Федеральное агентство по образованию АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГОУВПО «АмГУ»

	УТВЕ	РЖДАЮ
Зав.	кафедр	оой энергетики
		Н.В. Савина
«	>>	2007г.

МИКРОПРОЦЕССОРНЫЕ СРЕДСТВА УПРАВЛЕНИЯ

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ПО ДИСЦИПЛИНЕ

для специальности 140203 - «Релейная защита и автоматизация электроэнергетических систем»

Составитель: к.т.н., доцент А.Н. Козлов

Печатается по решению редакционно-издательского совета энергетического факультета Амурского государственного университета

А. Н. Козлов

Учебно-методический комплекс по дисциплине «Микропроцессорные средства управления» для студентов очной формы обучения специальности 140203 - «Релейная защита и автоматизация электроэнергетических систем».

Учебно-методические рекомендации ориентированы на оказание помощи студентам очной формы обучения специальности 140203 - «Релейная защита и автоматизация электроэнергетических систем» для формирования специальных знаний о назначении, принципах действия и особенностях выполнения современных цифровых устройств релейной защиты и автоматики электроэнергетических систем.

Рецензент: Ротачев Ю.А., к.т.н., доцент, начальник территориального центра РП «Востокэнерготехнадзор» при ОАО «Амурэнерго».

2.1.1. Программа дисциплины, соответствующая требованиям Государственного образовательного стандарта

Отсутствует

2.1.2. Рабочая программа дисциплины:

Федеральное агентство по образованию Амурский государственный университ		
_		УТВЕРЖДАК Проректор по УН Е.С. Астапов
	"" -	личная подпись, И.О.С 2001
РАБОЧАЯ ПРОГРАММА		
по дисциплине «Микропроцессорные средства управления»		
(наименование дисциплины)		
для специальности 140203 «Релейная защита и автоматизация электроэнергети систем» (шифр и наименование специальности)	<u>ческих</u>	
Курс <u>пятый</u> Семестр <u>девятый</u>		
Лекции 42 (час.) Экзамен 9 (семестр)		
Практические (семинарские) занятия <u>14</u> (час.) Зачет (семестр)		
Лабораторные занятия (час.)		
Самостоятельная работа42(час.)		
Всего часов98, в т.ч. ауд 56		
Составитель Козлов Александр Николаевич, доцент, канд. техн. и	наук_	_
(И.О.Ф., должность, ученое звание)		
Факультетэнергетический		
Кафедра энергетики		

Рабочая программа составлена на основании ГОС ВПО по направлению подготовки дипломированного специалиста 650900 — ЭЛЕКТРОЭНЕРГЕТИКА. В рамках данного направления на кафедре Энергетики реализуется подготовка дипломированного специалиста по специальности 140203.

(Государственного образовательного стандарта ВПО или типовой программы)

Рабочая прогр	рамма обсух	кдена на заседании ка	фед-
ры			
""	200	г., протокол №	
Заведующий	кафедрой		
Рабочая програм	има одобрена н	на заседании УМС(наимо	энораниа спаниал пости)
		г., протокол №	
Председатель	(подпись, И.С	9.Ф.)	
Рабочая програм протокол №	има переутвер: 	ждена на заседании кафедр	ры от
Зав.кафедрой	подпись	Ф.И.О.	_
СОГЛАСОЕ	ЗАНО		СОГЛАСОВАНО
Начальник У	УМУ		Председатель УМС факультета
« <u> </u> »	(подпись, И 200	<i>'</i>	(подпись, И.О.Ф.) «»200 г.
СОГЛАСОЕ Заведующий	ЗАНО і́ выпускающе	й кафедрой	
 «»	(подпись, И 200		

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ, ЕЕ МЕСТО В УЧЕБНОМ ПРОЦЕССЕ

Государственный образовательный стандарт предусматривает изучение вопросов автоматизированного управления энергетическими объектами с помощью микропроцессорных средств.

Дисциплина «Микропроцессорные средства управления» относится к циклу дисциплин специализации ДС.05 и является необходимой при подготовке дипломированного специалиста специальности 140203.

1.1. Цель преподавания дисциплины

Предметом изучения дисциплины «Микропроцессорные средства управления» является формирование знаний по физическим основам, схемным, конструктивным решениям и управлению работой технических устройств на базе микропроцессоров в электроэнергетических системах и системах электроснабжения.

1.2. Задачи изучения дисциплины

Задачей изучения дисциплины является подготовка инженеров по направлению «Электроэнергетика»» к использованию в практических целях цепей управления в реальном времени микропроцессорных вычислительных систем и систем автоматики.

В результате изучения дисциплины, в соответствии с квалификационной характеристикой выпускников, студенты должны знать:

- логические структуры устройств защиты и автоматики нового поколения;
- принципы выполнения и работы основных видов терминалов;
- микропроцессорные системы управления;
- языки программирования.

1.3. Перечень дисциплин, усвоение которых необходимо студентам при изучении данной дисциплины

Основой для изучения дисциплины являются курсы:

- «Математика», разделы: анализ: дифференциальное и интегральное исчисления, элементы теории функций и функционального анализа, теория функций комплексного переменного, дифференциальные уравнения;
- «Информатика», разделы: общая характеристика процессов сбора, передачи, обработки и накопления информации; технические и программные средства реализации информационных процессов;
- «Теоретические основы электротехники», разделы переходные процессы в линейных цепях; нелинейные электрические и магнитные цепи; цепи с распределенными параметрами; электромагнитное экранирование;
- «Информационно-измерительная техника и электроника», разделы: операционные усилители; компараторы; усилители и генераторы на операционных усилителях; логические элементы, комбинационные логические схемы;
- «Электромагнитная совместимость в электроэнергетике», разделы: электромагнитная обстановка на объектах электроэнергетики; источники помех; чувствительные к помехам элементы; каналы передачи помех; уровни помех; помехоустойчивость;
 - «Релейная защита электроэнергетических систем» полностью;
 - «Автоматика энергосистем» полностью.

2.ЛЕКЦИОННЫЙ КУРС (42 ЧАСА)

2.1 Введение. (1 ч)

Основные сведения об устройствах защиты и автоматики нового поколения. Сравнительные характеристики защит, выполненных на электромеханической, статической и микропроцессорной базе.

2.2 Архитектура микропроцессорных защит и устройств автоматики (8 ч)

Возможности и структурные схемы микропроцессорных релейных защит (МПРЗ). Основные понятия об архитектуре МПРЗ. Проблемы реализации алгоритмов релейной защиты на базе микропроцессоров. Назначение отдельных модулей МПРЗ. Системы с асинхронным переформированием структуры. Универсальные МПРЗ с циклической перекоммутацией. МПРЗ повышенного быстродействия

2.3 Аппаратная часть МПРЗ (10 ч)

Измерительные преобразователи для МПРЗ. Статические реле защиты. Входные преобразователи аналоговых и дискретных сигналов. Фильтры. Средства отображения информации. Выходные релейные преобразователи. Каналы связи. Особенности обработки и хранение информации в цифровых устройствах. Прогнозирующие гибкие устройства релейной защиты.

2.4 Помехоустойчивость МПРЗ (4 ч)

Проникновение помех в реле и линии связи. Эффективность экранирования кабелей связи. Оптиковолоконные средства передачи информации.

2.5 Применение МП устройств в электроэнергетических системах (10 ч)

Микропроцессорная интегрированная релейная защита и противоаварийная автоматика электрических станций и подстанций. Особенности выполнения защиты трансформаторов и генераторов. Защита и автоматика собственных нужд электрических станций.

Интегрированная микропроцессорная защита и автоматика линий электропередачи. Защита и автоматика сборных шин.

Терминалы группы REL, RET, REB, RED.

Микропроцессорные терминалы защиты и автоматики ООО «АББ Реле-Чебоксары».

2.6 Противоаварийная автоматика ЭЭС на микропроцессорной базе (4 ч)

Автоматика предотвращения нарушения устойчивости. Микропроцессорная реализация функций автоматики ликвидации асинхронного режима.

2.7 МП автоматизированные системы управления в ЭЭС (5 ч)

Автоматизированные системы управления ГЭС и ТЭС. Цифровая автоматическая система управления частотой и активной мощностью в ЭЭС.

3. ПРАКТИЧЕСКИЕ ЗАНЯТИЯ (14 часов)

Практические занятия позволяют глубоко разобраться в компоновочных решениях и принципах работы МПРЗ.

Перечень тем практических занятий:

- 1. Микропроцессорные устройства «Сириус».
- 2. Конструктивное исполнение терминала REL-511, REL-521.
- 3. Расчет параметров защит и устройств автоматики для терминала REL-511, REL-521.
- 4. Конструктивное исполнение терминалов серии SPAC-800/
- 5. Расчет параметров защит и устройств автоматики для терминалов серии SPAC-800
- 6. Терминал ЗАО «Механотроника».
- 7. Изучение структурных схем МПРЗ реакторов, систем шин, силовых трансформаторов.

4. САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТА (42 часа)

Включает изучение лекционного материала и литературы по дисциплине при подготовке к практическим занятиям а также активный поиск новой информации в Интернете по заданию лектора или руководителя практических занятий.

4.1. Темы индивидуальной работы студента

- Конструкция статических реле РВ01, РВ03, РСТ11-РСТ14, РСМ13, РСФН12.
- Терминал SPAC-801.02
- Терминал REL-521
- Основные направления развития МПРЗ
- Прогнозирующие МПРЗ
- Пояс Роговского.
- Фильтры симметричных составляющих

5. ПРОМЕЖУТОЧНЫЙ КОНТРОЛЬ ЗНАНИЙ

В процессе изучения дисциплины «Микропроцессорные средства управления» предусмотрены следующие виды промежуточного контроля знаний студентов:

- выполнение двух контрольных работ по темам, рассмотренным на практических занятиях.

6. ВОПРОСЫ К ЭКЗАМЕНУ

- 1. Предпосылки и тенденции перевода РЗ на средства ВТ
- 2. Основные понятия об архитектуре РЗ
- 3. Повышение быстродействия МПРЗ с процедурным программированием
- 4. Система МПРЗ с асинхронным переформированием структур
- 5. Система МПРЗ с асинхронной перекоммутацией минимизированного набора ФУ
- 6. Универсальная МПРЗ с циклической перекоммутацией ФУ
- 7. Прогнозирующие гибкие РЗ
- 8. Адаптивное согласование МПРЗ с объектами защиты
- 9. Перспективы развития измерительных преобразователей тока (ИПТ) для гибких РЗ

- 10. Универсальные аналоговые ИПТ на основе магнитодиэлектрических магнитопроводов
- 11. Использование в ИПТ гальваномагнитных элементов (датчики Холла)
- 12. Защита линий связи МПРЗ от помех
- 13. Микропроцессорные комплексы РЗиА ООО «АББ Чебоксары»
- 14. Функциональная схема базового терминала SPAC-800
- 15. Функциональная схема цифрового АРКТ
- 16. Основные сведения о терминале REL-5xx
- 17. Реле РПВ-01
- 18. Реле РПВ-02
- 19. Быстродействующие автоматические устройства резервного включения
- 20. Функциональная схема алгоритмов МТЗ

7. Учебно-методическая (технологическая) карта дисциплины «Микропроцессорные средства управления»

Номер недели	Номер	Вопросы изучаемые на лекции	Занятия (номера)		Используемые нагляд- ные и методические	Самостоятельная работа студентов		Формы контроля
		·	Пр.	Лаб.	пособия	содержание	час.	9
- 1	1 2 3 4 5 6 7 8 Девятый семестр							9
1	2 2.1 2.2	Введение. (1 ч.) Основные сведения об устройствах защиты и автоматики нового поколения. Сравнительные характеристики защит, выполненных на электромеханической, статической и микропроцессорной базе. Архитектура микропроцессорных защит и устройств автоматики Возможности и структурные схемы микропроцессорных релейных защит (МПРЗ). Основные понятия об архитектуре МПРЗ. (2 ч.) Проблемы реализации алгоритмов релейной защиты на базе микропроцессоров. (1 ч.)		Девяті	Шнеерсон Э.М. Циф- ровая релейная защита	Основные направления развития МПРЗ	3	
2	2.3	Проблемы реализации алгоритмов релейной защиты на базе микропроцессоров. (продолжение - 1 ч.) Назначение отдельных модулей МПРЗ. (1 ч.)	№ 1		Шнеерсон Э.М. Циф- ровая релейная защита	Основные направления развития МПРЗ	3	Выбороч- ный опрос
3	3 3.1	Системы с асинхронным переформированием структуры. (1 ч.) Универсальные МПРЗ с циклической перекоммутацией. МПРЗ повышенного быстродействия (2 ч.) Аппаратная часть МПРЗ Статические реле защиты. (1 ч.)			Шнеерсон Э.М. Циф- ровая релейная защита	Прогнозирующие МПРЗ	3	
4	3.2	Измерительные преобразователи для МПРЗ. (2 ч.)	№ 2		Шнеерсон Э.М. Циф- ровая релейная защита	Прогнозирующие МПРЗ	3	Выбороч- ный опрос
5	3.3	Входные преобразователи аналоговых и дискретных сигналов. Фильтры. (2 ч.) Средства отображения информации. Выходные релейные преобразователи. Каналы связи. (2 ч)			Шнеерсон Э.М. Циф- ровая релейная защита	Конструкция статических реле РВ01,РВ03, РСТ11 - РСТ14, РСМ13, РСФН12.	3	

Продолжение таблицы

		-		_	T -			ение таблицы
1	2	3	4	5	6	7	8	9
6	3.5	Особенности обработки и хранение информации в цифровых устройствах. (2 ч)	№ 3		Шнеерсон Э.М. Циф- ровая релейная защита	Конструкция статических реле РВ01,РВ03, РСТ11 - РСТ14, РСМ13, РСФН12.	3	Тест по карточкам
7	3.6 4 4.1 4.2	Прогнозирующие гибкие устройства релейной защиты. (1 ч.) Помехоустойчивость МПРЗ Проникновение помех в реле и линии связи. (1 ч) Эффективность экранирования кабелей связи. (2 ч.)			Шнеерсон Э.М. Циф- ровая релейная защита	Пояс Роговского	3	
8	4.3 5 5.1	Оптоволоконные средства передачи информации. (1 ч.) Применение МП устройств в электроэнергетических системах Микропроцессорная интегрированная релейная защита и противоаварийная автоматика электрических станций и подстанций (1 ч)	№ 4		Шнеерсон Э.М. Циф- ровая релейная защита	Пояс Роговского	3	Выбороч- ный опрос
9	5.2	Особенности выполнения защиты трансформаторов и генераторов. Защита и автоматика собственных нужд электрических станций. (2 ч.) Интегрированная микропроцессорная защита и автоматика линий электропередачи. (2 ч.)			Шнеерсон Э.М. Циф- ровая релейная защита	Фильтры симметричных составляющих	3	
10	5.4	Защита и автоматика сборных шин. (2 ч.)	№ 5		Шнеерсон Э.М. Цифровая релейная защита	Фильтры симмет- ричных состав- ляющих	3	Выбороч- ный опрос
11	5.5 5.6 6 6.1	Терминалы группы REL, RET, REB, RED. (2 ч.) Микропроцессорные терминалы защиты и автоматики ООО «АББ РелеЧебоксары». (1 ч.) Противоаварийная автоматика ЭЭС на микропроцессорной базе Автоматика предотвращения нарушения устойчивости. (1 ч.)			Шнеерсон Э.М. Циф- ровая релейная защита	Терминал SPAC- 801.02	3	
12	6.2	Автоматика предотвращения нарушения устойчивости. (продолжение - 1 ч.) Микропроцессорная реализация функций автоматики ликвидации асинхронного режима. (1 ч.)	№ 6		Овчаренко Н.И. Автоматика электрических станций и электроэнергетических систем	Терминал SPAC- 801.02	3	Выбороч- ный опрос
13	7 7.1	Микропроцессорная реализация функций автоматики ликвидации асинхронного режима. (продолжение - 1 ч.) МП автоматизированные системы управления в ЭЭС Автоматизированные гистемы управления ГЭС и ТЭС. (3 ч.)			Овчаренко Н.И. Автоматика электрических станций и электроэнергетических систем	Терминал REL-521	3	
14	7.2	Цифровая автоматическая система управления частотой и ак-тивной мощностью в ЭЭС. (2 ч.)	№ 7		Овчаренко Н.И. Авто- матика электрических станций и электро- энергетических систем	Терминал REL-521	3	Выбороч- ный опрос

ЛИТЕРАТУРА

Основная

- 1. Шнеерсон Э.М. Цифровая релейная защита. М.: Энергоатомиздат, 2007, 549 с.
- 2. Дьяков А.Ф., Овчаренко Н.И. Микропроцессорная релейная защита и автоматика электроэнергетических систем. М.: Издательство МЭИ, 2000. 199с
- 3. Применение и техническое обслуживание микропроцессорных устройств на электростанциях и в электросетях. Ч 1, 2, 3. М.: Издательство НЦ ЭНАС, 2000, 2001, 2002. 134c, 120 c, 96 c.
- 4. Овчаренко Н.И. Автоматика электрических станций и электроэнергетических систем. М.: Издательство МЭИ, 2000. 504 с.

Дополнительная

- 1. Чернобровов Н.В., Семенов В.А. Релейная защита электроэнергетических систем. М.: Энергоатомиздат, 2007, 800 с.
- 2. Окин А.А. Противоаварийная автоматика. М.: Издательство МЭИ, 1995. 206 с.
- 3. Кочкин В.Н., Нечаев О.П. Применение статических тиристорных компенсаторов реактивной мощности в электрических сетях энергосистем и предприятий. М.: Издательство НЦ ЭНАС, 2000. 248 с.

2.1.3. График самостоятельной работы студентов:

Номер недели	Содержание	1		Сроки контроля				
Девятый семестр								
1	2	3	4	5				
1	Изучение материала лекции	3	Выборочный опрос					
2	Изучение материала лекции Подготовка к практическим занятиям	3	Защита задачи					
3	Изучение материала лекции	3	Выборочный опрос	На текущей неделе				
4	Изучение материала лекции Подготовка к практическим занятиям	3	Защита задачи	На текущей неделе				
5	Изучение материала лекции	3	Выборочный опрос	На текущей неделе				
6	Изучение материала лекции Подготовка к практическим занятиям	3	Защита задачи	На текущей неделе				
7	Изучение материала лекции	3	Выборочный опрос	На текущей неделе				
8	Изучение материала лекции Подготовка к практическим занятиям	3	Защита задачи	На текущей неделе				
9	Изучение материала Лекции	3	Выборочный опрос	На текущей неделе				
10	Изучение материала лекции Подготовка к практическим заня- тиям	3	Защита задачи	На текущей неделе				
11	Изучение материала лекции	3	Выборочный опрос	На текущей неделе				
12	Изучение материала лекции Подготовка к практическим заня- тиям	3	Защита задачи	На текущей неделе				
13	Изучение материала лекции	3	Выборочный опрос	На текущей неделе				
14	Изучение материала лекции Подготовка к практическим занятиям	3	Защита задачи	На текущей неделе				
	*******		l .					

2.1.4. Методические рекомендации по проведению практических занятий.

Практическое занятие проводится по следующему плану:

- тема занятия доводится до сведения студентов заблаговременно, на занятия они должны прийти, проработав соответствующий раздел либо по материалам лекций, либо самостоятельно;
- путем выборочного опроса выясняется степень усвоения основных требований к соответствующему устройству автоматики и путей реализации этих требований; разбираются допущенные ошибки и неточности;
 - в аудитории решается типовой пример;
 - дается индивидуальная задача для самостоятельного решения.

При подготовке к занятиям рекомендуется пользоваться следующей литературой:

- 1. Шнеерсон Э.М. Цифровая релейная защита. М.: Энергоатомиздат, 2007, 549 с.
- 2. Дьяков А.Ф., Овчаренко Н.И. Микропроцессорная релейная защита и автоматика электроэнергетических систем. М.: Издательство МЭИ, 2000. 199с
- 3. Применение и техническое обслуживание микропроцессорных устройств на электростанциях и в электросетях. Ч 1, 2, 3. М.: Издательство НЦ ЭНАС, 2000, 2001, 2002. 134c, 120 c, 96 c.
- 4. Овчаренко Н.И. Автоматика электрических станций и электроэнергетических систем. М.: Издательство МЭИ, 2000. 504 с.

2.1.5. Методические рекомендации по проведению лабораторных работ.

Лабораторных работ рабочая программа дисциплины не предусматривает.

2.1.6. Краткий конспект лекций.

Конспект лекций в электронную форму переводится в настоящее время, работа еще не завершена. В его основу положены материалы книг:

- Л-1: Шнеерсон Э.М. Цифровая релейная защита. М.: Энергоатомиздат, 2007, 549 с.
- Л-2: Овчаренко Н.И. Автоматика электрических станций и электроэнергетических систем. - М.: Издательство МЭИ, 2000. — 504 с.
- Л-3: Применение и техническое обслуживание микропроцессорных устройств на электростанциях и в электросетях. Ч 1, 2, 3. М.: Издательство НЦ ЭНАС, 2000, 2001, 2002. 134c, 120 c, 96 c.
- Л-4: Микропроцессорные гибкие системы релейной защиты./ В.В. Михайлов, Е.В. Кириевский, Е.М. Ульяницкий и др.; Под ред. В.П. Морозкина. М.: Энергоатомиздат, 1988. 240 с.

Поэтому ниже для каждой лекции приведены только основные вопросы и ссылки на соответствующие разделы книг.

Введение.(1 ч.)

Основные сведения об устройствах защиты и автоматики нового поколения. Сравнительные характеристики защит, выполненных на электромеханической, статической и микропроцессорной базе.

Л-1, с. 7-39.

Архитектура микропроцессорных защит и устройств автоматики Возможности и структурные схемы микропроцессорных релейных защит (МПРЗ). Основные понятия об архитектуре МПРЗ. (2 ч.)

Л-4, с. 24-50.

Проблемы реализации алгоритмов релейной защиты на базе микропроцессоров. (2 ч.)

Л-1, с. 48-60.

Назначение отдельных модулей МПРЗ. (1 ч.)

Л-1, с. 60-73.

Системы с асинхронным переформированием структуры. (1 ч.)

Л-4, с. 152-168.

Универсальные МПРЗ с циклической перекоммутацией. МПРЗ повышенного быстродействия (2 ч.)

Л-4, с. 168-180.

Аппаратная часть МПРЗ

Статические реле защиты. (1 ч.)

 Π -3, u.1.

Измерительные преобразователи для МПРЗ. (2 ч.)

Л-1, с. 73-86.

Входные преобразователи аналоговых и дискретных сигналов. Фильтры. (2 ч.) Π -1, c. 137-165.

Средства отображения информации. Выходные релейные преобразователи. Каналы связи. (2 ч)

Л-1, с. 165-173.

Особенности обработки и хранение информации в цифровых устройствах. (2 ч.) \mathcal{I} -1, с. 165-173.

Прогнозирующие гибкие устройства релейной защиты. (1 ч.)

Л-4, с. 180-191.

Помехоустойчивость МПРЗ

Проникновение помех в реле и линии связи. (1 ч)

 Π -3, ч.2.

Эффективность экранирования кабелей связи. (2 ч.) Π -3, ч.3.

Оптоволоконные средства передачи информации. (1 ч.)

Л-1, с. 157-165, 466-491.

Применение МП устройств в электроэнергетических системах Микропроцессорная интегрированная релейная защита и противоаварийная автоматика электрических станций и подстанций (1 ч)

Л-1, с. 165-211.

Особенности выполнения защиты трансформаторов и генераторов. Защита и автоматика собственных нужд электрических станций. (2 ч.)

Л-1, с. 437-466.

Интегрированная микропроцессорная защита и автоматика линий электропередачи. (2 ч.)

Л-1, с. 284-408.

Защита и автоматика сборных шин. (2 ч.)

Л-1, с. 269-284.

Терминалы группы REL, RET, REB, RED. (2 ч.)

 Π -3, u.1-3.

Микропроцессорные терминалы защиты и автоматики ООО «АББ Реле-Чебоксары». (1 ч.)

 Π -3, u. 1-3.

Противоаварийная автоматика ЭЭС на микропроцессорной базе Автоматика предотвращения нарушения устойчивости. (2 ч.)

Л-2, с. 333-377.

Микропроцессорная реализация функций автоматики ликвидации асинхронного режима. (2 ч.)

Л-2, с. 377-409.

 $M\Pi$ автоматизированные системы управления в ЭЭС

Автоматизированные системы управления ГЭС и ТЭС. (3 ч.)

Л-2, с. 15-33.

Цифровая автоматическая система управления частотой и активной мощностью

в ЭЭС. (2 ч.) *Л-2, с. 76-137*.

2.1.7. Методические рекомендации по выполнению курсового проекта.

Курсовой проект в рабочей программе данной дисциплины не предусмотрен

2.1.8. Методические указания по выполнению лабораторных работ

Лабораторных работ рабочая программа дисциплины не предусматривает.

2.1.9. Методические указания к практическим занятиям

Изложены в книгах:

Применение и техническое обслуживание микропроцессорных устройств на электростанциях и в электросетях. Ч 1, 2, 3. - М.: Издательство НЦ ЭНАС, 2000, 2001, 2002. – 134c, 120 c, 96 c.

Книги есть в библиотеке энергетического факультета АмГУ. Электронные варианты включены в электронную библиотеку кафедры энергетики. Студенты могут записать их на свои носители.

2.1.10. Методические указания к выполнению контрольных работ

Выполнение контрольных работ по данной дисциплине не запланировано

2.1.11. Перечень программных продуктов

При выполнении индивидуальных заданий по практическим занятиям, подготовке отчетов по лабораторным работам студентам рекомендуется пользоваться пакетами прикладных программ Microsoft Office Visio, Mathcad, Word, и др.

2.1.12. Методические указания по применению современных информационных технологий

Большое количество сложного иллюстративного материала — схем устройств автоматики, алгоритмов — требует применения мультимедийного оборудования. В настоящее время идет комплектация альбома вспомогательного материала и иллюстраций и перевод в электронную форму, поэтому в настоящем издании УМКД иллюстрации не приведены.

2.1.13. Методические указания по организации межсессионного и экзаменационного контроля знаний

1. Входной контроль. Проводится лектором на одном из первых занятий. Цель — оценить степень освоения разделов предыдущих дисциплин, необходимых при изучении читаемого курса.

Форма контроля – тестовые задания, разрабатываемые лектором.

Оценка не выставляется, т.к. основное назначение входного контроля –

выявление пробелов и «слабых мест» у большей части аудитории и внесение соответствующих корректив в планы проведения лекционных и практических занятий.

2. Межсессионный контроль (контрольные точки). Проводится по результатам выполнения и защиты лабораторных работ, либо по результатам практических занятий. Если учебным планом лабораторные и практические занятия не предусмотрены, контрольная точка проставляется лектором на основании решения студентами тестовых заданий промежуточного контроля.

Критерии оценки:

«отлично» - студент работает в соответствии с рабочим учебным планом; все задания выполнены и защищены;

«хорошо» - студент работает в соответствии с рабочим учебным планом; задания своевременно выполнены, но частично - не защищены;

«удовлетворительно» - работа студента — не в полном соответствии с рабочим учебным планом: задания выполнены, но защиты не было;

«неудовлетворительно» - работа студента — не в полном соответствии с рабочим учебным планом: большая часть заданий не выполнена (в том числе и из-за пропусков);

«не аттестован» - при очень большом количестве пропусков занятий и практически полном невыполнении рабочего учебного плана.

3. Экзаменационный контроль.

3.1. Курсовые проекты и работы.

Защищаются перед специальной комиссией, выделенной кафедрой, с участием непосредственного руководителя проекта (работы) и рецензента.

Критерии оценки:

«отлично» - проект (работа) выполнен грамотно, аккуратно, в соответствии с ГОСТ. Допущенные ошибки и неточности не влияют на основные выводы по проекту (работе). Студент свободно ориентируется в вопросах, затронутых в проекте (работе); при наличии графической части — умеет «прочесть» чертеж и дать необходимые пояснения;

«хорошо» - проект (работа) выполнен грамотно, аккуратно, в соответствии с ГОСТ. Допущенные ошибки и неточности не влияют на основные выводы по проекту (работе), но при защите студент допускает неточности в ответах на вопросы членов комиссии по пояснительной записке и графической части;

«удовлетворительно» - *проект* (работа) выполнен грамотно, аккуратно, в соответствии с ГОСТ. Допущенные ошибки и неточности не влияют на основные выводы по проекту (работе), но при защите выявляется, что студент испытывает заметные затруднения и допускает серьезные неточности в ответах на вопросы членов комиссии по пояснительной записке и графической части;

либо проект (работа) выполнен с отступлениями от требований ГОСТ, с ошибками, отражающимися на основных выводах по проекту (работе), даже если на защите студент может объяснить, как следует исправлять допущенные ошибки;

«неудовлетворительно» - проект (работа) выполнен с грубыми ошибками, влияющими на основные выводы по проекту (работе), либо на защите студент

не может объяснить, как следует исправлять допущенные ошибки, либо допускает грубые ошибки в ответах на вопросы членов комиссии по пояснительной записке и графической части. В любом случае проект возвращается на доработку.

3.2. Экзамены.

На экзамены выносится материал дисциплины за семестр. При необходимости в билеты могут включаться основные вопросы, рассмотренные в предыдущем семестре. Перечень вопросов, включаемых в билеты, доводится до сведения студентов до начала подготовки к экзамену.

В билеты включаются не менее двух вопросов по лекционной части курса и в обязательном порядке – хотя бы один вопрос по практической части, или задача.

Критерии оценки:

«отлично» - выполнены все задания билета; студент свободно ориентируется в теоретических и практических вопросах и правильно отвечает на дополнительные вопросы;

«хорошо» - выполнены все задания билета, но студент допускает неточности в ответах на теоретические и практические вопросы, в т.ч. и на дополнительные;

«удовлетворительно» - выполнено практическое задание билета. Ответы на теоретическую часть билета — неполные, с ошибками, но на дополнительные вопросы ответы — в принципе верные;

«неудовлетворительно» - не выполнено практическое задание билета, либо при ответах на теоретическую часть билета и дополнительные вопросы допущены грубые ошибки и неточности, показывающие, что студент имеет серьезные пробелы в освоении дисциплины.

4. Контроль остаточных знаний. Проводится по тестовым заданиям, разработанным кафедрой. Критерии оценки разрабатываются под каждый блок тестов, но общие рекомендации - следующие:

«отлично» - правильные ответа даны на 75% вопросов теста и более;

«хорошо» - правильные ответа даны на 60-75% вопросов теста;

«удовлетворительно» - правильные ответа даны на 50-60% вопросов теста;

«неудовлетворительно» - правильные ответа даны менее чем на 50% вопросов теста.

2.1.14. Комплекты заданий для лабораторных и практических работ

Лабораторных работ рабочая программа дисциплины не предусматривает.

Задания для практических работ изложены в книгах:

Применение и техническое обслуживание микропроцессорных устройств на электростанциях и в электросетях. Ч 1, 2, 3. - М.: Издательство НЦ ЭНАС, 2000, 2001, 2002. – 134c, 120 c, 96 c.

Книги есть в библиотеке энергетического факультета АмГУ. Электронные варианты включены в электронную библиотеку кафедры энергетики. Сту-

2.1.15. Фонды тестовых и контрольных заданий для оценки качества знаний по дисциплине

Отсутствуют.

2.1.16. Комплекты экзаменационных билетов

АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Утверждено на заседании кафедры Кафедра энергетики

« 31 » октября 2006 года Факультет энергетический

Заведующий кафедрой Курс пятый

Утверждаю: Дисциплина: Микропроцессорные устройства РЗиА

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1

- 1. Предпосылки и тенденции перевода РЗ на средства ВТ
- 2. ФТОП с компенсацией погрешности по отклонению частоты
- 3. Экранированный проводной кабель связи расположен в одной шахте с заземляющим спуском. Начало и конец экрана присоединены к заземляющему устройству в разных точках. Может ли в кабели связи появиться наведенный потенциал при протекании тока по заземляющему спуску?

АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Утверждено на заседании кафедры Кафедра энергетики

« 31 » октября 2006 года Факультет энергетический

Заведующий кафедрой Курс пятый

Утверждаю: Дисциплина: Микропроцессорные устройства РЗиА

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 2

- 1. Основные понятия об архитектуре РЗ
- 2. Функциональная схема базового терминала SPAC-800
- 3. Неэкранированный проводной кабель связи, на проводах которого выполнена скрутка, расположен в одной шахте с заземляющим спуском. Может ли в устройствах, подключенных к этим проводам, появиться наведенный сигнал при протекании по заземляющему спуску тока молнии?

Утверждено на заседании кафедры

« 31 » октября 2006 года

Заведующий кафедрой

Кафедра энергетики

Факультет энергетический

Курс пятый

Утверждаю:

Дисциплина: Микропроцессорные устройства РЗиА

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 3

- 1. Повышение быстродействия МПРЗ с процедурным программированием
- 2. Проникновение помех в исполнительные органы защиты
- 3. В распределительном устройстве 10 кВ произошло срабатывание дуговой защиты. Как необходимо преобразовать сигнал о срабатывании и на какой вход микропроцессорного терминала его подать?

АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Утверждено на заседании кафедры

« 31 » октября 2006 года

Заведующий кафедрой

Кафедра энергетики

Факультет энергетический

Курс пятый

Утверждаю:

Дисциплина: Микропроцессорные устройства РЗиА

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 4

- 1. Система МПРЗ с асинхронным переформированием структур
- 2. Эффективность экранирования кабелей связи
- 3. На силовом трансформаторе произошло срабатывание газовой защиты. Как необходимо преобразовать сигнал о срабатывании и на какой вход микропроцессорного терминала его подать?

АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Утверждено на заседании кафедры

« 31 » октября 2006 года

Заведующий кафедрой

Кафедра энергетики

Факультет энергетический

Курс пятый

Утверждаю:

Дисциплина: Микропроцессорные устройства РЗиА

- 1. Универсальная МПРЗ с циклической перекоммутацией ФУ
- 2. Реле РПВ-01
- 3. Экранированный проводной кабель связи расположен в одной шахте с заземляющим спуском. Начало и конец экрана присоединены к заземляющему устройству в одной точке. Может ли в кабели связи появиться наведенный потенциал при протекании тока по заземляющему спуску?

Утверждено на заседании кафедры Кафедра энергетики

« 31 » октября 2006 года Факультет энергетический

Заведующий кафедрой Курс пятый

Утверждаю: Дисциплина: Микропроцессорные устройства РЗиА

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 6

- 1. Прогнозирующие гибкие РЗ
- 2. Быстродействующие автоматические устройства резервного включения
- 3. Проводной кабель связи расположен в одной шахте с силовым кабелем. Может ли в кабели связи появиться наведенный потенциал при протекании тока КЗ по силовому кабелю?

АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Утверждено на заседании кафедры Кафедра энергетики

« 31 » октября 2006 года Факультет энергетический

Заведующий кафедрой Курс пятый

Утверждаю: Дисциплина: Микропроцессорные устройства РЗиА

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 7

- 1. Перспективы развития измерительных преобразователей тока (ИПТ) для гибких РЗ
- 2. Назначение отдельных модулей МПРЗ
- 3. При КЗ в силовом кабеле, расположенном в одном кабельном канале с проводным кабелем связи, произошло ложное срабатывание защиты, подключенной к кабелю связи. Возможные причины? Меры, необходимые для предотвращения подобных явлений?

Утверждено на заседании кафедры

« 31 » октября 2006 года

Заведующий кафедрой

Кафедра энергетики

Факультет энергетический

Курс пятый

Утверждаю:

Дисциплина: Микропроцессорные устройства РЗиА

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 8

- 1. Адаптивное согласование МПРЗ с объектами защиты
- 2. Аппаратная часть цифровых реле: хранение информации и каналы связи
- 3. Экранированный проводной кабель связи расположен в одной шахте с заземляющим спуском. Начало и конец экрана присоединены к заземляющему устройству в одной точке. Может ли в кабели связи появиться наведенный потенциал при протекании по заземляющему спуску тока молнии?

АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Утверждено на заседании кафедры

« 31 » октября 2006 года

Заведующий кафедрой

Кафедра энергетики

Факультет энергетический

Курс пятый

Утверждаю:

Дисциплина: Микропроцессорные устройства РЗиА

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 9

- 1. Использование в ИПТ гальваномагнитных элементов (датчики Холла)
- 2. Статические реле защиты
- 3. В сетях 110 кВ и выше необходимо контролировать изоляцию всех трех фаз. Но терминалов микропроцессорной защиты устанавливается только два. Как осуществляется контроль трех фаз?

АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Утверждено на заседании кафедры

« 31 » октября 2006 года

Кафедра энергетики

Факультет энергетический

Заведующий кафедрой Курс пятый

Утверждаю:

Дисциплина: Микропроцессорные устройства РЗиА

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 10

- 1. Дифференцирующие измерительные преобразователи тока. Пояс Роговского.
- 2. Перенастройка уставок микропроцессорной токовой отсечки при пусках двигателей
- 3. В микропроцессорных терминалах предусмотрены все необходимые устройства релейной защиты и автоматики защищаемого элемента силовой цепи. Зачем предусматривается установка двух терминалов на каждый объект?

АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Утверждено на заседании кафедры

« 31 » октября 2006 года

Заведующий кафедрой

Утверждаю:

Кафедра энергетики

Факультет энергетический

Курс пятый

Дисциплина: Микропроцессорные устройства РЗиА

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 11

- 1. Входные преобразователи аналоговых и дискретных сигналов
- 2. Токовая ступенчатая защита в терминале БМРЗ-04
- 3. В одной шахте с силовым бронированным кабелем расположены проводной кабель связи и линия волоконно-оптической связи. Какой канал связи будет работать более устойчиво при протекании тока КЗ по силовому кабелю?

АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Утверждено на заседании кафедры

« 31 » октября 2006 года

Заведующий кафедрой

Утверждаю:

Кафедра энергетики

Факультет энергетический

Курс пятый

Дисциплина: Микропроцессорные устройства РЗиА

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 12

- 1. Особенности обработки информации в цифровых реле.
- 2. Фильтры симметричных составляющих для схем с операционными усилителями
- 3. В одном кабельном канале расположены силовой кабель, проводной кабель связи и линия волоконнооптической связи. Какой канал связи будет работать более устойчиво при протекании тока КЗ по силовому кабелю?

Утверждено на заседании кафедры « 31 » октября 2006 года

Заведующий кафедрой

Кафедра энергетики

Факультет энергетический

Курс пятый

Утверждаю:

Дисциплина: Микропроцессорные устройства РЗиА

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 13

- 1. Сравнительные характеристики электромеханических реле, панелей и МП-терминалов
- 2. Узел сравнения, используемый в статических реле и МП-терминалах
- 3. В одной шахте с силовым бронированным кабелем расположены проводной кабель связи и линия волоконно-оптической связи. Какой канал связи будет работать более устойчиво при протекании блуждающего тока по броне силового кабеля?

АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Утверждено на заседании кафедры

« 31 » октября 2006 года

Заведующий кафедрой

Кафедра энергетики

Факультет энергетический

Курс пятый

Утверждаю:

Дисциплина: Микропроцессорные устройства РЗиА

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 14

- 1. Узел сравнения для обратной и нулевой последовательностей.
- 2. Защита от перегрузок возможности МП-терминалов
- 3. На одноцепной воздушной линии 220 кВ грозозашитный трос заменили на волоконно- оптическую линию связи с металлической броневой оболочкой. Насколько будет искажаться информация при ударе молнии в трос?

АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Утверждено на заседании кафедры

« 31 » октября 2006 года

Заведующий кафедрой

Кафедра энергетики

Факультет энергетический

Курс пятый

Утверждаю:

Дисциплина: Микропроцессорные устройства РЗиА

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 15

- 1. Фильтры симметричных составляющих для схем с операционными усилителями
- 2. ФТОП с компенсацией погрешности по отклонению частоты
- 3. На двухцепной воздушной линии 220 кВ грозозашитный трос заменили на волоконно- оптическую линию связи с металлической броневой оболочкой. Насколько будет искажаться информация при ударе молнии в трос?

2.1.17. Карта обеспеченности дисциплины кадрами профессорско-преподавательского состава

Вид нагрузки	Профессорско-преподавательский состав
Лекции	Козлов А.Н., к.т.н., доцент
Практические занятия	Козлов А.Н., к.т.н., доцент
Экзамен	Козлов А.Н., к.т.н., доцент