Министерство науки и высшего образования Российской Федерации

АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

И.В. Абакумова

ОБРАБОТКА РЕЗУЛЬТАТОВ ОДНОФАКТОРНОГО ЭКСПЕРИМЕНТА Часть 2

Учебно-методическое пособие

Благовещенск Издательство АмГУ 2020

Рекомендовано учебно-методическим советом АмГУ

Рецензент:

Чалкина Н.А., доцент кафедры общей математики и информатики, канд.neд.нayк

Абакумова И.В.

Обработка результатов однофакторного эксперимента. Часть 2.: Учебнометодическое пособие/ И.В. Абакумова. – Благовещенск: Изд-во АмГУ, 2020.-36 с.

Учебно-методическое пособие посвящено методам математической обработки результатов исследования технологических процессов и объектов в текстильной и легкой промышленности, а также в сфере оказания услуг. В нем рассматриваются статистическая обработка сервисных первичных эксперимента, определение коэффициентов результатов регрессии параболической составление уравнения регрессии И однофакторной пособие модели. В описаны методы определения адекватности уравнения регрессии, оценка значимости коэффициентов регрессии, а также определение доверительных интервалов средних значений выходного параметра.

Пособие может быть использовано при изучении дисциплин «Методы научных исследований», «Методы и средства исследования», а также для выполнения курсовых и выпускных квалификационных работ студентами, обучающимися по направлениям подготовки 29.03.05 — Конструирование изделий легкой промышленности, 29.03.02 — Технологии и проектирование текстильных изделий, 43.03.01 — Сервис, 43.03.03 — Гостиничное дело.

[©] Абакумова И.В., 2020

[©] Амурский государственный университет, 2020

ВВЕДЕНИЕ

Экономические реформы в сфере производства товаров народного потребления и оказания услуг в значительной степени зависят от профессиональной подготовки специалистов, от их способности быстро и эффективно решать поставленные перед ними сложные и разнообразные практические задачи. Одной из сфер, требующих высокой профессиональной подготовки специалистов, является изучение и оценка свойств материалов, изделий, процессов, услуг и работ, связанных с ними. Поэтому повышаются требования к будущим специалистам в области овладения ими современными высокоэффективными научными методами исследования.

Целью изучения дисциплин «Методы научных исследований» и «Методы и средства исследований» является изучение современных методов и средств исследования технологических процессов и объектов в текстильной и легкой промышленности, а также в сфере оказания сервисных услуг.

Задача данных дисциплин состоит в том, чтобы научить студентов:

- современным методам исследования;
- методам статистической обработки и интерпретации результатов исследований;
 - методам планирования научных и технических экспериментов;
- проведению вычислительных экспериментов с использованием стандартных программных средств, позволяющих вырабатывать стратегию деятельности предприятия.

Данное учебно-методическое пособие посвящено вопросам изучения статистического анализа результатов исследования, применяющихся при решении широкого класса прикладных задач и являющихся важной составляющей курсов «Методы научных исследований» и «Методы и Экспериментальные исследований». исследования средства являются основным средством получения информации об объектах и процессах окружающего мира и связаны с решением ряда проблем по организации измерений И обработки их результатов. В СВЯЗИ c

информационных технологий многие практические задачи исследовательской работы эффективно решаются c применением специального программного обеспечения. Это освобождает исследователя от громоздких и трудоемких расчетов, однако для правильной интерпретации результатов, полученных при использовании того или иного необходимо вычислительного аппарата, каждой понимать смысл статистической характеристики, оценочного критерия или коэффициента.

Данное учебно-методическое пособие рекомендуется для студентов, обучающихся по направлениям подготовки 29.03.05 — Конструирование изделий легкой промышленности, 29.03.02 — Технологии и проектирование текстильных изделий, 43.03.01 — Сервис, 43.03.03 — Гостиничное дело.

1. ВЫБОР ВИДА МАТЕМАТИЧЕСКОЙ МОДЕЛИ

При обработке экспериментальных данных одной из важных задач является задача определения вида функциональной зависимости, наилучшим образом описывающей экспериментальные данные. Это связано с тем, что изначально правильно подобранный вид адекватной математической модели освобождает исследователя от повторных вычислений и тем самым повышает эффективность исследовательской работы. Выбор модели, как правило, должен производиться с использованием результатов предыдущих исследований, а также на основании детального изучения физических закономерностей изучаемого процесса или явления. В целях выбора функциональной связи заранее выдвигают гипотезу о том, к какому классу может принадлежать функция f, а затем подбирают «лучшую» функцию в этом классе. Выбранный класс функций должен обладать некоторой «гладкостью», т. е. «небольшие» изменения значений аргументов должны вызывать «небольшие» изменения значений функций.

В общем случае различают два вида уравнений регрессии:

- *нелинейные*, статистический анализ которых осуществляется методом нелинейной регрессии;
- *линейные* статистический анализ которых осуществляется методом линейной регрессии.

Для нелинейных эмпирических функций регрессии в настоящее время существует два основных метода:

- *линеаризация*, т.е. приведение нелинейных функций к линейному виду с помощью специальных преобразований;
- *аппроксимация* исследуемых зависимостей многочленами (параболическая).

Необходимо отметить, что не существует строгих математических методов, которые позволили бы априори, т.е. до проведения регрессионного анализа, определить общий вид функции. Обычно на практики вид функции регрессии выбирают по характеру расположения точек на корреляционном поле. Выбор общего вида экспериментальной функции не является

однозначным, т.е. одну и ту же зависимость можно аппроксимировать либо многочленом, либо показательной, степенной или логарифмической функцией, т.е. функциями, допускающими линеаризацию.

Рассмотрим второй основной метод подбора нелинейных эмпирических функций регрессии, т.е. аппроксимацию используемых зависимостей многочленами (параболами) вида:

$$Y_{R}(X) = a_{0} + a_{1}X + a_{11}X^{2}$$

Для обоснования выбора порядка (максимальной степени) параболы необходимо исходить из следующего:

- наибольшее число экстремальных точек, которые может иметь парабола порядка n, равно (n-1), т.е. парабола второго порядка может иметь не больше одного экстремума, парабола третьего порядка не более двух экстремальных точек и т.д.;
- согласно теореме Вейерштрасса, любую непрерывную функцию (в нашем случае неизвестную истинную криволинейную функцию регрессии) можно приблизить на конечном интервале сколь угодно точно параболой порядка n;
- в большинстве случаев при обработке экспериментальных данных оказывается, что аппроксимация эмпирических зависимостей параболами выше четвертого порядка приводит к очень незначительному увеличению точности. Поэтому считается практически нецелесообразным применять параболы выше четвертого порядка.

2. КВАДРАТИЧНАЯ ПАРАБОЛИЧЕСКАЯ ОДНОФАКТОРНАЯ РЕГРЕССИОННАЯ МОДЕЛЬ (МОДЕЛЬ ВТОРОГО ПОРЯДКА)

При определении параболической модели матрица планирования однофакторного эксперимента и условия проведения его одинаковы, как и при получении линейной регрессионной модели. Число уровней фактора, или число опытов в матрице планирования, обычно принимают N=5...12.

Рассмотрим операции, которые совершает исследователь при обработке данных этого эксперимента, на примере, в котором определялось влияние коэффициента крутки X (число кручений на 1 M) на разрывную нагрузку Y (дан) для льняной пряжи 333 текс. В табл.1 приведены значения X_u , \overline{Y}_u и дисперсии $S^2_u\{Y\}$, полученные по данным пяти повторных опытов (m=5) при каждом уровне фактора X_u .

Tаблица 1 Расчет основных статистических характеристик

						v				
				Y_{uv}			m	_		
X_u	и	1	2	3	4	5	$\sum_{v=1}^{Y} uv$	Y_u	$S^2_{u}\{Y\}$	W_R
										1
60	1	4,4	4,6	4,8	5,4	4,7	23,9	4,78	0,142	3,579
80	2	6,7	6,4	6,6	6,1	6	31,8	6,36	0,093	3,691
100	3	7,2	6,5	7,1	7	6,8	34,6	6,92	0,077	3,754
120	4	6,7	6,5	6,2	6,1	6,8	32,3	6,46	0,093	3,691
140	5	6,1	6,3	5,5	5,7	6,1	29,7	5,94	0,108	3,654

2.1. Исключение резко выделяющихся данных

Данная операции осуществляется аналогично как и для определения линейной однофакторной регрессионной модели.

Рассчитанные по формулам (1) и (2) значения среднего арифметического \overline{Y}_u и дисперсии $S^2_u\{Y\}$ для каждого опыта приведены в таблице 1:

$$\overline{Y}_{u} = \frac{Y_{1} + Y_{2} + \dots + Y_{m}}{m} = \frac{\sum_{v=1}^{m} Y_{uv}}{m},$$
(1)

$$S^{2}\left\{Y\right\} = \frac{1}{m-1} \sum_{\nu=1}^{m} (Y_{u\nu} - \overline{Y}_{u})^{2}.$$
 (2)

Для исключения резко выделяющихся данных необходимо определить Для этого определяются расчетные значения критерия Смирнова-Грабса по формулам (3-4):

$$V_{R\max} = \frac{(Y_{i\max} - \overline{Y})}{S\{Y\}} \sqrt{\frac{m}{m-1}}$$
(3)

$$V_{R\min} = \frac{(\overline{Y} - Y_{i\min})}{S\{Y\}} \sqrt{\frac{m}{m-1}}$$
(4)

Рассмотрим эту операцию при анализе первого опыта матрицы u=1, когда X=60, Y_{uvmax} =5,4, Y_{uvmin} =4,4:

$$V_{R \max 1} = \frac{5,4-4,78}{\sqrt{0,142}} \sqrt{\frac{5}{5-1}} = 1,839$$

$$V_{R \min 1} = \frac{4,78 - 4,4}{\sqrt{0,142}} \sqrt{\frac{5}{5 - 1}} = 1,127$$

По приложению 1 находим, что $V_T[p_D=0.95; m=5]=1.869$. Так как $V_{Rmax} < V_T$ и $V_{Rmin} < V_T$, то рассмотренные значения $Y_{uvmax} = 5.4$ и $Y_{uvmin} = 4.4$ не являются резко выделяющимися и остаются для дальнейшей статистической обработки.

Аналогично рассчитываются расчетные значения критерия Смирнова-Грабса V_{Rmax} и V_{Rmin} для других опытов матрицы, затем они сравниваются с табличным значением критерия $V_{\rm T}$. Если расчетные значения критерия Смирнова-Грабса превышают табличное, то соответствующие значения Y_{uvmax} или Y_{uvmin} исключаются из дальнейшего расчета, а среднее значение и дисперсия пересчитываются для соответствующего опыта матрицы.

2.2. Проверка гипотезы о нормальном распределении случайных величин Y_{uv}

Проверка этой гипотезы для каждого u—го опыта матрицы состоит в определении расчетного значения критерия W_R по формулам (5-6):

$$W_{R} = \frac{Q^{2}}{S_{u}^{2}\{Y\}},\tag{5}$$

где

$$Q = q_m(Y_m - Y_1) + \dots + q_{m-k+1}(Y_{m-k+1} - Y_k),$$
(6)

$$Y_m \le Y_{m-1} \le \ldots \le Y_2 \le Y_1$$

 $k = \frac{m}{2}$ - при четном числе m;

 $k = \frac{m-1}{2}$ - при нечетном числе m.

Для 1-го опыта матрицы при u=1 и X=60 располагаем значения Y_{uv} по возрастанию: $5,4 \ge 4,8 \ge 4,7 \ge 4,6 \ge 4,4$.

$$k = \frac{m-1}{2} = \frac{5-1}{2} = 2$$

Используя приложение 5, находим q_1 =0,6646 и q_2 =0,2413 и вычисляем значение Q_I и W_{RI} :

$$Q_1 = 0.6646(5.4 - 4.4) + 0.2413(4.8 - 4.6) = 0.713$$

$$W_{R1} = \frac{0.713^2}{0.142} = 3.579$$

Расчетное значение W_{RI} сравнивают с табличным W_T , которое определяется по приложению 6. W_T определяется для заданной доверительной вероятности p_D и известного числа повторных опытов m. Для рассматриваемого примера $W_T[p_D=0.95; m=5]=0.762$.

Так как расчетное значение W_{RI} превышает табличное значение W_T для выбранной доверительной вероятности, то гипотеза о нормальном распределении случайных величин не отвергается.

В табл. 1 приведены значения W_R и для других опытов матрицы. Эти значения также превышают табличное, и поэтому первое условие о возможности применения регрессионного анализа удовлетворяется.

2.3. Проверка гипотезы об однородности дисперсий в опытах матрицы

Так как число повторных опытов (m=5) одинаково для всех опытов матрицы, то для проверки однородности дисперсий применяется критерий Кочрена, расчетное значение которого определяется по формуле (7):

$$G_{R} = \frac{S_{u \max}^{2} \{Y\}}{\sum_{u=1}^{N} S_{u}^{2} \{Y\}}$$

$$0.142$$
(7)

$$G_R = \frac{0.142}{0.513} = 0.277$$

Расчетное значение G_R сравнивается с табличным значением G_T , которое определяют по приложению 4 в зависимости от числа опытов в матрице N и числа степеней свободы дисперсии $f\{S^2_u\}=m-1$ для заданной доверительной вероятности p_D . В рассматриваемом примере $G_T[p_D=0.95;$ N=5; f=5-1=4]=0.5441. Так как $G_R < G_T$, то гипотеза об однородности дисперсий, т.е. равноточности и воспроизводимости опытов, не отвергается.

Если $G_R > G_T$, то дисперсии в N рядах измерений неоднородны. После отбрасывания $S^2_{u\ max}\{Y\}$ описанную выше процедуру следует повторить для N-1 рядов измерений.

Если число повторных опытов неодинаково при различных уровнях факторов, то для проверки однородности дисперсий используется критерий Бартлера, расчетное значение которого равно:

$$B_R = \frac{2,303}{C} \left[f \lg S_{(1)}^2 \{Y\} - \sum_{u=1}^N f_u \lg S_u^2 \{Y\} \right], \tag{8}$$

где
$$C = 1 + \frac{1}{3(N-1)} \left(\sum_{u=1}^{N} \frac{1}{f_u} - \frac{1}{f} \right)$$
 (9)

 $S_{(1)}^{\,2}$ - средняя дисперсия выходного параметра в опытах матрицы, определяем ая по формуле:

$$S_{(1)}^{2}\{Y\} = \frac{1}{f} \sum_{u=1}^{N} f_{u} S_{u}^{2}\{Y\}$$
 (10)

Число степеней свободы этой дисперсии равно:

$$f = \sum_{u=1}^{N} f_u$$

$$f_u = m_u - 1$$
(11)

Если $f_u>2$, следовательно, величина B_R распределена как χ^2 -критерий с числом степеней свободы N-1, который определяют по приложению 2. Если $B_R < B_T = \chi^2[p_D; f=N-1]$, то это свидетельствует об отсутствии значимого различия между дисперсиями $S^2_u\{Y\}$, т.е. об их однородности.

2.4. Определение средней дисперсии выходного параметра в опытах матрицы

Если в опытах матрицы дисперсии однородны и число повторных опытов одинаково, то средняя дисперсия определяется по формуле:

$$S_{(1)}^2 = \frac{1}{N} \sum_{u=1}^{N} S_u^2 \{Y\}$$
 (12)

Число степеней свободы этой дисперсии равно:

$$f\left\{S_{(1)}^{2}\right\} = N(m-1) \tag{13}$$

Средняя дисперсия характеризует средний разброс значений выходного параметра относительно его средних значений при каждом уровне факторов, т.е. ошибку опытов в эксперименте. В рассматриваемом примере эта дисперсия, или, как ее называют дисперсия воспроизводимости, равна:

$$S_{(1)}^2 = \frac{0.513}{5} = 0.1026$$

 $f\left\{S_{(1)}^2\right\} = 5 \cdot (5-1) = 20.$

Если в опытах матрицы дисперсии однородны и число повторных опытов неодинаково при различных уровнях факторов, то средняя дисперсия определяется по формуле (10), а число степеней свободы по формуле (11).

.

2.5. Определение подходящего вида регрессионной модели

Для определения подходящего вида регрессионной модели используют следующую информацию:

- 1) графическую взаимосвязь $\overline{Y} = f(X)$ между средними значениями выходного параметра для каждого уровня факторов и значением фактора по данным эксперимента. При сопоставлении этого графика с графиками известных функций устанавливают вид уравнения;
- 2) характер изменения разделенных и неразделенных разностей первого порядка, определяемых по данным эксперимента по формулам:

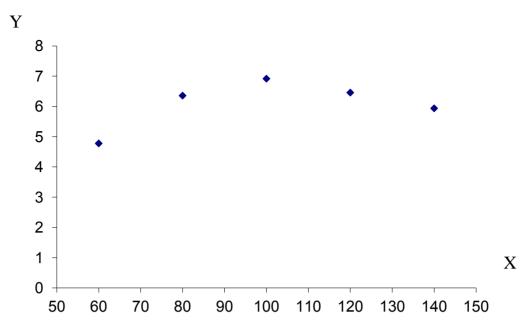
$$\Delta_{R1} = \frac{\overline{Y}_2 - \overline{Y}_1}{X_2 - X_1}, \dots, \Delta_{Ru} = \frac{\overline{Y}_u + 1 - \overline{Y}_u}{X_{u+1} - X_u}, \dots, \Delta_{R(N-1)} = \frac{\overline{Y}_N - \overline{Y}_{N-1}}{X_N - X_{N-1}}$$
(14)

$$\Delta_{H1} = \overline{Y}2 - \overline{Y}1, ..., \Delta_{Hu} = \overline{Y}u + 1 - \overline{Y}u, ..., \Delta_{H(N-1)} = \overline{Y}_N - \overline{Y}_{N-1}$$
 (15)

Неразделенные разности первого порядка Δ_{R1} используют, когда интервал варьирования факторов постоянный:

$$I_X = X_2 - X_1 = X_{u+1} - X_u = X_N - X_{N-1} = const.$$

В рассматриваемом примере графическая взаимосвязь $\overline{Y} = f(X)$ между средними значениями выходного параметра \overline{Y} для каждого уровня факторов и значением фактора X приведена на рис. 1. При сопоставлении этого графика с графиками известных функций можно сделать вывод, что для описания экспериментальных данных наиболее подходит параболическая модель.



Puc. 1. Зависимость разрывной нагрузки от крутки льняной пряжи

В рассматриваемом примере интервал варьирования факторов постоянный и равен I_X =80-60=100-80=120-100=140-120=20. Поэтому определяем неразделенные разности первого порядка по формуле (15):

$$\Delta_{H1} = 6,36 - 4,78 = 1,58$$

$$\Delta_{H2} = 6,92 - 6,36 = 0,56$$

$$\Delta_{H3} = 6,46 - 6,92 = -0,46$$

$$\Delta_{H4} = 5,94 - 6,46 = -0,52$$

Так как неразделенные разности первого порядка $\Delta_{H \, \text{max}} - \Delta_{H \, \text{min}} = 1,58 - 0,46 = 1,12$, превышают удвоенную величину среднеквадратической ошибки эксперимента $2S_{(1)}\{Y\}=0,641$, поэтому они являются нетождественными, и экспериментальные данные не могут быть описаны линейным уравнением.

Таким образом, для описания экспериментальных данных условно можно принять полином второй степени или квадратичную параболическую однофакторную модель:

$$Y_R = a_0 + a_1 X_1 + a_{11} X_1^2 (16)$$

2.6. Определение коэффициентов регрессии

Если дисперсии выходного параметра для каждого уровня фактора однородны, то для определения коэффициентов регрессии в уравнении (16) можно применять метод наименьших квадратов. Используя условие $\sum_{u=1}^{N} (Y_u - Y_{Ru})^2 = \min$, устанавливают следующие нормальные уравнения: u = 1

$$\begin{cases}
a_{0}N + a_{1}\sum_{u=1}^{N}X_{u} + a_{11}\sum_{u=1}^{N}X_{u}^{2} = \sum_{u=1}^{N}\overline{Y}_{u} \\
a_{0}\sum_{u=1}^{N}X_{u} + a_{1}\sum_{u=1}^{N}X_{u}^{2} + a_{11}\sum_{u=1}^{N}X_{u}^{3} = \sum_{u=1}^{N}X_{u}\overline{Y}_{u} \\
a_{0}\sum_{u=1}^{N}X_{u}^{2} + a_{1}\sum_{u=1}^{N}X_{u}^{3} + a_{11}\sum_{u=1}^{N}X_{u}^{4} = \sum_{u=1}^{N}X_{u}^{2}\overline{Y}_{u}
\end{cases} \tag{17}$$

где N – общее число опытов в матрице планирования эксперимента.

Величины $\sum X_u$, $\sum X_u^2$ и т.д., входящие в нормальные уравнения (17), могут быть определены по данным эксперимента и для рассматриваемого примера сведены в табл. 2.

 Таблица 2

 Расчет сумм для определения коэффициентов регрессии

и	X_u	X_u^2	X_u^3	X_u^4	$\overline{Y_u}$	$X_u \overline{Y_u}$	$X_u^2 \overline{Y_u}$
1	60	3600	216000	12960000	4,78	286,8	17208
2	80	6400	512000	40960000	6,36	508,8	40704
3	100	10000	1000000	100000000	6,92	692	69200
4	120	14400	1728000	207360000	6,46	775,2	93024
5	140	19600	2744000	384160000	5,94	831,6	116424
\sum	500	54000	6200000	745440000	30,46	3094,4	336560

Подставляя эти значения в уравнения (17) получаем систему уравнений:

$$\begin{cases}
5a_0 + 500a_1 + 54000a_{11} = 30,46 \\
500a_0 + 54000a_1 + 6200000a_{11} = 3094,4 \\
54000a_0 + 62000000a_1 + 745440000a_{11} = 336560
\end{cases}$$

Данную систему уравнений можно решить относительно a_0 , a_1 , a_{11} методом последовательного исключения неизвестных или с помощью матричного метода.

Определение коэффициентов регрессии в уравнении и статистических характеристик параметров уравнения упрощается, если в матрице планирования эксперимента используются кодированные значения факторов и опыты располагаются симметрично относительно основного уровня фактора. Эти условия удовлетворяются в рассматриваемом примере.

Значение основного уровня фактора определяется по формуле:

$$X_0 = \overline{X} = \frac{X_{\min} + X_{\max}}{2} \tag{18}$$

Интервал варьирования фактора рассчитывается:

$$I_{x} = \frac{X_{\text{max}} - X_{\text{min}}}{N - 1} \tag{19}$$

Кодированные значения уровней фактора определяют по формуле:

$$x_{1} = \frac{X_{1} - X_{0}}{I_{x}}$$

$$x_{2} = \frac{X_{2} - X_{0}}{I_{x}}$$
(20)

и тт.д

Для рассматриваемого примера эти значения равны:

$$X_0 = \frac{60 + 140}{2} = 100$$

$$I_x = \frac{140 - 60}{5 - 1} = 20$$

$$x_1 = \frac{60 - 100}{20} = -2$$

$$x_2 = \frac{80 - 100}{20} = -1$$

$$x_3 = \frac{100 - 100}{20} = 0$$

$$x_4 = \frac{120 - 100}{20} = 1$$

$$x_5 = \frac{140 - 100}{20} = 2$$

Матрица планирования эксперимента для кодированных значений фактора X приведена в табл. 3.

Матрица планирования эксперимента для кодированных значений фактора

и	X_u	x_u	x_0	$\overline{Y_u}$	x_u^2	$x_u \overline{Y_u}$	$x_u^2 \overline{Y_u}$	x_u^4
1	60	-2	1	4,78	4	-9,56	19,12	16
2	80	-1	1	6,36	1	-6,36	6,36	1
3	100	0	1	6,92	0	0	0	0
4	120	1	1	6,46	1	6,46	6,46	1
5	140	2	1	5,94	4	11,88	23,76	16
Σ	500	0	5	30,46	10	2,42	55,7	34

Матрица планирования эксперимента (см. табл. 3) обладает свойством ортогональности:

$$\sum_{u=1}^{N} x_0 x_u = 0$$

Поэтому решение системы уравнений (17) исключается, и расчет коэффициентов регрессии полинома второго порядка ведется по следующим формулам:

$$Y_{R} = b_{0} + b_{1}x + b_{11}x^{2} \tag{21}$$

$$b_0 = \frac{1}{R} \sum_{i=1}^{N} x_u^4 \cdot \sum_{i=1}^{N} x_0 \overline{Y_u} - \frac{1}{R} \sum_{i=1}^{N} x_u^2 \cdot \sum_{i=1}^{N} x_u^2 \overline{Y_u} - \frac{1}{R}$$
(22)

$$b_{1} = \frac{\sum_{u=1}^{N} x_{u} \overline{Y_{u}}}{\sum_{u=1}^{N} x_{u}^{2}}$$
 (23)

$$b_{11} = \frac{N}{B} \sum_{u=1}^{N} x_u^2 \overline{Y_u} - \frac{1}{B} \sum_{u=1}^{N} x_u^2 \cdot \sum_{u=1}^{N} x_0 \overline{Y_u}$$
 (24)

$$B = N \sum_{u=1}^{N} x_u^4 - \left(\sum_{u=1}^{N} x_u^2\right)^2 \tag{25}$$

Подставляя в эти формулы соответствующие значения сумм из табл. 3, получаем:

$$B = 5 \cdot 34 - 10^{2} = 70$$

$$b_{0} = \frac{1}{70} \cdot 34 \cdot 30,46 - \frac{1}{70} \cdot 10 \cdot 55,7 = 6,838$$

$$b_{1} = \frac{2,42}{10} = 0,242$$

$$b_{11} = \frac{5}{70} \cdot 55,7 - \frac{1}{70} \cdot 10 \cdot 30,46 = -0,373$$

Уравнение (21) в кодированных значениях фактора x имеет вид:

$$Y_R = 6,838 + 0,242x - 0,373x^2 (26)$$

Переход от коэффициентов b_i при кодированных значениях фактора к коэффициентам a_i при натуральных значениях фактора для параболического уравнения осуществляется по формулам:

$$a_{1} = \frac{b_{1}}{I_{x}} - \frac{2b_{11}}{I_{x}^{2}} \overline{X}$$
 (27)

$$a_{11} = \frac{b_{11}}{I_{x}^{2}} \tag{28}$$

$$a_0 = b_0 - \frac{b_1}{I_x} \overline{X} + \frac{b_{11}}{I_x^2} \overline{X}^2 \tag{29}$$

Для рассматриваемого примера коэффициенты регрессии при натуральных значениях фактора рассчитываются:

$$a_1 = \frac{0,242}{20} - \frac{2 \cdot (-0,373)}{20^2} \cdot 100 = 0,199$$

$$a_{11} = \frac{-0,373}{20^2} = -0,0009$$

$$a_0 = 6,838 - \frac{0,242}{20} \cdot 100 + \frac{(-0,373)}{20^2} \cdot 100^2 = -3,694$$

Уравнение в натуральных значениях фактора X имеет вид:

$$Y_R = -3,694 + 0,199X - 0,0009X^2 (30)$$

2.7. Определение адекватности полученного уравнения

Для определения адекватности полученного уравнения используют критерий Фишера, расчетное значение которого определяют по формуле:

$$F_R = \frac{S_{\mu a \partial}^2 \{Y\}}{S^2 \{\overline{Y}\}} \tag{31}$$

где $S^2_{\textit{над}}\{Y\}$ — дисперсия, характеризующая неадекватность, которая определяется по формуле (32);

 $S^2\{\overline{Y}\}$ — дисперсия среднего значения выходного параметра, определяемая по формуле (34).

$$S_{\mu\alpha\delta}^{2} = \frac{\sum (\overline{Y_{u}} - Y_{Ru})^{2}}{N - N_{\nu}}$$
 (32)

где N_k – число коэффициентов в уравнении (26);

 Y_{Ru} — значение выходного параметра для u-го опыта, определяемое по формуле (26).

Число степеней свободы для этой дисперсии определяется:

$$f\left\{S_{n\alpha\delta}^{2}\right\} = N - N_{k}$$

$$f\left\{S_{n\alpha\delta}^{2}\right\} = 5 - 3 = 2$$
(33)

Для определения дисперсии, характеризующей неадекватность, составляем таблицу 4.

и	x_u	$\overline{Y_u}$	Y_R	$\overline{Y_u}$ - Y_R	$(\overline{Y_u} - Y_R)^2$
1	-2	4,78	4,862	-0,082	0,0067
2	-1	6,36	6,223	0,137	0,0188
3	0	6,92	6,838	0,082	0,0067
4	1	6,46	6,707	-0,247	0,061
5	2	5,94	5,830	0,11	0,0121
\sum	0	30,46	30,46		0,1053

Пользуясь данными табл. 4, находим:

$$S_{ao}^{2}{Y} = \frac{0,1053}{5-3} = 0,0527$$

Далее определяем дисперсию среднего значения выходного параметра:

$$S^{2}\left\{\overline{Y}\right\} = \frac{S_{(1)}^{2}\left\{Y\right\}}{m} = \frac{\sum_{u=1}^{N} S_{u}^{2}\left\{Y\right\}}{m \cdot N}$$

$$S^{2}\left\{\overline{Y}\right\} = \frac{0,1026}{5} = 0,0205$$
(34)

Расчетное значение критерия Фишера определяем по формуле (31):

$$F_R = \frac{0,0527}{0,0205} = 2,566$$

Табличное значение критерия Фишера находим по приложению 3 $F_T[p_D=0.95; \ f\{S_{(1)}^2\}=20; f\{S_{nao}^2\}=2]=3,49$. В рассматриваемом примере $F_R=2.566 < F_T=3,49$, поэтому гипотеза об адекватности линейной модели не отвергается.

2.8. Определение значимости коэффициентов регрессии и их доверительных интервалов

Для оценки значимости коэффициентов регрессии используется критерий Стьюдента, расчетное значение которого определяется по формуле:

$$t_R\{b_i\} = \frac{|b_i|}{S\{b_i\}} \tag{35}$$

где $S\{b_i\}$ — оценка среднего квадратического отклонения коэффициента регрессии b_i .

Для оценки дисперсий коэффициентов регрессии b_0 , b_1 и b_{11} в уравнении (26) используют формулы:

$$S^{2}\{b_{0}\} = \frac{S^{2}\{\overline{Y}\}}{B} \sum_{u=1}^{N} x_{u}^{4}$$
(36)

$$S^{2}\{b_{1}\} = \frac{S^{2}\{\overline{Y}\}}{\sum_{u=1}^{N} x_{u}^{2}}$$
 (37)

$$S^{2}\{b_{11}\} = \frac{N \cdot S^{2}\{\overline{Y}\}}{R} \tag{38}$$

Определим дисперсии коэффициентов регрессии для рассматриваемого примера:

$$S^{2}{b_{0}} = \frac{0,0205}{70} \cdot 34 = 0,00997$$

$$S{b_{0}} = 0,0998$$

$$S^{2}{b_{1}} = \frac{0,0205}{10} = 0,00205$$

$$S{b_{1}} = 0,0453$$

$$S^{2}{b_{11}} = \frac{5 \cdot 0,0205}{70} = 0,0015$$

$$S{b_{11}} = 0,0383$$

$$t_R \{b_0\} = \frac{6,838}{0,0998} = 68,49$$

$$t_R \{b_1\} = \frac{0,242}{0,0453} = 5,34$$

$$t_R \{b_{11}\} = \frac{0,373}{0,0383} = 9,74$$

Расчетные значения критерия Стьюдента определяем по формуле (35):

По приложению 2 находим табличное значение критерия Стьюдента при условии, что доверительная вероятность p_D =0,95 и число степеней свободы, определяемое по формуле (13) $f\{S^2_{(I)}\}$ =20. Следовательно, $t_T[p_D$ =0,95;f=20]=2,086.

Так как $t_R\{b_i\}$ > t_T , то полученные коэффициенты значимы и, следовательно, связь между Y и X значима.

Доверительные абсолютные ошибки коэффициентов регрессии вычисляем по формуле:

$$\varepsilon\{b_i\} = S\{b_i\} \cdot t_T[p_D; f\{S^2\}]$$

$$\varepsilon\{b_0\} = 0.0998 \cdot 2.086 = 0.208$$

$$\varepsilon\{b_1\} = 0.0453 \cdot 2.086 = 0.094$$

$$\varepsilon\{b_{11}\} = 0.0383 \cdot 2.086 = 0.08$$
(39)

Доверительные интервалы для истинных значений коэффициентов регрессии b_0 , b_1 , b_{11} в параболическом уравнении (21) определяются неравенством:

$$\begin{aligned} b_i - \varepsilon\{b_i\} &\leq b_i \leq b_i + \varepsilon\{b_i\} \\ 6,838 - 0,208 \leq b_0 \leq 6,838 + 0,208 \\ 6,63 \leq b_0 \leq 7,046 \\ 0,242 - 0,094 \leq b_1 \leq 0,242 + 0,094 \\ 0,148 \leq b_1 \leq 0,336 \\ -0,373 - 0,08 \leq b_{11} \leq -0,373 + 0,08 \\ -0,453 \leq b_{11} \leq -0,293 \end{aligned} \tag{40}$$

2.9. Определение доверительных интервалов средних значений выходного параметра при фиксированном значении фактора

Чтобы определить степень отклонения расчетных значений выходного параметра Y_{Ru} от истинного его значения при каждом уровне фактора X_u , определяем доверительные ошибки $\varepsilon\{Y_{Ru}\}$ расчетного значения выходного параметра и доверительные интервалы среднего значения выходного параметра.

Доверительные ошибки расчетных значений выходного параметра для каждого уровня фактора рассчитываются по формуле:

$$\varepsilon\{Y_{Ru}\} = S\{Y_{Ru}\} \cdot t_T[p_d; f\{S_{(1)}^2\}], \tag{41}$$

где $S^2\{Y_{Ru}\}$ - дисперсия расчетного значения выходного параметра Y_{Ru} для каждого значения X_u , определяем ая по формуле:

$$S^{2}{Y_{Ru}} = \left[\frac{1}{B} \sum_{u=1}^{N} x_{u}^{4} + \left(\frac{1}{\sum_{u=1}^{N} x_{u}^{2}} - \frac{2}{B} \sum_{u=1}^{N} x_{u}^{2} \right) x^{2} + \frac{N}{B} x^{4} \right] S_{u}^{2} \left\{ \overline{Y} \right\}$$
(42)

Для данного примера:

$$S^{2}{Y_{Ru}} = \left[\frac{34}{70} + \left(\frac{1}{10} - \frac{2}{70} \cdot 10\right)x^{2} + \frac{5}{70}x^{4}\right] \cdot 0,0205 =$$

$$= \left[0,4857 - 0,1857x^{2} + 0,0714x^{2}\right] \cdot 0,0205$$

Расчеты значений $S^2\{Y_{Ru}\}$ для каждого u—го уровня фактора сведены в табл. 5.

Таблица 5 Расчет доверительных интервалов средних значений выходного параметра

u	X_u	$S^2\{Y_{Ru}\}$	$S\{Y_{Ru}\}$	Y_{Ru}	$\varepsilon\{Y_{Ru}\}$	$Y_{mR}^{(u)}(X)$	$Y_{mR}^{(O)}(X)$
1	-2	0,0182	0,1349	4,862	0,2814	4,581	5,143
2	-1	0,0076	0,0872	6,223	0,1819	6,041	6,405
3	0	0,01	0,1	6,838	0,2086	6,629	7,047
4	1	0,0076	0,0872	6,707	0,1819	6,525	6,889
5	2	0,0182	0,1349	5,830	0,2814	5,549	6,111

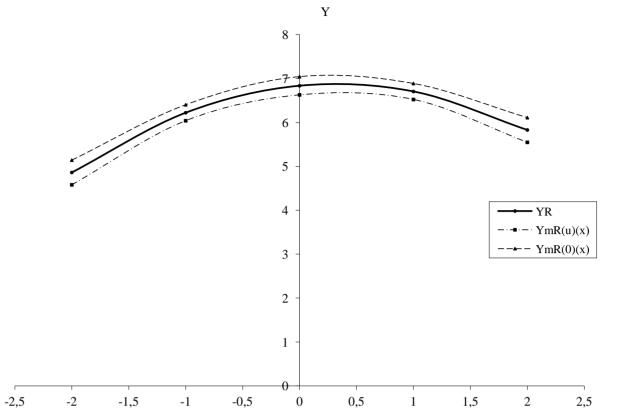
В рассматриваемом примере табличное значение критерия Стьюдента (см. пункт 2.8) равно $t_T[p_D=0.95;f=20]=2.086$. Подставляя это значение в формулу (41), получаем:

$$\varepsilon_m\{Y_{Ru}\} = 2,086 \cdot S_m\{Y_{Ru}\}.$$

В таблице 5 приведены полученные значения $S^2\{Y_{Ru}\}$, $S\{Y_{Ru}\}$ и $\varepsilon\{Y_{Ru}\}$ для каждого уровня фактора. Зная доверительные ошибки расчетных значений, можно найти доверительные интервалы для истинных средних значений выходного параметра, используя формулу:

$$Y_{mR}^{(u)}(X) = Y_{Ru} - \varepsilon \{Y_{Ru}\} \le Y_{Ru} \le Y_{Ru} + \varepsilon \{Y_{Ru}\} = Y_{mR}^{(0)}(X)$$
 (43)

На основе приведенных в табл. 5 значений границ доверительного интервала строим график функций $Y_R(X)$, $Y_{mR}^{(u)}(X)$ и $Y_{mR}^{(0)}(X)$ (см. рис. 2). Графики этих функций образуют своеобразный "коридор". Любое сечение его прямой, параллельной вертикальной оси, соответствует доверительному интервалу, в котором с заданной вероятностью будет находиться истинное среднее значение выходного параметра. Легко заметить, что в этот коридор попадают средние экспериментальные значения $\overline{Y}u$. Однако некоторые индивидуальные экспериментальные значения выходного параметра в него не попадают, так как интервалы построены для средних значений.



Puc. 2. Параболическая регрессионная однофакторная модель и ее доверительные интервалы

X

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Шутов А.И. Основы научных исследований [Электронный ресурс]: учебное пособие / А.И. Шутов, Ю.В. Семикопенко, Е.А. Новописный. Электрон. текстовые данные. Белгород: Белгородский государственный технологический университет им. В.Г. Шухова, ЭБС АСВ, 2013. 101 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/28378.html
- 2. Вайнштейн М.З. Основы научных исследований [Электронный ресурс] : учебное пособие / М.З. Вайнштейн, В.М. Вайнштейн, О.В. Кононова. Электрон. текстовые данные. Йошкар-Ола: Марийский государственный технический университет, Поволжский государственный технологический университет, ЭБС АСВ, 2011. 216 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/22586.html
- 3. Новиков А.М. Методология научного исследования [Электронный ресурс] : учебное пособие / А.М. Новиков, Д.А. Новиков. Электрон. текстовые данные. М. : Либроком, 2010. 280 с. 978-5-397-00849-5. Режим доступа: http://www.iprbookshop.ru/8500.html
- 4. Стельмашенко, Валентина Ильинична. Методы и средства исследования в процессах оказания услуг [Текст] : практикум : учеб. пособие : рек. УМО / В. И. Стельмашенко, Н. В. Воронцова, Т. Н. Шушунова. М. : ФОРУМ ; М. : Инфра-М, 2012. 384 с.

приложения

Приложение 1

Критические значения V_T критерия исключения резко выделяющихся данных выборки

Повторности		$\mathbf{P}_{\mathcal{I}}$	
m	0,99	0,95	0,90
3	1,414	1,412	1,406J
4	1,723	1,689	1,645
5	1,955	1,869	1.791
6	2,130	1,996	1,894
7	2,265	2,093	1,974
8	2,374	2,172	2,041
9	2,464	2,237	2,097
10	2,540	2,294	2,146
11	2,606	2,343	2,190
12	2,663	2,387	2,229
13	2,714	2,426	2,264
14	2,759	2,461	2,297
15	2,800	2,493	2,326
16	2,837	2,523	2,354
17	2,871	2,551	2,380
18	2,903	2,577	2,404
19	2,932	2,600	2,426
20	2,959	2,623	2,447
21	2,984	2,644	2,467
22	3,008	2,664	2.486
23	3,030	2,683	2,504
24	3,051	2,701	2,502
25	3,071	2,717	2,537

Значения \mathbf{t}_{T} критерия Стьюдента $\mathbf{t}_{\mathrm{T}}[P_{\mathrm{J}};\mathbf{f}]$

	РД										
f		Двус	торонний крит	герий							
	0,8	0,9	0,95	0,99	0,999						
1	3,078	6,314	12,706	63,657	636,62						
2	1,886	2,920	4,303	9,925	31,598						
3	1,638	2,353	3,182	5,841	12,924						
4	1,533	2,132	2,776	4,604	8,610						
5	1,476	2,015	2,571	4,032	6,869						
6	1,440	1,943	2,447	3,707	5,959						
7	1,415	1,895	2,365	3,499	5,408						
8	1,397	1,860	2,306	3,355	5,041						
9	1,383	1,833	2,262	3,250	4,781						
10	1,372	1,812	2,228	3,169	4,587						
11	1,363	1,796	2,201	3,106	4,437						
12	1,356	1,782	2,179	3,055	4,318						
13	1,350	1,771	2,160	3,012	4,221						
14	1,345	1,761	2,145	2,977	4,140						
15	1,341	1,753	2,131	2,947	4,073						
16	1,337	1,746	2,120	2,921	4,015						
17	1,333	1,740	2,110	2,898	3,965						
18	1,330	1,734	2,101	2,878	3,922						
19	1,328	1,729	2,093	2,861	3,883						
20	1,325	1,725	2,086	2,845	3,850						
21	1,323	1,721	2,080	2,831	3,819						
22	1,321	1,717	2,074	2,819	3,792						
23	1,319	1,714	2,069	2,807	3,767						
24	1,318	1,711	2,064	2,797	3,745						
25	1,316	1,708	2,060	2,787	3,725						
26	1,315	1,706	2,056	2,779	3,707						
27	1,314	1,703	2,052	2,771	3,690						
28	1,313	1,701	2,048	2,763	3,674						
29	1,311	1,699	2,045	2,756	3,659						
30	1,310	1,697	2,042	2,750	3,646						
40	1,303	1,684	2,021	2,704	3,551						
60	1,296	1,671	2,000	2,660	3,460						
120	1,289	1,658	1,980	2,617	3,373						
∞	1,282	1,645	1,960	2,576	3,291						
РД	0,90	0,95	0,975	0,995	0,9995						
		Одно	сторонний кри	терий							

Таблица значений F_T критерия Фишера F_T [$P_{\text{Д}}$ =0,95, f_2 ; f_1]

 $(f_2$ — степень свободы для большей дисперсии, f_1 - степень свободы для меньшей дисперсии)

$f_1 \backslash f_2$	1	2	3	4	5	6	7	8	9
1	161,4	199,5	215,7	224,6	230,2	234,0	236,8	238,9	240,5
2	18,51	19.00	19,16	19,25	19,30	19,33	19,35	19.37	19,38
3	10,13	9,55	9,28	9,12	9,01	8,94	8,89	8,85	8,81
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,77
В	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,68
8	5,32	4,16	4,07	3,84	3,69	3,58	3,50	3,44	3,39
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,18
10	4,96	4,10	3,71	3,48	3,33	3,22	3,14	3,07	3,02
11	4,81	4,38	3,59	3,36	3,20	3,09	3.01	2,95	2,90
12	4,75	3,89	3,49	3,26	3,11	3,00	2,91	2,85	2,80
13	4,67	3,81	3,41	3,18	3,03	2,92	2,83	2,77	2,71
14	4,60	3,74	3,34	3,11	2,96	2,85	2,76	2,70	2,65
15	4,54	3,68	3,29	3,06	2,90	2,79	2,71	2,64	2,59
16	4,49	3,63	3,24	3,01	2,85	2,74	2,66	2,59	2,54
17	4,45	3,59	3,20	2,96	2,81	2,70	2,61	2,55	2,49
18	4,41	3,55	3,16	2,93	2,77	2,66	2,58	2,51	2,46
19	4,38	3,52	3,13	2,90	2,74	2,63	2,54	2,48	2,42
20	4,35	3,49	3,10	2,87	2,71	2,60	2,51	2,45	2,39
21	4,32	3,47	3,07	2,84	2,68	2,57	2,49	2,42	2,37
22	4,30	3,44	3,05	2,82	2,66	2,55	2,46	2,40	2,34
23	4,28	3,42	3,03	2,80	2,64	2,53	2,44	2,37	2,32
24	4,26	3,40	3,01	2,78	2,62	2,51	2,42	2,36	2,30
25	4,24	3,39	2,99	2,76	2,60	2,49	2,40	2,34	2,28
26	4,23	3,37	2,98	2,74	2,59	2,47	2,39	2,32	2,27
27	4,21	3,35	2,96	2,73	2,57	2,46	2,37	2,31	2,25
28	4,20	3,34	2,95	2,71	2,56	2,45	2,36	2,29	2,24
29	4,18	3,33	2,93	2,70	2,55	2,43	2,35	2,28	2,22
30	4,17	3,32	2,92	2,69	2,53	2,42	2,33	2,27	2,21
40	4,08	3,23	2,84	2,61	2,45	2,34	2,25	2,18	2,12
60	4,00	3,15	2,76	2,53	2,37	2,25	2,17	2,10	2,04
120	3,922	3,07	2,68	2,45	2,29	2,17	2,09	2,02	1,96
∞	3,84	3,00	2,60	2,37	2,21	2,10	2,01	1,94	1,88

Окончание приложения 3

$f_1 \backslash f_2$	10	12	15	20	24	30	40	60	120	∞
1	241,9	243,9	245,9	248,0	249,1	250,1	251,1	252,2	253,3	254,3
2	19,40	19,41	19,43	19,45	19,45	19,46	19,47	19,48	19,49	19,50
3	8,79	8,74	8,70	8,66	8,64	8,62	8,59	8,57	8,55	8,53
4	5,96	5,91	5,86	5,80	5,77	5,75	5,72	5,69	5,66	5,63
5	4,74	4,68	4,62	4,56	4,53	4,50	4,48	4,43	4,40	4,36
6	4,06	4,00	3,94	3,87	3,84	3,81	3,77	3,74	3,70	3,67
7	3,64	3,57	3,51	3,44	3,41	3,38	3,34	3,30	3,27	3,23
8	3,35	3,28	3,22	3,15	3,12	3,08	3,04	3,01	2,97	2,93
9	3,14	3,07	3,01	2,94	2,90	2,86	2,83	2,79	2,75	2,71
10	2,98	2,91	2,85	2,77	2,74	2,70	2,66	2,62	2,58	2,54
11	2,85	2,79	2,72	2,65	2,61	2,57	2,53	2,49	2,45	2.40
12	2,75	2,69	2,62	2,54	2,51	2,47	2,43	2,38	2,34	2,30
13	2,67	2,60	2,53	2,46	2,42	2,38	2,34	2,30	2,225	2,21
14	2,60	2,53	2,46	2,39	2,35	2,31	2,27	2,22	2,18	2,13
15	2,54	2,48	2,40	2,33	2,29	2,25	2,20	2,16	112,	2,07
16	2,49	2,42	2,35	2,28	2,24	2,19	2,15	2,11	2,06	2,01
17	2,45	2,38	2.31	2,23	2,19	2.15	2,10	2,06	2,01	1,96
18	2,41	2,34	2,27	2,19	2,15	2,11	2,06	2,02	1,97	1,92
19	2,38	2,31	2,23	2,16	2,11	2,07	2,03	1,98	1,93	1,88
20	2,35	2,28	2,20	2,12	2,08	2,04	1,99	1,95	1,90	1,84
21	2,32	2,25	2,18	2,10	2,05	2,01	1,96	1,92	1,87	1,81
22	2,30	2,23	2,15	2,07	2,03	1,98	1,94	1,89	1,84	1,78
23	2,27	2,20	2,13	2,05	2,01	1,96	1,91	1,86	1,81	1.76
24	2,25	2,18	2,11	2,03	1,98	1,94	1,89	1,84	1,79	1,73
25	2,24	2,16	2,09	2,01	1,96	1,92	1,87	1,82	1,77	1,69
26	2,22	2,15	2,07	1,99	1,95	1,90	1.85	1,80	1,75	1,67
27	2,20	2,13	2,06	1,97	1.93	1,88	1,84	1,79	1,73	1,65
28	2,19	2.12	2,04	1,96	1,91	1,87	1,82	1,77	1,71	1,64
29	2,18	2JO	2,03	1,94	1,90	1,85	1,81	1,75	1,70	1,62
30	2,16	2,09	2,01	1,93	1,89	1,84	1,79	1,74	1,68	1,51
40	2,08	2,00	1,92	1,84	1,79	1,74	1,69	1,64	1,58	1,39
60	1,99	1,92	1,84	1,75	1,70	1,65	1,59	1,53	1,47	1,25
120	1,91	1,83	1,75	1,66	1,61	1,55	1,50	1,43	1,35	1,00
∞	1,83	1,75	1,67	1,57	1,52	1,46	1,39	1,32	1,22	1,71

Приложение 4 Табличные значения критерия Кочрена, т. е. отношения наибольшей эмпирической дисперсии к сумме N эмпирических дисперсий G_T [p_D =0,95; f=m—1, N]

3.7							j	f						
N						Доверит	ельная в	ероятно	сть 0,95					
	1	2	3	4	5	6	7	8	9	10	16	36	144	∞
2	0,9985	0,9750	0,9392	0,9057	0,8772	0,8534	0.8332	0,8159	0,8010	0,7880	0,7341	0,5602	0,5813	0,5000
3	0,9669	0,8709	0,7977	0,7457	0,7071	0,6771	0,6530	0,6333	0,6167	0,6025	0,5466	0,4748	0,4031	0,3333
4	0,9065	0,7679	0,6841	0,6287	0,5859	0,5598	0,5365	0,5175	0,5017	0,4884	0,4366	0,3720	0,3093	0,2500
5	0,8412	0,6838	0,5981	0,5441	0,5065	0,4783	0,4564	0,4387	0,4241	0,4118	0,3645	0,3066	0,2513	0,2000
6	0,7808	0,6161	0,5321	0,4803	0,4447	0,4184	0,3980	0,3817	0,3682	0,3568	0,3135	0,2612	0,2119	0,1667
7	0,7271	0,5612	0,4800	0,4307	0,3974	0,3726	0,3535	0,3384	0,3259	0,3154	0,2756	0,2278	0,1833	0,1429
8	0,6798	0,51.57	0,4377	0,3910	0,3595	0,3362	0,3185	0,3043	0,2926	0,2829	0,2462	0.2022	0,1616	0,1250
9	0,6385	0,4775	0,4027	0,3584	0,3286	0,3067	0,2901	0,2768	0,2659	0,2568	0,2226	0,1820	0,1446	0,1111
10	0,6020	0,4450	0,3733	0,3311	0,3029	0,2823	0,2666	0,254!	0,2439	0,2353	0,2032	0,1655	0,1308	0,1000
12	0,5410	0,3924	0,3264	0,2880	0,2624	0,2439	0,2299	0,2187	0,2098	0,2020	0,1737	0,1403	0,1100	0,0833
15	0,4709	0,3346	0,2758	0,2419	0,2195	0,2034	0,1911	0,1815	0,1736	0,1671	0,1429	0,1144	0,0889	0,0667
20	0,3894	0,2705	0,2205	0,1921	0,1735	0,1602	0,1501	0,1422	0,1357	0,1303	0,1108	0,0879	0,0675	0,0500
24	0,3434	0,2354	0,1907	0,1656	0,1493	0,1374	0,1286	0,1216	0,1160	0,1113	0,0094	0,0743	0,0567	0,0417
30	0,2929	0,1980	0,1593	0,1377	0,1237	0,1137	0,1061	0,1002	0,0958	0,0921	0,0771	0,0604	0,0457	0,0333
40	0,2370	0,1576	0,1259	0,1082	0,0968	0,0887	0,0827	0,0780	0,0745	0,0713	0,0595	0,0462	0,0347	0,0250
60	0,1737	0,1131	0,0895	0,0765	0,0682	0,0623	0,0583	0,0552	0,0520	0,0497	0,0411	0,0316	0,0234	0,0167
120	0,0998	0,0632	0,0495	0,0419	0,0371	0,0337	0,0312	0,0292	0,0279	0,0266	0,0218	0,0165	0,0120	0,0083
∞	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Приложение 5

Коэффициенты q_{m-i+1} , используемые при проверке экспериментальных данных на нормальность с помощью критерия W, для m=3...50

i				1	\overline{n}			
	3	4	5	6	7	8	9	10
1	0,7071	0,6872	0,6646	0,6431	0,6233	0,6052	0,5888	0,5739
2		0,1677	0,2413	0,2806	0,3031	0,3164	0,3244	0,3291
3				0,0875	0,1401	0,1743	0,1976	0,2141
4						0,0561	0,0947	0,1224
5								0,0399

i				1	\overline{n}			
	11	12	13	14	15	16	17	18
1	0,5601	0,5475	0,5359	0,5251	0,5150	0,5056	0,4968	0,4886
2	0,3315	0,3325	0,3325	0,3318	0,3306	0,3290	0,3273	0,3253
3	0,2260	0,2347	0,2412	0,2460	0,2495	0,2521	0,2540	0,2553
4	0,1429	0,1586	0,1707	0,1802	0,1878	0,1939	0,1988	0,2027
5	0,0695	0,0922	0,1099	0,1240	0,1353	0,1447	0,1524	0,1587
6		0,0303	0,0539	0,0727	0,0880	0,1005	0,1109	0,1197
7				0,0240	0,0433	0,0593	0,0725	0,0837
8						0,0196	0,0359	0,0496
9								0,0163

i	m							
	19	20	21	22	23	24	25	26
1	0,4808	0,4734	0,4643	0,4590	0,4542	0,4493	0,4450	0,4407
2	0,3232	0,3211	0,3185	0,3156	0,3126	0,3098	0,3069	0,3043
3	0,2561	0,2565	0,2578	0,2571	0,2563	0,2554	0,2543	0,2533
4	0,2059	0,2085	0,2119	0,2131	0,2139	0,2145	0,2148	0,2151
5	0,1641	0,1686	0,1736	0,1764	0,1787	0,1807	0,1822	0,1836
6	0,1271	0,1334	0,1399	0,1443	0,1480	0,1512	0,1539	0,1563
7	0,0932	0,1013	0,1092	0,1150	0,1201	0,1245	0,1283	0,1316

Критические значения критерия W, используемого для проверки экспериментальных данных на нормальность, для $m=3\dots 50$

m	P_D								
	0,99	0,98	0,95	0,90	0.50				
3	0,753	0,756	0,767	0,789	0,959				
4	0,687	0,707	0,748	0,792	0,935				
5	0,686	0,715	0,762	0,806	0,927				
6	0,713	0,743	0,788	0,826	0,927				
7	0,730	0,760	0,803	0,838	0,928				
8	0,749	0,778	0,818	0,851	0,932				
9	0,764	0,791	0,829	0,859	0,935				
10	0,781	0,806	0,842	0,869	0,938				
11	0,792	0,817	0,850	0,876	0,940				
12	0,805	0,828	0,859	0,883	0,943				
13	0,814	0,837	0,866	0,889	0,945				
14	0,825	0,846	0,874	0,895	0,947				
15	0,835	0,855	0,881	0,901	0,950				
16	0,844	0,863	0,887	0,906	0,952				
17	0,851	0,869	0,892	0,910	0,954				
18	0,858	0,874	0,897	0,914	0,956				
19	0,863	0,879	0,901	0,917	0,957				
20	0,868	0,884	0,905	0,920	0,959				
21	0,873	0,888	0,908	0,923	0,960				
22	0,878	0,892	0,911	0,926	0,961				
23	0,881	0,895	0,914	0,928	0,962				
24	0,884	0,898	0,916	0,930	0,963				
25	0,888	0,901	0,918	0,931	0,964				
26	0,891	0,904	0,920	0,933	0,965				
27	0,894	0,906	0,923	0,935	0,965				
28	0,896	0,908	0,924	0,936	0,966				
29	0,898	0,910	0,926	0,937	0,966				
30	0,900	0,912	0,927	0,939	0,967				
31	0,902	0,914	0,929	0,940	0,967				
32	0,904	0,915	0,930	0,941	0,968				
33	0,906	0,917	0,931	0,942	0,968				
34	0,908	0,919	0,933	0,943	0,969				
35	0,910	0,920	0,934	0,944	0,969				
36	0,912	0,922	0,935	0,945	0,970				
37	0,914	0,924	0,936	0,946	0,970				
38	0,916	0,925	0,938	0,947	0,971				

Окончание приложения 6

m	P_D						
	0,99	0,98	0,95	0,90	0.50		
39	0,917	0,927	0,939	0,948	0,971		
40	0,919	0,928	0,940	0,949	0,972		
41	0,920	0,929	0,941	0,950	0,972		
42	0,922	0,930	0,942	0,951	0,972		
43	0,923	0,932	0,943	0,951	0,973		
44	0,924	0,933	0,944	0,952	0,973		
45	0,926	0,934	0,945	0,953	0,973		
46	0,927	0,935	0,945	0,953	0,974		
47	0,928	0,936	0,946	0,954	0,974		
48	0,929	0,937	0,947	0,954	0,974		
49	0,929	0,937	0,947	0,955	0,974		
50	0,930	0,938	0,947	0,955	0,974		

Приложение 7

Таблица случайных чисел

5489	5583	3156	0835	1988	3912	0938	7460	0869	4420
3522	0935	7877	5665	7020	9555	7379	7124	7878	5544
7555	7579	2550	2487	9477	0864	2349	1012	8250	2633
5759	3554	5080	9074	7001	6249	3224	6368	9102	2672
6303	6895	3371	3196	7231	2918	7380	0438	7547	2644
7351	5634	5323	2623	7803	8374	2191	0464	0696	9529
7068	7803	8832	5119	6350	0120	5026	3684	5657	0304
3613	1428	1796	8447	0503	5654	3254	7336	9536	1944
5143	4534	2105	0368	7890	2473	4240	8652	9435	1422
9815	5144	7649	8638	6137	8070	5345	4865	2456	5708
5780	1277	6316	1013	2867	9938	3930	3203	5696	1769
1187	0951	5991	5245	5700	5564	7352	0891	6249	6568
.1184	2179	4554	9083	2254	2435	2965	5154	1209	7069
291G	2972	9885	0275	0144	8034	8122	3213	7666	0230
5524	1341	9860	6565	6981	9842	0171	2284	2707	3008
0146	5291	2354	5694	0377	5336	6460	9585	3415	2358
4920	2826	5238	5402	7937	1993	4332	2327	6875	5230
7978	1947	6380	3425	7267	7285	1130	7722	0164	8573
7453	0653	3645	7497	5969	8682	4191	2976	0361	9334
1473	6938	4899	5348	1641	3652	0852	5296	4538	4456
8162	8797	8000	4707	1880	9660	8446	1883	9768	0881
5645	4219	0807	3301	4279	4168	4305	9937	3120	5547
2042	1192	1175	8851	6432	4635	5757	6656	1660	5389
5470	7702	6958	9080	5925	8519	0127	9233	2452	7341
4045	1730	6005	1704	0345	3275	4738	4862	2556	8333
5880	1257	6163	4439	7276	6353	6912	0731	9033	5294
9083	4260	5277	4998	4298	5204	3965	4028	8936	4148
1762	8713	1189	1090	8989	7273	3213	1935	9321	4820
2023	2589	1740	0424	8924	0005	1636	1636	7237	1227
7965	3855	4765	0703	1678	0841	7543	0308	9732	1289
7690	0480	8098	9629	4819	7219	7241	5128	3853	1921
9292	0426 .	9573	4903	5916	6576	8368	3270	6641	0033
0867	1656	7016	4220	2533	6345	8227	1904	5138	2537
0505	2127	8255	5276	2233	3956	4118	8199	6380	6340
6295	9795	1112	5761	2575	6837	3336	9322	7403	8345
6323	2615	3410	3365	1117	2417	3176	2434	5240	5455
8672	8536	2966	5773	5412	8114	0930	4697	6919	4569
1422	5507	7596	0670	3013	1354	3886	3268	9469	2584
2653	1472	5113	5739	1469	9545	9331	5303	9914	6394
0438	4376	3328	8645	8327	0110	4549	7955	5275	2890

2851	2157	0057	7085	1129	0460	6821	8323	2572	8962
7962	2753	3077	8718	7418	8004	1425	3706	8822	1494
3837	4098	0220	1217	4732	0150	1637	1097	1040	7372
8542	4126	9274	2251	0607	4301	8730	7690	6235	3477
0439	0765	8039	9484	2577	7859	1976	0623	1418	6685
6687	1943	4307	0579	8171	8224	8641	7034	3595	3875
6242	5582	5872	3197	4919	2792	5991	4058	9769	1918
6859	9606	0522	4993	0345	8958	1289	8825	6941	7685
0590	1932	6013	3623	1973	4112	1795	8465	2110	8045
3482	0478	0221	6738	7323	5643	4767	0106	2272	9862

СОДЕРЖАНИЕ

Введение	3
1. Выбор вида математической модели	5
2. Квадратичная параболическая однофакторная регрессионная модель (модель второго порядка)	7
2.1. Исключение резко выделяющихся данных	7
2.2. Проверка гипотезы о нормальном распределении случайных величин Y_{uv}	8
2.3. Проверка гипотезы об однородности дисперсий в опытах матрицы	10
2.4. Определение средней дисперсии выходного параметра в опытах матрицы	11
2.5. Определение подходящего вида регрессионной модели	12
2.6. Определение коэффициентов регрессии	14
2.7. Определение адекватности полученного уравнения	17
2.8. Определение значимости коэффициентов регрессии и их доверительных интервалов	19
2.9. Определение доверительных интервалов средних значений выходного параметра при фиксированном значении фактора	21
Список использованных источников	24
Припожения	25

Ипина	Валентиновна	Абакумова

доцент кафедры сервисных технологий и общетехнических дисциплин АмГУ, канд.техн.наук

Обработка результатов однофакторного эксперимента. Часть 2

Учебно-методическое пособие