, если перейти от частоты ω_{p} к длине волны $\lambda_{p} = 2\pi e_{0}/\omega_{p}$:

 $\ell = p \frac{\lambda_p}{2}.\tag{4.40}$

Это условие означает, что при нормальных колебаниях на длине шнура должно укладываться целое число полуволн. Легко теперь видеть, что каждая из мод может быть возбуждена, если прикладывать силу нужной частоты к любому участку шнура, за исключением тех, которые совпадают с узлами данной моды.

Видоизменим граничные условия и сделаем оба конца шнура свободными (привяжем их к натянутым легким нитям). Подсчитаем частоты вынуждающей силы, на которых возбуждаются стоячие волны (моды). Учтем, что после двух отражений импульс не меняет свою полярность, поэтому условие (4.40) останется прежним.

На рис. 4.15 показаны конфигурации мод для шнура со свободными концами. Видно, что при нормальных колебаниях на длине шнура также должно укладываться целое число полуволн, но таким образом, чтобы на концах шнура были пучности.

Рис. 4.15.

Закрепим теперь только левый конец шнура и будем двигать кронштейн с малой амплитудой Условие оптимального возбуждения стоячих волн (мод) получается из тех соображений, что импульс обращается только при отражении от левого конца шнура. Для усиления импульса необходимо, чтобы левый конец в момент времени = Δ¢двигался вниз, проходя положение равновесия:

$$s(\Delta t) = \xi_0 \sin(\omega \Delta t) = 0,$$

$$\dot{s}(\Delta t) = \xi_0 \omega \cos(\omega \Delta t) = -\xi_0 \omega.$$
(4.41)

Поэтому частота \отеда должна удовлетворять условию

 $ω_p \Delta t = (2p - 1)π,$ (4.42) ΓДе p = I, II, III, ...ΟΤCЮДа $ω_p = \frac{\pi c_0}{2\ell} (2p - 1).$ (4.43)

Последнее условие становится более наглядным, если перейти к длине волны ^{*h*}_{*p*}:

$$\ell = (2p-1)\frac{\gamma_2}{4},\tag{4.44}$$

где $p = I, II, III, \dots$.

Соответствующие три низшие моды изображены на рис. 4.16. Очевидно, что это будут стоячие волны, отвечающие разным граничным условиям: на левом конце должен быть узел, а на правом - пучность. На длине шнура при этом укладывается нечетное число четвертей длин волн.

Рис. 4.16.

Замечание. При возбуждении моды мы задавали закон движения закрепленного конца шнура в виде $s(t) = \xi_0 \sin \omega t$,что может вызвать у читателя некоторое недоумение - как может двигаться закрепленный конец? Однако амплитуда колебаний ξ_0 обычно значительно меньше амплитуды колебаний в пучностях, поэтому незначительно вибрирующий конец шнура может рассматриваться, как неподвижный.

Волны в упругих телах.

Как мы видели, силы взаимодействия между соседними колеблющимися элементами шнура обеспечивают распространение в нем волн. В упругих телах такие силы сводятся к касательным и нормальным напряжениям, возникающим при деформациях сдвига и растяжения (сжатия). Этим деформациям соответствуют 2 типа волн: поперечные и продольные. Рассмотрим эти волны по отдельности.

Поперечные волны.

Если по стержню, изготовленному из упругого материала, ударить молотком в его средней части (рис. 4.17), то к его концам побегут импульсы, как это имело место в шнуре с грузами, изображенном на рис. 4.1. Однако поперечные смещения частиц стержня будут незаметны для глаза, поэтому для регистрации бегущих по стержню возмущений требуются специальные методы.

Рис. 4.17.

Поскольку дисперсия волн механической природы в сплошной среде отсутствует, то скорость их распространения можно рассчитать с помощью волнового уравнения.

На рис. 4.18 показан фрагмент колеблющегося стержня. На средний элемент длиной *а*хдействуют касательные напряжения (слева $\sigma_r(x)$ и справа $c_r(x+dx)$), величины которых пропорциональны деформациям сдвига соседних элементов:

$$\begin{aligned} \sigma_{\sigma}(x) &= Gtg\gamma(x) = G\frac{\partial s}{\partial x}\Big|_{x},\\ \sigma_{\sigma}(x+dx) &= Gtg\gamma(x+dx) = G\frac{\partial s}{\partial x}\Big|_{x+dx}. \end{aligned}$$
(4.45)

Здесь *G*-модуль сдвига, 7- угол сдвига.

Рис. 4.18.

Если площадь поперечного сечения стержня равна $S_{,TO}$ масса элемента $dm = S_{pdx}(p - плотность материала)$. Следовательно, уравнение его движения может быть записано в виде:

$$S\rho dx \frac{\partial^2 s}{\partial t^2} = G\left(\frac{\partial s}{\partial x}\Big|_{x+dx} - \frac{\partial s}{\partial x}\Big|_x\right) S.$$
(4.46)

Поделив обе части (4.46) на *s*и *d*_{*x*},получаем волновое уравнение $\frac{\partial^2 s}{\partial t^2} = \frac{G}{\rho} \frac{\partial^2 s}{\partial x^2}.$ (4.47)

Его решением, как мы уже отмечали выше, является любая функция аргумента $g = t \mp x/q$:

$$s(x,t) = s(\theta) = s\left(t \mp \frac{x}{c}\right),\tag{4.48}$$

а скорость распространения волны $e = \sqrt{\frac{G}{\rho}}.$ (4.49) Процессы распространения и отражения поперечных волн в стержне полностью аналогичны таковым в однородном натянутом шнуре, поэтому мы их рассматривать не будем. Сконцентрируем внимание на закономерностях переноса механической энергии бегущей волной.

Энергия, переносимая волной.

В лекции по деформациям упругих твердых тел мы отмечали, что при деформации сдвига в единице объема тела запасается потенциальная энергия

$$w_{\gamma} = \frac{1}{2}G\gamma^2 = \frac{1}{2}G\left(\frac{\partial s}{\partial x}\right)^2,\tag{4.50}$$

называемая объемной плотностью энергии деформации сдвига. В (4.50) полагаем $\gamma \approx t_{g\gamma} = \frac{\partial s}{\partial x}$.

Помимо этого, единица объема с массой, равной е колебательной скоростью » = ðs/ðtимеет кинетическую энергию

$$w_v = \frac{1}{2}\rho v^2 = \frac{1}{2}\rho \left(\frac{\partial s}{\partial t}\right)^2. \tag{4.51}$$

Полная энергия единицы объема равна

$$w = w_{\gamma} + w_{\rho} = \frac{1}{2} \left[G \left(\frac{\partial s}{\partial x} \right)^2 + \rho \left(\frac{\partial s}{\partial t} \right)^2 \right].$$
(4.52)

Покажем, что в бегущей волне (4.48) w_y = w_w.Для этого вычислим производные:

$$\frac{\partial s}{\partial x} = \frac{ds}{d\theta} \frac{\partial \theta}{\partial x} = \frac{ds}{d\theta} \left(\mp \frac{1}{c} \right); \frac{\partial s}{\partial t} = \frac{ds}{d\theta} \frac{\partial \theta}{\partial t} = \frac{ds}{d\theta} \cdot 1.$$
(4.53)

Из (4.53) получаем

$$\frac{\partial s}{\partial x} = \pm \frac{1}{c} \cdot \frac{\partial s}{\partial t}, \text{ или } \gamma = \pm \frac{v}{c}.$$
(4.54)

Отметим, что в бегущей волне деформации ткакого-либо элемента пропорциональны его колебательной скорости в.

Возводя в квадрат левое равенство (4.54), деля его пополам и учитывая, что $e^2 = G/\rho_0$ получаем

$$\frac{1}{2}G\left(\frac{\partial s}{\partial x}\right)^2 = \frac{1}{2}\rho\left(\frac{\partial s}{\partial t}\right)^2, \text{ илн } w_{\gamma} = w_{\nu}.$$
(4.55)

Равенство величин ¹⁰⁰, и ¹⁰⁰, позволяет записать полную плотность энергии w в виде:

$$w = 2w_y = 2w_y. (4.56)$$

Поскольку волна движется, то она осуществляет перенос механической энергии.

Так, например, за время △ичерез площадку единичной площади, заштрихованную на рис. 4.19, будет перенесена энергия, равная $\Delta W = w c \Delta t.$

Рис. 4.19.

В физике используют понятие плотности потока энергии, определяемой количеством энергии, переносимой волной за единицу времени через единичную площадку, перпендикулярную направлению распространения волны. Согласно (4.57), эта плотность равна

$$J = \frac{\Delta W}{\Delta t} = wc \tag{4.58}$$

и имеет размерность $[J] = Дж/(м^{2}*c)$.

Если площадка имеет площадь ds a ее нормаль ысоставляет с направлением распространения волны (осью Ox) угол и(рис. 4.20), то количество энергии, переносимое волной через эту площадку за единицу времени (поток энергии) равен

$$d\Phi = wc \cdot dS \cos \alpha. \tag{4.59}$$

ds c x

Рис. 4.20.

Профессором МГУ Н.А. Умовым в 1874 г. был введен вектор плотности потока энергии

 $J = wc, \tag{4.60}$

получивший название вектора Умова. С его использованием поток афможет быть записан в виде

$$d\Phi = \mathbf{J} \cdot d\mathbf{S} = JdS \cos \alpha, \tag{4.61}$$

ГДе $dS = dS \cdot n$.

С подобным представлением потока вектора скорости мы встречались при изучении движения жидкостей.

Удобство вектора Умова становится особенно ощутимым, когда волна распространяется в трехмерном пространстве. Тогда поток энергии через произвольную поверхность *выражается* в виде интеграла по этой поверхности:

 $\Phi = \int_{S} \mathbf{J} \cdot d\mathbf{S} \,. \tag{4.62}$

Последняя формула будет использована ниже.

Подсчитаем среднее значение за период вектора Умова для бегущей вдоль стержня поперечной гармонической волны

$$s(x,t) = s_0 \sin(\omega t - kx). \tag{4.63}$$

Объемная плотность энергии (сумма потенциальной и кинетической энергий) равна

$$w = \rho \left(\frac{\partial s}{\partial t}\right)^2 = \rho s_0^2 \omega^2 \cos^2(\omega t - kx). \tag{4.64}$$

В некоторый момент времени она распределена вдоль стержня так, как показано на рис. 4.21. С течением времени это распределение смещается вдоль оси Ох со скоростью «Плотность потока энергии через любое сечение x = const будет периодически возрастать от нуля до максимальной величины $\exp_{0}^{2}\omega^{2}$. Поэтому удобно пользоваться средним значением *J*за период $T = 2\pi/\omega$. Эта величина называется интенсивностью бегущей волны и равна

$$I = \frac{1}{T} \int_{0}^{1} J dt = \frac{1}{2} e \rho \omega^2 s_0^2.$$
(4.65)

Важно отметить, что интенсивность пропорциональна квадрату амплитуды.

Рис. 4.21.

В стоячей волне нет переноса энергии, т. к. она является суперпозицией двух бегущих волн, переносящих одинаковое количество энергии в противоположных направлениях. Однако, локальное движение энергии в ограниченном пространстве между соседними узлами все же происходит. В самом деле, запишем уравнение стоячей волны (4.34), опустив в нем постоянные фазовые добавки #org.¹² inkte:

$$s(x,t) = 2s_0 \cos kx \sin \omega t. \tag{4.66}$$

Объемная плотность энергии деформации сдвига равна:

$$w_{\gamma} = \frac{1}{2}G\left(\frac{\partial s}{\partial x}\right)^2 = 2s_0^2 k^2 G \sin^2 kx \sin^2 \omega t, \qquad (4.67)$$

а объемная плотность кинетической энергии выражается как:

$$w_x = \frac{1}{2}\rho \left(\frac{\partial s}{\partial t}\right)^2 = 2s_0^2 \omega^2 \rho \cos^2 kx \cos^2 \omega t = 2s_0^2 k^2 G \cos^2 kx \cos^2 \omega t, \qquad (4.68)$$

поскольку $c^2 = \frac{\omega^2}{k^2} = \frac{G}{\rho}.$

Локальное движение энергии наглядно демонстрирует рис. 4.22, на котором показан фрагмент стоячей волны в моменты времени $t_1 = 0$ $t_2 = t_1 + T/4(a)$ и соответствующие распределения $w_{\gamma}(6)$ и $w_{*}(B)$.

Рис. 4.22.

Видно, что при $t = t_1$ когда элементы стержня проходят положение равновесия и имеют максимальные скорости, деформация отсутствует $(w_r = 0)$ а вся энергия запасена в виде кинетической энергии w и локализована вблизи пучности. Однако через четверть периода колебаний частицы стержня сместятся на максимальные расстояния и остановятся ($w_r = 0$). Энергия будет запасена в виде потенциальной энергии w_r и локализована вблизи узлов. Это означает, что энергия из области вблизи пучности за четверть периода колебаний перетекает в обе стороны по направлению к узлам. Затем она движется в обратном направлении, и этот процесс повторяется многократно. Поток энергии через узлы отсутствует. Среднее за период значение потока энергии через любое сечение x = constбудет равно нулю (I = 0).

Продольные волны.

Такие волны могут быть возбуждены ударом молотка по одному из торцов упругого стержня. Возмущение, распространяющееся вдоль стержня, визуально незаметно, однако основные закономерности такого волнового процесса можно смоделировать, если вместо стержня использовать длинную пружину с большим диаметром витков (рис. 4.23). Если эту пружину подвесить горизонтально на нескольких нитях (не показанных на рисунке) и резко ударить ладонью по левому торцу, то по ней побежит импульс сжатия с некоторой скоростью в На рис. 4.23а этот импульс имеет длину вты (ты - длительность импульса, равная длительности удара). Добежав до правого конца пружины, он отразится, при этом, если конец закреплен (рис. 4.23б), то отраженный импульс будет также импульсом сжатия. Если правый конец свободен, то отраженный импульс будет импульсом растяжения (рис. 4.23в). Он возникает в момент смещения вправо свободного конца пружины, когда до него добежит импульс сжатия. Эта ситуация напоминает смещение свободного конца шнкрв. Отметим, что в рассмотренном случае смещения витков пружины происходят вдоль направления распространения волны, поэтому волна называется продольной.

Рис. 4.23.

Рассмотрим теперь распространение импульсов сжатия и растяжения в стержне.

Мысленно разобьем стержень на ряд элементов длиной dxкаждый. При распространении продольной волны концы каждого элемента, отмеченные на рис. 4.24 сплошными линиями, будут смещены в новые положения, отмеченные пунктиром. Эти смещения s будем считать положительными, если они происходят в положительном направлении оси Ox, и отрицательными - в противоположном случае.

Рис. 4.24.

Пусть левый конец некоторого элемента, имеющий координату x, сместился в данный момент времени *t*на расстояние s(x, t), а правый конец - на s(x + dx, t). Деформация растяжения (сжатия) определяется относительным удлинением элемента dx:

$$\varepsilon(x,t) = \frac{s(x+dx,t) - s(x,t)}{dx} = \frac{\partial s}{\partial x}.$$
(4.69)

Отметим, деформации растяжения соответствует *с > 1/2* а сжатия - *с < 0*.

В отличие от поперечной волны, при растяжении (сжатии) уменьшается (увеличивается) плотность среды "Ее можно представить в виде

$$\rho = \rho_0 + \delta\rho; |\delta\rho| \ll \rho_0. \tag{4.70}$$

Здесь *ф*- малая добавка к равновесной плотности *ф*причем *ф*может быть как положительной, так и отрицательной. С учетом постоянства массы деформируемого элемента *d*аможем записать

$$\rho_0 dx = (\rho_0 + \delta \rho) [dx + s(x + dx, t) - s(x, t)] = (\rho_0 + \delta \rho) dx (1 + \varepsilon).$$
(4.71)

Раскрывая скобки и пренебрегая малой величиной в - Макадим

```
\frac{\delta\rho}{\rho_0} = -\varepsilon. \tag{4.72}
```

Спустя некоторое время после удара по торцу стержня (или после резкого оттягивания этого торца) распределение смещений »деформаций ви возмущений плотности *в* бегущих импульсах сжатия и растяжения будут иметь вид, показанный на рис. 4.25. Пунктиром показаны распределения всех величин в один из последующих моментов времени.

Рис. 4.25.

Уравнение волны, бегущей вдоль оси Ох, в обоих случаях имеет вид s(x,t) = s(t-x/t). По аналогии с (4.54) деформация $\varepsilon = \frac{\partial s}{\partial x}$ и колебательная скорость $v = \frac{\partial s}{\partial t}$ элемента связаны соотношением

$$\frac{\partial s}{\partial x} = -\frac{1}{c} \frac{\partial s}{\partial t}, \text{ или } \varepsilon = -\frac{\pi}{c}.$$
(4.73)

Подчеркнем, что в импульсе сжатия (« < Ф)скорость «совпадает по направлению со скоростью «а в импульсе растяжения они имеют противоположные направления.

Рассчитаем скорость распространения продольных волн. На рис. 4.26 изображен фрагмент стержня и показан его элемент *dx*, к концам которого приложены нормальные напряжения *s*. Уравнение движения элемента с поперечным сечением равным *s* имеет вид:

$$dm\frac{\partial^2 s}{\partial t^2} = \mathcal{G}[\sigma_n(x+dx,t) - \sigma_n(x,t)], \qquad (4.74)$$

где dm = poSdx.Чтобы (4.74) преобразовать к волновому уравнению, необходимо связать напряжения тас деформациями элементов стержня. Наиболее просто это можно сделать для тонкого стержня.

Рис. 4.26.

Скорость волн в тонком стержне.

Если стержень тонкий, то деформации и напряжения вдоль координаты х связаны известным законом Гука:

$$\sigma_n(x,t) = E \frac{\partial s}{\partial x} \bigg|_x, \quad \sigma_n(x+dx,t) = E \frac{\partial s}{\partial x} \bigg|_{x+dx}, \tag{4.75}$$

где ⊪- модуль Юнга.

Подставляя (4.75) в (4.74) и производя деление на разматолучаем волновое уравнение:

$$\frac{\partial^2 s}{\partial t^2} = \frac{E}{\rho_0} \frac{\partial^2 s}{\partial x^2}.$$
(4.76)

Скорость продольных волн получается равной $a = \sqrt{\frac{E}{\rho_0}}$. (4.77)

Эта скорость превышает скорость поперечных волн (см. формулу (4.49)), поскольку E > G.По порядку величины обе скорости совпадают и для различных материалов преимущественно лежат в диапазоне $e \sim (10^3 \div 10^4)$ м/c.

Скорость волн в толстом стержне.

Пусть вдоль оси толстого стержня (оси *x*) распространяется продольная волна, при этом колеблются элементы стержня, находящиеся вблизи его оси.

Один из таких элементов показан на рис. 4.27. Под действием нормального напряжения потносительное удлинение попределяется первым уравнением (1.27), приведенным в лекции по деформации твердого тела:

$$\varepsilon_1 = \frac{\sigma_1 - (\sigma_2 + \sigma_3)\mu}{E}.$$
(4.78)

Это уравнение отражает тот факт, что при удлинении элемента dx_{1} изображенного на рис. 4.27, площадь его поперечного сечения уменьшается (связь продольной и поперечной деформаций определяется коэффициентом Пуассона $\mathbb{Q} < \mu < 1/2$). Этот элемент потянет к оси стержня окружающие его элементы, развивая напряжения π_{2} и π_{3} .Эти элементы (лежащие между плоскостями x = const и x + dx = const) начнут приходить в движение: сначала - находящиеся вблизи оси стержня, а затем и элементы, близкие к поверхности. Через время $\Delta t = \frac{L/2}{e} (L - \text{по-перечный размер стержня, с - скорость распространения возмущения) все элементы сместятся, и напряжения <math>\pi_{2}$ и π_{3} исчезнут.

Рис. 4.27.

Если длительность тампульса, распространяющегося вдоль оси стержня, велика, так что $\tau_{a} \gg \Delta t = \frac{l}{2u}$ то в (4.78) можно не учитывать $\sigma_{2}u \sigma_{3}$.Скорость такого длинного импульса будет определяться формулой (4.77). Такой режим можно реализовать, если

$$L \ll c\tau_n$$
 (4.79)

Условие (4.79) означает, что поперечный размер стержня *и*значительно меньше длины импульса. Такой стержень можно считать тонким. Если речь идет о гармонической волне, распространяющейся вдоль стержня, то условие (4.79) имеет вид

$$L \ll \lambda, \tag{4.80}$$

где $\lambda = cT$ - длина волны, т- период колебаний. Так, например, для стального стержня $c = \sqrt{\frac{E}{\rho}} \sim 5000$ м/с. При частоте $\nu = 5000$ Ги, $\lambda = c/\nu \sim 1$ м,поэтому стержни с поперечным размером $L \sim 1$ еммогут считаться тонкими.

Если длительности импульса $\tau_{H} \ll \Delta t = \frac{t}{2e}$ (стержень толстый), то в (4.78) следует учесть $\sigma_{2}u = \sigma_{3}$. Чтобы найти связь $\varepsilon_{1}u = \sigma_{1}$. Вместе с уравнением (4.78) запишем аналогичные для $\varepsilon_{2}u = \varepsilon_{3}u$ сложим все три уравнения:

$$\varepsilon_1 + \varepsilon_2 + \varepsilon_3 = \frac{(\sigma_1 + \sigma_2 + \sigma_3)(1 - 2\mu)}{E}.$$
(4.81)

Для краткости выкладок введем средние значения $\varepsilon = \frac{1}{3}(\varepsilon_1 + \varepsilon_2 + \varepsilon_3); \quad \sigma = \frac{1}{3}(\sigma_1 + \sigma_2 + \sigma_3).$

Тогда (4.81) перепишется в виде

$$\varepsilon = \frac{\sigma(1-2\mu)}{E}$$
. (4.82)

С учетом (4.82) уравнение (4.78) видоизменяется:

$$\varepsilon_1 + \frac{3\mu\varepsilon}{1-2\mu} = \frac{1+\mu}{E}\sigma_1.$$
 (4.83)

Если положить в толстом стержне $\varepsilon_2 = \varepsilon_3 = 0$, то $\varepsilon = \varepsilon_1/3$, и искомая связь получится в виде:

$$\varepsilon_1 = \frac{\sigma_1}{Ef(\mu)} = \frac{\sigma_1(1+\mu)(1-2\mu)}{E(1-\mu)}.$$
(4.84)

В этом случае связь деформации и напряжения определяется как модулем Юнга влак и следующей функцией коэффициента Пуассона

$$f(\mu) = \frac{1-\mu}{(1+\mu)(1-2\mu)}.$$
(4.85)

Легко убедиться, что при любых возможных значениях коэффициента Пуассона *I*(*µ*) > 1.Поэтому скорость продольной волны в этом случае

$$c = \sqrt{\frac{E}{\rho_0}} f(\mu) \tag{4.86}$$

превышает скорость волны в тонком стержне. Величину *E* f(*a*)обычно называют "модулем одностороннего растяжения".

Отметим, что наиболее сложен анализ для промежуточного случая, когда *L* ~ *λ*.Для волн с такой длиной волны имеет место дисперсия (фазовая скорость гармонической волны зависит от ее частоты). Распределение амплитуды волны в поперечном сечении стержня вдоль осей за заналогично распределению амплитуды для шнура длиной *L*со свободными концами при нормальном колебании. Стержень в этом случае выполняет роль волновода. При его плавном изгибании волна распространяется вдоль его оси.

Продольные волны переносят энергию, и для них справедливы все рассуждения и выводы, полученные для поперечных волн. Формально во все выражения для плотности энергии ¹⁰, вектора Умова ³и др. следует вместо модуля сдвига G подставить модуль Юнга Еили $E \cdot f(\mu)$. Предоставляем читателю проделать это самостоятельно.

Явления на границе двух сред.

Рассмотрим подробнее прохождение продольной волны через границу раздела двух упругих сред при нормальном падении волны на эту границу.

Пусть продольная волна распространяется со скоростью $e_1 = \sqrt{E_1/\rho_1}$ в среде с модулем Юнга E_1 и равновесной плотностью e_1 (рис. 4.28). Опыт показывает, что эта волна на границе раздела двух сред (x = 0 на рисунке) частично отражается и частично проходит во вторую среду, которая характеризуется параметрами E_2 и ρ_2 -Следовательно, можем записать

1-я среда	2-я среда	
(падающая + отраженная волна)	(прошедшая волна)	
$s_1(x,t) = s_{01}\sin(\omega t - k_1x) + s_{01}'\sin(\omega t + k_1x)$	$s_2(x,t)=s_{02}\sin(\omega t-k_2x)$	(4.87)

Здесь ω - частота, s_{01} , s'_{01} и s_{02} - амплитуды падающей, отраженной и прошедшей волн соответственно, $k_1 = \omega/c_1 u \ k_2 = \omega/c_2$ - соответствующие волновые числа.

Рис. 4.28.

Чтобы найти соотношения между амплитудами трех волн, определяющие отражательную и пропускательную способность ("прозрачность") границы раздела, запишем два условия, которые должны выполняться на границе раздела при ж = 0.

Первое - это условие неразрывности вещества:

$$s_1(0,t) = s_2(0,t). \tag{4.88}$$

Второе - равенство напряжений:

$$\sigma_1(0,t) = \sigma_2(0,t), \text{ или } E_1\varepsilon_1(0,t) = E_2\varepsilon_2(0,t). \tag{4.89}$$

C учетом (4.87) из этих условий получаем: $s_{01} + s'_{01} = s_{02},$ $-s_{01}E_1k_1 + s'_{01}E_1k_1 = -s_{02}E_2k_2.$ (4.90) В акустике фундаментальным является понятие импеданса, или удельного волнового (акустического) сопротивления материала. Эта величина *«*определяется как:

$$z = \frac{c \times u \times u \times u}{\kappa a z e \delta a t = z + u \times u} = \frac{-\sigma}{v}.$$
(4.91)

Импеданс легко можно выразить через характеристики материала, воспользовавшись формулой (4.73):

$$\varepsilon = \frac{\sigma}{E} = -\frac{\psi}{e}.\tag{4.92}$$

Отсюда

$$z = \frac{-\sigma}{v} = \frac{E}{c} = \rho c. \tag{4.93}$$

С использованием этой величины и выражений для k_aи k_ayсловия (4.90) примут вид:

$$s_{01} + s'_{01} = s_{02} - s_{01}z_1 + s'_{01}z_1 = -s_{02}z_2.$$

$$(4.94)$$

Отсюда получаем искомую связь между амплитудами волн:

$$s'_{01} = \frac{1 - z_2/z_1}{1 + z_2/z_1} s_{01}, \quad s_{02} = \frac{2}{1 + z_2/z_1} s_{01}.$$
(4.95)

Для практических целей пользуются коэффициентами отражения *и* пропускания ^тхарактеризующими отношение интенсивностей отраженной и прошедшей волн к интенсивности падающей волны. Эти коэффициенты получаются из (4.95) с учетом (4.65):

$$R = \frac{I'}{I_1} = \left(\frac{s'_{01}}{s_{01}}\right)^2 = \left(\frac{1 - z_2/z_1}{1 + z_2/z_1}\right)^2; \quad T = \frac{I_2}{I_1} = \frac{z_2}{z_1} \left(\frac{s_{02}}{s_{01}}\right)^2 = \frac{4(z_2/z_1)}{(1 + z_2/z_1)^2}, \tag{4.96}$$

где использовано то обстоятельство, что интенсивность бегущей волны (см. формулу (4.65))

$$I = \frac{1}{2} c_{\mu} \omega^2 s_0^2 = \frac{1}{2} z \omega^2 s_0^2 \tag{4.97}$$

зависит не только от амплитуды за частоты зано и пропорциональна акустическому сопротивлению «Следует отметить, что формулы (4.96) справедливы и для поперечных колебаний.

Из рисунка 4.29, на котором изображены зависимости (4.96), видно, что если $z_1 = z_2$ отражения не происходит. Поэтому на практике, когда надо уменьшить отражение, стараются согласовать (сделать практически одинаковыми) волновые сопротивления двух сред.

Рис. 4.29.

Заметим также, что при $z_2 \ll z_1$, как в случае свободного конца стержня (z_2 - сопротивление воздуха), или $z_2 \gg z_1$ (закрепленный конец), $R \approx 1$, т.е. происходит практически полное отражение волны, что мы и использовали выше при рассмотрении отражения в этих предельных случаях.

Тема 5. Волны в жидкостях и газах. Акустические явления.

Акустические фононы. Объемные сейсмические волны. Современная модель Земли. Волны Рэлея и Лява. Волны в жидкостях и газах. Звук. Интенсивность звука. Поглощение звука. Излучатели звука. Применение акустических методов. Основные характеристики звука. Закон Вебера-Фехнера. Диаграмма слуха. Акустические резонаторы. Музыкальные инструменты. Эффект Доплера и бинауральный эффект. Интерференция и дифракция волн.

Тепловые колебания кристаллической решетки твердых тел. Акустические фононы.

В твердом теле ионы совершают тепловые колебания около положений равновесия в узлах кристаллической решетки. Поскольку они взаимодействуют друг с другом, то система ионов должна рассматриваться как совокупность связанных осцилляторов. Такие тепловые колебания ионов можно представить в виде суперпозиции стоячих звуковых волн, частоты которых жлежат в диапазоне $@ < \omega \le \omega_N$ где w_N - максимальная частота колебаний, обусловленная дискретностью среды (см. предыдущую лекцию).

При нагревании кристалла энергия тепловых колебаний увеличивается. Естественно, что информацию об этих колебаниях можно получить, измеряя теплоемкость кристаллов.

Если каждый ион рассматривать как классический осциллятор, колеблющийся в трех взаимно перпендикулярных направлениях, то, в соответствии с теоремой о равнораспределении энергии по степеням свободы, он обладал бы энергией $\varepsilon_1 = 6kT/2$,где *k*- постоянная Больцмана, а *т*- абсолютная температура. Здесь учтено, что колеблющийся ион обладает средней кинетической и равной ей средней потенциальной энергией *kT*/2по каждой из трех степеней свободы. Поскольку энергия кристалла, состоящего из *м*атомов, $U = N\varepsilon_1 = 3NkT$,то его теплоемкость при постоянном объеме равна:

$$c_V = \left(\frac{\partial U}{\partial T}\right)_V = 3Nk \tag{5.1}$$

и не зависит от температуры (закон Дюлонга и Пти).

Между тем, формула (5.1) согласуется с экспериментом лишь при высоких температурах, а при приближении температуры к абсолютному нулю, как показывает опыт, « » « 1[®].

Чтобы объяснить такое поведение теплоемкости, А. Эйнштейн предложил рассматривать ионы как независимые осцилляторы, обладающие дискретным набором значений энергии. Ранее подобная идея была высказана М. Планком при выводе формулы для теплового излучения твердого тела. Однако, А. Эйнштейну не удалось получить закон Т^а.

На самом деле, как уже говорилось, тепловые колебания ионов могут быть представлены как суперпозиция нормальных колебаний, или мод системы связанных осцилляторов. Каждая мода частоты мобладает энергией, кратной $\hbar\omega$, где $\hbar = \hbar/2\pi (\hbar = 6, 67 \cdot 10^{-34} \text{Дж/e} - постоянная Планка).$

Если принять во внимание, что в твердом теле возможно распространение продольной волны частоты и двух поперечных волн той же частоты, имеющих два различных взаимно перпендикулярных направления смещения атомов (две различные поляризации), то с учетом размеров кристалла и его дискретной структуры можно подсчитать число мод в кристалле. Такой подсчет был впервые выполнен П. Дебаем, и поэтому эти волны получили название дебаевских.

Следует подчеркнуть, что, в отличие от классического представления, при вычислении энергии кристалла мода представляется как квантовый объект, обладающий дискретным набором значений энергии (набором энергетических уровней)

 $\varepsilon_n = n\hbar\omega$,

(5.2)

где n- целое число.

При термодинамическом равновесии вероятность *Р*_ввозбуждения моды убывает по мере увеличения её энергии *е*_в(или числа *в*) в соответствии с распределением Больцмана: *Р*_в ~ *e*^{-в}^{-в}/*M*^T. При нагревании кристалла вероятность *P*_в растет, а значит увеличивается и запасенная кристаллом энергия. При подсчете последней Дебаем была введена характерная температура (температура Дебая) ^в с помощью равенства

 $k \partial_{\overline{A}} = h \omega_N.$

(5.3)

Обычно $\theta_{длежит}$ в интервале ($10^2 \div 10^3$)К.При $T \gg \theta_{d}$ справедлив закон Дюлонга и Пти, а при $T \ll \theta_{d}$ теплоемкость $c_V \sim T^3$.

Соотношение (5.2) для энергии колебаний в моде частоты жаналогично выражению для энергии фотонов (квантов света). Это позволяет рассматривать моду как квазичастицу, называемую тепловым фононом. Введение этого нового понятия является весьма плодотворным и, с математической точки зрения, значительно облегчает анализ тепловых колебаний кристаллической решетки. Представление о фононном газе в твердом теле широко используется при описании таких свойств, как теплоемкость, теплопроводность, тепловое расширение, электрическое сопротивление и др. В физике используются и другие квазичастицы: плазмон (волна электронной плотности), магнон (волна перемагничивания), полярон (электрон + упругая деформация), экситон (волна поляризации среды). Эти квазичастицы являются модами соответствующих колебаний.

Объемные сейсмические волны.

Чрезвычайно важным примером волн в упругом твердом теле являются сейсмические волны, возникающие в ограниченной области пространства (очаге) размером в несколько километров и распространяющиеся на огромные расстояния под поверхностью Земли. Эти волны бывают поперечными (волны сдвига) и продольными (сжатия и разрежения) и могут пронизывать всю нашу планету. Это позволяет (подобно рентгеновскому анализу) исследовать внутреннее строение Земли. Этим занимается отдельная наука, называемая сейсмологией. Долгое время сейсмология, одним из основателей которой является русский физик Б.Б. Голицын, была наукой о землетрясениях и сейсмических волнах. В настоящее время сейсмология занимается анализом разнообразных движений в земной толще.

Скорость продольных волн приблизительно в 1,7 раза больше скорости поперечных, поэтому эти волны регистрируются на сейсмограммах последовательно: вначале приходят более быстрые продольные (первичные), которые называются р-волнами, а потом поперечные (вторичные), называемые s-волнами. Кроме того, сейсмографы регистрируют и заметный фон, или шумы, связанные как с работой промышленных установок и транспорта, так и с сейсмическими волнами (микросейсмами), генерируемыми штормами и волнением в океанах.

Если бы скорости р- и s-волн в Земле не менялись бы с глубиной, то волны распространялись бы по прямым линиям (прямым сейсмическим лучам). В действительности скорости продольной ⁴₂и поперечной ⁴₃волн возрастают с погружением в недра Земли, за исключением небольшой зоны на глубинах 50-250 км. Поэтому сейсмические лучи искривляются. В сейсмологии экспериментально определяют годограф - время пробега сейсмических волн как функцию эпицентрального расстояния Δ (расстояния в градусах или километрах по дуге большого круга между эпицентром и приемником волн; 1° – 111км). Ясно, что функция $r = \pi \Delta$ связана с распределением скорости волны $\mathfrak{cl}(\mathfrak{l})(\mathfrak{l} - глубина)$, и поиск этого распределения представляет интерес при исследовании внутреннего строения Земли.

На рис. 5.1 показаны пути р-волн и указано время их распространения в недрах Земли от эпицентра Э до установленного на поверхности приемника. Прерывистые линии (изохроны) указывают время прихода р-волн в различные точки земной поверхности. Из-за искривления лучей волны не попадают в общирную зону тени.

Рис. 5.1.

Исследование зависимости скоростей $c_p(\ell)$ и $c_s(\ell)$ от глубины позволило сделать вывод, что Земля разделяется на три основные части: кору, мантию и ядро. Кора отделена от мантии резкой сейсмической границей, на которой скачкообразно возрастают плотность *и* скорости *и ч* Эта граница была открыта в 1909 г. югославским сейсмологом Мохоровичичем и носит название границы М. Толщина лежащей выше границы М земной коры меняется от величины *ч ч* под слоем воды в океанических областях) до нескольких десятков километров в горных районах континентальных областей. Ниже коры в интервале до глубин ~ 2900 км расположена силикатная оболочка, или мантия Земли. Существование ядра с плотностью, превосходящей среднюю плотность Земли ~ 5,5 г/см³, следует из того факта, что плотность земной коры (от ~ 2,8 г/см³ у гранитов до ~ 3,0 г/см³ у базальтов) существенно меньше этой средней плотности.

На рис. 5.2 показаны глубинные зависимости скоростей р- и s-волн и на базе этих зависимостей проведено разбиение Земли на три области. Такая модель Земли называется классической моделью Джеффриса-Гутенберга. Она оставалась неизменной до конца 60-х годов XX века. Особенности изменения скоростей волн с глубиной связаны с изменением структуры земных пород. При переходе от коры (граниты, базальты) к мантии (ультраосновные горные породы) скорости возрастают. Увеличение скоростей при приближении к ядру связано с наличием фазовых переходов минералов в более плотные и жесткие в механическом отношении кристаллические модификации. Падение скорости рволн при переходе из мантии в ядро есть следствие того, что внешняя часть ядра жидкая. Ядро состоит в основном из железа и небольшой примеси легких элементов. Во внешнем ядре плавное возрастание скорости чсвязано с нарастанием давления к центру Земли. Во внутреннем ядре скорость р-волн не меняется, так как давление к центру Земли возрастает незначительно. Естественно, что поперечные s-волны во внешней (жидкой) части ядра распространяться не мо-ГУТ.

Рис. 5.2.

В последние годы была выявлена детальная структура мантии Земли. На рис. 5.3 показано распределение скорости 🕼 в мантии, из которого можно сделать заключение о её структуре. Земная кора и верхний слой мантии до глубины с плитосферу, или литосферую плиту. Эта жесткая плита расколота примерно на 10 больших плит, по границам которых расположено подавляющее число очагов землетрясений. Под жесткой литосферной плитой на глубинах 70 < l < 250км расположен слой повышенной текучести, называемый астеносферой. Из-за её малой вязкости (µ~10²⁰ + 10²¹ Пуаз)литосферные плиты как бы плавают в "астеносферном океане" Земли. В астеносфере, где температура вещества близка к температуре плавления, скорости волн понижены. Начиная с « 250км скорости возрастают из-за увеличения давления. При с « 400км возрастание скорости есть результат фазовых переходов (минералы оливины переходят в шпинелевую модификацию), а на глубинах 400 < l < 650км скорость возрастает из-за роста давления. На глубинах 650 < *l* < 700км расположена вторая зона фазовых переходов, однако остается открытым вопрос о том, какие конкретно переходы ответственны за быстрый рост скорости.

Рис. 5.3.

На рис. 5.4 изображен разрез Земли, построенный в соответствии с современными сейсмическими данными.

Рис. 5.4.

При распространении объемной сейсмической волны в трехмерном случае амплитуда уменьшается с расстоянием r, пройденным волной от точечного источника. Уравнение такой волны, называемой сферической, имеет вид:

$s(r,t) = \frac{s_0}{r} e^{-nr} \sin\left[\omega\left(t - \frac{r}{c}\right)\right].$	(5.4)
---	-------

Из этого уравнения видно, что амплитуда волны убывает, во-первых, изза ее геометрического расхождения во все стороны от эпицентра; это убывание происходит обратно пропорционально пройденному волной расстоянию «Вовторых, амплитуда волны убывает из-за перехода части энергии волны в тепло вследствие неидеальной упругости земных недр. Это ослабление характеризуется коэффициентом затухания «Коэффициент «пропорционален частоте сейсмической волны, поэтому короткие волны затухают быстрее длинных. Расчет показывает, что для коэффициентов затухания s- и p-волн могут быть записаны соотношения Частоты объемных сейсмических волн лежат в инфразвуковом диапазоне в, П'я < ν < 10Г'я. Следовательно, для волн с частотой $\nu \sim$ П'яуменьшение амплитуды в *е* раз у поперечной волны происходит на пути ~ 1000 км, а у продольной волны - на пути ~ 4000 км.

Помимо бегущих волн, в объеме Земли могут наблюдаться и стоячие волны, когда вся Земля колеблется, как целое, с различными частотами, соответствующими различным модам колебаний. Конфигурации этих мод относятся к двум основным типам: сфероидальные колебания (наибольший период ~ 55 мин., частота ~ $3*10^{-4}$ Гц) и торсионные (крутильные) колебания (наибольший период ~ 44 мин., частота ~ $3,8*10^{-4}$ Гц). В настоящее время спектр этих колебаний насчитывает несколько тысяч экспериментально обнаруженных частот.

Поверхностные сейсмические волны.

Наряду с объемными, по Земле могут распространятся и поверхностные волны. Эти волны бывают двух типов и называются волнами Рэлея и Лява. Они были теоретически предсказаны Дж. Рэлеем в 1855 г. и Лявом в 1911 г. В Рэлеевской волне частицы грунта смещаются в вертикальной плоскости, ориентированной вдоль направления распространения волн, а траектории их движения представляют собой эллипсы (см. далее гравитационные волны на поверхности жидкости). В волне Лява частицы движутся в горизонтальной плоскости поперек направления распространения волны.

Длины поверхностных волн ^{*}возбуждаемых при землетрясении, лежат в интервале от десятков до многих сотен километров. В поверхностных волнах амплитуда убывает с глубиной, и на глубине *«>**колебания мантии малы. Поэтому с помощью таких волн можно исследовать лишь наружные слои Земли.

Из-за двумерного распространения амплитуда поверхностных волн убывает медленнее (обратно пропорционально \sqrt{r}), чем у объемных волн. Поэтому такие волны могут по несколько раз обегать вокруг земного шара. Скорость поверхностных волн зависит от частоты, т. е. они обладают дисперсией.

На рисунке 5.5 показаны зависимости групповых скоростей волн Рэлея и Лява стот периода колебания волны. Легко видеть, что волны Лява распространяются быстрее волн Рэлея. Отметим, что на рис. 5.5 показаны сти стлишь для волн, амплитуды которых определенным образом убывают с глубиной. Возможны поверхностные волны и с другими распределениями амплитуд по глубине.

Рис. 5.5.

Сейсмические волны можно вызвать при помощи взрыва. Небольшие взрывы используются в инженерной сейсмологии для проведения разведки полезных ископаемых (нефти, руды, газа и т. д.). Подземные ядерные взрывы создают интенсивные волны, которые можно регистрировать на любых расстояниях. Это дает возможность надежно проводить контроль над подземными ядерными испытаниями.

Волны в жидкостях и газах.

В жидкостях и газах возможны лишь деформации сжатия и растяжения, поэтому в них могут распространятся только продольные волны. Хотя мы ранее и рассчитывали скорость распространения возмущений в газе, тем не менее вычислим скорость распространения продольных волн с использованием волнового уравнения. Последнее может быть получено из (4.74), в котором *ж*следует заменить величиной $-\delta p = p_0 - p_1$ где р- давление в волне, *p*0- равновесное давление в среде, *p*0- возмущение давления. Тогда мы можем записать

$$dm\frac{\partial^2 s}{\partial t^2} = \left[-\delta p(x+dx,t) + \delta p(x,t)\right]S.$$
(5.5)

Чтобы из (5.5) получить волновое уравнение, необходимо знать материальное уравнение среды

$$p = p(\rho). \tag{5.6}$$

Качественно эта зависимость изображена на рис. 5.6. При очень малых возмущениях плотности «» «» и давления «» «завления » (5.6) получаем:

$$\delta p = \left(\frac{dp}{d\rho}\right)_{\rho_0} \cdot \delta \rho = c^2 \delta \rho, \tag{5.7}$$

где введено обозначение

$$c = \sqrt{\left(\frac{dp}{d\rho}\right)_{\rho_0}}.$$
(5.8)

Рис. 5.6.

С учетом (4.69) и (4.72) возмущения плотности ^врв (5.7) связаны со смещением s соотношением:

$$\delta\rho = -\varepsilon\rho_0 = -\rho_0 \frac{\partial s}{\partial x}.\tag{5.9}$$

Следовательно, (5.7) примет вид: $\delta p = -\rho_0 c^2 \frac{\partial s}{\partial r}.$ (5.10)

Подставляя (5.10) в (5.5), записывая $dm = \rho_0 S dx$ и переходя к пределу при $dx \to 0$ получим волновое уравнение

$$\frac{\partial^2 s}{\partial t^2} = c^2 \frac{\partial^2 s}{\partial x^2},\tag{5.11}$$

из которого сразу видно, что скорость волны задается выражением (5.8) и не зависит от частоты (дисперсия отсутствует). Естественно, что с такой скоростью распространяются волны с длиной волны λ превосходящей длину свободного пробега молекул в газе или межатомные расстояния в жидкостях &В этом случае жидкость и газ могут рассматриваться как сплошные среды. Для волн высоких частот, когда $\lambda \sim \&$ возникает дисперсия, а волны с длиной $\lambda < \&$ распространяться вообще не могут.

Упругие волны в жидкостях и газах, как, впрочем, и в твердых телах, называются акустическими, а раздел физики, который их изучает - акустикой. Частоты этих волн лежат в диапазоне от долей герца (инфразвук) до 10¹³ Гц (гиперзвук). Этим частотам соответствуют длины волн ^λот десятков километров до нескольких ангстрем. Значения скоростей (фазовых и групповых) для разных сред лежат в диапазоне от долей до десятков км/с.

Для воздуха материальное уравнение (5.6) является уравнением адиабаты и в акустике обычно записывается в виде (см. также предыдущие лекции):

$$p = p_0 \left(\frac{\rho}{\rho_0}\right)^{\gamma},\tag{5.12}$$

где $\gamma = c_p/c_v$ - показатель адиабаты.

Тогда из (5.8) скорость волны (в акустике употребляют термин "скорость звука") в газе получается равной

$$e = \sqrt{\gamma \frac{p_0}{\rho_0}} = \sqrt{\gamma \frac{RT}{\mu}},\tag{5.13}$$

где #- молярная масса газа.

Скорость звука зависит, таким образом, от рода газа и по порядку величины совпадает со средней скоростью теплового движения молекул.

Для жидкости материальным уравнением является полуэмпирическое уравнение Тета:

$$p = p_{\text{min}} \left[\left(\frac{\rho}{\rho_0} \right)^{\Gamma} - 1 \right], \tag{5.14}$$

где ₱т- характерное внутреннее давление, обусловленное межмолекулярным взаимодействием (оно составляет для большинства жидкостей без пузырьков и различных включений несколько тысяч атмосфер). Параметр гимеет порядок нескольких единиц (например, для воды г ≈ 7).

В таблице приведены значения скорости звука, измеренные в некоторых газах (при температуре $t = \mathbb{P}^{\circ}C$) и жидкостях.

Газы	Скорость звука, м/с	Жидкости	Скорость звука, м/с
Водород	1265	Вода ($t = 20^{\circ}C$)	1490
Гелий	965	Этил. спирт (t = 20°C)	1180
Азот	334	Водород (<i>t</i> = -252°С)	1127
Воздух	331	Кислород (t = -183°C)	911
Кислород	316	$\begin{array}{c} A30T\\ (t = -196^{\circ}C) \end{array}$	867
Углекислота	216	Гелий (<i>t</i> = -269° <i>C</i>)	180

Энергия, переносимая звуковой волной.

Интенсивность звука задается формулой (4.65)

 $I = \frac{1}{2} c \rho \omega^2 s_0^2$

(5.15)

и пропорциональна квадрату частоты. Поэтому при переходе в область высоких частот облегчается задача получения больших интенсивностей, необходимых, например, для наблюдения нелинейных эффектов (см. следующую лекцию). В зависимости от решаемой задачи в акустике используются волны с интенсивностью от 10^{-8} Bt/cm² до 10^{6} Bt/cm².

Для практических целей интенсивность *выражают* через возмущение давления *кр*которое называют также "звуковым давлением". Наиболее просто такую зависимость можно получить из (5.15) при учете, что амплитуда скорости колебаний частиц *va* = *wa*. С другой стороны, в соответствии с акустическим законом Ома (формула (3.53) в лекции по механике сплошных сред) эта скорость равна

$$v_0 = \frac{(\delta p)_0}{\rho_0 c},$$

(5.16)

где : «»»- амплитуда колебаний возмущений давления »-Поэтому

 $I = \frac{1}{2} \frac{(\delta p)_0^2}{\rho_0 c}.$ (5.17)

Выполним некоторые простые оценки.

1. Вблизи струи газа, вытекающей из сопла реактивного двигателя самолета, амплитуда колебаний звукового давления $(\delta p)_0 = 300 \Pi_0$ (вспомним, что $p_0 = 10^5 \Pi_0$ и $(\delta p)_0 \ll p_0$. Такое давление находится на пороге болевого ощущения (см. далее). Поскольку акустическое волновое сопротивление воздуха $z = \rho_0 c = 41 \text{cm}^{-2} \cdot c^{-1}$, то $v_0 = 73 \text{см}/c$. Если принять, что частота $v = 10^3 \Gamma n$ (хотя из турбины исходит многочастотный шум), то амплитуда смещения $s_0 = v_0/2\pi v = 0,01 \text{см}$. Таким образом, смещение частиц воздуха даже при таком сильном звуке оказывается малым.

2. Звуки на пределе слышимости на частоте $\nu = 10^{3}$ Гя(ухо человека весьма чувствительно к этой частоте) имеют амплитуду звукового давления $(\delta p)_{0} = 2 \cdot 10^{-5} \Pi a_{,a}$ смещение частиц воздуха $s_{0} = 0, 8 \cdot 10^{-9} \text{см.}$ Уместно заметить, что современные методы измерения смещений в принципе дают возможность зарегистрировать колебания с амплитудой $s_{0} \sim 10^{-16} \text{см.}$

3. В ультразвуковых волнах с частотами порядка нескольких мегагерц интенсивности могут достигать нескольких сотен BT/cm^2 , а с использованием фокусирующих устройств - даже более десятка к BT/cm^2 . Это приводит к появлению огромных ускорений частиц среды, в которой распространяется ультразвуковая волна. Например, при распространении в воде волны с частотой $\nu = 10^{6}$ Гци интенсивностью I = 100 Вт/см² амплитуда ускорения $a_0 = \omega^2 s_0$, согласно (5.15), получается равной

$$a_0 = \omega \sqrt{\frac{2I}{c\rho_0}} = 6.3 \cdot 10^8 \text{cm} \cdot \text{c}^{-2} \sim 10^5 g, \qquad (5.18)$$

что на пять порядков превосходит ускорение свободного падения и Учет появления таких громадных ускорений особенно важен в биологических исследованиях с применением ультразвука.

Поглощение звука.

Наличие вязкости и теплопроводности среды приводит к потере энергии звуковой волны, и эта энергия расходуется на нагревание среды. Волна давления $\delta p(r,t)$ а также волны смещения s(r,t)и скорости $v(r,t) = \partial s/\partial t$ по мере распространения затухают. Здесь - радиус-вектор, задающий положение точки в трехмерном пространстве, в которой фиксируются возмущения давления, смещение частиц и их скорость. В случае гармонической волны, распространяющейся по одному направлению (вдоль оси Ox), возмущения давления записываются в виде

$$\delta p(x,t) = (\delta p)_0 e^{-\alpha x} \sin\left[\omega \left(t - \frac{x}{c}\right)\right],\tag{5.19}$$

где α - коэффициент затухания. Это уравнение характеризует плоскую волну (возмущение эрв плоскости x = const одинаково). В этом случае отсутствует геометрическое расхождение волны. Амплитуда этой волны (
ненциально убывает с пройденным расстоянием. В соответствии с (5.17) интенсивность волны равна

$$I = \frac{1}{2} \frac{(\delta p)_0^2}{\rho_0 e} e^{-2\alpha x} = I_0 e^{-2\alpha x}, \tag{5.20}$$

где $I_0 = \frac{1}{2} \frac{(\delta p)_0^2}{\rho_0 c}$ - начальная интенсивность волны. Если пренебречь потерями, связанными с теплопроводностью, то коэффициент согласно гидродинамике, оказывается равным

$$\alpha - \frac{4}{3} \frac{\omega^2}{2\rho_0 c^3} \mu, \tag{5.21}$$

где *и*- вязкость жидкости или газа. Важно отметить, что «~ *и*² Этим объясняется тот факт, что резкий звук выстрела или щелчка кнута, в спектре которого присутствует широкий набор частот, по мере распространения трансформируется в более мягкий, поскольку в спектре остаются преимущественно низкие частоты. Заметим, что поглощение звука в воде существенно меньше, чем в воздухе, а в твердых телах еще меньше, чем в воде. Очень низким поглощением звука отличаются такие кристаллы, как сапфир, топаз, берилл, ниобат лития и другие.

В заключение отметим, что поглощение звука является главным препятствием, ограничивающим применение многих материалов на высоких частотах.

Излучатели звука.

Применяемые в акустике излучатели упругих волн можно подразделить на две большие группы.

К первой относятся излучатели-генераторы; колебания в них возбуждаются из-за наличия препятствия на пути постоянного потока газа или жидкости (сирены, свистки, генераторы Гартмана). Такие генераторы применяются в основном в диапазоне частот до 30 ÷ 40кга. Они отличаются высоким коэффициентом преобразования кинетической энергии струи в акустическую (до 50%), простотой конструкции и эксплуатации, дешевизной. Интенсивность звука в непосредственной близости от излучателя может достигать 10 Вт/см². К недостаткам этих излучателей относятся широкий спектр излучаемых частот, нестабильность излучаемой мощности, невозможность получения звуковых колебаний заданной формы.

Вторую группу излучателей составляют электроакустические преобразователи. Свое название они получили оттого, что преобразуют электрические колебания в механические колебания какого-либо твердого тела, которое и излучает в окружающую среду акустические волны. Наиболее распространенные электроакустические преобразователи, такие, как электродинамические излучатели, магнитострикционные и пьезоэлектрические преобразователи, представляют собой линейные устройства, благодаря чему они возбуждают акустическую волну той же формы, что и электрический сигнал. Кроме того, эти устройства обратимы, то есть могут работать и как излучатели, и как приемники звука.

В диапазоне слышимых частот широкое распространение получили электродинамические излучатели, принцип действия которых основан на взаимодействии переменного электрического тока с магнитным полем (телефоны, громкоговорители). В магнитострикционных преобразователях используется эффект магнитострикции - деформации твердого тела в магнитном поле.

В ультразвуковом и гиперзвуковом диапазонах (до 10¹⁰ Гц) наиболее широко применяются пьезоэлектрические преобразователи, принцип действия которых основан на обратном пьезоэффекте - деформации тела под действием электрического поля.

На рис. 5.7 схематично показан простейший преобразователь, основу которого составляет пьезопластинка, вырезанная специальным образом из монокристалла кварца, ниобата лития (LiNbO₃) или другого пьезоматериала. К противоположным поверхностям пластинки (обычно металлизированным или покрытым металлическими электродами) прикладывается переменное напряжение *и*с частотой в.Толщина пластинки *с*будет при этом периодически изменяться с той же частотой, причем это изменение не превосходит нескольких микрон. Вибрирующие поверхности пластинки приводят в движение соприкасающийся с ними воздух. Наибольшая амплитуда колебаний будет при резонансе, когда на толщине *с*укладывается нечетное число полуволн:

$$\ell = n \frac{\lambda_n}{2}; n = 1, 3, 5...$$
 (5.22)

Отметим, что при четном та электродах возникли бы электрические заряды одного знака, что невозможно. Резонансные частоты получаются равными

$$\nu_n = \frac{a}{\lambda_n} = \frac{na}{2\ell}.\tag{5.23}$$

Например, для пьезокварца при скорости продольных волн «= 5700м/си толщине пластинки $l = 1_{MM}$ резонансные частоты равны

 $\nu_n = n \cdot 2850 \text{ sc} \Gamma_n, \tag{5.24}$

Наибольшую амплитуду колебаний имеет волна основной частоты (м = 1), поэтому пьезоизлучатели применяются, как правило, на основной частоте.

На частотах до нескольких мегагерц широкое распространение получили преобразователи из пьезокерамики. Пьезокерамика представляет собой поликристаллический сегнетоэлектрический материал (твердые растворы на основе BaTiO₃-CaTiO₃, PbTiO₃-PbZnO₃ и другие), обладающий после поляризации в электрическом поле устойчивыми и сильными пьезоэлектрическими свойствами. Из пьезокерамики можно изготавливать излучатели самой разной формы (в

виде пластин, стержней, колец и так далее). С помощью преобразователей сферической или цилиндрической формы получают сфокусированный ультразву-ковой пучок, в фокусе которого интенсивность звука достигает 10⁸ ÷ 10⁶ Br/cm².

На частотах порядка десятков и сотен мегагерц толщина *«*становится настолько малой, что изготовить преобразователь можно лишь в жестком соединении со звукопроводом - массивным куском звукопроводящего материала. В этом случае на хорошо отполированную поверхность звукопровода напыляется металлическая пленка (один электрод), к которой приваривается толстая (порядка 1 мм) пластинка пьезоэлектрика. Затем эта пластинка сошлифовывается до нужной толщины *«*после чего на неё наносится второй электрод.

На частотах порядка 1 ГГц толщина пьезопреобразователя составляет *е*~1мкм.Изготовление таких преобразователей представляет серьезную технологическую проблему. В этом частотном диапазоне применяются пленочные преобразователи, получаемые напылением на торец звукопровода пьезоэлектрических пленок из таких материалов, как CdS, ZnS, ZnO и другие. Современные технологии позволяют создавать преобразователи с коэффициентом преобразования электрической энергии в акустическую до 90% и мощностью волны, достигающей нескольких ватт.

Применение акустических методов.

Для современного уровня развития акустики характерно чрезвычайно широкое применение акустических методов для решения разнообразных задач не только в физике, но также и в информационной и измерительной технике, промышленности, медицине, биологии, военном деле и т. д.

Первое (в порядке исторического становления) важное прикладное направление в акустике связано с получением при помощи акустических волн информации о свойствах и строении веществ, о происходящих в них процессах. Применяемые в этих случаях методы основаны на измерении скорости распространения и коэффициента поглощения ультразвука на разных частотах (10⁴ ÷ 10⁵Гч в газах и 10⁵ ÷ 10¹⁰Гчв жидкостях и твердых телах). Такие исследования позволяют получать информацию об упругих и прочностных характеристиках материалов, о степени их чистоты и наличии примесей, о размерах неоднородностей, вызывающих рассеяние и поглощение волн, и т. д. Большая группа методов базируется на эффектах отражения и рассеяния упругих волн на границе между различными средами, что позволяет обнаруживать присутствие инородных тел и их местоположение. Эти методы лежат в основе таких направлений, как гидролокация, неразрушающий контроль изделий и материалов, медицинская диагностика. Применение акустической локации в гидроакустике имеет исключительное значение, поскольку звуковые волны являются единственным видом волн, распространяющихся на большие расстояния в естественной водной среде. Как разновидность дефектоскопии, широко применяемой в промышленности, можно рассматривать ультразвуковую диагностику в медицине. Даже при небольшом различии в плотности биологических тканей происходит отражение ультразвука на их границах. Поэтому ультразвуковая диагностика позволяет выявлять образования, не обнаруживаемые с помощью рентгеновских лучей. В такой диагностике используются частоты ультразвука порядка 10⁷ Гц;

интенсивность звука при этом не превышает 0,5 мВт/см², что считается вполне безопасным для организма. В настоящее время развитие дефектоскопии привело к созданию акустической томографии. В этом методе с помощью набора приемников ультразвука или одного сканирующего приемника регистрируются упругие волны, рассеиваемые в разных направлениях, а затем с использованием компьютерной обработки сигналов на экране дисплея формируется объемное изображение внутренней структуры исследуемого объекта.

Другим важным прикладным направлением акустики является активное воздействие ультразвуком на вещество. Такое воздействие широко используется в промышленной технологии для поверхностной обработки деталей, сварки, интенсификации химических процессов и т. д. В жидкостях основную роль при таком воздействии играет кавитация - образование в интенсивной звуковой волне пульсирующих пузырьков. Схлопывание пузырьков сопровождается мощным гидродинамическим возмущением и сильным локальным разогревом вещества, в результате чего разрушается поверхность твердого тела, находящегося в области кавитации. Применение ультразвука для воздействия на живой организм в медицине основывается на эффектах, возникающих в биологических тканях при прохождении через них акустических волн. При умеренной интенсивности звука (до 1 Вт/см²) колебания частиц среды вызывают микромассаж тканей, а поглощение звука - локальный разогрев, что применяется в ультразвуковой терапии. При больших интенсивностях сильное нагревание и кавитация вызывают разрушение тканей. Для хирургических операций используется сфокусированный ультразвуковой пучок, который позволяет производить локальные разрушения в глубинных структурах (например, мозга или почки) без повреждения окружающих тканей. В хирургии применяется ультразвук с частотами $0.5 \div 5$ МГцинтенсивность которого в фокусе достигает 10^3 BT/см².

Основные характеристики звука.

Упругие волны в воздухе, имеющие частоты в пределах от 20 Гц до 20 кГц, вызывают у человека ощущение звука. В узком смысле упругие волны в любой среде, имеющие частоту в этом интервале, называются слышимыми зву-ковыми волнами, или просто звуком. Волны с частотами *и* < 20Ганазываются инфразвуком, а с частотами *и* > 20кГа- ультразвуком. Инфразвук и ультразвук человеческим ухом не воспринимаются.

В действительности, самые низкие и самые высокие частоты интервала слышимых звуков доступны, как правило, лишь очень молодым людям. С возрастом этот интервал сужается, причем мужчины начинают утрачивать чувствительность к высоким частотам раньше, чем женщины. После 50 лет люди чаще всего утрачивают способность к восприятию звуков с частотами $\nu > 12\kappa\Gamma_{\rm H}$.

Звуки различаются по высоте, тембру и громкости.

Всякий реальный звук, как правило, представляет собой не простое гармоническое колебание, а является наложением колебаний с определенным набором частот. Чтобы убедиться в этом, подключим микрофон М через усилитель УС ко входу Y осциллографа ОС (рис. 5.8) и будем регистрировать осциллограммы различных источников звука. Наиболее близким к гармоническому является звук камертона К - осциллограмма по своему виду очень близка к синусоиде.

Рис. 5.8.

Из произносимых звуков более всего походят на гармонические гласные звуки. Однако уже здесь заметно отличие осциллограммы от синусоиды, что указывает на сложный состав гласных звуков. Гораздо более сложный вид характерен для осциллограмм согласных звуков. Принципиально возможно, используя набор резонаторов (см. ниже) или компьютерную обработку осциллограмм, произвести гармонический анализ звука, то есть установить тот набор частот, который присутствует в данном звуке. Измеряя интенсивность каждой из гармоник, можно получить акустический спектр.

Если в результата такого анализа окажется, что звук состоит из колебаний с дискретными частотами ^и1, ^и2, ^и3и так далее, то спектр называется линейчатым. На рис. 5.9а показан пример такого спектра, где по оси ординат отложены интенсивности I простых (гармонических) звуков.

Рис. 5.9.

Может быть и другая ситуация, когда в звуке присутствуют колебания всех частот в некотором интервале $v_1 \le v \le v_2$. Такой спектр, изображенный на рис. 5.96, называется сплошным. По оси ординат здесь отложена так называемая спектральная плотность интенсивности звука f(v) = dI/dv.В этом случае можно говорить об интенсивности dI = f(v)dvзвука, занимающего узкий частотный интервал dv.Эта интенсивность численно равна заштрихованной на рисунке площади. Естественно, что полная интенсивность *и*сложного звука со сплошным спектром будет равна площади под кривой f(v).Сплошным спектром обычно обладают шумы.

Колебания с линейчатым спектром вызывают ощущение звука с более или менее определенной высотой. Такой звук называется тональным. Высота тонального звука определяется основной (наименьшей) частотой и.Колебания с частотами изичани так далее называются обертонами. Соотношения интенсивностей основного тона I и обертонов I ...определяют тембр звука, придают ему определенную окраску. Фазы гармоник на тембр звука не влияют. В отсутствие обертонов тональный звук называют чистым тоном. Камертоны дают чистый тон и используются при настройке музыкальных инструментов.

Из каждого музыкального инструмента извлекают звуки с характерным набором гармоник. Это позволяет на слух различать звуки одного тона (с одинаковой основной частотой ν_1)-извлекаемые из флейты, трубы, фортепьяно и др. На рис. 5.10 показаны осциллограммы для тональных звуков с частотой $\nu_1 = 440\Gamma$ (нота "ля" первой октавы), флейты (а), голоса (б) и трубы (в). Все осциллограммы имеют одинаковый период повторения T = 1/440соднако сильно разнятся своим видом. Это указывает на то, что основные частоты $\nu_1 = 1/T$ у всех звуков совпадают, однако звуки отличаются своим спектральным составом.

Рис. 5.10.

На рис. 5.11 изображена клавиатура рояля с указанием основных частот клавиш, а также приближенные диапазоны основных частот для других инструментов и голосов.

Рис. 5.11.

Закон Вебера-Фехнера. Диаграмма слуха.

Определение громкости звука основано на психофизическом законе, установленном в 1846 году Э.-Г. Вебером, который заложил основы "психометрии", т.е. количественных измерений ощущений. Поскольку ощущение является субъективным процессом, то абсолютные измерения силы ощущений невозможны, и Вебер перенес проблему в область измерения относительных величин и искал минимальные различия в ощущениях, которые можно зафиксировать. Суть закона Вебера заключается в том, что минимальное изменение интенсивности звука ^Δ¹ которое различает человеческое ухо, не зависит от интенсивности *г*слышимого звука и составляет приблизительно 10% от ее величины:

$$\frac{\Delta I}{I} = 10^{-1}.$$
 (5.25)

Помимо слуховых ощущений, Вебер изучал также осязание и зрение и установил, что для осязания минимальное различие в ощущении тяжести груза не зависит от величины этого груза и составляет ~ 1/30, а для зрения минимальная воспринимаемая разница в интенсивности света также не зависит от величины интенсивности и составляет ~ 1/100.

Исходя из закона Вебера, можно построить шкалу уровня ощущения звука, или шкалу громкости *В*записав следующее соотношение:

 $\frac{dI}{I} = Ad\beta, \tag{5.26}$

где *«β*- прирост громкости, обусловленный приростом интенсивности, а-коэффициент, определяющий масштаб шкалы. Интегрируя (5.26), получаем:

$$\ln \frac{I}{I_{\text{nsp}}} = A\beta. \tag{5.27}$$

Для того, чтобы вызвать звуковое ощущение, волна должна обладать некоторой минимальной интенсивностью $I_{\text{пор}}$ и соответственно, некоторым минимальным звуковым давлением $\delta p_{\text{пор}}$ -которое называется порогом слышимости. Естественно, что при $I = I_{\text{пор}}$ громкость $\beta = 0$.Следовательно,

$$\beta = \frac{1}{A} \ln \frac{I}{I_{\text{nop}}}.$$
(5.28)

Если выбрать $A = \ln 10 \approx 2,301$, то (5.28) перепишется в виде $\beta = \lg \frac{I}{I_{\text{пор}}}.$ (5.29)

Это соотношение называется законом Вебера-Фехнера и отражает тот факт, что чувствительность уха человека к звуку меняется, как логарифм интенсивности звука. Аналогичные (5.29) соотношения были установлены Э.-Г. Вебером и Г.-Т. Фехнером и для других ощущений, даваемых органами чувств человека, - осязания и зрения (Фехнеру принадлежит большое количество работ по "психофизике", которую он определял, как "точную науку о функциональных зависимостях между телом и душой, общее - между материальным и духовным, физическим и психическим миром").

На рис. 5.12 изображена "диаграмма слуха", на которой показаны области частот и звуковых давлений, а также уровни интенсивности звуков, воспринимаемых человеческим ухом. Нормальное ухо слышит только те звуки, которые лежат внутри этой области. Нижняя граница области характеризует зависимость порога слышимости от частоты, а верхняя - порог болевого ощущения, когда волна перестает восприниматься как звук, вызывая в ухе ощущение боли и давления. Отметим, что человеческое ухо является уникальным приемником акустических волн, воспринимающим звуки, различающиеся по интенсивности на 12-15 порядков в области частот около 1 кГц, где диаграмма слуха имеет наибольшее вертикальное сечение. Из диаграммы видно, что при одинаковом звуковом давлении и одинаковой интенсивности звуки различной частоты могут восприниматься, как звуки разной громкости ^в.Поэтому в акустике, помимо субъективной величины - громкости звука ^воцениваемой на слух, используются и объективные характеристики звука, которые могут быть непосредственно измерены, - уровень звукового давления ^Lи равный ему уровень интенсивности. Поскольку согласно (5.17) интенсивность пропорциональна квадрату звукового давления, обе эти характеристики определяются формулой:

(5.30)

$$L_p = 2 \lg \frac{\delta p}{\delta p_{\text{pap}}} - \lg \frac{I}{I_{\text{pap}}}.$$

Рис. 5.12.

В принципе, *L*_P- величина безразмерная, но для численного значения логарифма используют название "Бел" (в честь изобретателя телефона Г. Белла). На практике обычно используют в 10 раз меньшую единицу - "децибел", так что (5.30) принимает вид:

$$L_p[\mathbf{x}\mathbf{E}] = 20 \lg \frac{\delta p}{\delta p_{\text{nop}}} = 10 \lg \frac{I}{I_{\text{nop}}}.$$
(5.30a)

В определении $L_{\rm s}$ принято использовать стандартный порог слышимости $\delta p_{\rm nep} - 2 \cdot 10^{-5} \Pi_{\rm a}$,а соответствующее ему значение минимальной интенсивности $I_{\rm nep}$ зависит, согласно (5.17), от среды, в которой распространяется звук, и для воздуха при нормальных условиях составляет $I_{\rm nep} = 10^{-12} {\rm Br/M}^2$.

Для громкости звука ^виспользуют единицу под названием "фон". Громкость тона в фонах для любой частоты равна уровню звукового давления в децибелах для тона с частотой $\nu = 1$ кГа, воспринимаемого как звук той же громкости.

На рис. 5.12 изображены также кривые для уровней равной громкости при различных уровнях звукового давления и интенсивности, из которых видно, что при $\nu = 1 \kappa \Gamma \eta \beta = L_p$, а для других слышимых ухом частот $\beta u L_p$ могут заметно отличаться.

Акустические резонаторы.

В ряде случаев возникает необходимость выделения гармонических составляющих из сложных звуковых колебаний. С такой задачей приходится сталкиваться при упомянутом выше спектральном анализе сложных звуков, при создании узкополосных приемников звука, чувствительных к определенной частоте, музыкальных инструментов и др. Для таких целей используется акустический резонатор - устройство, обладающее одной или множеством собственных частот.

Типичным примером акустической системы, реагирующей лишь на одну частоту, является сосуд сферической формы с открытой горловиной (рис. 5.13), который называется резонатором Гельмгольца. В задней части резонатора имеется еще одно маленькое отверстие в виде сопла, служащее для обнаружения колебаний. Воздух в горловине является колеблющейся массой. При смещении этой массы, например, в сторону сферического объема Vвоздух в этом объеме слегка сжимается, и возникающие силы избыточного давления выполняют роль возвращающей силы. Если площадь горловины равна ⁵⁵а её длина - ⁴сто масса колеблющегося столба равна ^m = местояние смецении массы мараетов воздуха. При смещении массы мараетов воздуха изменяется на величину ⁶мудовлетворяющую равенству

$$\frac{\delta\rho}{\rho_0} = -\frac{S \cdot \xi}{V}.\tag{5.31}$$

Согласно (5.7), избыточное давление оказывается равным

$$\delta p = e^2 \delta \rho = -\frac{\rho_0 e^2 S}{V} \xi.$$
 (5.32)

Следовательно, уравнение движения столба воздуха принимает вид $m\frac{d^2\xi}{dt^2} = \delta p \cdot S$,

ИЛИ $\rho_0 S \ell \frac{d^2 \xi}{dt^2} = -\frac{\rho_0 d^2 S^2}{V} \xi.$ (5.33)

Отсюда находим, что собственная частота колебаний столба воздуха в горловине, или частота резонатора Гельмгольца, равна

$$\omega_0 = a \sqrt{\frac{S}{V\ell}}.\tag{5.34}$$

При объеме резонатора $V = 10^{-3}$ м³,площади отверстия горловины S = 1см²и её длине $\ell = 1$ см,скорости звука c = 334м/едля частоты ν_0 получим величину

$$\nu_0 = \frac{\omega_0}{2\pi} = \frac{334}{2\pi} \sqrt{\frac{10^{-4}}{10^{-3} \cdot 10^{-2}}} \approx 168\Gamma n, \tag{5.35}$$

соответствующую слышимому диапазону звуковых частот.

Рис. 5.13.

Зависимость собственной частоты колебаний резонатора от его параметров и прежде всего от объема ^иэффектно демонстрируется в следующем опыте (рис. 5.14). Перед динамиком Д, подключенным к генератору звуковой частоты Г устанавливаются несколько резонаторов, отличающихся своими размерами. Около заднего отверстия каждого из резонаторов помещается легкий бумажный пропеллер-вертушка, который может вращаться вокруг вертикальной оси. При плавном увеличении частоты звукового генератора будет возрастать частота акустической волны, испускаемой динамиком в направлении резонаторов и играющей роль гармонической вынуждающей силы. При последовательном совпадении частоты этой волны ^вс собственными частотами ^и1, ^и2и ^иарезонаторов давление воздуха в их объемах будет колебаться с максимальной (резонансной) амплитудой. Из задних отверстий резонаторов будут бить сильные струи воздуха, что фиксируется по началу вращения вертушек сначала у большого, затем у среднего и, наконец, у самого маленького резонатора, имеющего самую высокую собственную частоту ^и

Рис. 5.14.

Уместно отметить, что при частоте резонатора $\nu_0 \sim 10^{2}\Gamma$ ядлина возбуждающей его волны $\lambda = c/\nu_0 \approx 3, 3$ м. Эта длина значительно больше характерных размеров резонатора: $\lambda \gg V^{1/3}$.Следовательно, не может быть и речи о стоячей акустической волне частоты ν_0 в самой сферической полости.

Однако и в самой полости можно возбудить стоячие волны с длиной $\lambda \leq V^{1/3}$ и частотой $\nu = c/\lambda \geq c/V^{1/3}$. Если характерный размер резонатора $V^{1/3} \sim 10 \text{ см}$, то частоты этих волн $\nu > 3000 \Gamma$ п. Такой резонатор будет обладать множеством собственных частот в килогерцовом диапазоне.

Наиболее простым в изготовлении акустическим резонатором является деревянный ящик или труба, открытые либо с одной, либо с двух противоположных сторон.

Проделаем следующий опыт. Заполним водой нижнюю часть вертикальной трубки Т, используя систему сообщающихся сосудов, и поднесем к верхнему концу звучащий на частоте камертон К (рис. 5.15). Перемещая воронку В вверх, можно добиться усиления тонального звука, создаваемого системой "камертон + часть трубы, заполненная воздухом". Это усиление будет при совпадении частоты с одной из собственных частот резонатора - трубы с воздухом длиной 4, "закрытой" у нижнего конца. Собственные частоты стоячих волн в таком резонаторе легко подсчитать, если учесть, что на нижнем конце должен быть узел смещений, а на верхнем - пучность. Это возможно лишь для длин волн ^а, удовлетворяющих изложенному в предыдущей лекции условию (4.40):

$$\ell = (2p-1)\frac{\lambda_p}{4}, p = I, II, III, \dots,$$

когда на длине трубы укладывается нечетное число четвертей длин волн. Соответственно, частоты колебаний будут равны

$$\nu_p = \frac{c}{\lambda_p} = \frac{c}{4\ell} (2p - 1). \tag{5.36}$$

Хотя усиление звука будет при нескольких длинах воздушного столба ℓ_* однако самым эффективным оно будет при $\nu = \nu_i$ или $\ell = \frac{\ell_i}{4\nu}$.

Рис. 5.15.

Особо подчеркнем, что резонатор создает более благоприятные условия для звучания камертона, позволяя перераспределить, а стало быть и усилить звук по определенным направлениям. Именно поэтому в опытах камертоны устанавливают на деревянный ящик, открытый с одного конца и настроенный на частоту камертона (рис. 5.16).

Рис. 5-16.

Некоторые сведения о музыкальных инструментах.

Деревянные деки музыкальных инструментов выполняют функции резонаторов, обеспечивая хорошие условия звучания. Частоты струнных инструментов не зависят от резонатора. Основная частота звука и частоты обертонов зависят только от массы, натяжения и длины струны. Однако тембр звука зависит от способа возбуждения и от реакции резонатора и эффективности, с которой резонатор "поддерживает" эти частоты и посылает соответствующие волны в окружающее пространство.

В духовых инструментах формирование звука связано с наличием автоколебаний и зависит как от конструкции инструмента, так и от способа, с помощью которого воздух вдувается в инструмент. В качестве иллюстрации рассмотрим качественно процесс возникновения автоколебаний в органной трубе, разрез которой изображен на рис. 5.17а.

Рис. 5.17.

При равномерном поступлении в мундштук М (ситуация б) воздух проходит через узкую щель Щ, за которой образуется турбулентный поток. Образующаяся при таком течении вихревая дорожка является источником "щелевого" тона, основная частота которого обратно пропорциональна периоду следования вихрей Т_в.По существу система "мундштук + щель" представляет собой сложную автоколебательную систему, теоретическое описание которой - серьезная проблема.

Вихри, выходящие из щели, поочередно проходят слева и справа от язычка Я, вызывая его вибрацию (ситуация а). Язычок оказывает периодическое воздействие на столб воздуха в трубе. Возникающие в столбе импульсы сжатия, добежав до открытого конца трубы, отражаются в виде импульсов разрежения и возвращаются к щели через время $T = 2\ell/c(\ell - длина трубы, - скорость звука в$ воздухе), управляя поступлением воздуха через щель. Таким образом, основная $частота <math>w_1 = 1/T$ формируется резонаторной системой. Однако можно вдувать воздух так, чтобы в трубе одновременно существовали два импульса сжатия, и мы услышим звучание трубы на частоте первого обертона (удвоенной частоте).

Органные трубы обычно конструируются для звучания на основной частоте. В духовых инструментах возбуждающим вибратором (аналогом язычка Я в органной трубе) можно управлять, чтобы посылать в трубу один или более импульсов, прежде чем первый отразится от открытого конца. Высота звука инструмента определяется количеством импульсов в секунду, отраженных от открытого конца духового инструмента.

Произносимые человеком звуки связаны с тем, что голосовые связки гортани вибрируют под напором движущегося воздуха, а гортань является объемным резонатором. Как правило, у мужчин объем гортани больше, чем у женщин, поэтому в соответствии с формулой (5.34) мужские голоса более низкие.

На рис. 5.18 показаны спектры звуков, извлекаемых на трубе и валторне с одинаковой основной частотой $\nu_0 = 440\Gamma n$.По оси ординат отложена громкость β (нормирована на громкость волны основной частоты). В спектре звука валторны отсутствуют частоты $\nu > 10\kappa\Gamma n$.поэтому её звук более приглушенный, нежели звук трубы.

Рис. 5.18.

Завершая описание основных принципов действия источников звука и музыкальных инструментов, уместно упомянуть о двух акустических эффектах, с проявлениями которых мы практически ежедневно встречаемся.

Эффект Доплера.

Наблюдая за проходящим мимо поездом или движущимся автомобилем, мы замечаем, что высота тона подаваемого ими звукового сигнала постоянно изменяется. Это и есть одно из проявлений эффекта Доплера, состоящего в изменении частоты звука при относительном движении источника и приемника. Рассмотрим это явление несколько подробнее.

Пусть источник И (рис. 5.19а) излучает монохроматическую (т.е. гармоническую) акустическую волну частоты Ра-Тогда длина этой волны, распространяющейся в воздухе со скоростью с, будет равна:

$$\lambda_0 = c/\nu_0. \tag{5.37}$$

Рис. 5.19.

Если теперь источник будет двигаться со скоростью *и* < *е*в направлении распространения волны, то волна будет "отрываться" от источника со скоростью *и* – *щ*, и её длина уменьшится (рис. 5.19б):

$$\lambda = \frac{c - v}{v_0}.\tag{5.38}$$

Достигнув неподвижного приемника П, эта волна будет воздействовать на него с частотой

$$\nu = \frac{c}{\lambda} = \nu_0 \frac{c}{c - v} = \nu_0 \frac{1}{1 - v/c},$$
(5.39)

которая будет больше исходной частоты и При движении источника в противоположном направлении эта частота уменьшится. Именно это изменение

частоты тона сигнала мы фиксируем при приближении и последующем удалении поезда или автомобиля.

Изменение частоты будет также и при движении приемника П, однако физическая причина этого изменения состоит в том, что волна с длиной $\lambda_0 = c/\omega_0$ будет поступать в приемник со скоростью w + c(если приемник движется навстречу волне). Следовательно, частота воздействия на приемник будет равна

$$\nu = \frac{c+v}{\lambda_0} = \nu_0 \frac{c+v}{c} = \nu_0 \left(1 + \frac{v}{c}\right) \tag{5.40}$$

и превысит исходную частоту.

В силу различия физических причин, приводящих к изменению частоты при движении источника и приемника, разнятся и формулы (5.39) и (5.40). Однако при ««как нетрудно убедиться, с точностью до членов порядка $\left(\frac{\pi}{c}\right)^2$ формула (5.39) может быть записана в виде (5.40).

При одновременном движении навстречу друг другу источника со скоростью «ми приемника со скоростью «лобе формулы можно объединить в одну

$$\nu = \nu_0 \frac{1 + v_0/c}{1 - v_0/c}.$$
(5.41)

При удалении источника или приемника в формуле (5.41) следует изменить знак при соответствующей скорости.

При скоростях *и* > «формируются ударные волны, и формулы, описывающие изменение частоты, становятся несправедливыми.

Бинауральный эффект.

Этот эффект представляет собой психофизиологическое явление, заключающееся в слитном восприятии звуков, принимаемых правым и левым ухом. Он дает возможность определить направление на источник звука и играет существенную роль в музыкальной акустике (стереофония).

Рисунок 5.20 иллюстрирует этот эффект. Если волна падает под углом «к линии, соединяющей оба уха (пунктиром изображен контур радиуса *R*имитирующий голову человека), то волна достигнет левого уха позднее правого, а время задержки составит величину

 $\Delta t = \frac{R\sin\alpha + R\alpha}{c},$

(5.42)

где Ra- криволинейный путь, проходимый звуковой волной при огибании ею головы человека за счет дифракции (см. ниже).

Рис. 5.20.

Кроме того, поскольку голова частично экранирует звук, то амплитуда волны, достигающей левого уха, несколько уменьшается. Совместное действие этих двух факторов дает человеку возможность определить направление на источник звука. Если период колебаний звуковой волны сравним со временем задержки:

 $\Delta t \le T/2, \tag{5.43}$

то волны, падающие под углом, вызывают колебания барабанных перепонок левого и правого уха со сдвигом фаз $0 \le \Delta \phi \le \pi_0$ по которому человек и определяет направление прихода волны.

Если положить R = 10см, $\sin \alpha \approx 1$, то для волн с периодом $T < 10^{-3}$ ($\nu \ge 1$ кГцусловие (5.43) не выполняется, и определить направление по сдвигу фазы становится затруднительно. Однако остается возможность сравнить амплитуды волн, достигающих обоих ушей, и тем самым определить угол α .

Интерференция волн.

В предыдущей лекции мы получили уравнение стоячей волны (4.34), описывающее колебания шнура (или иной среды), по которому навстречу друг другу распространяются две гармонические волны одинаковой частоты и амплитуды В результате наложения волн происходит перераспределение в пространстве объемной плотности энергии колебаний. В узлах, где волны встречаются в противофазе, эта энергия равна нулю. В пучностях, напротив, волны складываются в фазе, и энергия максимальна. Явление наложения волн, приводящее к перераспределению в пространстве объемной плотности энергии колебаний, носит название интерференции.

Интерференция является одним из фундаментальных явлений, присущих волнам различной природы (акустическим, электромагнитным, волнам на поверхности жидкости, плазменным волнам и др.). Она была хорошо известна еще во времена Ньютона, который осуществил замечательный опыт, приведший к открытию закономерностей интерференционной картины и получивший название "кольца Ньютона". Эти закономерности легко прослеживаются в опытах по интерференции капиллярных волн на поверхности жидкости. В следующей лекции дается описание характера движения частиц жидкости в таких волнах и устанавливается связь между частотой, длиной волны и скоростью ее распространения.

Один из таких опытов выглядит следующим образом (рис. 5.21). В неглубокую кювету К с большой площадью основания наливают воду. Волны на ее поверхности возбуждают с помощью вибратора В, приводящего в периодическое движение два маленьких шарика O_1 и O_2 , которые являются точечными источниками волн. Эти шарики слегка погружены в воду и совершают синхронные колебания с частотой $\nu \sim 10^{2}\Gamma$ чв направлении, перпендикулярном поверхности воды. От каждого из точечных источников распространяется волна с длиной $\lambda \sim 3$ мми скоростью $\epsilon \sim 40$ см/с. Гребни этих волн в фиксированный момент времени изображены на рисунке пунктиром. В результате наложения волн образуется интерференционная картина, которую удобно наблюдать в стробоско-

123

пическом освещении (освещая ее вспышками света, следующими также с частотой *v* ~ 10²Гп). При таком освещении волны будут казаться практически неподвижными.

Рис. 5.21.

Наиболее сильные возмущения поверхности будут наблюдаться в тех местах, где волны складываются в фазе. Говорят, что здесь располагаются интерференционные максимумы. В местах, куда волны приходят в противофазе, поверхность будет практически не возмущена: здесь располагаются интерференционные минимумы. Возмущение поверхности в произвольной точке М зависит от разности хода $\Delta r = r_2 - r_1$.где r_1 и r_2 - расстояния от точки М до соответствующего точечного источника. Действительно, смещение s поверхности жидкости в точке М можно рассматривать как результат наложения двух синусоидальных (т.е. монохроматических) волн, прошедших расстояния r_1 и r_2 :

$$s(t) = s_0 \sin(\omega t - kr_1 - \varphi_1) + s_0 \sin(\omega t - kr_2 - \varphi_2).$$
(5.44)

Здесь предполагается, что обе волны в точке М имеют одинаковые амплитуды (хотя это и не совсем верно), и постоянные фазовые добавки и и и жатак что их разность $\Delta \varphi = \varphi_2 - \varphi_1$ не зависит от времени.

Выполняя в (5.44) суммирование, получаем:

$$s(t) = 2s_0 \cos\left(\frac{k\Delta r}{2} + \frac{\Delta \varphi}{2}\right) \sin\left(\omega t - \frac{k(r_1 + r_2)}{2} - \frac{\varphi_1 + \varphi_2}{2}\right).$$
(5.45)

Если положить для простоты △*φ* = 0,то положение интерференционных максимумов определяется из условия

$$\cos\left(\frac{k\Delta r}{2}\right) = \pm 1. \tag{5.46}$$

Поскольку $k = 2\pi / \lambda_i$ то последнему условию соответствует разность хода $\Delta r = r_2 - r_1 = m\lambda,$ (5.47)

где $m = 0, \pm 1, \pm 2, \dots$

Каждому максимуму принято присваивать порядковый номер, определяемый соответствующим числом том (максимум нулевого, первого, минус первого и т.д. порядка). Интерференционные минимумы располагаются в тех местах, где

$$\Delta r - r_2 - r_1 - (2m+1)\frac{\lambda}{2},\tag{5.48}$$

и так же нумеруются ($m = 0, \pm 1, \pm 2, ...$).

Рассмотренная интерференционная картина соответствует идеализированной ситуации. Реальные волны даже в лучшем случае являются квазимонохроматическими. Для таких волн амплитуды за фазы за раконся медленно меняющимися функциями времени (заметные изменения этих функций происходят за время $T = \frac{2\pi}{\omega}$). Однако, если оба шарика приводятся в колебательное движение одним вибратором, разность фаз $\Delta \varphi$ (5.45) остается постоянной, положение интерференционных максимумов задается формулой (5.47) и не зависит от времени.

В практически важных случаях источники интерферирующих волн могут быть независимы. В нашем опыте это можно осуществить, если использовать два вибратора, к каждому из которых присоединен маленький шарик. Тогда разность фаз фбудет также изменяться на масштабе времени ти ее можно записать в виде

$$\Delta\varphi(t) = \overline{\Delta\varphi} + \delta(t), \tag{5.49}$$

где $\overline{\Delta \varphi}$ - среднее по времени значение разности фаз, $\delta(t)$ - знакопеременная функция. Считая для простоты в (5.45) $s_0 = const_npuxodum к выводу, что интер$ ференционная картина, как целое, будет достаточно хаотично смещаться в разные стороны. Если такую картину снимать на кинопленку со временем экспо $зиции кадра <math>\Delta t > \tau$ то на каждом кадре будет отпечатана усредненная за время Δt "размазанная" картина. Она может стать совсем неразличимой, если интерференционные максимумы будут смещаться на величины, равные или превышающие расстояния между соседними максимумами. Такая ситуация достаточно часто встречается при интерференции световых волн. Чтобы полного "смазывания" картины не произошло, очевидно, необходимо выполнение следующего условия:

$$\delta(t)| \ll 2\pi. \tag{5.50}$$

Чем лучше выполняется это неравенство, тем выше качество картины. Так, например, для световых волн $\tau \sim 10^{-9} \div 10^{-12}$ е,и при визуальном наблюдении (для органов зрения $\Delta t \sim 0, 1e$) мы всегда регистрируем "размазанную" интерференционную картину.

С качеством картины напрямую связано понятие когерентности интерферирующих волн. Когерентность характеризуется безразмерным коэффициентом γ (степенью когерентности), который может меняться в интервале $0 < \gamma < 1$.Чем выше качество картины, тем больше степень когерентности. Для монохроматических волн, конечно, $\gamma = 1$.

Этим замечанием о когерентности волн мы здесь и ограничимся, а детальное описание этого понятия будет дано в курсе "Оптика".

Дифракция волн.

В упрощенном смысле под дифракцией понимают круг явлений, в которых проявляется отступление от прямолинейного распространения волн. Такое понимание дифракции, вообще говоря, неверно, поскольку прямолинейное распространение волн является лишь определенным приближением. Действительно, специфика любого волнового движения проявляется в том, что это движение, возникнув вначале в ограниченной области, стремится распространиться в равной степени во все стороны. Выбором специальной формы этой области можно добиться того, что волна побежит преимущественно в некоторых направлениях. Вдоль одного из таких направлений побежит фрагмент волны, который с определенной точностью можно считать движущимся прямолинейно.

Для наблюдения основных закономерностей дифракции видоизменим характер возбуждения волн на поверхности воды в описанном ранее опыте. В качестве источника волны вместо шариков будем использовать пластину O_1O_2 , длина которой $\ell_{\epsilon} = (3 + 5)$ м.т.е. заметно превышает длину волны $\lambda \sim 3_{MM}$ (рис. 5.22). В результате по поверхности воды побежит "плоская" волна в направлении, перпендикулярном пластине. Отчетливо наблюдаются две прямолинейные границы Γ_1 и Γ_2 , отделяющие возмущенную волной и гладкую части поверхности воды. Для этой последней части можно употребить заимствованный из оптики термин: "область геометрической тени". Саму волну часто называют волновым пучком, или лучом. В этом эксперименте можно считать, что волна распространяется прямолинейно и не заходит в область тени. Это связано с тем, что размер ее волнового фронта $\ell_0 \gg \lambda$.

Рис. 5.22.

Уменьшим теперь этот размер. Это наиболее просто осуществить, если параллельно пластине О₁О₂ установить две вертикальные стенки С₁ и С₂, расстояние ∉между которыми можно изменять (рис. 5.23).

Рис. 5.23.

Если сделать ℓ ≤ 5λ ≈ 15мм, то волна начнет постепенно заходить в область тени, а ее фронт будет искривляться. На некотором характерном расстоянии *L* волновой пучок приобретет заметную угловую расходимость и далее будет распространяться по части поверхности, ограниченной углом 2[®]. При уменьшении зазора ємежду стенками угол 2[®]возрастает, а расстояние *L*уменьшается. Это отступление от прямолинейного распространения является результатом дифракции, существенно тогда, когда $\ell \sim \lambda$.

Не составляет труда оценить величины и $^{\mu}$ используя подход, предложенный французским ученым О. Френелем в XIX столетии для объяснения дифракции световых волн. Следуя Френелю, участок фронта падающей волны в зазоре между стенками можно рассматривать как цепочку из $N \gg 16$ лизко расположенных одинаковых точечных источников $O_1, O_2, ..., O_N$ (рис. 5.24).

Рис. 5.24.

Возмущение в любой точке М поверхности воды есть результат интерференции мволн от этих, так называемых "вторичных" источников, и зависит от разности хода всех интерферирующих волн. В практически важных случаях расстояния $r_1, r_2, ..., r_N \gg \ell_1$ поэтому отрезки $O_1M, O_2M, ..., O_NM$ можно считать параллельными. Понятно, что в точку Р, лежащую на оси волнового пучка, интерферирующие волны приходят в фазе и возмущение поверхности в ней будет максимальным. Напротив, в точке М волны могут погасить друг друга, если разность хода $\Delta r = r_{M/2} - r_1$ между волнами от крайнего источника O_1 и среднего источника $O_{M/2}$ будет равна $\lambda/2$. Поскольку эта разность, как видно из рис. 5.24, равна $\frac{\ell}{2} \sin \vartheta_{TO}$

$$\Delta r = \frac{\ell}{2} \sin \vartheta = \frac{\lambda}{2}.$$
 (5.51)

Аналогично, в противофазе будут приходить волны и от других пар источников $(O_2, O_{N/2+1}; O_3, O_{N/2+2}; \dots; O_{N/2-1}, O_N)$. Говорят, что в точке М будет наблюдаться первый минимум дифракционной картины. Не составляет труда написать условие, подобное (5.51), и для других минимумов. Однако, как показывает строгий анализ, более 90% всей энергии переносится волной в пределах угла 20. Поэтому на рисунке (5.23) границы Γ_1 и Γ_2 весьма условны и очерчивают лишь основную, наиболее энергоемкую часть пучка.

Для оценки дифракционной расходимости волновых пучков используется угол [#]который при *«* » »оценивается согласно (5.51) по формуле

$$\vartheta \approx \frac{\lambda}{l}$$
 (5.52)

Такую расходимость пучок приобретает на некотором характерном расстоянии *L*.Его можно легко оценить из рисунка 5.25, на котором пунктиром изображены асимптоты к границам Γ_1 и Γ_2 . Будем условно считать, что на расстоянии *L*поперечный размер пучка удвоился и стал равным 24. Тогда с учетом (5.52) мы можем записать:

$$\vartheta = \frac{\ell}{l} = \frac{\lambda}{\ell}.\tag{5.53}$$

Отсюда
$$L = \frac{\ell^2}{\lambda}.$$
 (5.54)

Величина *L*называется дифракционной длиной пучка с длиной волны ми поперечным размером «Она определяет масштаб расстояний, на которых развивается заметная дифракция пучка.

Рис. 5.25.

Сделаем некоторые оценки. В опыте, изображенном на рисунке (5.22), $\ell = 5 \text{см}, \lambda = 3 \text{мм}, \mu L \sim 80 \text{см}$.Это означает, что в кювете дифракция просто не успевает заметно развиться. При уменьшении ℓ (рис. 5.23) до величины $\ell = 5\lambda = 15 \text{мм}, \text{ди-фракционная длина пучка } L = 7,5 \text{см}, \mu$ дифракция становится отчетливо видна.

Если на пути волнового пучка поставить препятствие - стенку С (рис. 5.26), то сразу за стенкой будет тень, однако волна, пройдя расстояние ~ $L = \ell^2 / \lambda_{\star}$ обогнет препятствие. Иллюстрацией к сказанному является, например, возможность услышать звуковой сигнал автомобиля, находясь позади небольшого строения. Однако за многоэтажный дом звук практически не проникает.

Рис. 5.26.

Тема 6. Особые случаи распространения волн. Элементы нелинейной акустики.

Волны на поверхности жидкости. Гравитационные волны. Капиллярные волны. Цунами. Внутренние волны. Акустические волны большой амплитуды. Линейный и нелинейный режимы распространения. Уединенные волны (солитоны).

Волны на поверхности жидкости. Гравитационные волны.

Многие из нас могут долго любоваться поверхностью моря или реки, по которой перекатываются волны. Рожденные ветром, они распространяются затем за счет силы тяжести. Такие волны называются гравитационными. Частицы воды совершают в них движение по круговым и эллиптическим траекториям ("вверх - вниз" и "вперед - назад" одновременно), поэтому такие волны (как и волны Лява) нельзя отнести ни к продольным, ни к поперечным. Гравитационные волны обладают рядом удивительных свойств, к анализу которых мы и приступим.

Пусть по поверхности водоема глубиной праспространяется вдоль оси Ох поверхностная гармоническая волна

$$s(x,t) = s_0 \sin(\omega t - kx), \qquad (6.1)$$

где *- смещение поверхности воды вверх от равновесного горизонтального положения, отмеченного на рис. 6.1 пунктиром. Будем считать, что */ «*H*.

Рис. 6.1.

Предположим, что давление жидкости на глубине зравно:

 $p(z,x,t)=\rho gz+\delta p(z,x,t),$

(6.2)

где *м*-добавка к гидростатическому давлению *м*-обусловленная волновым движением поверхности. Сделаем также предположение, что

 $\delta p(z, x, t) = f(z)\rho gs(x, t). \tag{6.3}$

Выражение (6.3) записано в приближении, что возмущение давления вблизи поверхности (=> Фопределяется дополнительным гидростатическим давлением максвязанным с изменением уровня жидкости при распространении волны:

$$\delta p(0, x, t) = \rho gs(x, t), \tag{6.4}$$

причем с глубиной это возмущение должно убывать. Следовательно, функция *f(=*)с ростом *=*также должна убывать, при этом *f(0)* = 1.Позже мы докажем, что представление возмущения давления в виде (6.3) оправданно.

Для описания волнового движения жидкости нам необходимо, во-первых, для заданной частоты инайти к то есть установить дисперсионную зависимость $\omega = \omega(k)$ и, во-вторых, определить вид функции f(z).Это можно сделать, если с учетом (6.2) записать уравнения Эйлера для движения несжимаемой и невязкой жидкости в плоскости XOZ (см. уравнение (3.30) в лекции по гидродинамике):

)

$$\begin{aligned}
\rho\left(\frac{\partial v_x}{\partial t} + v_x\frac{\partial v_x}{\partial x} + v_z\frac{\partial v_x}{\partial z}\right) &= -\frac{\partial \delta p}{\partial x};\\
\rho\left(\frac{\partial v_z}{\partial t} + v_x\frac{\partial v_z}{\partial x} + v_z\frac{\partial v_z}{\partial z}\right) &= -\frac{\partial \delta p}{\partial z}.
\end{aligned}$$
(6.5)

При записи (6.5) мы предполагаем, что движение частиц по оси Оу отсутствует. Учтем далее, что членами $v_x \frac{\partial v_x}{\partial x}, v_z \frac{\partial v_z}{\partial z}, v_x \frac{\partial v_z}{\partial x}$ и $v_z \frac{\partial v_z}{\partial z}$ в силу их малости можно пренебречь. Тогда получаем

$$\begin{array}{l}
\rho \frac{\partial t_x}{\partial t} = -\frac{\partial \delta p}{\partial x}, \\
\rho \frac{\partial t_z}{\partial t} = -\frac{\partial \delta p}{\partial z}.
\end{array}$$
(6.6)

Эти уравнения дополним условием несжимаемости:

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_z}{\partial z} = 0.$$
 (6.7)

Уравнения (6.6) и (6.7) при заданных граничных условиях дают возможность рассчитать w_x , w_x и ϕ_p и, тем самым, получить решение задачи о движении жидкости, включая движение ее поверхности.

Продифференцируем первое из уравнений (6.6) по * а второе - по =:

$$\rho \frac{\partial}{\partial t} \frac{\partial v_x}{\partial x} = -\frac{\partial^2 \delta p}{\partial x^2};$$

$$\rho \frac{\partial}{\partial t} \frac{\partial v_z}{\partial z} = -\frac{\partial^2 \delta p}{\partial z^2}.$$
(6.8)

В левых частях этой системы уравнений изменен порядок дифференцирования.

Уравнение $\frac{\partial^2 \delta p}{\partial x^2} + \frac{\partial^2 \delta p}{\partial z^2} = 0$

является знаменитым уравнением Лапласа, используемым во многих разделах физики. Поэтому его решение хорошо известно.

(6.10)

На поверхности водоема при z = 0граничным условием является равенство (6.4), а на дне при z = Hдолжно выполняться условие $v_z = 0$ из которого с учетом второго уравнения (6.6) получаем:

$$\left. \frac{\partial \delta p}{\partial z} \right|_{z=H} = 0. \tag{6.11}$$

Подставим далее (6.3) в (6.10) и учтем, что $\frac{\partial^2 \delta p}{\partial x^2} = -k^2 \delta p.$ Тогда (6.10) примет вид: $\frac{d^2 f}{dz^2} - k^2 f = 0.$ (6.12)

С методом решения таких уравнений мы познакомились в лекциях по колебаниям. Используя подстановку $f(z) = Ae^{\lambda z}$,получаем характеристическое уравнение $\lambda^2 - k^2 = 0$,откуда $\lambda_{1,2} = \pm k$,и общее решение (6.12) может быть записано в виде функции:

$$f(z) = Ae^{kz} + Be^{-kz}, (6.13)$$

при этом граничные условия для Даследующие:

$$f(0) = 1; \left. \frac{df}{dz} \right|_{z=H} = 0. \tag{6.14}$$

Подставляя (6.13) в (6.14), получаем:

$$A + B = 1;$$

 $Ae^{kH} - Be^{-kH} = 0.$ (6.15)

Отсюда
$$f(z) = \frac{\det |k(z-H)|}{ch(kH)},$$
(6.16)

где функция $e^{\ln \alpha} = \frac{1}{2}(e^{\alpha} + e^{-\alpha})$ -гиперболический косинус.

График функции *f*(=)изображен на рис. 6.2. Теперь осталось только определить волновое число *взходящее в (6.1) и (6.3). Это можно сделать, если сначала из (6.1) найти вертикальное ускорение частицы на поверхности жидкости. При этом надо учесть, что положительные значения *соответствуют уменьшению *:

$$\frac{\partial v_z}{\partial t} = -\frac{\partial^2 s}{\partial t^2} = s_0 \omega^2 \sin(\omega t - kx) = \omega^2 s(x, t).$$
(6.17)

Рис. 6.2.

Подставим (6.17) в левую часть второго уравнения (6.6), а правую часть этого уравнения запишем, используя представление (6.3). Тогда получим

$$\rho\omega^2 s = -\rho g s \frac{df}{dz} \Big|_{z=0} = \rho g s \operatorname{kth}(kH).$$
(6.18)

В (6.18) учтено, что $(e^{h} a)' = sh a$, th $a = sh a/e^{h} a$. Поэтому дисперсионное соотношение получается в виде:

$$\omega = \sqrt{gH} \cdot k \cdot \left(\frac{\operatorname{th}(kH)}{kH}\right)^{1/2}.$$
(6.19)

Обозначим $c_0 = \sqrt{gH}$. Тогда $\omega = c_0 \cdot k \left(\frac{\operatorname{th}(kH)}{kH}\right)^{1/2}.$ (6.20)

На рис. 6.3 эта зависимость изображена сплошной линией, а пунктиром показана прямая $\omega = c_0 k \Phi$ азовая скорость волны $c = \omega / k$ как функция волнового числа показана на рис. 6.4.

Рис. 6.3.

Рис. 6.4.

Таким образом, поверхностные гравитационные волны подвержены сильной дисперсии. Эффект дисперсии ярко выражен у океанских волн, зарождающихся в удаленных штормовых районах. Поскольку длинные волны (с меньшим к) движутся быстрее, чем короткие, то они приходят к берегам раньше коротких на 1-2 дня.

Эффект дисперсии может использоваться при определении места возникновения волн, прошедших до точки наблюдения чрезвычайно большие расстояния. Расстояние от штормового района до места, где волны фиксируют, подсчитывается по разности времен прибытия волн разной длины волны и, следовательно, разной частоты. Преобладающая частота прибывающих волн растет во времени, а длина пройденного пути находится по скорости изменения частоты. Так, по оценке, один из пакетов волн, наблюдавшихся в северной части Тихого океана, прошел половину окружности земного шара от Индийского океана по дуге большого круга, проходящей южнее Австралии.

Реальные волны, как уже говорилось раньше, представляют собой суперпозицию волн, или волновые пакеты, которые движутся с групповой скоростью $w = d\omega/dk$.Скорость игруппы меньше, чем скорости $v = \omega/k$ каждой из волн в группе. Если рассматривать отдельную волну, то можно видеть, что она перемещается быстрее, чем группа. При достижении фронта группы она затухает, а ее место занимают волны, догоняющие группу с тыла.

Фазовая скорость волны с, как следует из (6.20), зависит от параметра $kH = 2\pi H/\lambda$. Поэтому различают волны глубокой и мелкой воды.

Волны глубокой воды.

Если $kH \gg 1$ ($H \gg \lambda$), то такие волны называют волнами глубокой воды. Возмущения *вр*сосредоточены в приповерхностном слое толщиной ~ λ и не "чувствуют" присутствия дна. Для таких волн, с учетом приближения th (kH) \approx 1, дисперсионное соотношение (6.19) примет вид: $\omega=\sqrt{gk}.$

Таким образом, эти волны обладают сильной дисперсией.

Сделаем некоторые оценки. В океане преобладают волны с периодом колебаний *т* ~ 106.Согласно (6.21) длина волны $\lambda = 2\pi/k \sim 150$ м;а фазовая скорость с ~ 15м/с.Такая скорость является типичной, так как она совпадает с характерной скоростью ветра вблизи поверхности, генерирующего волны глубокой воды.

Если проанализировать распределение возмущений давления с глубиной, описываемое функцией f(z)(cm. (6.16)), то можно показать, что $f = e^{-a}$ при $z = \lambda/6 = 25$ м. Таким образом, приближение глубокой воды справедливо в тех местах, где глубина $H \ge 25$ м.

Волны мелкой воды.

При приближении к берегу глубина нуменьшается, и реализуется условие $kH < 1 (2\pi H < \lambda)$. Хотя частота волны остается прежней, однако дисперсионное соотношение примет иной вид:

$$\omega = k\sqrt{gH} = kc_0, \tag{6.22}$$

из которого следует, что на мелкой воде дисперсия волн отсутствует. Скорость волн $c_0 = \sqrt{gH}$ уменьшается с глубиной, и на глубине H = 1мскорость $c_0 \sim 3$ м/с,а длина волны при $T \sim 10$ сравна $\lambda = c_0 T \sim 30$ м.

В непосредственной близости к берегу, где глубина исравнима с амплитудой волны волна искажается - появляются крутые гребни, которые движутся быстрее самой волны и затем опрокидываются. Это происходит потому, что глубина под гребнем равна и невосходит глубину под впадиной и – в В результате колебания частиц волны приобретают сложный характер. По аналогии со звуками музыкальных инструментов, осциллограммы которых показаны в предыдущей лекции, можно сказать, что колебания частиц воды являются суперпозицией колебаний многих частот, причем по мере приближения к берегу ширина частотного спектра увеличивается. С подобным искажением акустических волн мы встретимся несколько позднее, когда будем изучать нелинейное распространение волн конечной амплитуды.

Из приведенной выше классификации гравитационных волн следует, что для океана с глубиной $H = 5\kappa$ мволны глубокой воды должны иметь $\lambda < 2\pi H \sim 30\kappa$ м. Согласно (6.21) их период колебаний $T = 2\pi/\omega \le 2$ мен., а скорость $e = \lambda/T \le 250$ м/е. Для континентального шельфа $H \sim 50$ м,поэтому волнами глубокой воды будут волны с $\lambda \le 300$ м, $T \le 15e_{\rm H}$ $c \le 20$ м/е.

С другой стороны, на глубине H \sim 5 км волны с длинами волн $\lambda \ge 30$ км будут волнами мелкой воды. Эти волны имеют период колебаний $T \ge 2$ мин., а их скорость $e \ge 250$ м/е. Такие волны двигаются со скоростью реактивного самолета и могут пересечь Атлантический океан примерно за 7 часов.

Характер движения частиц жидкости.

Рассчитаем скорости частиц ^вжи ^вжкак функции координат ж. ^жи времени *к*. Это легко сделать из уравнений (6.6) с учетом (6.3), (6.1) и (6.16):

$$\rho \frac{\partial v_x}{\partial t} = -\frac{\partial}{\partial x} \delta \rho = f(z) \rho g \, k s_0 \cos(\omega t - k \, x),$$

$$\rho \frac{\partial v_z}{\partial t} = -\frac{\partial}{\partial z} \delta \rho = -\frac{df}{dz} \rho g s_0 \sin(\omega t - k x).$$
(6.23)

Отсюда

$$v_x = f(z)g\frac{k}{\omega}s_0\sin(\omega t - kx),$$

 $v_x = \frac{df}{dz}\frac{g}{\omega}s_0\cos(\omega t - kx).$
(6.24)

На рис. 6.5 показаны векторы скорости частиц на глубине *z*и на поверхности в фиксированный момент времени. Пунктиром изображено положение волны через малый промежуток времени. Под гребнем волны частицы имеют составляющую скорости *w_x* > *w_z* a под впадиной *w_x* < *w*. Скорость некоторой частицы А направлена вниз, и с течением времени будет изменяться. Легко понять, что в последующий момент скорость частицы А будет такой, как у частицы В в настоящий момент, затем - как у частицы С в настоящий момент, и так далее. Поэтому траектория частицы А будет эллиптической. По мере увеличения координаты *z*(глубины погружения) *w_x* \rightarrow *w*, эллипсы сплющиваются, и при *z* \geq *w*частицы жидкости колеблются практически вдоль оси Ox.

Рис. 6.5.

Размер єбольшой полуоси эллипса можно оценить из условия $\ell \approx (v_x)_{max} T = g_{\omega}^k s_0 T.$ (6.25)

Сравним ℓc длиной волны λ : $\frac{\ell}{\lambda} \approx \frac{g}{\lambda} \frac{k}{\omega} s_0 T.$ (6.26)

Учтем, что $\omega/k = c, \ \lambda = cT, \ c_0 = \sqrt{gH}$ - скорость волн мелкой воды. Тогда $\frac{\ell}{\lambda} \approx \frac{c_0^2}{c^2 H}$. (6.27)

Для мелкой воды $e = e_0, \mu$ $\frac{\ell}{\lambda} = \frac{s_0}{H} \ll 1.$ (6.28)

Поскольку в этом случае $\lambda \sim H_{i}$ то $\ell \sim s_{0}$ т.е. возрастает с ростом амплитуды волны s_{0} Но так как $s_{0} \ll H_{i}$ то амплитуда горизонтальных колебаний $\ell \ll \lambda$.

Частицы на поверхности глубокой жидкости движутся по траекториям, близким к круговым. По таким же траекториям будет двигаться и плавающее на поверхности небольшое тело, например, притопленный поплавок.

Дo сих пор ΜЫ предполагали, что профиль волны является синусоидальным, что возможно только в том случае, если амплитуда волны очень мала по сравнению с ее длиной. В природе таким профилем реально обладают только приливные волны, длина которых чрезвычайно велика по сравнению с их высотой. Обычные ветровые волны имеют более сложный вид. Как показывают расчеты, частицы жидкости в них движутся по окружностям, радиус которых экспоненциально убывает с глубиной (см. рис. 6.6). Сплошными линиями на рисунке показаны линии равного давления, любая из которых может соответствовать поверхности воды при определенной амплитуде волны. Эти линии являются трохоидами - траекториями точек, расположенных на радиусе между центром и ободом колеса, катящегося под горизонтальной прямой, расположенной на высоте 24 над уровнем невозмущенной поверхности воды. Поэтому такая волна называется трохоидальной и отличается от синусоидальной гармонической волны, задаваемой формулой (6.1). Очень близкими к трохоидальным являются волны после наступления на море штиля. Это так называемая мертвая зыбь. В частном случае, когда радиус орбиты частицы, находящейся на поверхности воды, равен 🖙 профиль волны имеет вид циклоиды (верхняя кривая на рис. 6.6). Однако, опыт показывает, что циклоидальная форма поверхности воды может наблюдаться только у стоячих волн.

Рис. 6.6.

Опытным путем также установлено, что у бегущих трохоидальных волн угол между касательной к поверхности воды и горизонтом не превышает ~ 30°. Если угол ската у гребня волны превышает это значение, которое соответствует отношению амплитуды трохоидальной волны к ее длине $\lambda \approx \frac{1}{4\pi} \approx 0, 08$, то волна теряет устойчивость. Это явление играет большую роль в процессе зарождения и развития волн, что можно заметить, наблюдая за ними в присутствии ветра. Высокие волны с острыми гребешками не могут продолжать свой бег, так как их гребни опрокидываются и разрушаются, и волны уменьшаются по высоте.

Капиллярные волны.

При анализе зависимости скорости от волнового числа, изображенной на рис. 6.4, возникает вопрос: до какой величины падает скорость с при увеличении волнового числа k(или уменьшении длины волны). Опыт показывает, что с уменьшением длины волны скорость достигает минимума, а затем начинает возрастать. Это связано с тем, что при малом радиусе Rкривизны поверхности $(R \sim \lambda)$ начинают играть заметную роль силы поверхностного натяжения. Под их

действием поверхность воды стремится уменьшить свою площадь. Ситуация напоминает рассмотренную ранее, в случае с натянутым резиновым шнуром. Такие волны называются капиллярными.

Если при увеличении натяжения шнура скорость распространения по нему волн возрастала, то при усилении роли поверхностного натяжения (уменьшении $\lambda \sim R$) скорость капиллярных волн должна также увеличиваться. Известно, что давление под искривленной цилиндрической поверхностью $p \sim \frac{\sigma}{R}$ тде τ коэффициент поверхностного натяжения. Если приближенно считать, что $\lambda = 2\pi R$ то по аналогии с формулой для скорости звука в газе (при $\gamma = 1$) можно оценить фазовую скорость таких волн:

$$e_{\mathbf{x}} = \frac{\omega}{k} = \sqrt{\frac{\mu}{\rho}} = \sqrt{\frac{\sigma}{\rho}k}.$$
(6.29)

Расчет показывает, что формула (6.29) для капиллярных волн глубокой воды оказывается точной. Учет конечности глубины водоема дает для этих волн результат, аналогичный полученному выше для гравитационных волн: в формуле (6.29) под корнем дополнительно появляется множитель th (k II).

Капиллярные волны также испытывают дисперсию, однако, в отличие от гравитационных, их фазовая скорость возрастает с увеличением волнового числа *k*,т.е. с уменьшением ».Полезно записать дисперсионное соотношение (6.29) в виде:

$$\omega^2 = \frac{\sigma}{\rho} h^3. \tag{6.30}$$

Как следует из этого соотношения, групповая скорость «капиллярных волн глубокой воды больше их фазовой скорости «в полтора раза: $u_{\text{кап}} = \frac{d\omega}{dk} = \frac{3}{2} \sqrt{\frac{\sigma}{\rho}k} = \frac{3}{2} e_{\text{кап}}$, тогда как для гравитационных волн (см. (6.21)) $u_{\text{кар}} = \frac{1}{2} \sqrt{\frac{g}{k}} = \frac{1}{2} e_{\text{кр}}$, т.е. групповая скорость вдвое меньше фазовой. Различие групповой и фазовой скоростей капиллярных волн хорошо заметно на поверхности воды при порывах ветра: видно, что мелкая рябь внутри группы волн движется медленнее, чем весь волновой пакет.

Если бы мы с самого начала при рассмотрении поверхностных волн учли как действие силы тяжести, так и поверхностное натяжение, мы бы получили для волн глубокой воды одно дисперсионное соотношение, из которого формулы (6.21) и (6.30) получились бы предельными переходами в области малых и больших к.

Для волновых чисел *k* > *H*⁻¹мы можем объединить (6.21) и (6.30) следующим образом:

$$\omega = \sqrt{gk + \frac{\sigma}{\rho}k^3}.\tag{6.31}$$

Отсюда скорость гравитационно-капиллярных волн глубокой воды получается равной

$$e = \frac{\omega}{k} = \sqrt{\frac{g}{k}} + \frac{\sigma}{\rho}k. \tag{6.32}$$

Для волновых чисел $k \ll H^{-1}$ (волны мелкой воды) в соответствии с (6.22) скорость стремится к значению $c_0 = \sqrt{gH}$ а для произвольных значений kв соответствии с (6.20) можно записать выражение для скорости волн следующим образом:

$$e = \sqrt{\left(\frac{g}{k} + \frac{\sigma}{\rho}k\right) th(kH)}.$$
(6.33)

Зависимость (6.33) скорости с от волнового числа «показана на рис. 6.7. Видно, что скорость достигает минимальной величины. В соответствии с (6.32)

это происходит при $g/k_{\text{мин}} = \sigma k_{\text{мин}} / \rho_0$ откуда $k_{\text{мин}} = \sqrt{\frac{g\rho}{\sigma}}$. Следовательно, $c_{\text{мин}} = \frac{4}{\sqrt{\frac{\sigma g}{\sigma}}} \sqrt{2}.$ (6.34)

Для воды $\sigma = 0,073$ H/м, $c_{\text{ини}} \approx 23,2$ си/с, $\lambda_{\text{ини}} = 2\pi/k_{\text{ини}} \approx 1,73$ см.

Рис. 6.7.

Таким образом, на поверхности воды не могут существовать волны, распространяющиеся со скоростью меньше 23 см/с!

Капиллярные волны часто используются для определения коэффициента поверхностного натяжения жидкостей.

Волны цунами.

Кроме волн, генерируемых ветром, существуют очень длинные волны, возникающие во время подводных землетрясений, или моретрясений. Наиболее часто такие землетрясения происходят на дне Тихого океана, вдоль длинных цепей Курильских и Японских островов. Громадные волны, возникающие при мощном толчке, имеют высоту $s_0 \sim 10 - 15_{\rm MM}$ $\lambda \sim 10^3_{\rm KM}$.Достигая берега, они смывают не только города и деревни, но и растительность вместе с почвой. Большие бедствия они причиняют населению Японии, которое дало им название "цунами" (по-японски - "большая волна в гавани").

Интересны сведения о величинах деформаций дна океана во время землетрясений. В 1922 году японские гидрографы сделали промеры глубин в заливе Сагами, недалеко от Токио, а через год - 1 сентября 1923 года - там произошло катастрофическое землетрясение. Повторный промер глубин после землетрясения показал, что изменения рельефа дна произошли на площади около 150 км², при этом одни части дна поднялись местами на 230 м, а другие опустились до 400 м. Поднявшаяся часть дна вытолкнула громадный объем воды, который по оценкам составил величину V ~ 23км³. В результате такого толчка образовался огромный водяной холм (уединенная волна), который при распространении вызвал подъем уровня воды у берегов Японии в разных местах от 3,3 до 10 м.

Внутренние гравитационные и иные волны.

Наряду с поверхностными гравитационными и капиллярными волнами в океане существует множество других видов волн, которые играют важную роль в динамике океана. Океан, в отличие от идеальной жидкости, стратифицирован - то есть его воды не являются однородными, а изменяются по плотности с глубиной. Это распределение обусловлено потоками энергии (тепла) и вещества. В упрощенном виде океан можно представить состоящим из двух слоев воды: сверху лежит более легкая (теплая или менее соленая), снизу - более плотная (более соленая или холодная). Подобно тому как поверхностные волны существуют на границе вода-воздух, на границе раздела вод разной плотности будут существовать внутренние гравитационные волны. Амплитуда волн этого типа в океане может достигать сотни метров, длина волны - многих километров, но колебания водной поверхности при этом ничтожны. Внутренние волны проявляются на поверхности океана, воздействуя на характеристики поверхностных волн, перераспределяя поверхностно-активные вещества. По этим проявлениям они и могут быть обнаружены на поверхности океана. Так как поверхностные гравитационно-капиллярные волны и поверхностно-активные вещества сильно влияют на коэффициент отражения электромагнитных, в том числе световых волн, внутренние волны хорошо обнаруживаются дистанционными методами, например, они видны из космоса. Внутренние волны по сравнению с обычными поверхностными гравитационными волнами обладают рядом удивительных свойств. Например, групповая скорость внутренних волн перпендикулярна фазовой, угол отражения внутренних волн от откоса не равен углу падения.

При рассмотрении крупномасштабных явлений в Мировом океане необходимо учитывать эффекты вращения Земли, изменение глубины и наличие боковых границ. Сила Кориолиса является причиной возникновения инерционных, или гироскопических волн. Изменения потенциальной завихренности вследствие изменения географической широты и глубины океана обуславливают возникновение планетарных волн Россби. Боковые границы и изменение глубины на шельфе приводят к существованию нескольких типов береговых захваченных волн - шельфовых, краевых, Кельвина, топографических волн Россби.

Крупномасштабные волны типа волн Россби, Кельвина и др. оказывают существенное влияние на термогидродинамику океана, взаимодействие атмосферы и океана, климат и погоду. Свойства многих из этих волн существенно отличаются от свойств поверхностных гравитационных волн. Например, волны Кельвина локализованы в узкой шельфовой зоне, распространяются в северном полушарии вдоль берега против часовой стрелки. Экваториальные волны Россби, имея пространственные масштабы в сотни километров, локализуются вдоль экватора и проявляются не в изменении уровня, а прежде всего в форме вихревых течений.

Распространение акустических волн конечной амплитуды.

Если возмущения плотности ^ви давления ^ви в акустической волне не являются исчезающе малыми по сравнению с равновесными значениями ^{вы}то говорят, что волна имеет конечную амплитуду. Обычно такие волны обладают высокой интенсивностью, и для описания их распространения необходимо решать нелинейные уравнения гидродинамики. Анализом распространения волн конечной амплитуды занимается отдельная наука, называемая нелинейной акустикой. В наших лекциях мы ограничимся лишь небольшим объемом сведений из нелинейной акустики.

Пусть в газе вдоль оси Ох распространяется мощная акустическая волна. Если пренебречь вязкостью газа, то одномерное движение частиц вдоль этой оси будет описываться уравнением Эйлера и уравнением непрерывности:

$$\rho \frac{\partial v}{\partial t} + \rho v \frac{\partial v}{\partial x} = -\frac{\partial p}{\partial x};
\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho v) = 0.$$
(6.35)

Сложность решения этой системы уравнений состоит в том, что в их левых частях содержатся нелинейные члены. Обычно эту нелинейность называют кинематической нелинейностью. Поскольку уравнения (6.35) содержат три неизвестные функции $\rho(x,t)$, p(x,t)и v(x,t), то необходимо их дополнить третьим уравнением, связывающим ри ρ .Для газа оно, как уже отмечалось ранее, является уравнением адиабаты:

$$p = p(\rho) = p_0 \left(\frac{\rho}{\rho_0}\right)^{\gamma}.$$
(6.36)

Представим и и в виде:

 $p = p_0 + \delta p; \quad \rho = \rho_0 + \delta \rho. \tag{6.37}$

Затем подставим (6.37) в (6.36):

$$p_0 + \delta p = p_0 \left(1 + \frac{\delta \rho}{\rho_0}\right)^{\gamma}$$
. (6.38)

Полагая, что
$$|\delta\rho/\rho_0| < 1$$
 разложим правую часть (6.38) в ряд:
 $p_0 + \delta p = p_0 \left[1 + \gamma \frac{\delta \rho}{\rho_0} + \frac{\gamma (\gamma - 1)}{2} \left(\frac{\delta \rho}{\rho_0} \right)^2 + \dots \right].$ (6.39)

Пренебрегая членами, имеющими порядок малости (*бе/ре*)[®]и выше, окончательно запишем уравнение адиабаты в виде:

 $\delta p = c_0^2 \delta \rho + c_0^2 \frac{\gamma - 1}{2} \frac{(\delta \rho)^2}{\rho_0},\tag{6.40}$

 $_{\Gamma
m Дe} c_0^2 = \gamma \frac{p_0}{\rho_0}.$

Второй член в правой части (6.40) начинает давать заметный вклад при сильном сжатии (разрежении), поэтому связь между возмущениями давления и плотности рстановится нелинейной. Эта нелинейность обусловлена нелинейностью сил межмолекулярного взаимодействия и называется физической нелинейностью. Она вместе с кинематической нелинейностью может кардинально повлиять на характер распространения интенсивных акустических волн. Перейдем теперь к установлению основных закономерностей такого распространения. Для этого подставим (6.37) в уравнения (6.35). Тогда получим:

$$\begin{aligned} &(\rho_0 + \delta\rho)\frac{\partial\pi}{\partial t} + (\rho_0 + \delta\rho)v\frac{\partial v}{\partial x} = -\frac{\partial\delta\rho}{\partial x};\\ &\frac{\partial\delta\rho}{\partial t} + \frac{\partial}{\partial x}[(\rho_0 + \delta\rho)v] = 0. \end{aligned}$$
(6.41)

Чтобы помочь читателю преодолеть психологический барьер, связанный с анализом системы нелинейных уравнений (6.40) - (6.41), мы покажем вначале, как из этих уравнений можно легко получить волновое уравнение, описывающее линейный режим распространения волн, изученный подробно ранее.

Линейный режим.

 $[|\delta_{\mu}| \ll \rho_0, |\delta_{\mu}| \ll \rho_0].$ Удержим в уравнениях (6.41) только линейные члены. Тогда получим $\rho_0 \frac{\partial v}{\partial t} = -\frac{\partial \delta p}{\partial x};$ $\frac{\partial \delta \rho}{\partial t} + \rho_t \frac{\partial v}{\partial x} = 0;$ $\delta p = c_0^2 \delta \rho.$ (6.42)

Исключим две неизвестные функции, например, *«ри »*, Для этого продифференцируем первое уравнение по времени *«*а второе - домножим на *«*а продифференцируем по координате *«*а затем вычтем одно уравнение из другого. С учетом третьего уравнения члены, содержащие *«ри »*, сократятся, и мы получим известное нам волновое уравнение

 $\frac{\partial^2 v}{\partial t^2} = c_0^2 \frac{\partial^2 v}{\partial x^2},\tag{6.43}$

описывающее распространение без искажений вдоль оси Ox со скоростью волны гидродинамической скорости.

Аналогичным образом можно получить волновые уравнения для возмущений давления *и плотности */-Не останавливаясь далее на решениях таких уравнений (мы это сделали детально в предыдущих лекциях) перейдем теперь к нелинейному режиму распространения волн конечной амплитуды.

Нелинейный режим.

 $(|\delta \rho| < \rho_0, |\delta p| < p_0).$

Вначале попытаемся качественно описать основные черты нелинейного распространения волн, не прибегая к математике. Наиболее просто это сделать, если обратиться к влиянию физической нелинейности (формула 6.36). Если вспомнить, что скорость звука $e = \sqrt{dp/dp}$ то легко понять, что различные части волны могут двигаться с разными скоростями.

На рис. 6.8 изображена зависимость (6.36) и для трех значений плотности м. и рапроведены касательные к графику функции $p = p(\rho)$, угловые коэффициенты которых равны квадрату скорости распространения волны. Из этого графика можно сделать качественный вывод о том, что чем выше плотность участка волны, тем больше его скорость.

Рис. 6.8.

Если, например, гармоническая волна (волна плотности) распространяется вдоль оси Оx (рис. 6.9), то из-за различия скоростей ее разных частей она будет постепенно менять свою форму. На рисунке для простоты показаны лишь три скорости $c_1 = \sqrt{(dp/d\rho)}\Big|_{\rho_1}$, $c_0 = \sqrt{(dp/d\rho)}\Big|_{\rho_n M}$ $c_2 = \sqrt{(dp/d\rho)}\Big|_{\rho_n}$.

Рис. 6.9.

Как показывает опыт, распространение волны можно охарактеризовать тремя этапами.

На I этапе волна трансформируется в пилообразную, обладающую скачком плотности «(а также давления »и скорости »). Эта пилообразная волна приобретает ударный фронт, ширина которого Азфпо мере распространения уменьшается и достигает величины порядка длины свободного пробега молекул газа.

На II этапе происходит нелинейное затухание волны даже при очень малой вязкости и теплопроводности среды. Этот, на первый взгляд, неожиданный эффект связан с переходом в тепло части кинетической энергии молекул, обладающих гидродинамическими скоростями . Эти молекулы под действием перепадов давления на длине свободного пробега приобретают кинетическую энергию, которая затем переходит в тепло при неупругих столкновениях. Простейший расчет показывает, что энергия, перешедшая в тепло, будет существенно больше, чем на I этапе, когда на ширине Аларисходили многочисленные столкновения. Естественно, что эта тепловая энергия заимствуется у распространяющейся волны.

Ш этап связан с возрастающим влиянием вязкости и теплопроводности, которые особенно сильны в областях больших перепадов скорости и температуры (вследствие локального адиабатического нагрева или охлаждения при колебаниях газа). Резкие перепады скорости приводят к возрастанию сил вязкости, а перепады температуры на масштабах порядка длины волны влекут отток тепла из более нагретых областей в менее нагретые. Из-за этих причин часть энергии волны переходит в тепло, и ее амплитуда уменьшается. Поскольку поглощение звука пропорционально квадрату частоты, быстрее затухают волны высших частот, и волна трансформируется в гармоническую волну с исходной (начальной) частотой. Рассуждения, приведенные выше, носят качественный характер. Для количественного описания нелинейного распространения волн мы используем наиболее упрощенный подход к анализу системы нелинейных уравнений (6.40) - (6.41). Оговоримся сразу, что поскольку уравнения Эйлера описывают поведение невязкой среды, то мы сможем проанализировать распространение волны лишь на первых двух этапах.

Перепишем уравнения в (6.41) в виде:

$$\begin{array}{l}
\rho_{0}\frac{\partial v}{\partial t} + \frac{\partial \delta p}{\partial x} = -\delta\rho\frac{dv}{dt} - \rho_{0}v \cdot \frac{\partial v}{\partial x} - \delta\rho \cdot v \cdot \frac{\partial v}{\partial x}, \\
\frac{\partial \delta\rho}{\partial t} + \rho_{0}\frac{\partial v}{\partial x} = -\frac{\partial}{\partial x}(v \cdot \delta\rho),
\end{array}$$
(6.44)

где все нелинейные члены, по порядку величины меньшие линейных, перенесены в правые части уравнений.

С учетом малости нелинейных членов для этих уравнений в нелинейной акустике разработаны приближенные методы решения, смысл которых состоит в получении значительно более простых уравнений, имеющих в ряде случаев несложные аналитические решения. Одно из таких уравнений мы сейчас и получим, однако сделаем это предельно просто. Для этого, во-первых, мы ограничимся вначале лишь кинематической нелинейностью, а, во-вторых, будем предполагать, что между скоростью возмущением фесуществует такая же связь, как и в линейном режиме:

$$-\varepsilon = \frac{\delta p}{p_0} = \frac{\delta \rho}{\rho_0} = \frac{v}{c_0},\tag{6.45}$$

где =- относительная деформация элементарного объема газа («< при сжатии и »> при разрежении). Эта связь позволяет нам ограничиться одним из двух уравнений гидродинамики. Предпочтительнее, например, воспользоваться более простым уравнением непрерывности. При подстановке во второе уравнение (6.44) возмущения плотности «пропорционального, согласно (6.45), гидродинамической скорости v, получаем нелинейное уравнение:

 $\frac{\partial v}{\partial t} + c_0 \frac{\partial v}{\partial x} = -2v \frac{\partial v}{\partial x}.$ (6.46)

Заметим, что в линейном режиме, когда правая часть уравнения равна нулю, его решением является любая функция вида:

$$v(x,t) = f(t - x/c_0), \tag{6.47}$$

описывающая бегущую со скоростью «без искажения вдоль оси Ох акустическую волну.

В нелинейном режиме ситуация усложняется. В самом деле, перепишем уравнение (6.46) в виде

$$\frac{\partial v}{\partial t} + (c_0 + 2v)\frac{\partial v}{\partial x} = 0. \tag{6.48}$$

Отсюда видно, что скорость участка волны равна $e = e_0 + 2w$ (6.49)

и зависит от гидродинамической скорости частиц.

Для фрагмента гармонической волны гидродинамической скорости, изображенного на рис. 6.10, это означает, что синусоидальное распределение скорости вдоль оси Ох трансформируется в пилообразное. Следовательно, оба механизма нелинейности способствуют трансформации гармонической волны в пилообразную.

Рис. 6.10.

Если бы мы с самого начала учли действие обоих механизмов нелинейности, то из уравнений (6.44) и (6.40) мы бы получили уравнение

 $\frac{\partial v}{\partial t} + (c_0 + \beta v)\frac{\partial v}{\partial x} = 0, \tag{6.50}$

где $\beta = (\gamma + 1)/2$ - нелинейный параметр, отражающий действие обоих механизмов нелинейности. Справедливости ради отметим, что формула (6.49) не является точной, поскольку в отсутствие физической нелинейности ($\gamma = 1$)нелинейный параметр $\beta = 1$,и на самом деле $\epsilon = c_0 + v$.Это связано с тем, что мы использовали связь в виде (6.45), которая для волн конечной амплитуды не является верной.

По аналогии с (6.47) мы можем записать решение уравнения (6.50) в виде: $v(x,t) = f\left(t - \frac{x}{c_0 + \beta v}\right).$ (6.51)

Это решение описывает эволюцию простых (Римановых) волн. Теперь не составляет труда количественно описать трансформацию гармонической волны в пилообразную.

Пусть на входе в среду (при x = 0)

$$v(0,t) = f(t) = v_0 \sin \omega t.$$
 (6.52)

Тогда на расстоянии x $v = v_0 \sin \left[\omega \left(\tau + \frac{\beta}{d_0^2} x \cdot v \right) \right].$ (6.53)

Здесь $\tau = t - x/c_0$ - так называемое локальное время, отсчитываемое наблюдателем, находящимся на расстоянии *г*от начала координат, от момента времени x/c_0 .

Для построения графика зависимости (6.53) перепишем ее в явном виде

$$\omega \tau = \arcsin \frac{v}{v_0} - \frac{x}{\ell_{\omega \pi}} \cdot \frac{v}{v_0},$$
(6.54)

$$\Gamma \mathcal{A} e$$

$$\ell_{\pi \pi} = \frac{\ell_0^2}{\omega v_0 \beta}$$
(6.55)

характерное расстояние, на котором развивается значительное нелинейное искажение волны. Это расстояние сокращается с ростом амплитуды ^{**}исходной волны и нелинейного параметра.

На рис. 6.11 изображены распределения скорости в пределах одного периода колебаний для волны на расстояниях x = 0(1); $x < \ell_{ux}(2)$; $x > \ell_{ux}(3)$.Из этих кривых видно, что синусоидальная волна превращается постепенно в пилообразную, а при $x > \ell_{uv}$ в профиле волны появляется неоднозначность. Эта неоднозначность не имеет физического смысла и возникла лишь из-за пренебрежения вязкостью газа. В действительности при $\omega \tau = 0$ скорость испытывает скачок, или разрыв (от величины скорости в точке А до величины скорости в точке В). Положение ударного фронта задается линией АВ, которую проводят так, чтобы заштрихованные площади сверху и снизу от АВ были бы одинаковы (в рассматриваемом случае АВ совпадает с осью Oy). Таким построением автоматически учитывается нелинейное затухание волны. Расстояние ℓ_{um} как нетрудно теперь понять, является расстоянием, на котором у волны появляются разрывы скорости w-плотности μ и давления δp К сожалению, без учета вязкости ширина ударного фронта получилась равной нулю. В реальной ситуации она конечна и возрастает с увеличением вязкости.

Рис. 6.11.

Учет вязкости позволяет описать III этап распространения, однако это выходит за рамки нашего курса.

Говоря об образовании ударного фронта в конце I этапа и последующем нелинейном затухании на II этапе, мы не должны забывать о наличии обычного (линейного) поглощения волны вследствие вязкости среды. Это поглощение характеризуется коэффициентом см(см. формулу (5.19)) и зависит от частоты. Амплитуда волны при линейном поглощении уменьшается по экспоненциальному закону уже на I этапе: $v_0(x) = v_0e^{-\alpha/\ell_0}$,где $\ell_a = \alpha^{-1}$ характерное расстояние, характеризующее поглощение звука. Естественно, что уменьшение амплитуды v_0 "притормаживает" процесс искажения профиля волны. Если поглощение таково, что $\ell_a < \ell_{am}$ то нелинейное искажение может и не проявляться вовсе.

144
В акустике отношение (6.56)

 $\operatorname{Re} = \ell_a / \ell_{n\alpha}$

называют акустическим числом Рейнольдса. Если Re > 10, то волна считается мощной, и для нее имеет место нелинейное искажение. При 📭 < волна слабая, и нелинейное искажение подавлено обычным линейным поглощением.

Если учесть далее, что амплитуда скорости связана с амплитудой возмущения давления (Макустическим законом Ома, то нелинейная длина будет обратно пропорциональна величине (мр.

$$\ell_{\pi\pi} = \frac{\rho \epsilon_0^3}{2\pi\beta\nu(\delta p)_0}.\tag{6.57}$$

Следовательно, выражение для акустического числа Рейнольдса примет ВИД:

$$\operatorname{Re} = \frac{\ell_s}{\ell_{nx}} = \frac{2\pi \ell_s \beta_F(\delta p)_0}{\rho c_0^3} = \frac{D(\delta p)_0}{\nu}.$$
(6.58)

Здесь учтено, что в соответствии с формулой (5.21) $\ell_{s} = a^{-1} \sim \nu^{-2}$, *D*- константа, характеризующая нелинейные и вязкостные свойства среды.

В качестве примера выполним некоторые оценки, иллюстрирующие количественные характеристики распространения звуковой волны в воде, где $D = 300 (\Pi w)^{-1}$. При частоте ультразвука $\nu = 1$ МГ прасстояние $\ell_s = 50$ м, и условие Re > 10ВЫполняется, согласно (6.58), для волн с амплитудой звукового давления $(\delta p)_0 > 3 \cdot 10^4 \Pi$ а,или интенсивностью

$$I > \frac{(\delta p)_5^2}{2\rho c_0} = 300 \text{Br/m}^2. \tag{6.59}$$

Соответствующий уровень звукового давления $L_{p} > 180 \text{ кд} E$. Для волн с такими интенсивностями $\ell_{net} < \ell_s/10 = 5$ м,поэтому уже на первых метрах своего распространения ультразвуковая волна будет превращаться в пилообразную, и затем при *и* > *l*_{ни}начнется ее нелинейное затухание.

Как показывает анализ формулы (6.54) с учетом построения положения ударного фронта, изображенного на рис. 6.11, амплитуда пилообразной волны при Re >> 1убывает с пройденным расстоянием #по закону

$$\delta p(x > \ell_{un}) = \frac{(\delta p)_0}{1 + x/\ell_{un}}.$$
(6.60)

С помощью этой формулы сразу можно сделать важный вывод о том, что величина и не может превзойти некоторое предельное значение, как бы мы ни увеличивали амплитуду гармонической волны 🦗 Действительно, при увеличении (бр)овеличина $\ell_{ns} \sim 1/(\delta p)$ оуменьшается, и брстремится к δp_{max} . Величина δp_{max} может быть корректно подсчитана при одновременном учете линейного поглощения и нелинейного затухания (это выходит за рамки нашего курса) и оказывается равной

$$\delta p_{\max} = \frac{4\nu}{D} e^{-r/k_0}.$$
 (6.61)

Оценим максимальное значение интенсивности I_{smax} которая может быть передана в воде ультразвуковым лучом с частотой $\nu = 1$ МГ чна расстояние $x = 2\ell_{a} = 100$ м:

$$I_{\rm max} - \frac{\delta p_{\rm max}^2}{2\rho c_0} - \frac{8\nu^2}{\rho c_0 D^2} e^{-2x/\ell_0} - 1 B_{\rm T}/{\rm M}^2.$$
(6.62)

Таким образом, в условиях, наилучших для возбуждения мощных ультразвуковых волн в воде, на расстояние x = 100мчерез площадь сечения 1 м² можно передать энергию, достаточную лишь для свечения лампочки от карманного фонарика. Это ни в какое сравнение не идет с той энергией, которую посылают ультразвуковые пушки, используемые героями научно-фантастического романа Г. Адамова "Тайна двух океанов", где ультразвуковым лучом якобы повреждают корабли и ракеты.

В связи с вышеизложенным возникает естественный вопрос - а как же объяснить разрушающее действие взрывных ударных волн на большом расстоянии от места взрыва? Ответ на этот вопрос кроется в том, что взрывная ударная волна представляет собой одиночный импульс, и его амплитуда Фубывает с расстоянием х более медленно, чем у гармонической волны:

$$\delta p(x > \ell_{nn}) - \frac{(\delta p)_0}{(1 + x/\ell_{nn})^{1/2}}.$$
(6.63)

При возрастании в эпицентре взрыва амплитуды импульса раниченно увеличиваться и величина которая при большой мощности заряда окажется достаточной для разрушения препятствия.

Надо отметить, что тем не менее нелинейное затухание не ограничивает широкое применение ультразвука в лабораторных условиях, поскольку словиях но сравнима с размерами лабораторных акустических систем или превосходит их.

До сих пор мы говорили о распространении только одной волны. Однако если распространяются, например, две волны с частотами $\omega_1 u \omega_2$ то нелинейное взаимодействие между ними приводит к появлению волн с другими частотами. Среди них волны с кратными частотами $n_1\omega_1 u n_2\omega_2$ (гармоники) и волны с комбинационными частотами $n_1\omega_1 \pm n_2\omega_2$ (n_1 и n_2 - целые числа). В акустике, где дисперсия отсутствует, все эти волны движутся с одинаковой скоростью, поэтому они могут эффективно взаимодействовать между собой, проходя большие расстояния.

Генерация гармоник и волн с комбинационными частотами имеет многочисленные применения. Проиллюстрируем сказанное на двух примерах.

1. При изучении упругих и прочностных свойств твердых материалов их обычно подвергают большим нагрузкам с помощью специальных прессов, развивающих давления, близкие к пределам прочности этих материалов или превосходящие их, т.е. десятки тысяч атмосфер. Вместо этой громоздкой и дорогостоящей аппаратуры используют методы нелинейной акустики. Для этого к одному торцу образца исследуемого материала приклеивают пьезоэлектрический излучатель мощной акустической волны частоты ш.На другом конце образца

помещают такой же пьезоэлектрический преобразователь (приемник звука), на выходе которого регистрируют и затем обрабатывают электрический сигнал. Последний представляет собой суперпозицию колебаний на частотах 2,22,324,324, г.д. Говорят, что сигнал состоит из основной, второй, третьей и т.д. гармоник. Сигнал на основной частоте несет информацию о линейном модуле Юнга, так как согласно закону Гука деформации пропорциональны приложенным напряжениям. В области больших напряжений вследствие пластичности и текучести материала связь деформаций и напряжений описывают с использованием нелинейных модулей. Информацию о таких модулях несет уже амплитуда сигнала с частотой 224 (вторая гармоника), и т.д.

2. Другим ярким примером использования методов нелинейной акустики является генерация в воде узконаправленных пучков акустических волн с длиной ».Это осуществляется с помощью так называемых параметрических антенн. При знакомстве с явлением дифракции волн мы отмечали, что угловая расходимость #звукового пучка тем меньше, чем больше размер «передающего излучателя (антенны). Проблему изготовления огромных излучающих антенн с размерами в десятки метров можно обойти, используя нелинейное взаимодействие в воде двух параллельно распространяющихся мощных звуковых волн с близкими частотами или излучаются горизонтально погруженным в воду одним пьезоизлучателем размером «~10см. Обе волны до их затухания пройдут расстояние L~10³м.В этой протяженной области рождается волна низкой (разностной) частоты $\omega = \omega_2 - \omega_1$ которая затухает гораздо слабее и может пройти очень большие расстояния. Таким образом, вытянутый объем воды с малым поперечным размером и большим продольным размером лпредставляет собой гигантскую естественную антенну, излучающую звуковой пучок разностной частоты вдоль самой вытянутой антенны. Однако, расходимость изтого пучка уже будет задаваться выражением

 $\vartheta = \lambda/L. \tag{6.64}$

При частоте $\nu = \omega/2\pi \sim 1 \kappa \Gamma n$, $\lambda \sim 1 м$ и при $L \sim 10^3 M$ получаем $\vartheta \sim 3 \cdot 10^{-2} pag = 1, 8^\circ$. Такая чрезвычайно малая расходимость пучка разностной частоты позволяет с большой точностью проводить морские исследования: изучать рельеф дна, заниматься археологическими изысканиями в придонных слоях грунта, в заиленных озерах, обнаруживать скопления рыбы у поверхности и дна моря, на мелководье - там, где обычные гидролокаторы неэффективны, и т.д.

Уединенные волны (солитоны).

В 1834 году шотландский инженер-кораблестроитель и ученый Дж. Рассел, наблюдая за движением баржи по каналу, которую тащила пара лошадей, обратил внимание на удивительное явление. При внезапной остановке судна масса воды вокруг баржи в узком канале не остановилась, а собралась около носа судна, и затем оторвалась от него и в виде большого уединенного водного холма стала двигаться со скоростью около 8 миль в час. Удивительно, что форма холма в процессе его движения практически не менялась. Рассел назвал это движущееся по поверхности воды образование "great solitary wave", что в переводе означает "большая уединенная волна".

Теоретическое объяснение уединенные волны получили впоследствии в работах французского ученого Ж. В. де Буссинеска и английского физика Дж. Рэлея. Они обосновали математически возможность существования уединенных волн в мелководных каналах.

После смерти Рассела в 1895 году голландский физик Д. Кортевег и его ученик Г. де Фрис вывели уравнение, описывающее уединенные волны. Это уравнение получило название уравнения Кортевега - де Фриса (уравнение КДФ) и имеет вид

$$\frac{\partial s}{\partial t} + c_0 \left(\frac{\partial s}{\partial x} + \frac{3}{2H} s \frac{\partial s}{\partial x} + \frac{H^2}{6} \frac{\partial^3 s}{\partial x^3} \right) = 0.$$
(6.65)

Оно описывает распространение поверхностных гравитационных волн на мелкой воде. Здесь $\alpha = \sqrt{gH}$ - скорость волн мелкой воды, *н*- глубина водоема. Отметим сразу, что по виду уравнение КДФ отличается от нелинейного уравнения (6.50) наличием дополнительного члена $\frac{H^2}{6} \frac{\partial^3 s}{\partial x^3}$ ответственного за дисперсию гравитационных волн (хотя и небольшую на мелкой воде).

Рассмотрим несколько подробнее влияние нелинейности и дисперсии на распространение поверхностных гравитационных волн. По аналогии с нелинейными акустическими волнами сразу можем сказать, что скорость различных участков поверхностной волны будет различна:

$$c = c_0 \left(1 + \frac{3s}{2H} \right). \tag{6.66}$$

Из-за различия скоростей (гребень волны движется быстрее впадины) происходит превращение гармонической волны в пилообразную. Крутой фронт под действием силы тяжести опрокидывается, и на поверхности воды появляются пенистые гребешки. Опрокидывание фронта легко наблюдать при движении волны по мелководью вблизи берега (рис. 6.12). Однако в ряде случаев нелинейное искажение волны может компенсироваться дисперсией. В самом деле, пилообразная волна представляет собой набор гармонических волн с разными частотами. Из-за дисперсии эти волны движутся с разными скоростями, и поэтому пилообразный фрагмент волны, подобно импульсу, стремится расшириться. При определенной форме фрагмента оба конкурирующих механизма могут компенсировать друг друга, и тогда по поверхности воды побежит устойчивая структура в виде уединенной волны (солитона). Выясним некоторые свойства этой уединенной волны.

Рис. 6.12.

Предположим, что солитон имеет амплитуду s_{0} , протяженность вдоль оси Ох, равную ℓ_{1} и представляет собой некоторый холмик, изображенный на рисунке 6.13. Оценим величины нелинейного и дисперсионного членов в уравнении КДФ:

$$\frac{\frac{3}{2H}s}{\frac{\partial s}{\partial x}} \sim \frac{1}{H}s_0 \frac{s_0}{\ell};$$

$$\frac{H^2}{6} \frac{\partial^3 s}{\partial x^3} \sim -H^2 \frac{s_0}{\ell^3}.$$
(6.67)

В (6.67) учтено, что на переднем и заднем фронтах холмика $\frac{\partial^3 a}{\partial a^3} < 0$. Естественно, что оба механизма будут компенсировать друг друга при условии

$$rac{1}{H}s_0rac{s_0}{\ell}-H^2rac{s_0}{\ell^3}pprox 0.$$

(6.68)

Последнее накладывает связь на амплитуду ⁸чи длину *в*солитона: $\ell^2 \approx \frac{H^3}{8}$. (6.69)

Таким образом, чем больше амплитуда солитона ⁸а: тем меньше должна быть его длина *е*. Скорость солитона с возрастает с ростом амплитуды, что характерно для нелинейного распространения волн.

Рис. 6.13.

Точное решение уравнения КДФ, описывающее солитон, имеет вид

$$s(t,x) = \frac{s_0}{ch^2 \left(\frac{x-ct}{\ell}\right)}.$$
(6.70)

При этом длина солитона *в*связана с амплитудой **восоотношением** $\ell^2 = \frac{4H^3}{34\pi},$ (6.71)

а скорость $a = a_0 \left(1 + \frac{s_0}{2H}\right).$ (6.72)

Если $s_0 \ll H$,то последнее выражение можно переписать в виде $c = \sqrt{gH} \left(1 + \frac{1}{2} \frac{s_0}{H} \right) \approx \sqrt{g(H + s_0)}.$ (6.73)

Эту формулу мы уже записывали при качественном обсуждении поведения гравитационных волн по мере их приближения к берегу.

Важно подчеркнуть, что солитон является устойчивой структурой. Если первоначально соотношение (6.71) не выполняется и амплитуда зослишком велика, то водяной холм распадается на несколько меньших холмиков, из которых сформируются солитоны. Напротив, если зослишком мала, то такой низкий холм расползется вследствие дисперсии.

По современным представлениям большинство волн цунами образуются, когда достаточно крупный, но безвредный в океане солитон выбрасывается на берег. При подходе к берегу он становится выше и короче, и его высота становится сравнима с глубиной океана вблизи берега.

В заключение этой темы отметим, что в настоящее время обнаружены солитоны для волн различной природы. Так, например, существуют солитоны при распространении акустических волн в кристаллах, световых импульсов в волоконных световодах, ионно-звуковых волн в плазме и др. Во всех случаях существование солитонов обусловлено взаимной компенсацией нелинейных и дисперсионных эффектов. Естественно, что энергия, переносимая уединенной волной любой природы, будет диссипировать в тепло, поэтому по мере распространения амплитуда солитона будет стремиться уменьшиться, что, естественно, рано или поздно приведет к его исчезновению.

ПРАКТИЧЕСКИЕ ЗАНЯТИЯ

Тема 1. Свободные колебания.

Задачи.

Осциллятор стоит из 100-граммовой гири, подвешенной на конце пружины. Сила натяжения пружины пропорциональна перемещению гири из положения равновесия; если гиря переместится на 1 см, то эта сила будет равна 1 Н. Сила трения пропорциональна скорости движения и равна 0,01 Н при скорости 00,01 м/с. Каков будет коэффициент затухания осциллятора? Каков его декремент? С какой частотой происходят колебания?

Тема 2. Вынужденные колебания.

Задачи.

Диафрагма громкоговорителя весит 1 грамм, а смещение ее центра из положения равновесия на 1 мм требует усилия в 10 Н. Сила трения, противоположная этому перемещению и пропорциональная скорости, равна 0,01 Н при скорости в 0,01 м/с. Если предположить, что диафрагма колеблется подобно простому осциллятору, то какова будет ее собственная частота и каков коэффициент затухания? В центре диафрагмы приложена сила F=1*cos(2π vt) Н. Построить кривую амплитуды колебания диафрагмы в зависимости от частоты v вынуждающей силы от 0 до 1000 Гц.

Тема 3. Колебательная система с двумя степенными свободы.

Задачи.

Пользуясь методом электромеханических аналогий, найти коэффициент передачи периодической силы для указанной системы.

Демонстрации.

Исследовать зависимость амплитуды колебаний связанной системы при воздействии вынуждающей периодической силы от частоты, величины связанных масс, жесткости связи. Рассмотреть случай резонанса. Наблюдение передачи энергии от одной связанной массы к другой. Демонстрация проводится на вибростенде в лаборатории каф. БЖД, аудитория 201а.

Тема 4. Колебания в системах с большим числом степеней свободы (системы с распределенными параметрами).

Задачи.

Однородная струна без трения натянута между жесткими опорами, находящимися на расстоянии l друг от друга. На струну действует сила $F=F_0e^{-i\omega t}$, приложенная в центре. Показать, что амплитуда колебания ее центра будет $(F_0/2\varepsilon\omega)tg(\omega l/2c)$. Какова амплитуда колебания в точке x=l/4?

Тема 5. Волны в жидкостях и газах. Акустические явления.

Задачи.

Два поезда идут на встречу друг другу с одинаковой скоростью. Какова должна быть их скорость, чтобы высота тона свистка одного из них, слышимого на другом, изменялась в 9/8 раза? Скорость звука принять равной с = 335 м/с.

Самолет летит со скоростью v=250 м/с под углом 20^0 к горизонту. В момент времени t₀ он пролетает на уровне наблюдателя, находящегося в точке X (см. рисунок). Найти промежуток времени, через который наблюдатель услышит звук пролетающего самолета. C=333 м/с.

По двум ж/д путям движутся в одном направлении два тепловоза со скоростями v_1 и v_2 . Между путями посередине стоит наблюдатель, расстояние между путями R. В начальный момент времени тепловозы находятся на расстоянии r_{01} и r_{02} от него. Найти максимально возможный уровень шума от тепловозов, если интенсивность звука обратно пропорциональна расстоянию.

На эхолоте промежуток времени между излученным и принятым сигналом $\Delta t=2,3$ с. Определить глубину при условии, что скорость звука с глубиной изменяется по закону с=c₀+k*h, k-константа (k=0.05). Сравнить полученное значение со значением для постоянной скорости звука. (c₀=1450 м/c).

Найти значение для скорости звука в морской воде на глубине 150 м. при t=10 ⁰C. Соленостью воды пренебречь. Сравнить со значением в приповерхностном слое.

Пользуясь определением уровня звука, вывести формулу сложения уровней для n одинаковых источников.

Каков будет суммарный уровень интенсивности звука от пяти источников с уровнями интенсивностей 43, 45, 44.6, 44 и 38 дБ?

Между стеной и наблюдателем расположен источник звука – камертон, колеблющийся с частотой 1 кГц. С какой скоростью необходимо перемещать камертон, чтобы частота биений, воспринимаемая наблюдателем составила 3 Гц?

Два поезда идут навстречу друг другу со скоростями 60 и 80 км/ч. Каждый из них издает гудок с частотой 2 кГц. Чему равна частота биений, которую зафиксирует неподвижный наблюдатель, находящийся между ними.

Наименование газа или жидкости	Плотность, <i>р</i> , кг/м ³	Скорость звука, <i>с</i> , м/с	Акустическое сопротивление, ρc , кг/м ² с
Водород	0,084	1310	110
Гелий	0,167	1005	168
Кислород	1,34	326	437
Азот	1,17	337	394
Хлор	3,01	213	641
Окись углерода	1,17	350	410
Углекислый газ	1,85	268	496
Воздух	1,21	344	416
Водяной пар (130°С)	0,54	450	243
Бензин	750	1190	89·10 ⁴
Вода дистиллированная	1000	14920	149 ⁻ 10 ⁴
Глицерин	1260	1950	$246 \cdot 10^4$
Кислота соляная	908	1500	$136 \cdot 10^4$
Толуол	866	1325	$115 \cdot 10^4$

Таблица 1. Скорость звука в газах и жидкостях (при температуре 20 °C)

Тема 6. Особые случаи распространения волн. Элементы нелинейной акустики.

Задачи.

Оценить время реверберации для помещения с коэффициентом поглощения 0,11 и расстоянием между стенами 6 м.

Звуковой импульс испущен под углом ϕ к горизонту с поверхности земли. Через какое время звук достигнет высоты H, если скорость звука меняется с высотой по закону с=c₀+k*h? Решит предыдущую задачу численными методами (конечно-разностная схема) и реализовать решение в среде MathCAD. Построить траектории движения фронта волны для разных углов φ .

САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ

Задачи для самостоятельного решения.

1. Два поезда идут на встречу друг другу с одинаковой скоростью. Какова должна быть их скорость, чтобы высота тона свистка одного из них, слышимого на другом, изменялась в 4/3 раза? Скорость звука принять равной с = 335 м/с.

Самолет летит со скоростью v=1000 км/ч под углом 20^0 к горизонту. В момент времени t₀ он пролетает на уровне наблюдателя, находящегося в точке X (см. рисунок). Найти промежуток времени, через который наблюдатель услышит звук пролетающего самолета. C=333 м/с.

По двум ж/д путям движутся в одном направлении два тепловоза со скоростями $v_1=100$ км/ч и $v_2=20$ м/с. Между путями посередине стоит наблюдатель, расстояние между путями R=3 м. В начальный момент времени тепловозы находятся на расстоянии $r_{01}=100$ м и r02=70 м от него. Найти максимально возможный уровень шума от тепловозов, если интенсивность звука обратно пропорциональна расстоянию.

На эхолоте промежуток времени между излученным и принятым сигналом $\Delta t=1,72$ с. Определить глубину при условии, что скорость звука с глубиной изменяется по закону с=c₀+k*h, k-константа (k=0,07). Сравнить полученное значение со значением для постоянной скорости звука. (c₀=1450 м/c).

Найти значение для скорости звука в морской воде на глубине 250 м. при t=8 ⁰C. Соленостью воды пренебречь. Сравнить со значением в приповерхностном слое.

Пользуясь определением уровня звука, вывести формулу сложения уровней для n одинаковых источников.

Пользуясь методом электромеханических аналогий, найти коэффициент передачи периодической силы для указанной системы.

Оценить время реверберации для помещения с коэффициентом поглощения 0,2 и расстоянием между стенами 10 м.

Звуковой импульс испущен под углом φ к горизонту с поверхности земли. Через какое время звук достигнет высоты H, если скорость звука меняется с высотой по закону c=c₀+k*h?

Каков будет суммарный уровень интенсивности звука от пяти источников с уровнями интенсивностей 41, 43, 44, 45 и 38 дБ? Сравнить с максимальным уровнем от источников.

Между стеной и наблюдателем расположен источник звука – камертон, колеблющийся с частотой 1,5 кГц. С какой скоростью необходимо перемещать камертон, чтобы частота биений, воспринимаемая наблюдателем составила 3 Гц?

Два поезда идут навстречу друг другу со скоростями 75 и 65 км/ч. Каждый из них издает гудок с частотой 1,8 кГц. Чему равна частота биений, которую зафиксирует неподвижный наблюдатель, находящийся между ними.

Диафрагма громкоговорителя весит 2,3 грамма, а смещение ее центра из положения равновесия на 0,8 мм требует усилия в 8 Н. Сила трения, противоположная этому перемещению и пропорциональная скорости, равна 0,015 Н при скорости в 0,01 м/с. Если предположить, что диафрагма колеблется подобно простому осциллятору, то какова будет ее собственная частота и каков коэффициент затухания? В центре диафрагмы приложена сила $F=2,5*\cos(2\pi vt)$ Н. Построить кривую амплитуды колебания диафрагмы в зависимости от частоты v вынуждающей силы от 0 до 1000 Гц.