

•

:

2016

(, . .- .) (): <u>11.05.2016</u> ()

43	., 32	, 18	, 4	, 20	-

- , , , -, , , - , , , , - ,

.

· (), , , , , , , . _ _ _ .

.

-

		6
1.		8
1.1		8
1.2	[0,2)	13
1.3		14
1.4 ,		16
1.5		17
2.		20
2.1		20
2.2		21
2.3		24
3.		26
4.		31
		41

, , , , , , , , , , , , :

1. , , ;.

2.

3.

•

_

•

$$\alpha^p = p \frac{\lambda}{d},$$
[1]:

$$= 0, \pm 1, \pm 2, \dots, -$$
, $d - \pi e$, $-$.

инте ивно опре

,

$$I(\alpha^p) \sim \left(\frac{\sin(a\alpha^p)}{a\alpha^p}\right)^2 \approx \frac{1}{(2p+1)^2},\tag{2}$$

:

$$a=rac{\pi d}{2\lambda}$$
.

1

,

10% [1].

(1)

Освещающий пучок

4

,

.

-

1.

d

(1-D)

,

[2].

9

).

(

,

3 –

3

,

4 —

[1].

ель іх целых чисеј [3]:

$$\rho_p = \sqrt{p\lambda f} , \qquad (3)$$

•

6.

6 –

(кам д

f-2, *f*-1, *f*₀, *f*₁, *f*₂ -,

[1]:

$$f_n = \frac{f}{2n+1},\tag{4}$$

•

$$n = 0, \pm 1, \pm 2, \dots -$$

y [1]:

$$I_{2n+1} = \frac{4\pi}{\pi^2} \frac{1}{(2n+1)^2}.$$
(5)

•

, « ». 2-D

, ,

, •

1967 . 2-D

,

,

,

(,),

2-D

,

•

[4].

,

(,).

[5]:

[0,2)

,

.

1.2

,

(,)

"

(u,v)[5].

".

 $(u), \quad u = (u, v) -$

идой W₀(*u*) зади оптичес

 $W(\boldsymbol{u}) = \exp[i\varphi(\boldsymbol{u})]W_0(\boldsymbol{u}). \tag{6}$

7

7 –

$$\Phi = mod_{2\pi\varphi},$$

$$mod_{2\pi\varphi} = \varphi - 2\pi j$$
 2 (+1)2, j=0,±1,±2,...

каетс: отнош м:

$$T \equiv \exp(i\Phi) = \exp(i\varphi). \tag{8}$$

1.3

[1]:

$$\varphi(u, v) = \varphi(r) = -k \frac{u^2 + v^2}{2f},$$
(9)

$$r \leq \frac{D}{2}, k = \frac{2\pi}{\lambda}, k - ;f - ;D - ;r = \sqrt{u^2 + v^2}.$$
(9)
[0.2])

8.

8 –

n, [1]: (7)

Φ

$$h_{max} = \frac{\lambda}{n-1} \,. \tag{10}$$

Радиусы зон Френе.

$$\varphi(r_j) = -2\pi j,\tag{11}$$

а следует что

$$r_j = \sqrt{2\lambda f j}.\tag{12}$$

F $r_{j0} \le D/2$ и

:

оряет соотної

:

кой, в дані

технологи

 $\varphi(u,v)$ мо

----× 1...

 $F = \left] \frac{D^2}{8\lambda f} \right],\tag{13}$

]·[–

м в меньшую сторону.

 $\Delta j = rj - rj - 1, j = \overline{1, F}, \text{ яв-}$

[1]:

$$\Delta = \frac{2\pi m}{max|\nabla \bot \varphi|},$$

(14)

max

, $\nabla \perp \varphi - \varphi(u, v)$.

[1].

,

_

_

•

[1]:

$$T(\boldsymbol{u}) = a_T(\boldsymbol{u}) \exp[i\varphi_T(\boldsymbol{u})], \qquad (15)$$
$$\boldsymbol{u} = (\boldsymbol{u}, \boldsymbol{v}) - \boldsymbol{i} \qquad , |T(\boldsymbol{u})| \equiv a_T(\boldsymbol{u}) \leq 1.$$
$$T(\boldsymbol{u}) = \mathbf{u} + \mathbf{u} +$$

,

,

$$T_{mn} \equiv T(m, n) = a_T(m, n) \exp(i\varphi_T(m, n)) =$$

$$a_T(u, v) \exp(i\varphi_T(u, v)) \Big|_{\substack{u=m\delta u, \\ v=n\delta v}}$$

$$T = \{T_{mn}\}, m = \overline{1, N_u}, n = \overline{1, N_v}.$$
(16)

		фров	
,		T_{mn} H	
-	(15).		
	цифр		(15)
ł	счеты <i>Т_{mn}</i> з		
фазо	<i>Т_{тп}</i> з		
я Щ _Т (<i>m</i> , <i>n</i>			
$- \varphi_T(m,n)$ за	,		

,

[4].

,

,

[5].

,

,

-

,

_

,

,

,

,

[1].

2.1

,

,

,

,

2

[1].

,

10.

-

(

,

)

,

_

•

,

,

10 –

d

_

•

•

$$Q(x,y) = \frac{1}{i\lambda} \cdot \frac{e^{i\frac{2\pi}{\lambda}d}}{i\lambda} \int_{-\infty}^{+\infty} E(\xi,\eta) \cdot e^{\frac{i\pi}{\lambda}d[(\xi-x)^2 + (\eta-y)^2]} d\xi d , \qquad (17)$$

Ε(ξ,η) -

2. Гологр фическое изображег.

$$I(x, y) = |O(x, y) + B(x, y)|^2,$$
(18)

:

:

$$O(x, y) = Q(x, y).$$
(16)

$$Q(\xi,\eta) = \frac{1}{i\lambda} \cdot \frac{e^{i\frac{2\pi}{\lambda} \cdot d}}{d} \cdot \left[e^{\frac{i\pi}{\lambda d} \left[(\xi^2 + \eta^2) \right]} \right] \cdot \iint_{-\infty}^{+\infty} I(x,y) \cdot B(, \cdot) \cdot e^{\frac{i\pi}{\lambda d} (x^2 + y^2)} \bullet \left[e^{\frac{-i2\pi}{\lambda d} \left[(\xi x + \eta y) \right]} \right] dxdy.$$
(19)

ормулой:

$${}^{\pm}[f(x,y)](v_{\xi},v_{\eta}) = \iint_{-\infty}^{+\infty} f(x,y) e^{\pm 2\pi i (v_{\xi}x+v_{\eta}y)} dxdy,$$
(20)

$$^{\pm 1}[] -$$
 , $v_{\xi}, v_{\eta} - \pi$

(,)

между поскоя d:

$$v_{\xi} = \frac{\xi}{\lambda d}, v_{\eta} = \frac{\eta}{\lambda d}.$$
 (21)

(21)

$$Q(v_{\xi}, v_{\eta}) = \frac{1}{i\lambda} \cdot \frac{e^{i\frac{2\pi}{\lambda} \cdot d}}{\cdot} \left[e^{i\pi\lambda d(v_{\xi}^{2} + v_{\eta}^{2})} \right] \cdot \Im^{\pm} \left[I(x, y) \cdot B(x, y) \cdot e^{\frac{i\pi}{\lambda d}(x^{2} + y^{2})} \right] \cdot (v_{\xi}, v_{\eta}).$$
(22)

$$- \qquad \text{NxM}$$

$$= (22) \qquad \text{NxM}$$

$$Q(r \cdot \Delta v_{\xi}, s \cdot \Delta v_{\eta}) = \frac{1}{i\lambda} \cdot \frac{e^{i\frac{2\pi}{\lambda} \cdot d}}{i\lambda} \cdot \left[e^{i\pi\lambda d(r^{2} \cdot \Delta v_{\xi}^{2} + s^{2} \cdot \Delta v_{\eta}^{2})}\right] \cdot$$

$$\frac{N}{n} = -\frac{N}{2} \sum_{m}^{\frac{M}{2} - 1} \left\{ I(n/x, m \ y) B(n \ x, m \ y) e^{i\frac{\pi}{\lambda d}[(n\Delta x)^{2} + (m\Delta y)^{2}]} \right\} e^{-2\pi \left(\frac{rn}{N} + \frac{sm}{M}\right)} (23)$$

•

_

(NxM)

•

,

,

_

(20)

браже :

-

$$= d \cdot \frac{1}{N\Delta x}, \quad = d \cdot \frac{1}{M\Delta y}. \quad (24)$$

(24)

"

"

2.3

вёртки:

$$Q(,) = [I(x,y)B(x,y)] \otimes h(,),$$
(26)

$$h(,) = \frac{1}{i\lambda d} \cdot e^{i\frac{2\pi d}{\lambda}} e^{\frac{i\pi}{\lambda d}(\xi^2 + \eta^2)} - s$$
.
эр освертке, вырах ис (26) :

$$Q(,) = -1 \left\{ \sum_{n=1}^{\infty} \left[I(x,y)B(x,y) \right] \cdot \sum_{n=1}^{\infty} \left[\frac{1}{i\lambda d} \cdot e^{i\frac{2\pi d}{\lambda}} e^{\frac{i\pi}{\lambda d}(\xi^{2} + \eta^{2})} \right] \right\}.$$
 (27)

ющим юшен :

 $f \otimes h$ $(f) \cdot \mathfrak{I}(h).$ (28)

 $\begin{array}{rcl} : & = & x, & = & y, \\ & & S_I \!\!=\!\! S_{G.} \end{array}$

:

Р

•

ф восстановленного п

$$P = |Q(r \cdot \Delta\xi, s \cdot \Delta\eta)|.$$
⁽²⁹⁾

—

—

, 1

,

$$\varphi = \operatorname{arctg} \left[\frac{(Q(r \cdot \Delta\xi, s \cdot \Delta\eta))}{(Q(r \cdot \Delta\xi, s \cdot \Delta\eta))} \right], \tag{30}$$

[- ,].

MathCAD -

11.

•

•

,

26

11 –

"

"

,

.

,

,

".

"

•

12 –

" " -" " -

.

-: -(), , , , , .

30

-			**	'' -
		-	"	"
1	- ()	30		
2		50		
3		70		
4		90		

()

2 –

	-	·'' _ ·'	" _
1	30	88%±0.4%	83%±0.5%
2	50	79%±0.6%	72%±0.6%
3	70	71%±0.7%	61%±0.5%
4	90	64%±0.7%	53%±0.7%

30

.

.

,

32

,

"

"

 3
 :

 (60),
 (60)

), 5
 (200 200)

), (60).
).

,

:

,

, 5

,

.

3 –

-	-	()	 "
1	 30	60:1	
2	60		
3	 30	: 60:1	

4	+	60	: 60:1	
5	5 	30		
6		60	200:200	
7	0	30	: 60 : 1	0
8		60		

1:1

"

,

,

,

"

3,

,

"

,

34

,

,

,

(25).

,

"

3

-		" -	·· _
		**	-
1	30	89%±0.7%	$72\% \pm 0.6\%$
2	60	78%±0.9%	63%±0.8%
3	30	88%±0.9%	71%±0.7%
4	60	79%±0.8%	59%±0.9%
5	30	83%±1.1%	76%±1.2%
6	60	72%±1%	61%±1.4%
7	30	91%±1.2%	79%±1.1%
8	60	79%±1.3%	63%±1.2%

4, ,

,

"

,

(

"

$$\eta = \frac{I_1}{I_0} \cdot 100\% = \frac{\langle h_i \rangle}{\langle h_k \rangle} \cdot 100\%, \qquad (31)$$

36

(31)
():

$$\eta = \frac{\langle h_i \rangle}{h_k \rangle} = \frac{\left(\frac{\langle h_{i_{\rm E}}}{2}\right)^{+\langle h_{i_{\rm BE}}}}{h_k}}{h_k}, \qquad (32)$$

$$h_{i_{\rm B}} - - -$$

. 14

14 –

(32), h_{k} .

_

15

•

()

16 –

,

(5)

39

MathCAD,

•

,

,

:

,

_

(), , , , , . .

1. , , , , , , 30 ;

2. , , , ;

3. , , , , ", , " ".

3. Kyrish M., Improving spatial resolution of a fiber bundle optical biopsysystem / Kyrish M., Kester R., Richards-Kortum R., Tkaczyk T. // Proc. SPIE. 2010. V.7558. P.755807.

4. Nomura, T. Researchmethodsofrecordingoverlappedhologramsinarchivalholographicmemory. – Publisher: Optics&PhotonicsJapan, 2014.-6a - DS1.

. .// .-2013. - 12.- .1-6.

 Saita, Yu. Multilevel recording characteristics on holographic memory applied phase gradient coding / Saita Yu., Nomura T.// Optics&PhotonicsJapan. -2015. 6p - E10.

.2-4.

8. GhebremichaelF.,Holography-basedwavefrontsensing/ GhebremichaelF., AndersenG.P., GurleyK.S. // Appl.Opt. – 2008. – V.47. – 4.P.A62 – A69.

 Zepp A., Holographic wavefront sensor for fast defocus measurement / Zepp A., Gładysz S., Stein K. // Advanced Optical Technologies. – 2013. – V.2, – 5 – 6. P.433–437.

Kutanov A.A., Direct laser recording of dot holograms on a-Si film / Kutanov A.A., Snimshikov I.A. // Proceeding Optics&Photonics. Japan, – 2011.–P.30a – P - S2.

42

11.				/
//	. – 20	008. – .126.	4. – .681-683	3.
12.	• •,			-
				-
	-		/	, –
•••,	· ·,	•••,	//	. –
2012. – 3–	4. – C.3-11.			
13.				/ .
.::	, 2006. – 616 .			
14.		/	•••,	: – .:
	, 2009 140 .			
15.				. 1
	//			2001 2
C.118-124.				
16.				/// -
	. – 2007. – .74. –	- 14	45-51	
17.				-
			_	-
/	//		- 200671	12. – . 62-68
18.			/	: .: -
			, 2009	0. – 124 .
19.				-
	./	::	- , 2003	8. – 90 .
20.	,			-
./	• •,	• ••	:-	: -
, 2012	2 - 355 .			