Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (ФГБОУ ВО «АМГУ»)

Факультет: Инженерно-Физический

Кафедра: Стартовые и технические ракетные комплексы

Направление подготовки 24.03.01 – Ракетные комплексы и космонавтика

ДОПУСТИТЬ К ЗАЩИТЕ

Зам. Зав. кафедрой

В.В. Соловьёв

(15. » works 2021r.

БАКАЛАВРСКАЯ РАБОТА

на тему: Разработка заправочного оборудования природным газом

Исполнитель

студент группы 717-об

14.06.2021

Катаев М.А.

(подпись, дата)

Руководитель

доцент, канд. техн. наук

15.06.2021

Соловьёв В. В.

(подпись, дата)

Консультант по БЖД

канд. физ. – мат. наук

14.06.2021

Аверьянов В.Н.

(подпись, дата)

Нормоконтроль

Аукв 14.06.2021 (подпись, дата)

Аревков М.А.

Благовещенск 2021

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (ФГБОУ ВО «АМГУ»)

Факультет инженерно-физический Кафедра стартовые и технические ракетные комплексы Направление подготовки 24.03.01 – Ракетные комплексы и космонавтика

> УТВЕРЖДАЮ Зам. Зав. кафедрой В.В. Соловьёв « <u>хареше</u> 2021г.

ЗАДАНИЕ

К выпускной квалификационной работе студента <u>Катаева Максима</u> <u>Александровича</u>

1. Тема выпускной квалификационной работы: Разработка заправочного оборудования природным газом

(утверждена приказом от 05.04.2021 № 658-уч)

- 2. Срок сдачи студентом законченного проекта: 15 июня 2021 года
- 3. Исходные данные к выпускной квалификационной работе: Научная литература, переодические задания, отчеты по практикам.
- 4. Содержание выпускной квалификационной работы: Структура и технические характеристики РН Союз 7, требования к системам заправки РН и вариантов криогенных систем охлаждения, определение устройства и принцип работы теплообменного оборудования, разработка принципиальной схемы заправочной системы РН; расчеты теплообменного аппарата, чертеж ТОА, 3Д модель теплообменного аппарата и температурная симуляция.
- 5. Перечень материалов приложения: <u>Цели и задачи бакалаврской работы, принципиальная схема заправочной системы, расчет теплообменного аппарата, чертеж ТОА, распределение сил в симуляции, общий вид в симуляции, результаты теплового расчета, заключение работы.</u>
- 6. Консультанты по выпускной квалификационной работе: Аверьянов В.Н.
- 7. Дата выдачи задания: 26 апреля 2021 года.

Руководитель выпускной квалификационного проекта: Соловьев Владислав

Викторович, доцент, канд. техн. наук

Задание принял к исполнению (дата): 26.04.2021г.____

РЕФЕРАТ

Бакалаврская работа содержит 76 с., 40 рисунков, 27 таблиц, 15 источников.

АЗОТНАЯ СИСТЕМА ОХЛАЖДЕНИЯ, КОМПОНЕНТЫ РАКЕТНОГО ТОПЛИВА, МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ, МЕТАН, РАКЕТНО-КОСМИЧЕСКАЯ ТЕХНИКА, ТЕПЛООБМЕННЫЙ АППАРАТ, КОЖУХОТРУБЧАТЫЙ ТЕПЛООБМЕННИК, УСТАНОВКА, РАСЧЕТ

Криогенная система предназначена для приема, хранения сжиженного метана (СМ) и заправки им баков горючего (БГ) модификации РН Союз–7 «Амур-СПГ».

Цель работы: Разработка принципиальной схемы системы охлаждения сжиженного метана посредством азота для заправки ракеты-носителя недогретым метаном и создание модели теплообменного аппарата.

В рамках данной работы были сформулированы следующие задачи:

- Проанализировать структуру и технические характеристики ракетыносителя Союз–7 «Амур-СПГ»;
- Провести анализ существующих систем заправки РН и вариантов криогенных систем охлаждения сжиженного метана;
- Определить необходимые устройства и принципы действия теплообменного оборудования, а так же технологические параметры процесса;
- Разработать принципиальную криогенную схему системы охлаждения
 СМ с последующей заправкой в РН;
- Выполнить тепловой расчет теплообменного аппарата, определить необходимую поверхность теплообмена и сделать чертеж TOA;
- Создать 3Д модель теплообменного аппарата и провести проверочную симуляцию для проверки работоспособности.

СОДЕРЖАНИЕ

BB	ЕДЕНИЕ7
1	ОБЩИЕ СВЕДЕНИЯ РН СОЮ3-7 «АМУР-СПГ»10
2	ИСПОЛЬЗОВАНИЕ СВЯЗКИ ТОПЛИВНЫХ КОМПОНЕНТОВ МЕТАН-
КИ	СЛОРОД В ЖИДКОСТНЫХ РАКЕТНЫХ ДВИГАТЕЛЯХ12
2.1	Перспективы применения в ЖРД12
2.2	Анализ существующих физико-химических показателей и требований
кач	чества СПГ13
2.3	Физико-химические показатели СПГ применяемые для ракетной
тех	хники
3	РАЗРАБОТКА ПРИНЦИПИАЛЬНОЙ СХЕМЫ СИСТЕМЫ ОХЛАЖДЕНИЯ
СЖ	СИЖЕННОГО МЕТАНА ДЛЯ ХРАНИЕНИЯ И ЗАПРАВКИ РАКЕТЫ-
НС	СИТЕЛЯ 18
4	ВИДЫ И ПРИНЦИП ДЕЙСТВИЯ ТЕПЛООБМЕННЫХ АППАРАТОВ 22
5	КОЖУХОТРУБЧАТЫЕ ТЕПЛООБМЕННИКИ
6	ТЕПЛОВОЙ РАСЧЕТ ТЕПЛООБМЕННОГО АППАРАТА
7	моделирование процесса охлаждения сжиженного
ME	ЕТАНА В ПРЯМОТОЧНОМ КОЖУХОТРУБЧАТОМ ТЕПЛООБМЕННОМ
АΠ	IПАРАТЕ
8	SOLIDWORKS FLOW SIMULATION МОДЕЛИРОВАНИЕ ПОТОКА
ЖИ	ИДКОСТИ, ТЕПЛООБМЕНА И ГИДРОДИНАМИЧЕСКИХ СИЛ 40
8.1	Расчетная область
8.2	Физические модели
8.3	Настройки материала50
8.4	Цели55

8.5	Результаты симуляции	55
9 E	БЕЗОПАСНОСТЬ ПРИ РАБОТЕ С МЕТАНОМ	64
9.1	Основные положения	64
	Техника безопасности и меры предосторожности при раб	
9.3	Порядок действий при утечке метана	65
9.4	Симптомы отравления метаном	65
9.5	Первая помощь пострадавшему до приезда медработников	66
9.6	Индивидуальные средства защиты	66
9.7	Средства коллективной защиты	69
10	ЭКОНОМИЧЕСКИЙ РАСЧЕТ	71
10.1	Выбор материала	71
10.2	Расчет массы ТОА	71
10.3	Расчет стоимости материала	73
ЗАК	ЛЮЧЕНИЕ	74
СПИ	ИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ	75

ОПРЕДЕЛЕНИЯ, ОБОЗНАЧЕНИЯ, СОКРАЩЕНИЯ

БГ — Бак горючего;

БО — Бак окислителя;

ВКС — Воздушно-космическая система;

ЖРД — Жидкостный ракетный двигатель;

КРТ — Компоненты ракетного топлива;

ПДК — Предельно-допустимых концентраций;

РКТ — Ракетно-космическая техника;

РН — Ракета-носитель;

СИЗОД — Средствами индивидуальной защиты органов дыхания;

СМ — Сжиженный метан;

СПГ — Сжиженный природный газ;

ТОА — Теплообменный аппарат.

ВВЕДЕНИЕ

Применение в ракетных двигателях охлажденных сжиженных компонентов ракетного топлива (КРТ), ниже температуры их кипения, при атмосферном давлении находит все более широкое использование.

Самым экологичным и энергоэффективным компонентом ракетного топлива считается сжиженый водород, так как он имеет самый высокий удельный импульс, а продукт его окисления при сгорании является вода. Помимо этого, в отличии от нефтяных продуктов, производство водорода не зависит от невозобновляемых природных ресурсов.

Например во второй ступени РН «Энергия» в качестве компонента ракетного топлива (КРТ) использовался жидкий водород, который был охлажден до 14,5 К. Такое решение на практике дало существенный положительный результат.

Впрочем в использовании жидкого водорода, в качестве одного из компонентов ракетного топлива (КРТ), имеет и ряд своих определенных эксплуатационных недостатков, таких как:

- Низкая температура кипения (20 K), поэтому для заправки ракетыносителя (PH) и поддержания ее в состоянии готовности к запуску, требуется решение технически сложных и энергозатратных задач;
- Необходимость использования более вместительных баков, так как у жидкого водорода низкая плотность (для сравнения это в 6,4 раза меньше чем плотность у жидкого метан и в 11,4 раза меньше чем у керосина «РГ-1»);
 - Высокая взрыво- и пожароопасность.

Исходя из этого смена топливной связки «кислород-водород», на более выгодную в эксплуатации, парой «кислород-метан» приводит к снижению производственных и эксплуатационных затрат на запуск РН.

В начале 21 века ракетно-космическая промышленность сделала шаги в направлении практического использования в качестве топлива сжиженного природного газа (СПГ), а точнее его основного компонента — метана.

В сравнении с более традиционным керосином, применение метана в качестве одного из КРТ, имеет такие преимущества как:

- Практический удельный импульс, что вследствие дает намного меньшей молекулярной массы исходной молекулы, а соответственно и продуктов горения. За счет его нивелирования из-за меньшей плотности, больше примерно на 3-5%;
- Меньшая массовая доля углерода в молекуле приводит к уменьшению нагара и сажеобразования на стенках камеры сгорания, что в свою очередь увеличивает показатели надёжности и дает возможность многоразового использования систем;
- Лучшее охлаждение частей двигателя, за счет меньшей вязкости и низкой температуры кипения;
- Меньшая смачиваемость топливной системы, а следовательно более полный расход и пониженная загрязнённость топливной системы;
- Температура метана и кислорода достаточно близки (метан ~ 112 K; кислород ~ 90 K), это позволяет хранить их рядом без существенной теплозащиты;
- В случае использования многоразовых ступеней ракета-носителя, более простое очищение полостей двигателя от остатков горючего, для этого достаточно пройти цикл испарения;
- Уменьшение возможности возникновения переохлаждения и закритической кавитации вследствие меньшей вязкости;
- Лучшая смешиваемость топливной пары, за счет того, что смешиваются вещества одного в одном агрегатном состоянии;
- Доступность и меньшая стоимость. Производство керосина происходит из определенного сорта нефти, запасы которой уменьшаются значительно быстрее, чем запасы метана;
- Экологическая безопасность, в том числе и при аварийном сливе топлива из PH;

— В случае реализации программ полета на другие планеты Солнечной системы, существуют технологии для получения метана вне Земли.

Из чего можно заключить вывод, что актуальность темы работ посвященных исследованию перспектив использования метана в качестве одного из КРТ в РКТ имеет большую практическую ценность и направлена на повышение эффективности, надежности, экологичности и ресурсопригодности.

Основной проблемой применения метана в качестве компонента ракетного топлива является его эффективное и надежное переохлаждение для хранения и заправки в ракета-носитель За счет повышения плотности при понижении температуры появляется возможность заправлять большее количество топлива в те же объёмы баков РН.

В дипломной работе рассматривается вариант охлаждения сжиженного метана, проходящего в системе охлаждения теплообменного аппарата, учитывая требования, предъявляемые к теплоносителю такие как: температуру кипения, безопасность использования и стоимость.

1 ОБЩИЕ СВЕДЕНИЯ РН СОЮЗ-7 «АМУР-СПГ»

РН Союз-7 — разрабатываемая многоразовая двухступенчатая ракетаноситель среднего класса на метановом двигателе РД-0169. Первая ступень имеет 5 метановых двигателей РД-0169A (одна камера сгорания) с тягой 100 тс. Вторая ступень имеет 1 метановый двигатель РД-0169В-1 (одна камера сгорания) с тягой 95 тс.

РД-0169 — кислородно-метановый ракетный двигатель. Разрабатывается в КБХА. В качестве горючего используется сжиженный природный газ (метан), в качестве окислителя используется жидкий кислород. Предназначен для использования в качестве маршевого двигателя в многоразовых ракетахносителях. Рабочий процесс в камере сгорания организован по типу «газ-газ». Преимуществами являются: удобство в эксплуатации, экологическая чистота, возможность многоразового использования. Планируется достижение тяги в 200 тонн. В штатном варианте выбрано давление в камере сгорания 175 кгс/см2.

Таблица 1 — Основные технические характеристики РН «Союз-7»

Характеристика	Значение
Максимальная стартовая масса, кг	5,30·10 ⁵
Масса полезного груза (на низкую опорную орбиту), кг	1,70·10 ⁴
Масса горючего и окислителя, кг	4,58·10 ⁵
Полная длина, м	6,19·10
Диаметр корпуса, м	4,10
Количество ступеней	2
Масса горючего (СМ), кг	1,11·10 ⁵
Масса окислителя жидкий кислород, кг	3,47·10 ⁵

Таблица 2 — Основные технические характеристики РД-0169А

Характеристика	Значение
Тяга, тс	
- земная	340
- пустотная	390,7
Удельный импульс, кгс·с/кг	
- земной (номинальный)	311,5
- пустотный	358
Диапазон работы, % Ркном	40-100
Высота, мм	4900
Диаметр сопла, мм	2500
Масса сухого двигателя, кг	3000
Схема	ДВВГ

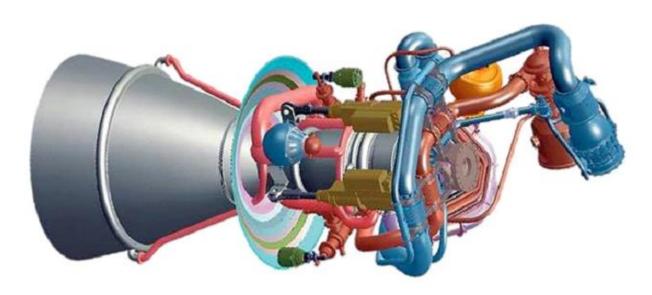


Рисунок 1 — РД-0169А

2 ИСПОЛЬЗОВАНИЕ СВЯЗКИ ТОПЛИВНЫХ КОМПОНЕНТОВ МЕТАН–КИСЛОРОД В ЖИДКОСТНЫХ РАКЕТНЫХ ДВИГАТЕЛЯХ

2.1 Перспективы применения в ЖРД

Ракетные двигатели уже достигли значительного совершенства и очень высоких, почти предельных рабочих параметров, которые могут быть превышены только с применением новых конструкций, материалов и технологий преобразования энергии. Надежность и экологическая безопасность стали главными показателями качества разрабатываемых двигателей.

Из различных технических решений предпочтение следует отдавать тем, в которых количество потенциально опасных узлов сведено к минимуму, а доля существующих систем, показавших и доказавших высокий уровень надежности на практике, увеличивается с упором на современные материалы и технологии. В настоящее время совершенствование ракетных двигателей направлено на повышение надежности, удельного импульса, снижение удельного веса, снижение стоимости, а также уменьшение или устранение вредного воздействия на окружающую среду.

Использование экологически чистой топливной пары кислород-метан приведет к снижению производственных и эксплуатационных затрат на ракетно-космическую технику, обеспечит конкурентоспособность при запуске полезных нагрузок и оптимизирует эксплуатационные характеристики космодрома Восточный.

В Российской Федерации разработку ЖРД на сжиженном метане ведут ряд организаций такие как: ИЦ имени М. В. Келдыша, НПО «Энергомаш», КБ Химмаш имени А. М. Исаева, ФПГ «Двигатели НК», НИИМаш и КБ Химавтоматики.

Сжиженный природный газ (СПГ) содержит 90% или более метана. По сравнению с керосином, метан имеет более высокую энергетическую ценность и большую охлаждающую способность, а стоимость производства метана ниже, чем керосина. Разработка жидкостных ракетных двигателей на основе

экологически чистого топлива: метана в сочетании с жидким кислородом - часть направлений развития современных ракет-носителей. За счет лучшей охлаждающей способности жидкостный двигатель получает большой запас ресурсов.

Использование сжиженного природного газа (метана) позволяет:

- Обеспечить безопасность окружающей среды даже при аварийном сливе компонентов топлива;
- Повысить удельный импульс тяги и улучшить энерго-массовые характеристики РН;
- Повысить эффективность охлаждения камеры сгорания; упростить межпусковую обработку топливных трактов;
 - Снизить стоимость горючего;
- Обеспечить длительность использования сырьевой базы при наличии больших природных запасов горючего;
- Обеспечить доступность природного газа для любых национальных программ;
- Облегчить создание двигателя любой принципиальной схемы (с окислительным или восстановительным газогенератором);
- Использовать материалы, технологии и оборудование, присущие криогенной технике.

2.2 Анализ существующих физико-химических показателей и требований качества СПГ

На территории Российской Федерации состав и свойства сжиженного природного газа в зависимости от области его применения регламентируются ГОСТ Р 56021-2014 и ТУ 51 03-03-85. Свойства природного газа, газифицируемого из СПГ, должны соответствовать требованиям ГОСТ 5542-87, за исключением требований по интенсивности запаха.

Требования к регазифицированному из СПГ компримированному газу, применяемому в качестве топлива для двигателей внутреннего сгорания транспортных средств (автомобилей, железнодорожного транспорта, речных

судов и сельскохозяйственной техники) регламентирует ГОСТ 27577–2000, который имеет межгосударственный статус. Положения ГОСТ Р 56021–2014 устанавливают показатели качества поставляемого потребителям СПГ следующих марок:

- Марка А газ горючий природный сжиженный высокой чистоты,
 обладающий постоянной теплотой сгорания, используемый в качестве топлива
 для двигателей внутреннего сгорания и энергетических установок с узкими
 пределами регулирования;
- Марка Б газ горючий природный сжиженный, используемый в качестве топлива для двигателей внутреннего сгорания;
- Марка В газ горючий природный сжиженный, используемый в качестве топлива для энергетических установок.

При поставках СПГ с массовой концентрацией общей серы не более 0,010 г/м³ к обозначению марки СПГ добавляют индекс «0». В соответствии с ГОСТ Р 56021-2014 по физико-химическим показателям СПГ должен соответствовать требованиям и нормам, приведенным в таблице 3, из которой видно, что регазифицированный СПГ марки Б удовлетворяет требованиям ГОСТ 27577-2000, регазифицированный СПГ марки В – требованиям ГОСТ 5542–87, за исключением требования к интенсивности запаха. Сжиженный природный газ, имеющий по паспорту марку в соответствии с ГОСТ Р 56021-2014, обладает легкокипящих компонентов тенденцией К снижению концентрации накоплению тяжелокипящих (в том числе кристаллизующихся) на протяжении всего жизненного цикла, что может привести к переходу СПГ в марку более низкого уровня.

Это связано с особенностями технологических операций, которые проводятся с СПГ на этапах погрузки и разгрузки, транспортировки и хранения. Каждая из вышеперечисленных операций связана с неизбежным испарением части продукта и необходимостью использования части испарившегося сжиженного метана, чтобы снизить давление в резервуарах до регламентных значений. Очевидно, что испарение углеводородных смесей в экстракционном

газе увеличивает содержание низкокипящих компонентов (метан, азот), а их удаление приводит к неизбежной деградации компонентного состава сжиженного метана.

Таблица 3 — Требования к СПГ по ГОСТ Р 56021-2014

Характеристика	Марка		
Ларактеристика	A	Б	В
Область значений числа Воббе (высшего) при стандартных условиях, МДж/м ³	47,2–49,2	Не нормируется	41,2–54,5
Низшая теплота сгорания при стандартных условиях, МДж/м ³	Не нормируется	31,8–36,8	≥31,8
Молярная доля СН4, %,	≥99,0	≥80,0	≥75,0
Молярная доля N_2 , %	Не нормируется	≤5,0	≤5,0
Молярная доля СО2, %	≤0,005	≤0,015	≤0,030
Молярная доля O_2 , %	≤0,020		
Массовая концентрация H ₂ S, г/м ³	≤0,020		
Массовая концентрация меркаптановой S , Γ/M^3		≤0,036	
Расчетное октановое число (по моторному методу)	Не нормируется	≥105	Не нормируется

2.3 Физико-химические показатели СПГ применяемые для ракетной техники

Сжиженный природный газ по физико-химическим показателям должен отвечать требованиям в соответствии с техническими условиями «Газ горючий природный сжиженный. Топливо для ракетной техники» или марке А ГОСТ Р 56021-2014 «Газ горючий природный сжиженный. Топливо для двигателей внутреннего сгорания и энергетических установок».

Данные технические требования, приведены в таблице 4. Они соответствуют требованиям существенно более высоким, чем для СПГ, используемого в качестве горючего для других видов транспорта.

Такой метан можно получать путем дополнительной очистки природного газа при его сжижении. На начальной стадии внедрения сжиженного природного газа в РКТ и снабжение им стартовых комплексов может осуществляться от работающих в настоящее время малотоннажных установок для получения СПГ с предварительной подготовкой сырьевого газа.

Таблица 4 — Физико-химические характеристики СПГ для ракетной техники

Характеристика	ГОСТ Р 56021-2014	Характеристика	ТУ 021 00480689-96
Молярная доля метана, %, не менее	99,0	Объемная доля метана, %	96,0±2,0
		Объемная доля этана, пропана, %	2,820±2,0
		Объемная доля бутан-гексана, %	не более 0,036
		Объемная доля непредельных и циклических углеводородов, %	не более 0,001
Молярная доля азота, %, не более	Не норм.	Объемная доля азота, %	не более 1,130

Продолжение таблицы 4

Молярная доля диоксида		Объемная доля		
углерода, %, не более	0,005	диоксида	не более 0,011	
		углерода, %		
Молярная доля кислорода,	0,020	Объемная доля	Не норм.	
%, не более	0, 020	кислорода, %	пс норм.	
Массовая концентрация	0,020	Объемная доля		
сероводорода, г/м ³ , не более	0, 020	сероводорода и	не более 0,001	
Массовая концентрация		серосодержащих		
меркаптановой серы, г/м ³ , не	0, 036	(меркаптаны), %		
более				

3 РАЗРАБОТКА ПРИНЦИПИАЛЬНОЙ СХЕМЫ СИСТЕМЫ ОХЛАЖДЕНИЯ СЖИЖЕННОГО МЕТАНА ДЛЯ ХРАНИЕНИЯ И ЗАПРАВКИ РАКЕТЫ-НОСИТЕЛЯ

На основе известных способов, установок и систем для охлаждения криогенных компонентов топлива РН, разработана принципиальная схема системы для охлаждения СМ для заправки РН среднего класса. При моделировании процессов, происходящих при охлаждении СМ жидким азотом в процессе заправки РН, в качестве технических характеристик РН среднего класса использовались характеристики (табл. 1) перспективной российской двухступенчатой РН «Союз-7». Принципиальная схема системы охлаждения СМ жидким азотом представлена на рисунке 2.

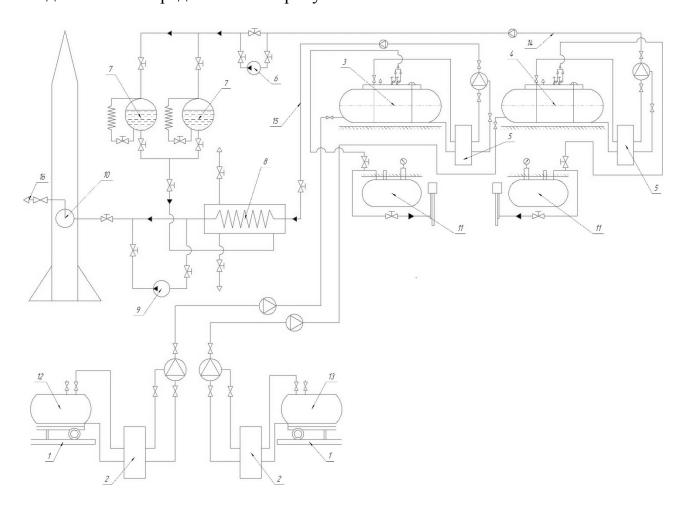


Рисунок 2 — Принципиальная схема системы охлаждения СМ жидким азотом:

- 1 Железнодорожная эстакада;
- 2 Оборудование газоразливочной эстакады;
- 3 Резервуар для хранения сжиженного метана;
- 4 Резервуар для хранения жидкого азота;
- 5 Испаритель наддува;
- 6 Насос азотный;
- 7 Азотная накопительная ёмкость;
- 8 Теплообменник-охладитель сжиженного метана;
- 9 Насос метановый;
- 10 Бак РН для сжиженного метана;
- 11 Оборудование пароотводных устройств;
- 12 Цистерна сжиженного метана;
- 13 Цистерна жидкого азота;
- 14 Вход жидкого азота;
- 15 Вход сжиженного метана;
- 16 Отвод паров сжиженного метана.

Способ заправки сжиженного метана бака горючего (БГ) ракеты-носителя (РН) воздушно-космической системы (ВКС) относится к авиационно-космической технике. Метод заправки включает в себя заполнение бака горючего (БГ) переохлажденным СМ, который в свою очередь подается в нижнюю часть бака горючего (БГ), с локализацией в полости передней части БГ парогазового, находящегося в динамическом контакте с сжиженным метаном (СМ). Далее идет последующий перелив метана из БГ в дополнительную криогенную емкость, при поддержании в ней избыточного давления, соответствующего штатному давлению БГ в РН.

Подачу переохлажденного сжиженного метана в бака горючего производят до получения значений температуры СМ на выходе из БГ ниже заданной температуры сжиженного метана в БГ перед воздушным стартом РН на выполнение прогрева СМ в БГ до момента десантирования РН. Затем отстыковывают дополнительную криогенную емкость.

На рисунке 2 представлена принципиальная схема системы охлаждения СМ жидким азотом, а так же его хранение и последующая заправка СМ в РН.

Вначале сжиженный метан и азот приезжают в цистернах по железной дороге на стартовый комплекс. Слив происходит на специализированой железно дорожной эстакаде, которая имеет испаритель и по средством вытеснения сливается СМ и азот. На рисунке 3 представлена схема слива сжиженного метана и азота с ж/д цистерн.

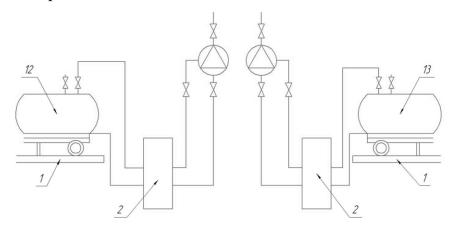


Рисунок 3 — Эстакада для слива СМ и азота

Далее СМ и азот, проходя по магистральным трубопроводам, попадают в резервуары комплекса криогенного хранилища, представленный на рисунке 4. В комплекс криогенного хранилища входит оборудование пароотводных устройств, вакуумирования, регламентных газов, пневмоуправления и контроля параметров.

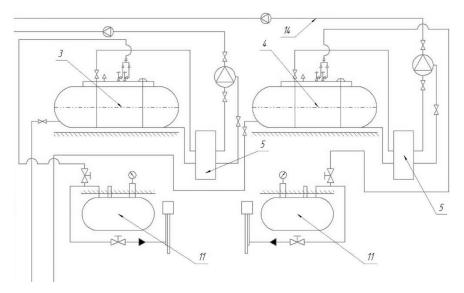


Рисунок 4 — Комплекс криогенного хранилища

На этапе заправки РН по средством испарителей наддува сливаются сжиженный метан и азот из резервуаров хранилища. Затем по трубопроводным магистралям СМ попадает в кожухотрубный теплообменный аппарат, а азот в свою очередь перед попаданием в ТОА, проходит через азотную накопительную емкость ДЛЯ создания необходимого давления. После прохождения теплообменного аппарата сжиженный метан достигает необходимой температуры и плотности для заправки бака горючего в РН. Принципиальная схема охлаждения СМ в теплообменном аппарате и последующая заправка РН представлена на рисунке 5.

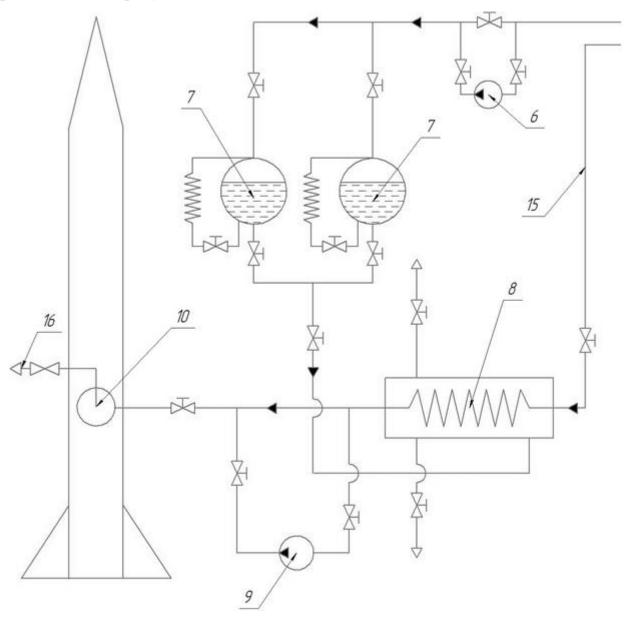


Рисунок 5 — Охлаждение СМ в ТОА и заправка РН

4 ВИДЫ И ПРИНЦИП ДЕЙСТВИЯ ТЕПЛООБМЕННЫХ АППАРАТОВ

Процессы теплообмена в теплообменных аппаратах осуществляются в Так различных типах И конструкциях. ПО способу передачи теплообменные аппараты поверхностные и делят на контактные. поверхностных теплообменниках рабочие среды обмениваются теплом через стенки из теплопроводного материала, а в контактных аппаратах тепло передается при непосредственном соприкосновении рабочих сред друг с другом.

Классификация теплообменных аппаратов представлена на рисунке 6.

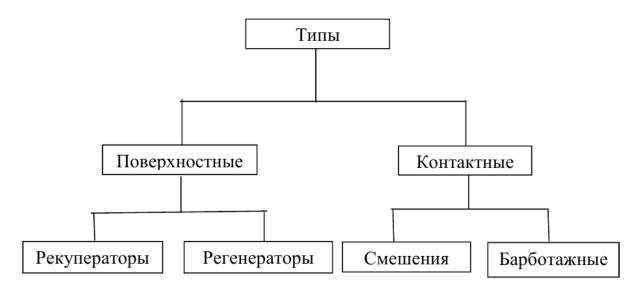


Рисунок 6 – Классификация теплообменных аппаратов

Контактные теплообменные аппараты подразделяются на барботажные и смесительные. В теплообменниках барботажного типа более нагретый теплоноситель прокачивается через массу менее нагретого (или наоборот), не смешиваясь с ним. В теплообменниках смесительного типа нагретые и менее нагретые теплоносители перемешиваются и образуют растворы или смеси. Примером таких аппаратов являются скрубберы различного типа.

В поверхностных теплообменных аппаратах оба теплоносителя омывают разделяющую их твердую стенку, которая таким образом участвует в процессе

теплообмена. Такие аппараты разделяются на рекуперативные и регенеративные.

В регенеративных аппаратах поверхность теплообмена переменно омываются двумя теплоносителями. В момент нагрева, то есть при протекании горючего теплоносителя, стенки теплообменного аппарата и его набивка в виде шаров, колец и т.д. нагреваются, в них накапливается тепло, которое в свою очередь отдается протекающему вторичному теплоносителю в период охлаждения. В аппаратах периодического действия направление теплового потока в стенках периодически меняется. К таким установкам относятся воздухоподогреватели газотурбинных установок, некоторые типы воздухоподогревателей и тому подобные.

В рекуперативных аппаратах одна поверхность стенки постоянно омывается одним теплоносителем, а другая — вторым. Таким образом тепло от одного теплоносителя передается к другому через разделяющую их стенку из теплопроводного материала.

Также теплообменные аппараты классифицируются по наличию или наоборот отсутствию изменения агрегатного состояния теплоносителей.

Существуют аппараты без изменения агрегатного состояния теплоносителей или с изменением агрегатного состояния только одного теплоносителя. Это может быть конденсация пара первичного теплоносителя или кипения жидкости вторичного теплоносителя, соответсвенно с изменением агрегатного состояния обоих теплоносителей.

По назначению можно выделить:

- 1. Подогреватели;
- 2. Холодильники;
- 3. Испарители;
- 4. Конденсаторы;
- 5. Дистилляторы;
- 6. Сублиматоры;
- 7. Плавители и т.п.

По виду взаимного направления потоков теплоносителей относительно друг друга, теплообменные аппараты поверхностного типа классифицируют на четыре основные схемы движения теплоносителей, а также применяются их комбинации:

- 1. Прямоток движение двух теплоносителей параллельно друг к другу в одном и том же направлении.
- 2. Противоток движение двух теплоносителей параллельно друг к другу в противоположных направлениях.
- 3. Перекрестный ток движение двух теплоносителей во взаимно перпендикулярных направлениях.
- 4. Смешанный ток один или более теплоносителей делают несколько ходов в аппарате, омывая, при этом, часть поверхности по схеме прямотока, а другую часть согласно схеме противотока или перекрестного тока.

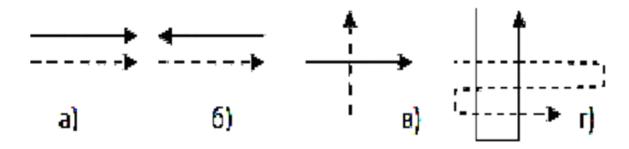


Рисунок 7 – Схемы движения теплоносителей: а) прямоток, б) противоток, в)перекрестный ток, г) смешанный ток

Рекуператоры различаются по конфигурациям поверхности теплообмена на следующие типы: кожухотрубные ТОА, элементные или так называемые секционные ТОА, витые ТОА, оросительные ТОА, ребристые ТОА, спиральные ТОА и пластинчатые ТОА.

5 КОЖУХОТРУБЧАТЫЕ ТЕПЛООБМЕННИКИ

Одним из самых распространенных видов ТОА являются кожухотрубные теплообменники. Их область применения в теплообменных и термохимических процессах с двумя различными жидкостями, парами или газами — как без изменения, так и с изменением их агрегатного состояния.

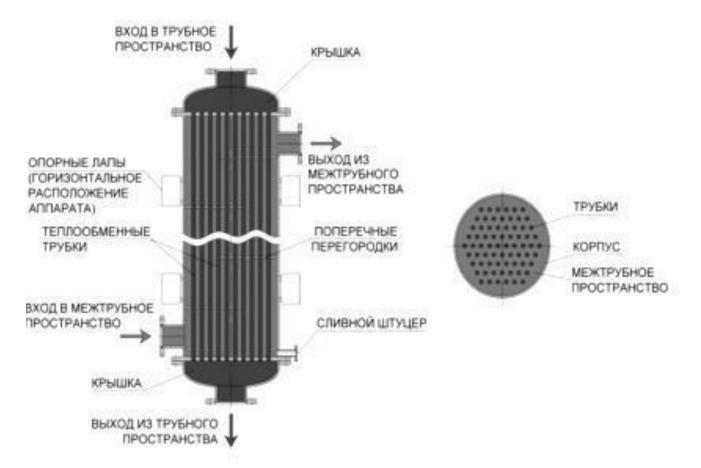


Рисунок 8 – Кожухотрубный теплообменник

К основными элементам кожухотрубного ТОА относятся:

- Пучки труб;
- Трубные решетки;
- Корпус;
- Крышки;
- Патрубки.

В трубных решетках с помощью развальцовки, сварки или пайки крепят концы труб. Далее трубки подгоняются к двум трубным решеткам с использованием сварки или вальцевания. Составляющие пучок трубки, внутри теплообменника, располагаются в шахматном или спиральном порядке, по вершинам равностороннего треугольника. Крышки могут быть съемным элементом конструкции и предназначены для входа и выхода теплоносителя. Трубное и межтрубное пространство внутри ТОА разделяет теплоносители между собой. Так же второй теплоноситель, который находится в межтрубном пространстве имеет входной и выходной штуцеры.

Кожухотрубчатые ТОА могут располагаться как в вертикальном, так и в горизонтальном положении. Основными преимуществами теплообменника данного вида перед другими является самый широкий диапазон применения по рабочим параметрам, низкие требования к чистоте теплоносителей, более высокая стойкость к гидроударам, относительная простота конструкции и дешевизна в производстве и обслуживании.

Однако имеется и ряд недостатков, к ним относится относительно низкий коэффициент теплопередачи и наличие температурных деформаций при больших температурном перепаде.

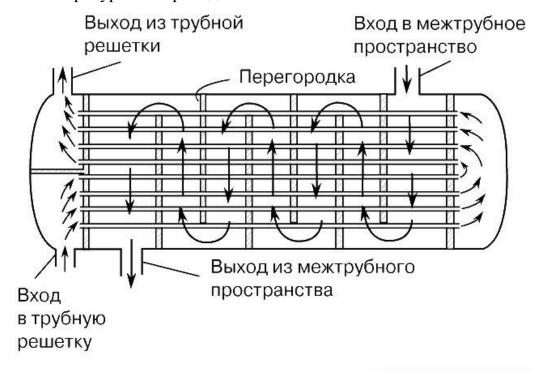


Рисунок 9 – Кожухотрубчатый теплообменник

Принципиальная схема кожухотрубного ТОА разделяется на два типа работы:

- 1. Один теплоноситель сквозь трубный пучок, второй внутри корпуса, при этом омывая трубы с первым теплоносителем;
- 2. Два теплоносителя подаются через входные фланцы ТОА и проходят сквозь весь теплообменник, при этом не смешиваясь.

В процессе работы теплообменника через стенки трубного пучка происходит передача тепловой энергии от одного теплоносителя другому. Однако, нагревание или охлаждение вызывает температурную деформацию стенок корпуса и решетки.

В большинстве своем деформация элементов незначительна, так как учитывается что разница температур небольшая. В случае существенной разницы в температуре возникает механическое напряжение в местах соединения элементов конструкции с различной температурой. Это может привести к повреждению элементов и соединений. Поэтому для подавления этого эффекта применяются некоторые модификации в базовом устройстве кожухотрубчатого ТОА.

6 ТЕПЛОВОЙ РАСЧЕТ ТЕПЛООБМЕННОГО АППАРАТА

Цель теплового расчета теплообменника является определение габаритно-массовых характеристик, необходимой поверхности теплообмена и подбор стандартизованного теплообменного аппарат в соответствии с ГОСТ Р 53677—2009. «Нефтяная и газовая промышленность. Кожухотрубчатые теплообменники. Технические требования.»

Для достижения цели необходимо выполнить:

- Предварительный тепловой расчет, в рамках которого определить ориентировочную поверхность теплообмена и предварительно подобрать аппарат;
- Провести уточненный тепловой расчет, с целью уточнения требуемой поверхности теплообмена путем расчета коэффициентов теплоотдачи и теплопередачи с учетом режимов движения потоков в предварительно выбранном аппарате.

Выполним расчет теплообменника для охлаждения сжиженного метана. Исходные данные представлены в таблице 5.

Таблица 5 – Исходные данные

Параметр:	Значение:
Расход сжиженного метана	6,3 кг/с
Температура сжиженного метана на входе	-161,15 °C
Температура сжиженного метана на выходе	-180 °C
Давление в аппарате	0,3 Мпа
Допустимая потеря давления	0,1 Мпа
Расход азота	22 кг/с
Плотность сжиженного метана	425 кг/м ³

Примем для расчета кожухотрубчатый теплообменник с неподвижными трубными решетками и проведем тепловой расчет аппарата при подаче метана в межтрубное пространство при прямоточном движении рабочей среды и теплоносителя.

Тепловой расчет проводят в следующей последовательности:

- 1. В зависимости от исходных данных предварительно принимают тип аппарата, вариант подачи рабочей среды (в трубное или межтрубное пространство). Принимают теплоноситель или хладагент и его начальную и конечную температуру.
- 2. Определяют теплофизические свойства рабочей среды плотность ρ , вязкость μ , удельная теплоемкость λ , теплопроводность C_p при средней температуре. Среднюю температуру рассчитывают, используя общие формулы.
- Разность температур на концах теплообменника согласно предложенной схеме: t_2 / t_1 < 2, следовательно средний температурный напор, найдем по формуле:

$$t_{cp} = \frac{(t_1 + t_2)}{2} = -170,5 \, ^{\circ}C; \tag{1}$$

где t_1 , t_2 — начальная и конечная температура рабочей среды.

Если $\Delta t_{\text{б}}/\Delta t_{\text{м}} < 2$, среднюю разность температур можно найти как:

$$\Delta t_{cp} = \frac{(\Delta t_{\delta} + \Delta t_{M})}{2} = -175 \, ^{\circ}C; \tag{2}$$

где $\Delta t_{\text{б}}$ и $\Delta t_{\text{м}}$ — большая и меньшая разность температур теплоносителейсоответственно.

3. Производят предварительный тепловой расчет теплообменника вследующей последовательности.

- Предварительно принимают коэффициент теплопередачи K_{op} (Bт/м2·K)
 - Находят тепловой поток Q в аппарате (Вт), используя формулу

$$Q = G \cdot c \cdot (t_1 + t_2) = 1316370 \ Bm; \tag{3}$$

где G – массовый расход потока, кг/с;

c - теплоемкость, Дж/(кг·К).

 t_1 , t_2 – начальная и конечная температура рабочей среды, °С.

Определяют ориентировочную поверхность теплообмена по формуле

$$F = \frac{Q}{K_{op} \cdot \Delta t_{cp}} = 596,23 \text{ m}^2;$$
 (4)

где F – площадь теплопередающей поверхности, м²;

Q – тепловой поток в аппарате, Вт;

К – коэффициент теплопередачи, Вт/м ²⋅К;

 Δt_{cp} – средняя разность температур между теплоносителями, °C.

Производят предварительный выбор теплообменника, принимая его основные параметры: площадь поверхности теплообмена (F), диаметр кожуха (D), диаметр труб (d_H), длину труб (1). При этом поверхность теплообмена аппарата должна быть больше расчетной.

По результатам предварительного расчета, выберем теплообменник с характеристиками представленными в таблице 6.

Таблица 6 – Характеристики ТОА

Характеристика	Значение
F, м2	600
D, мм	733

Продолжение таблицы 6

d _н , мм	10
n	617
1, мм	3050
D _{BX} , MM	450

Примечание: D — диаметры кожуха, $d_{\rm H}$ — диаметры труб; $D_{\rm BX}$ — диаметр входа в ТОА, 1 — длина труб, n — число труб.

Таким образом выбираем кожухотрубчатый теплообменник с неподвижными трубными решетками, с кожухом диаметром 733 мм, работающий при условном давлении 0.3 МПа, с подачей азота в межтрубное пространство, а метана — в трубное; взаимное направление движения теплоносителей — прямоток, по ГОСТ Р 53677—2009 «Нефтяная и газовая промышленность. Кожухотрубчатые теплообменники. Технические требования».

7 МОДЕЛИРОВАНИЕ ПРОЦЕССА ОХЛАЖДЕНИЯ СЖИЖЕННОГО МЕТАНА В ПРЯМОТОЧНОМ КОЖУХОТРУБЧАТОМ ТЕПЛООБМЕННОМ АППАРАТЕ

На основе теплового расчета теплообменника определены габаритномассовых характеристики, необходимая поверхность теплообмена и найден соответствующий стандартизованный аппарат в соответствии с ГОСТ Р 53677— 2009. «Нефтяная и газовая промышленность. Кожухотрубчатые теплообменники. Технические требования.»

Разработка чертежа кожухотрубного теплообменного аппарата для моделирования процесса охлаждения сжиженного метана посредством азота, начинается с построения кожуха по техническим требованиям, представленных в тепловом расчете таблице 6.

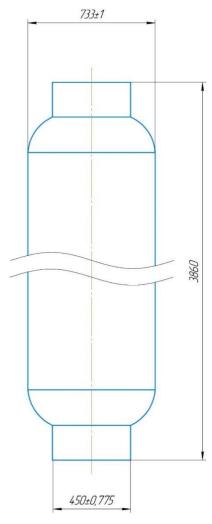


Рисунок 10 — Кожух ТОА

Далее определена установка и система для охлаждения криогенных компонентов топлива с необходимыми изменениями для конкретной задачи, представленных в тепловом расчете таблице 7.

Таблица 7 — Основные конструктивные параметры ТОА

Конструктивный параметр	Значение	
Тип аппарата	прямоточный	
Число потоков	2	
Число труб	617	
Поток в межтрубном пространстве	холодный	
Труба	гладкая	
Материал труб	нерж. ст. 12Х18Н10Т	
Наружный диаметр труб, мм	10	
Внутренний диаметр труб, мм	8	
Наружный диаметр обечайки, мм	733	
Внутренний диаметр обечайки, мм	725	
Длина труб	3050	
Диаметр входа метана в межтрубное	450	
пространство	430	
Диаметр выхода охлажденного метана	450	
Диаметр входа азота	180	
Диаметр выхода азота	180	

После построения кожуха теплообменного аппарата, выбраны габаритные размеры входа и выхода хладагента в межтрубное пространство, а так же их количества. Для создания турбулентного движения азота в межтрубном пространстве принято решение использовать один вход в ТОА, а для быстрого

отвода отработанного азота использовать несколько выходов. Диаметры входа и выходов азота в межтрубное пространство представлены в таблице 7.

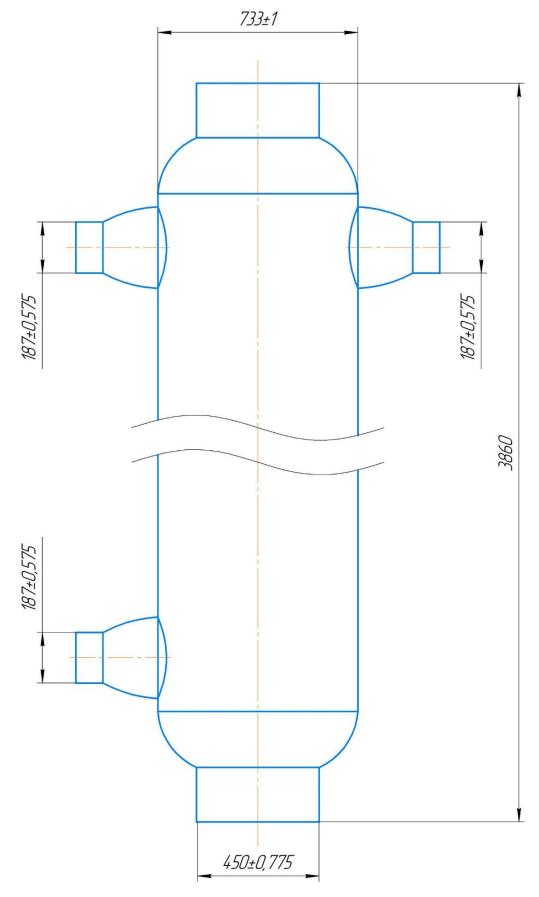
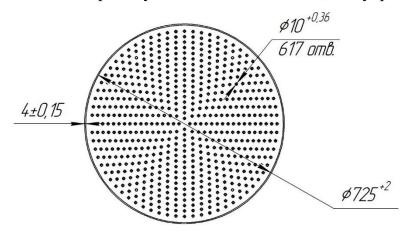



Рисунок 11 — Кожух ТОА со входом и выходами

Следующим этапом идет создание межтрубного пространства в ТОА. Она состоит из внутренней сетки в количестве 617 труб диаметром 10 мм и длиной 3050 мм. Внешний диаметр кожуха составляет 733 мм, а внутренний 725 мм.

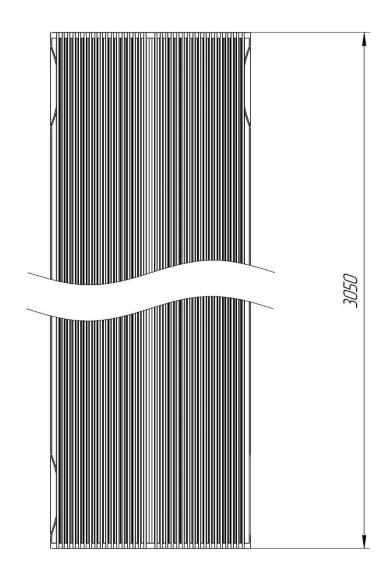


Рисунок 12 — Межтрубное пространство ТОА

Заключительный этап создания чертежа со всеми размерами сечениями и вырезами. Готовый чертеж представлен на рисунке 13.

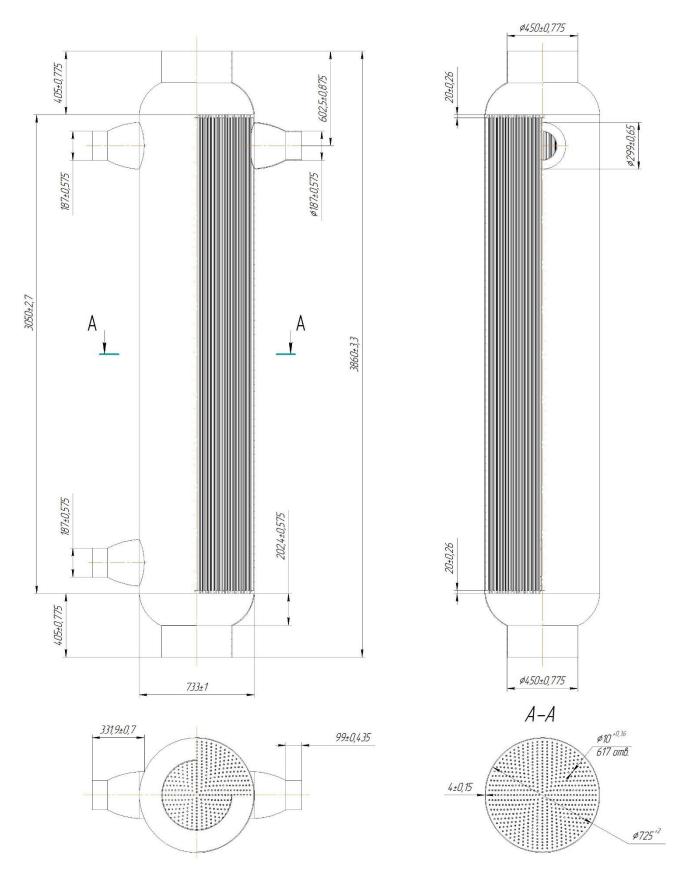


Рисунок 13 — Прямоточный трубчатовитой ТОА в разрезе

Далее из разработанного чертежа, в SolidWorks построена компьютерная 3Д модель прямоточного кожухотрубного теплообменного аппарата для дальнейшего использования в симуляции SolidWorks FlowSimulation. Для этого необходимы входные данные, которые представлены в таблицах 7 – 10.

Компьютерная модель ТОА представлена на рисунке 14.

Таблица 8 — Основные параметры потоков

Вещество	Метан (СН ₄)	Азот (N ₂)
Расположение потока	межтрубное	трубное
Тип потока	теплый	холодный
Температура потока, К		
Вход	112	93,89
Выход	78	89,71
Давление, Мпа		
Вход	0,3	0,3
Выход	0,2	0,2
Число труб	617	0
Расход, кг/с	6,3	22

Таблица 9 — Параметры, управляющие процессом моделирования

Параметр	Значение
Относительный теплоприток, %	0
Коэффициент запаса, %	15
Шаг выдачи результатов расчета (координата по высоте намотки от входа трубных потоков), м	0,1
Шаг интегрирования, м	0,01

Таблица 10 — Основные режимные параметры прямоточного трубчатовитого ТОА

Параметр	CM (CH ₄)	Азот (N ₂)
Расход газа, кг/сек	22,00	6,30
Тепловая нагрузка по потокам, кВт	1316,37	1316,37
Температура потока (вход), К	112,00	78,00
Температура потока (выход), К	93,89	89,71
Гидр. сопротивление, кПа	21,95	57,96

Рисунок 14 – Компьютерная модель ТОА

Составным элементам конструкции кожухотрубного теплообменника является пучок труб, который размещен в собственной камере и закрепленный на трубной решётке. В количестве 617 труб внешним диаметром 10 мм и толщиной стенки 1 мм. Компьютерная модель ТОА в разрезе представлена на рисунке 15.

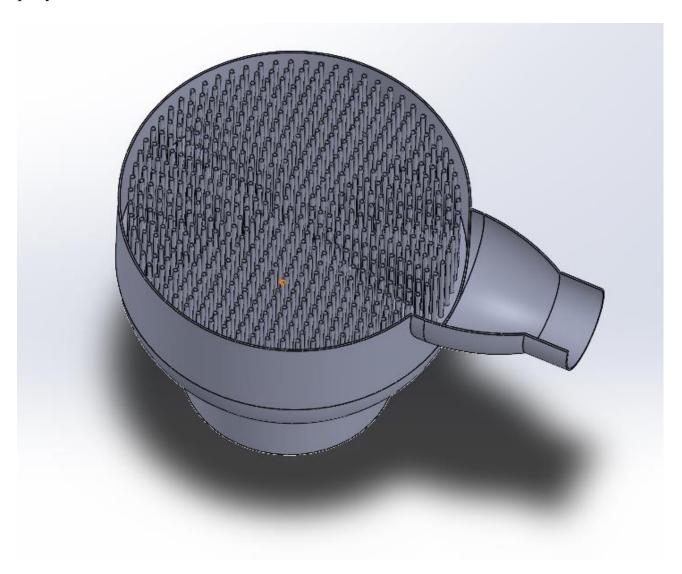


Рисунок 15 – Компьютерная модель ТОА в разрезе

8 SOLIDWORKS FLOW SIMULATION МОДЕЛИРОВАНИЕ ПОТОКА ЖИДКОСТИ, ТЕПЛООБМЕНА И ГИДРОДИНАМИЧЕСКИХ СИЛ.

Для более полной оценки процессов, происходящих в кожухотрубном теплообменном аппарате при охлаждении азотом СМ, проходящего по трубам, необходимо провести моделирование процесса охлаждения СМ в ТОА. Моделирование проводилось Solidworks Flow Simulation. Основные исходные данные представлены в таблицах 7–10.

Начинаем расчет с запуска мастера проекта.

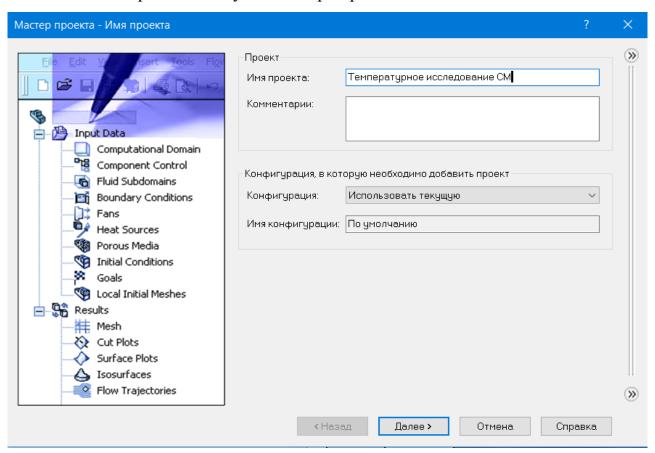


Рисунок 16 – Мастер проекта

Меняем системные единицы на которые нам удобно использовать. Температуру измеряем в K, объемный расход жидкости в M^3/C , массовый расход в $K\Gamma/C$.

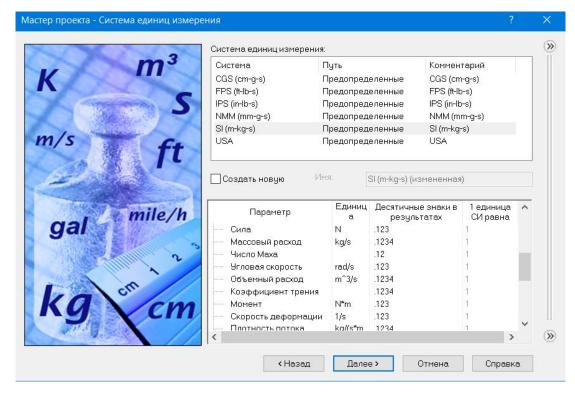


Рисунок 17 – Система единиц измерения

Далее включаем теплопроводность в твердых телах и гравитацию по оси

Рисунок 18 – Тип задачи

В параметрах текучей среды выбираем Methane и Nitrogen. В качестве среды по умолчанию будет метан.

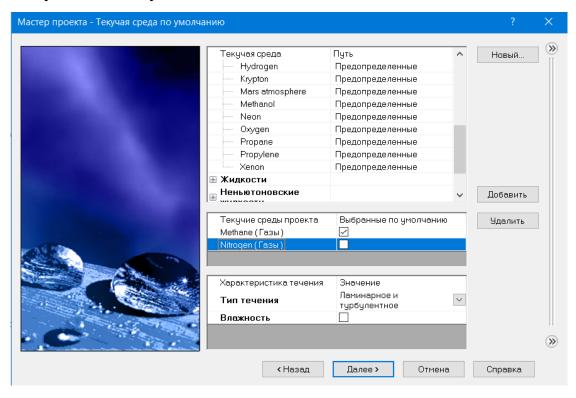


Рисунок 19 – Текучая среда

Для материала кожуха и труб выбераем сталь.

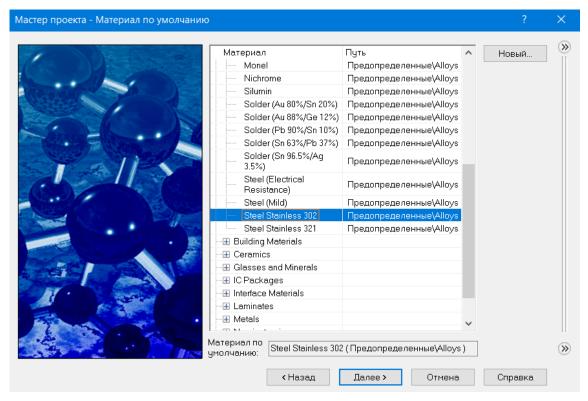


Рисунок 20 – Материал

Тепловое условие на внешних стенках остаётся по умолчанию: Адиабатическое.

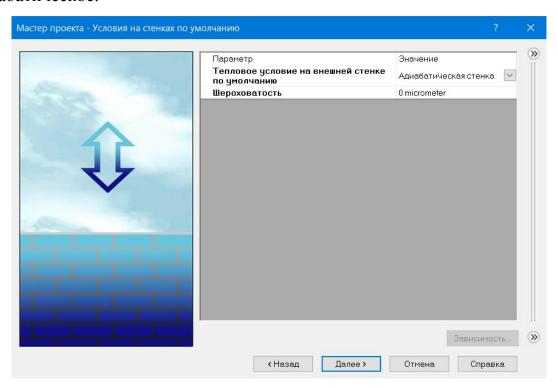


Рисунок 21 – Условия на стенках

Выставляем температуру окружающей среды 293 К и давление в ТОА 300000 Pa.

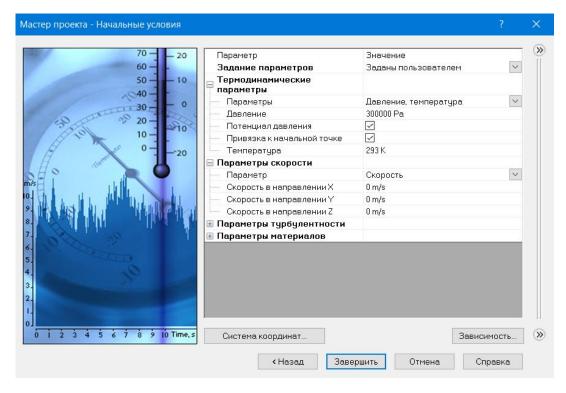


Рисунок 22 – Нормальные условия

Создаем новую подобласть течения метана и азота. Для метана устанавливаем термодинамические параметры на входе T=112 K, P=300000 Pa.

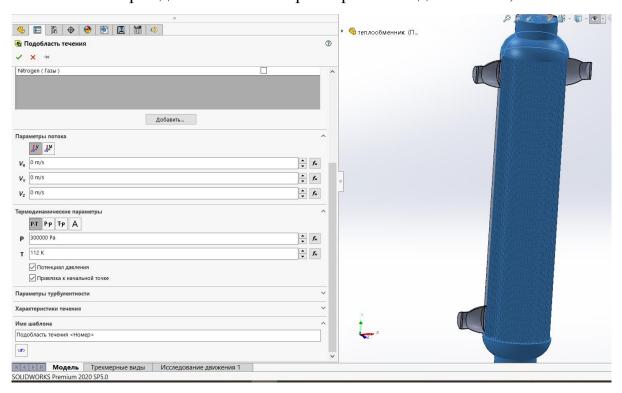


Рисунок 23 – Подобласть течения метана

Для азота устанавливаем термодинамические параметры на входе T=78 K, P=300000 Pa.

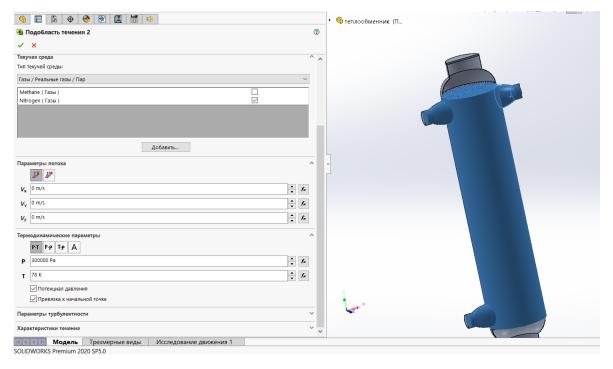


Рисунок 24 – Подобласть течения азота

Далее задаем граничные условия. Массовый расход метана на входе 6,3 кг/с.

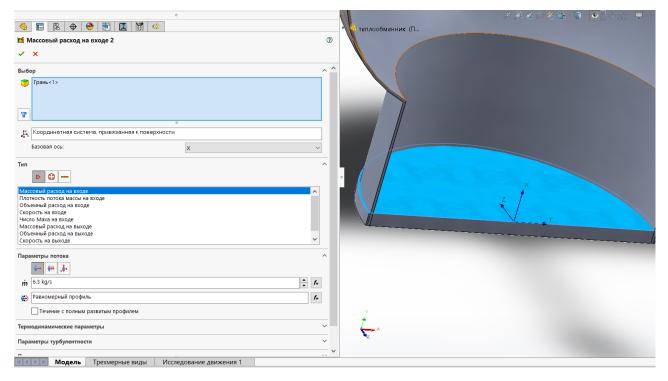


Рисунок 25 – Массовый расход метана

Задаем массовый расход азота на входе 22 кг/с.

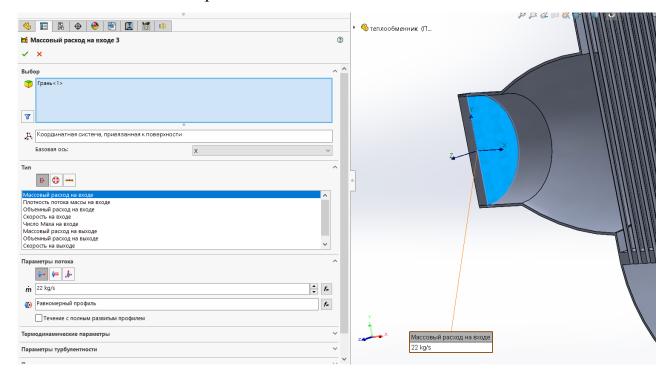


Рисунок 26 – Массовый расход азота

Задаем статическое давление на выходе метана.

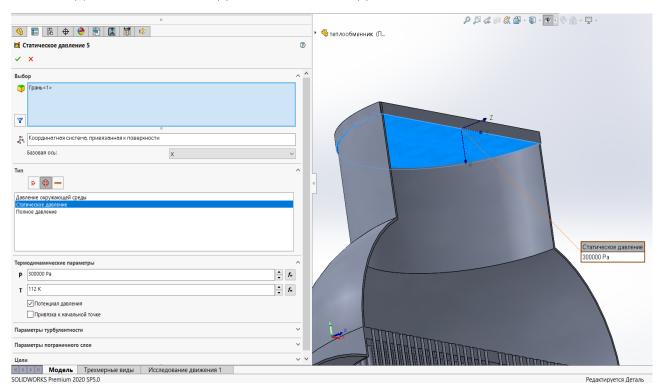


Рисунок 27 – Статическое давление метана

Задаем статическое давление на выходе азота.

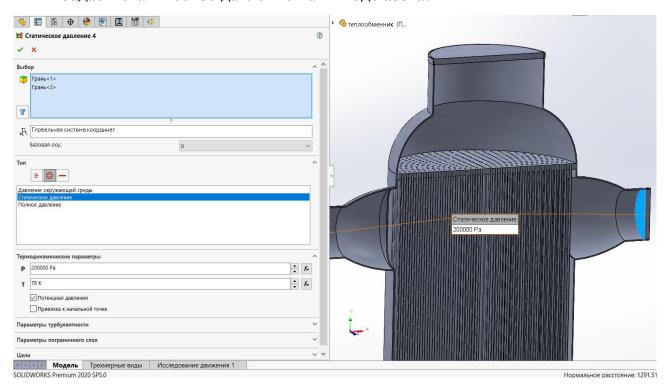


Рисунок 28 – Статическое давление азота

Создаем цели для расчета. Первое выбираем среднее значение температуры текучей среды, второе значение теплового потока и третье средняя скорость.

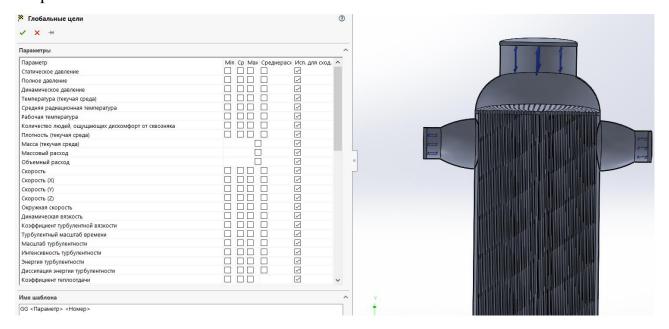


Рисунок 29 – Глобальные цели

В входных данных указывается тип задачи: Внешний.

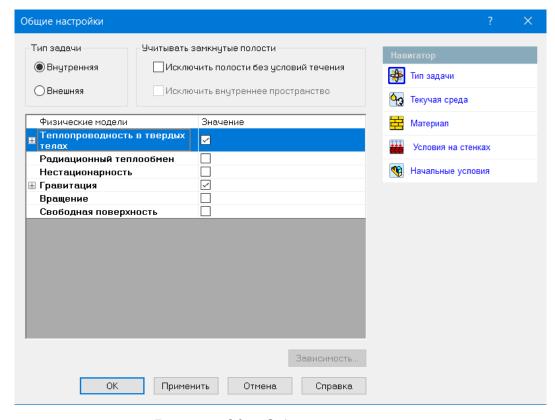


Рисунок 30 – Общие настройки

Выбираем автоматическое распределение глобальной сетки и запускаем расчет.

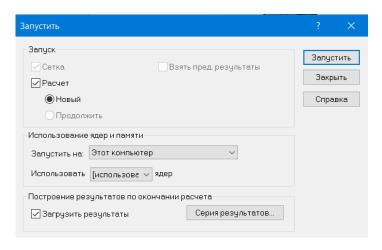


Рисунок 31 – Запуск расчета

Результаты моделирования представлены в таблицах 11-27 и графики на рисунках 32–40: плотность метана, динамическая вязкость метана, удельная теплоемкость (C_p) метана, коэффициент теплопроводности метана, плотность азота, динамическая вязкость азота, удельная теплоемкость (C_p) азота, коэффициент теплопроводности азота.

8.1 Расчетная область

Входные данные.

Определение размера сетки.

Таблица 11 — Размер

X min	-0.668 m
X max	0.668 m
Y min	-0.409 m
Y max	3.459 m
Z min	-0.367 m
Z max	0.367 m
Размер Х	1.336 m
Размер Ү	3.868 m
Размер Z	0.734 m

Задаются граничные условия.

Таблица 12 — Граничные условия

Двумерное течение	Не задан
По X min	По умолчанию
По X max	По умолчанию
По Y min	По умолчанию
По Ү тах	По умолчанию
По Z min	По умолчанию
По Z max	По умолчанию

8.2 Физические модели

Теплопроводность в твердых телах: Включено

Только теплопроводность в твердых телах: Выключено

Радиационный теплообмен: Выключено

Радиационный теплообмен в газах: Выключено

Нестационарность: Выключено

Гравитационные эффекты: Включено

Вращение: Выключено

Тип течения: Ламинарное и турбулентное

Течение с большим числом Маха: Выключено

Свободная поверхность: Выключено

Шероховатость по умолчанию: 0 micrometer

Таблица 13 — Гравитационные данные

Х компонента	0 m/s^2
Ү компонента	-9.81 m/s ²
Z компонента	0 m/s^2

Тепловое условие на внешних стенках по умолчанию: Адиабатическая стенка. Определение начальных условий моделирования симуляции.

Таблица 14 — Начальные условия

Термодинамические	Статическое давление: 190000.00 Ра
параметры	Температура: 115.00 K
Параметры скорости	Вектор скорости
	Скорость в направлении X: 0 m/s
	Скорость в направлении Y: 0 m/s
	Скорость в направлении Z: 0 m/s
Параметры твердого тела	Материал по умолчанию: Steel Stainless 302
	Начальная температура твердого тела: 293.20 К
Концентрации	Доля вещества по массе
	Methane — 0.5000
	Nitrogen — 0.5000
Параметры турбулентности	Интенсивность и масштаб турбулентности
	Интенсивность: 2.00 % Длина: 0.007 m

8.3 Настройки материала

Текучая среда

Methane

Nitrogen

Материал

Steel Stainless 302

Определение подобластей течения

Таблица 15 — Подобласть течения 1

Текучая среда	Methane
Поверхности	Грань<1>
Система координат	Глобальная система координат

Базовая ось	X
Термодинамические параметры	Статическое давление: 300000.00 Ра Потенциал давления: Включено Температура: 112.00 К
Параметры скорости	Скорость в направлении X: 0 m/s Скорость в направлении Y: 0 m/s Скорость в направлении Z: 0 m/s
Тип параметров турбулентности:	Интенсивность и масштаб турбулентности
Интенсивность	2.00 %
Длина	0.007 m
Тип течения	Ламинарное и турбулентное
Привязка к начальной точке	Выключено

Таблица 16 — Подобласть течения 2

Текучая среда	Nitrogen
Поверхности	Грань<1>
Система координат	Глобальная система координат
Базовая ось	X
Термодинамические параметры	Статическое давление: 200000.00 Ра Потенциал давления: Включено Температура: 78.00 К
Параметры скорости	Скорость в направлении X: 0 m/s Скорость в направлении Y: 0 m/s Скорость в направлении Z: 0 m/s

Продолжение таблицы 16

Тип параметров турбулентности:	Интенсивность и масштаб
	турбулентности
Интенсивность	2.00 %
Длина	0.007 m
Тип течения	Ламинарное и турбулентное
Привязка к начальной точке	Выключено

Граничные условия

Таблица 17 — Массовый расход на входе 1

Тип	Массовый расход на входе
Поверхности	ЗАГЛУШКА4//Поверхность
Система координат	Координатная система, привязанная к поверхности
Базовая ось	X
Параметры потока	Направление векторов течения: По нормали к поверхности Массовый расход: 6.3000 kg/s Течение с развитым профилем: Нет Вид профиля: 0
Термодинамические параметры	Тип температуры: Температура исходных компонентов Температура: 112.00 К
Параметры турбулентности	Интенсивность и масштаб турбулентности Интенсивность: 2.00 % Длина: 0.007 m
Параметры пограничного слоя	Тип пограничного слоя: Турбулентный

Таблица 18 — Массовый расход на входе 2

Тип	Массовый расход на входе
Поверхности	ЗАГЛУШКА1//Поверхность
Система координат	Координатная система, привязанная к поверхности
Базовая ось	X
Параметры потока	Направление векторов течения: По нормали к поверхности Массовый расход: 22.0000 kg/s Течение с развитым профилем: Нет Вид профиля: 0
Термодинамические параметры	Тип температуры: Температура исходных компонентов Температура: 78.00 К
Параметры турбулентности	Интенсивность и масштаб турбулентности Интенсивность: 2.00 % Длина: 0.007 m
Параметры пограничного слоя	Тип пограничного слоя: Турбулентный

Таблица 19 — Статическое давление 3

Тип	Статическое давление
Поверхности	ЗАГЛУШКА2//Поверхность
Система координат	Координатная система, привязанная к поверхности
Базовая ось	X
Термодинамические параметры	Статическое давление: 300000.00 Pa Тип температуры: Температура исходных компонентов

Продолжение таблицы 19

	Температура: 94.00 K
Параметры турбулентности	Интенсивность и масштаб турбулентности Интенсивность: 2.00 % Длина: 0.007 m
Параметры пограничного слоя	Тип пограничного слоя: Турбулентный

Таблица 20 — Статическое давление 4

Тип	Статическое давление
Поверхности	ЗАГЛУШКА5//Поверхность ЗАГЛУШКА3//Поверхность
Система координат	Глобальная система координат
Базовая ось	X
Термодинамические параметры	Статическое давление: 200000.00 Ра Тип температуры: Температура исходных компонентов Температура: 90.00 К
Параметры турбулентности	Интенсивность и масштаб турбулентности Интенсивность: 2.00 % Длина: 0.007 m
Параметры пограничного слоя	Тип пограничного слоя: Турбулентный

8.4 Цели

Глобальные цели

Таблица 21 — GG Среднее Температура (текучая среда) 1

Тип	Глобальная цель	
Тип цели	Температура (текучая среда)	
Расчет	Среднее значение	
Система координат	Глобальная система координат	
Использовать в сходимости	Включено	

Таблица 22 — GG Тепловой поток 3

Тип	Глобальная цель
Тип цели	Тепловой поток
Система координат	Глобальная система координат
Использовать в сходимости	Включено

Таблица 23 — GG Среднерасх Скорость 3

Тип	Глобальная цель	
Тип цели	Скорость	
Расчет	Среднее значение	
Система координат	Глобальная система координат	
Использовать в сходимости	Включено	

8.5 Результаты симуляции

Расчетная сетка

Таблица 24 — Размеры базовой сетки

Число ячеек по X	20
Число ячеек по Ү	60
Число ячеек по Z	12

Таблица 25 — Число ячеек

Ячейки	1084068
Ячейки в текучей среде	634260
Ячейки в твердом теле	449808
Иррегулярные ячейки	0
Усеченные ячейки	0

Максимальный уровень дробления: 2

Таблица 26 — Цели

Имя	Единица	Значе	Выполне	Критерии	Дельта	Использо
	измерен	ние	ние			вать в
	ия		процесса			сходимос
						ти
GG	K	86.69	100	0.18991745	0.18794807	Включено
Среднее				1	2	
Температ						
ypa						
(текучая						
среда) 1						
GG	W	1800.	100	342098.324	376.861445	Включено
Тепловой		706				
поток 3						
GG	m/s	0.115	100	0.00109666	0.00048482	Включено
Среднера				973	7216	
cx						
Скорость						
3						

Таблица 27 — Міп/Мах значения

Имя	Минимум	Максимум
Давление [Ра]	177996.39	351151.34
Массовая концентрация	1.0000	1.0000
Methane []		
Массовая концентрация	1.0000	1.0000
Nitrogen []		
Объемная концентрация	1.0000	1.0000
Methane []		
Объемная концентрация	1.0000	1.0000
Nitrogen []		
Плотность (твердое тело)	7900.00	7900.00
$[kg/m^3]$		
Плотность (текучая среда)	422.16	803.76
$[kg/m^3]$		
Скорость [m/s]	0	2.033
Скорость (X) [m/s]	-0.954	1.211
Скорость (Y) [m/s]	-0.875	2.032
Скорость (Z) [m/s]	-0.752	0.824
Температура [К]	78.00	112.00
Температура (твердое тело)	78.00	112.00
[K]		
Температура (текучая среда)	78.00	112.00
[K]		

Продолжение таблицы 27

Завихренность [1/s]	0	628.72
Скорость во вращающейся системе координат [m/s]	0	2.033
Скорость во вращающейся	-0.954	1.211
системе координат (X) [m/s]		
Скорость во вращающейся системе координат (Y) [m/s]	-0.875	2.032
Скорость во вращающейся системе координат (Z) [m/s]	-0.752	0.824
Касательное напряжение [Pa]	0	27.54
Относительное давление [Pa]	-53379.14	51151.34
Индикатор неколлинеарности теплового потока []	0	1.0000000
Индикатор теплового сопротивления []	0	1.0000000
Коэффициент теплоотдачи $[W/m^2/K]$	0	639.183
Перегрев выше температуры плавления [К]	-1595.150	-1561.150
Плотность теплового потока $[W/m^2]$	1.966e-06	1067581.459

Поверхностная плотность	-103793.007	135319.122
теплового потока [W/m ²]		
Поверхностная плотность	-8.574e+07	1.410e+08
теплового потока		
(конвекция) [W/m ²]		
Поверхностная плотность	0	0
теплового потока		
(теплопроводность) [W/m ²]		
Акустическая мощность	0	3.446e-13
$[W/m^3]$		
Уровень акустической	0	0
мощности [dB]		

Инженерная база данных

Материал: Steel Stainless 302

Путь: Материал Предопределенные\Alloys

Плотность: 7900.00 kg/m³

Удельная теплоемкость: 500.0 J/(kg*K)

Тип проводимости: Изотропная

Коэффициент теплопроводности: 16.3000 W/(m*K)

Электропроводность: Проводник

Удельное сопротивление: 7.2000e-07 Ohm*m

Радиационные свойства: Нет

Температура плавления: Да

Температура: 1673.15 К

Жидкости: Methane

Путь: Жидкости Предопределенные

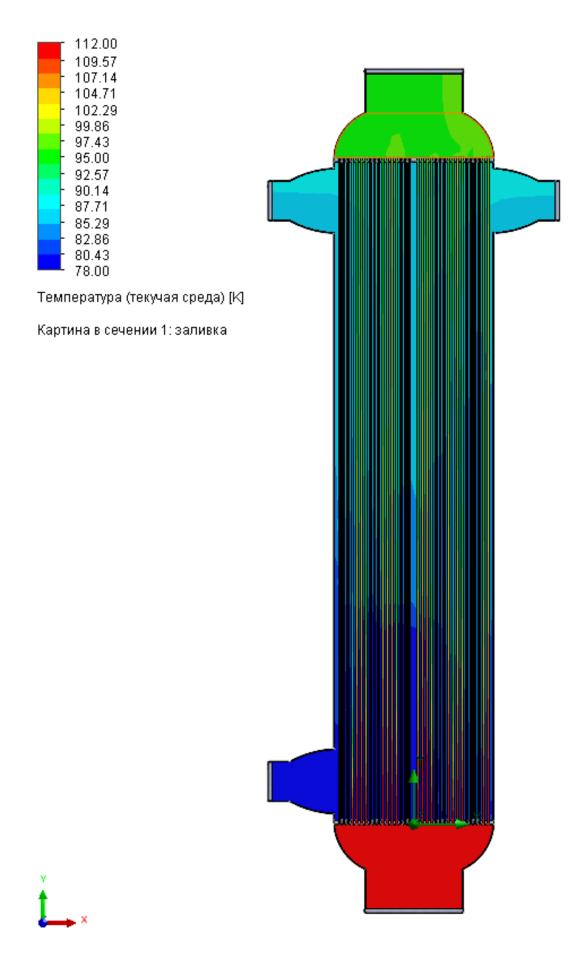


Рисунок 32 – Распределение температур в ТОА

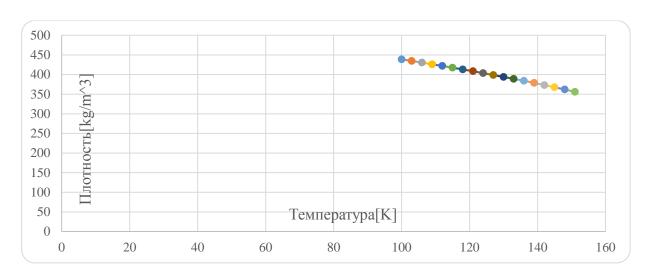


Рисунок 33 – График плотности метана

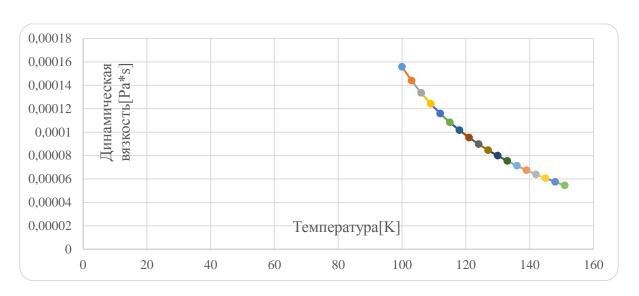


Рисунок 34 – График динамической вязкости метана

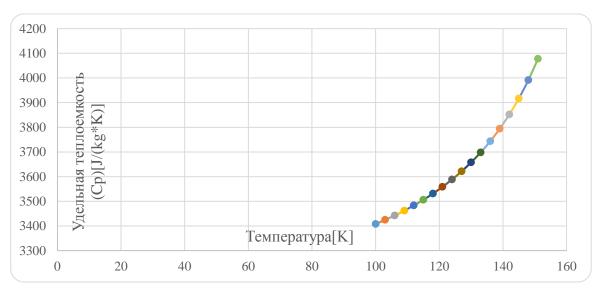


Рисунок 35 – График удельной теплоемкости (Ср) метана

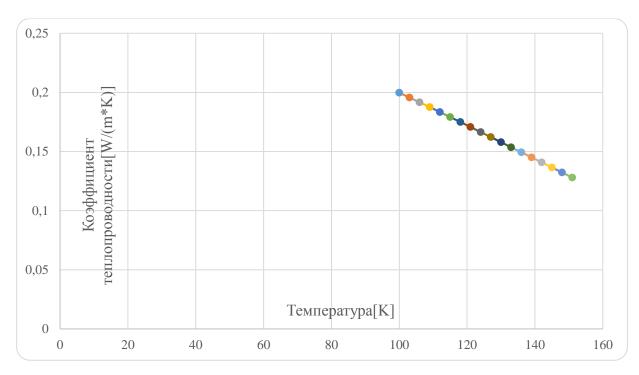


Рисунок 36 – График коэффициента теплопроводности метана

Эффект кавитации: Нет

Радиационные свойства: Нет

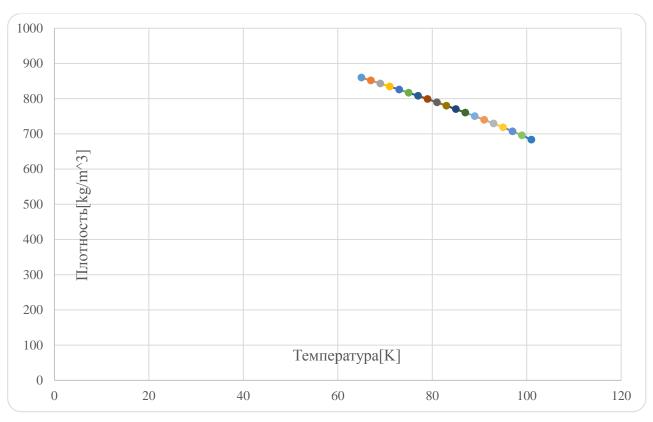


Рисунок 37 – График плотности азота

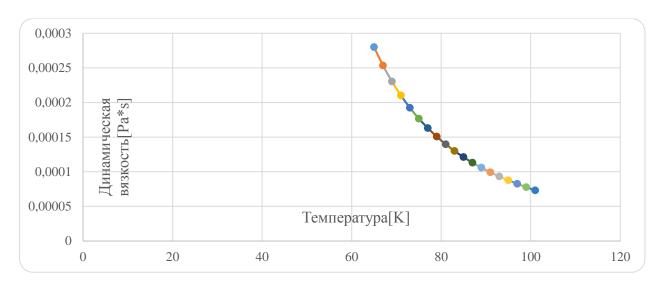


Рисунок 38 – График динамической вязкости азота

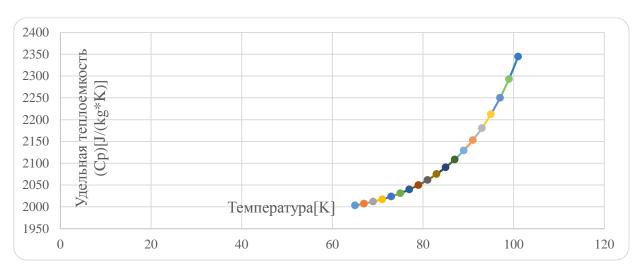


Рисунок 39 – График удельной теплоемкости (Ср) азота

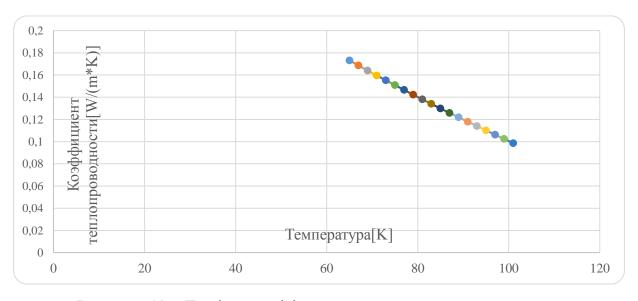


Рисунок 40 – График коэффициента теплопроводности азота

9 БЕЗОПАСНОСТЬ ПРИ РАБОТЕ С МЕТАНОМ

9.1 Основные положения

- 1. 1 Техника безопасности на производстве является важнейшим вопросом, связанным с жизнедеятельностью людей и государственной собственностью. Операторы должны получить базовые знания по технике безопасности на производстве. Они должны осознанно соблюдать соответствующие правила и политику в области техники безопасности для обеспечения безопасного и цивилизованного производства.
- 2. Основным компонентом технологического газа, применяемого в данной установке, является метан. Класс пожарной опасности по природному газу соответствует классу А «Система стандартов безопасности труда. Пожарная безопасность» ГОСТ 12.1.004-91.
- 3. Согласно действующим нормативам «Взрыво- и пожароопасные среды при проектировании электрических установок и силовых аргегатов», природный газ отнесен к взрывоопасным газообразным средам. Класс, категория, группа следующие:
 - Класс: II;
 - Категория: В;
 - Группа: Т4, II ВТ4.

Категория зоны по содержанию взрывоопасных газообразных веществ в воздухе:

Зона 2 (не допускается содержание взрывоопасных смесей в воздухе при нормальной работе оборудования, либо допускается на короткий промежуток времени)

9.2 Техника безопасности и меры предосторожности при работе с вредными веществами

Метан — Бесцветный, без запаха, легковоспламеняющийся газ. Относительная плотность в жидком агрегатном состоянии 425 кг/м³ (-164 °C), относительная плотность в газообразном агрегатном состоянии 550 кг/м³, температура воспламенения 538 °C, температура кипения -161,5 °C, плохо

растворим в воде, предел взрыва от 5,3 до 15%, при нахождении в воздухе образует взрывоопасную смесь. Опасность взрыва при прямом контакте с источником тепла либо открытым огнем. Класс пожаро- взрывоопасности соответствует классу А.

Метан в основном нетоксичен, однако при высокой концентрации в воздухе происходит вымещение кислорода из воздуха, что приводит к удушью. При концентрации в воздухе от 25% до 30% появляется головная боль, головокружение, обнаруживается повышенная утомляемость, потеря ориентации, учащенное сердцебиение и дыхание, атаксия. Продолжительное нахождение в такой среде приводит к удушью и смерти. Контакт кожи с жидким метаном вызывает обморожение.

При вдыхании метана следует незамедлительно покинуть опасный участок и выйти (вывести пострадавшего) на свежий воздух. В случае затрудненного дыхания обеспечить постоянное поступление кислорода. В случае остановки дыхания предпринять меры по искусственному дыханию пострадавшего и незамедлительно направить в лечебное учреждение.

9.3 Порядок действий при утечке метана

При проведении мер по локализации утечки метана в обязательном порядке следует использовать персональные средства защиты органов дыхания, незамедлительно вывести персонал на свежий воздух, ограничить доступ к помещению либо территории с высокой концентрацией метана. Обеспечить приток свежего воздуха, увеличить обмен метановой среды с чистым воздухом, прекратить подачу газа, если таковая имеет место.

9.4 Симптомы отравления метаном

При чрезвычайной ситуации и неквалифицированным пользованием газового оборудования случается интоксикация опасным газом. А при скопление в воздухе до 20 % опасного вещества может привести к смерти.

Также люди, работающие на химпроизводстве, сталкиваются с вредными парами веществ и подвергаются воздействию малых доз газа на протяжении долгого времени.

При отравлении газами наблюдаются следующие признаки:

- Головокружение, шум в ушах, сонливость, слабость;
- Потеря координации, нарушение речи;
- Резь в глазах, слезотечение;
- Удушье, дефицит воздуха;
- Ускоренное биение сердца;
- Гипотония;
- Тошнота, приступы рвоты;
- Посинение кожных покровов и оболочек слизистых.

При тяжелых случаях отравления случается обморок, судороги, коматозное состояние, остановка дыхания и сердца.

При постоянном воздействии газа возможно появление хронической формы отравления. Это сопровождается частыми болями в голове, низким давлением, бледностью, вялостью, недомоганием, пониженной работоспособностью, упадком сил. Так же могут наблюдаться симптомы расстройства нервной системы, например чрезмерная раздраженность, нервозность, ухудшение сна, снижение когнитивных функций.

9.5 Первая помощь пострадавшему до приезда медработников

- 1. Отвести отравившегося на воздух, подальше от опасной зоны;
- 2. Расстегнуть воротник и одежду, обеспечив подачу кислорода;
- 3. Приподнять так, чтобы голова была ниже уровня ног, это предотвратит гипоксию мозга;
- 4. Поместить на лоб что-то холодное (намоченную водой ткань, пакет со льдом);
- 5. Организовать пострадавшему обильное питье (воду или теплый чай). При остановке дыхания и отсутствии пульса необходимо провести закрытый массаж сердца и искусственное дыхание.

9.6 Индивидуальные средства защиты

Выдаваемые работникам средства индивидуальной защиты должны соответствовать характеру и условиям работы и обеспечивать безопасность

труда.

Персонал, обслуживающий опасные производственные объекты, должны быть обеспечены сертифицированными средствами индивидуальной защиты различных частей тела, смывающими и обезвреживающими средствами. Спецодежда, предназначенная для использования на взрывопожароопасных объектах (участках производства), должна быть изготовлена из термостойких и антистатических материалов.

Сроки пользования средствами индивидуальной защиты исчисляются со дня фактической выдачи их работникам.

Ответственность за своевременное и в полном объеме обеспечение работников средствами индивидуальной защиты, за организацию контроля за правильностью их применения работниками возлагается на работодателя в установленном законодательством порядке.

Работающие в местах, где возможно образование концентрации вредных газов, паров и пыли в воздухе выше санитарных норм, предельно-допустимых концентраций (ПДК) должны обеспечиваться соответствующими средствами индивидуальной защиты органов дыхания (СИЗОД).

При очень высоких концентрациях нефтяного газа применяются изолирующие дыхательные аппараты. При невысоких концентрациях, нормальном содержании кислорода — фильтрующие противогазы с маркой коробки «А».

СИЗОД, выдаваемые рабочим, надлежит подбирать по размерам и хранить на рабочих местах в особых шкафах, каждое в своей ячейке. На каждой ячейке и на сумке противогаза должна быть укреплена бирка с указанием фамилии владельца, марки и размера маски.

СИЗОД должны проверяться и заменяться в сроки, указанные в их технических паспортах и заводских инструкциях по эксплуатации.

На рабочих местах должна иметься инструкция по применению соответствующих СИЗОД, определению исправности их отдельных частей, а также по уходу, хранению и дезинфекции.

Периодические проверки, ремонт и отбраковка СИЗОД должны осуществляться в соответствии с инструкцией по эксплуатации.

При работе в условиях пылеобразования работники должны работать в противопылевых респираторах, защитных очках и комбинезонах.

Работники должны быть обучены правилам пользования, проверки и хранения СИЗОД. Тренировочные занятия по правилам их применения и проверки должны проводиться по графику, утвержденному техническим руково дителем коллектива.

На каждом опасном производственном объекте должен быть аварийный запас СИЗОД соответствующих типов и марок. Количество фильтрующих аварйных противогазов для каждого объекта комплектуется из расчета 3-5 комплектов соответствующих марок. В каждом комплекте должен быть набор шлем-масок всех размеров. Количество аварийных шланговых противогазов ПШ-1 и ПШ-2 должно быть не менее двух комплектов.

На каждом опасном производственном объекте должны быть дежурные средства индивидуального пользования коллективной защиты:

- 1 Аварийный запас с предохранительным поясом и спасательной веревкой;
 - 2 Аптечка медицинская;
 - 3 Запрещается запирать на замки аварийный запас противогазов.

Целостность пломб аварийного запаса проверяется при приеме и сдаче смены обслуживающим персоналом. Наличие и состояние аварийного запаса не реже одного раза в месяц проверяется в соответствии с графиком, утвержденным техническим руководителем организации. Персонал объекта должензнать места хранения рабочих и аварийных СИЗОД.

Ответственность за готовность к применению средств индивидуальной и коллективной защиты несет технический руководитель организации, за правильность их использования непосредственно на месте проведения работ – исполнитель работ.

Работодатель организует надлежащий уход за средствами индивидуальной

и коллективной защиты и их хранение, своевременно осуществляет химчистку, стирку, ремонт, дегазацию, дезактивацию, обезвреживание и обеспыливание специальной одежды, а также ремонт, дегазацию, дезактивацию и обезжиривание специальной обуви и других средств индивидуальной защиты.

9.7 Средства коллективной защиты

Для создания нормативных условий труда на установке предусмотрено:

- 1 Механизация и комплексная автоматизация технологических процессов с отображением на компьютере всех параметров, характеризующих безопасную работу оборудования;
- 2 Система противоаварийной защиты технологического процесса (система ПАЗ), которая автоматически переводит отдельные стадии процесса или всю установку в безопасный режим эксплуатации;
- 3 Приточно-вытяжная вентиляция производственных и вспомогательных помещений с автоматическим поддержанием параметров воздуха в помещениях;
- 4 Общее и местное (локальное) освещение производственных помещений, рабочих мест и наружной установки;
- 5 Трубопроводы, аппараты и арматура наружной установки, имеющие температуру поверхности более 60 °C, теплоизолируются;
- 6 Вращающиеся части насосов, вентиляторов оборудованы защитными кожухами.

Во взрывоопасных зонах в соответствии с ТУ-ГАЗ-86, установлены сигнализаторы для контроля довзрывоопасных концентраций паров углеводородов с фиксацией аварийной загазованности по месту и в операторной.

Для обеспечения обмена текущей чинформацией оператора с обслуживающим персоналом, находящимся на наружной территории установки, предусмотрена телефонная оперативно-технологическая связь.

Дополнительные средства защиты: очки защитные, перчатки диэлектрические, пояса предохранительные, спасательные веревки, шланговые противогазы с комплектом масок, аварийный запас фильтрующих противогазов,

медицинская аптечка являются дежурными и размещаются в операторной, в специальном шкафу.

Работающие должны быть ознакомлены с назначением защитных средств и обучены правилам обращения с ними с учетом конкретных условий.

10 ЭКОНОМИЧЕСКИЙ РАСЧЕТ

Целью экономического расчета является определение суммарных расходов на приобретение материала для теплообменного аппарата.

10.1 Выбор материала

В качестве материала для кожуха и труб, выбрана нержавеющая сталь 12X18H10T ГОСТ 5632-72. Данная сталь обладает высокими эксплуатационными качествами, что позволяет ее использовать в различных отраслях промышленности. В химической промышленности из этого сплава изготавливают емкости и трубопроводы для хранения и транспортировки различных агрессивных веществ — азотной, уксусной, фосфорной кислоты, а также соединений на их основе.

Нержавеющий прокат выпускается в широком ассортименте, такие как круг нержавеющий, нержавейка лист, проволока, кованые заготовки и труба нержавеющая, что существенно расширяет области применения материала, позволяя изготавливать изделия разного назначения.

Химический состав сплава непосредственно влияет на физические и технические свойства. В химический состав нержавеющей стали 12X18H10T входит:

- Количество углерода (C) 0.12%;
- Массовая доля хрома (Cr) 18%;
- Процентное соотношение никеля (Ni) 10%;
- Наличие в составе титана (Ті) допускается до 1.5%.

10.2 Расчет массы ТОА

1. Масса m_{κ} (кг) кожуха в ТОА определяется исходя из габаритов: Исходные данные: $D_{\rm H}=733$ мм, L=3050 мм, S=4 мм, $\rho=7950$ кг/м³. Расчет производится по формуле 5.

$$m_{\kappa} = \pi \cdot \rho \cdot S \cdot (D_{\mu} - S) \cdot L = 222,13 \,\kappa \varepsilon; \tag{5}$$

Где D_H – наружный диаметр кожуха теплообменника;

L – длина кожуха в аппарате;

ρ – плотность материала;

S – толщина стенки.

2. Масса m_{TP} (кг) труб в аппарате определяется по формуле 6.

Исходные данные: $D_{\rm H}=10$ мм, L=3050 мм, S=1 мм, $\rho=7950$ кг/м³, n=617 шт.

$$m_{mn} = \pi \cdot \rho \cdot S \cdot (D_{H} - S) \cdot L \cdot n = 410,922 \,\kappa z \,; \tag{6}$$

где $D_{\scriptscriptstyle H}$ – наружный диаметр труб теплообменника;

L – длина труб в аппарате;

ρ – плотность материала;

S – толщина стенки;

n – число трубок в аппарате.

3. Масса $m_{\text{тр_вх_мет}}$ (кг) труб для входа и выхода метана в теплообменный аппарат определяется по формуле 7.

Исходные данные: $D_H = 450$ мм, L = 405 мм, S = 4 мм, $\rho = 7950$ кг/м³.

$$m_{mD \text{ ex }Mem} = \pi \cdot \rho \cdot S \cdot (D_{H} - S) \cdot L = 17,92 \text{ K2};$$
 (7)

где $D_{\scriptscriptstyle H}$ – наружный диаметр труб теплообменника;

L – длина труб в аппарате;

 ρ – плотность материала;

S – толщина стенки.

Масса труб входа и выхода метана одинаковая $m_{\text{тр}_\text{вх}_\text{мет}} = m_{\text{тр}_\text{вых}_\text{мет}}$.

4. Масса $m_{\text{тр}_\text{вх}_\text{азота}}$ (кг) труб для входа и выхода азота в теплообменный аппарат определяется по формуле 8.

Исходные данные: $D_H = 187$ мм, L = 331.9 мм, S = 4 мм, $\rho = 7950$ кг/м³.

$$m_{mp_ex_asoma} = \pi \cdot \rho \cdot S \cdot (D_{H} - S) \cdot L = 6,03 \text{ Kz};$$
(8)

где $D_{\scriptscriptstyle H}$ – наружный диаметр труб теплообменника;

L – длина труб в аппарате;

ρ – плотность материала;

S – толщина стенки.

Масса труб входа и выхода метана одинаковая $m_{\text{тр_вх_азота}} = m_{\text{тр_вых_азота}}.$

5. Общая масса M (кг) теплообменного аппарата определяется суммой всех масс по формуле 9.

$$M = m_{\kappa} + m_{mp} + m_{mp_ex_mem} + m_{mp_ex_mem} + m_{mp_ex_asoma} + 2 \cdot m_{mp_ebx_asoma} = 686,982\,\text{kz}~(9)$$

10.3 Расчет стоимости материала

Цена на листы нержавеющей стали 12X18H10T в среднем идет от 268 рублей за килограмм.

Итоговая стоимость закупки на материал получается:

686,982 * 268 = 184111 рублей 20 копеек.

ЗАКЛЮЧЕНИЕ

В ходе выполнения бакалаврской работы были проанализированы структура и технические характеристики ракеты-носителя Союз–7 «Амур-СПГ», системы заправки РН и варианты криогенных систем охлаждения сжиженного метана, необходимые устройства и принципы действия теплообменного оборудования, а так же технологические параметры процесса.

Разработана принципиальная схема криогенной системы охлаждения сжиженного метана посредством азота, его хранением и последующей заправкой в РН Союз–7.

Выполнен тепловой расчет кожухотрубного прямоточного теплообменного аппарата, определена требуемая поверхность.

Построен необходимый чертеж кожухотрубного теплообменного аппарата и создана компьютерная ЗД модель ТОА, далее произведена проверочная симуляция для проверки работоспособности и соответствию поставленной задачи.

Проведена оценка безопасности использования сжиженного метана на криогенной станции. На основе руководящей документации был составлен план безопасной и качественной работы.

Выполнен экономический расчет для определение суммарных расходов на приобретение материала теплообменного аппарата.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ

- 1. А. А. Александров. Особенности создания и развития криогенных систем ракетно-космических стартовых комплексов «Союз». / Александров А. А., Бармин И. В., Кунис И. Д., Чугунков В. В. Вестник МГТУ им. Н. Э. Баумана. Сер. «Машиностроение». № 2. 2016. 7 27 с.
- 2. Аронсон, К. Э. Теплообменники энергетических установок : учебник для вузов / К. Э. Аронсон, С. Н. Блинков, В. И. Брезгин под ред. Ю. М. Бродова. Екатеринбург : Сократ, 2003. 986 с.
- 3. Васянина А. Ю. Перспективы использования компонентов топлива метан-кислород в жидкостных ракетных двигателях. / А. Ю. Васянина, А. А. Тонких, Д. А. Савчин, Д. А. Ермоленко. Актуальные проблемы авиации и космонавтики. Т 1. 2017. 121 123 с.
- 4. Горбачев, С.П. Изменение компонентного состава СПГ при его длительной транспортировке и хранении, методы кондиционирования / С.П. Горбачев, И.С. Медведков Газовая промышленность. 2018. №10 [Электронный ресурс] // Киберленинка: офиц. сайт. 2015. Режим доступа: https://cyberleninka.ru/article/n/izmenenie-komponent... 19.02.2021.
- 5. ГОСТ 12.1.004-91. Система стандартов безопасности труда. Пожарная безопасность. [Электронный ресурс]. Режим доступа: https://docs.cntd.ru/document/9051953. 09.06.2021.
- 6. ГОСТ 27577–2000. Газ природный топливный компримированный для двигателей внутреннего сгорания. Технические условия [Электронный ресурс]. Режим доступа: http://docs.cntd.ru/document/1200017921 01.03.2021.
- 7. ГОСТ 5542–87. Газы горючие природные для промышленного и коммунально-бытового назначения. Технические условия [Электронный ресурс]. Режим доступа: http://docs.cntd.ru/document/1200001400 01.03.2021.
- 8. ГОСТ Р 53677-2009. Нефтяная и газовая промышленность. Кожухотрубчатые теплообменники. Технические требования. [Электронный ресурс]. Режим доступа: https://docs.cntd.ru/document/1200081011 —

01.06.2021.

- 9. ГОСТ Р 56021–2014. Газ горючий природный сжиженный. Топливо для двигателей внутреннего сгорания и энергетических установок. Технические условия [Электронный ресурс]. Режим доступа: http://docs.cntd.ru/document/1200110779 01.03.2021.
- 10. Дытнерский, Ю. И. Основные процессы и аппараты химической технологии: Пособие по проектированию / Ю. И. Дытнерский. М.: ООО ИД «Альянс», 2010. 496 с.
- 11. Карпов. А. Б. Перспективы использования сжиженного природного газа в качестве топлива ракетных двигателей. / А. Б. Карпов. Кузбасский государственный технический университет имени Т.Ф. Горбачева (Кемерово) 2018. 408.1 408.3 с.
- 12. Коробков А. А. Сопоставительный анализ конкурирующих вариантов принципиальной технологической схемы системы охлаждения сжиженного метана для заправки ракеты-носителя недогретым метаном повышенной плотности / А. А. Коробков, М. В. Кулик, В. В. Редькин, С. С. Сергеев, А. И. Смородин Вестник Международной академии холода. № 3. 2020. 10 20 с.
- 13. Коробков А. А. Структурно-технологическая схема азотной системы охлаждения сжиженного метана для заправки ракеты-носителя среднего класса / А. А. Коробков, М. В. Кулик, В. В. Редькин, С. С. Сергеев, А. И. Смородин Вестник Международной академии холода. № 4. 2020. 27 36 с.
- 14. Таранова Л.В., Теплообменные аппараты и методы их расчета: учебное пособие / Л. В. Таранова. Тюмень : 2-е изд., перераб. и доп. ТюмГНГУ, 2012. 198 с.
- 15. ТУ 51 03-03–85. Газ природный сжиженный. Топливо для двигателей внутреннего сгорания. Технические условия [Электронный ресурс]. Режим доступа: http://docs.cntd.ru/document/1200059065 01.03.2021.