Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (ФГБОУ ВО «АмГУ»)

Факультет энергетический Кафедра энергетики Направление подготовки 13.03.02 - Электроэнергетика и электротехника Направленность (профиль) образовательной программы Электроэнергетика

ДОПУСТИТЬ К ЗАЩИТЕ

1.0. зав. кафедрой

Н.В. Савина

2019 г.

БАКАЛАВРСКАЯ РАБОТА

на тему: Реконструкция системы электроснабжения Прийск Соловьёвский Тындинского района Амурской области

Исполнитель студент группы 542-узб

Руководитель профессор,

канд.техн.наук

Консультант по безопасности и экологичности доцент, канд.техн.наук

Нормоконтроль Профессор, канд.техн.наук 14.06.2 019

Н.С. Коренев

Жирий т. 14.06.2019 (подпись, дата

Ю.В. Мясоедов

Jr. l. of. 2019

А.Б. Булгаков

Мунита 14.06.201 подпись, дата

Ю.В. Мясоедов

Благовещенск 2019

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (ФГБОУ ВО «АмГУ»)

УТВЕРЖДАЮ И.о. зав. кафодрой

Н.В. Савина

Факультет энергетический Кафедра энергетики

ЗАДАНИЕ
С выпускной квалификационной работе студента Корелевся
Нешесты Сергесвина
. Тема выпускной квалификационной работы:
Рехонструкция системы эшктроска бысьмия Трийск Солововский
Понединского района видропой области
(утверждено приказом от <u>04.04_19</u> № <u>759- ут</u>)
2. Срок сдачи студентом законченной работы (проекта) Об. 06. 2019
3. Исходные данные к выпускной квалификационной работе: иамерианы из
предушиющий практике, однашнейний скенед
карьера "Оньдой
4. Содержание выпускной квалификационной работы (перечень подлежащих разработке вопросов):
Rишатичения коран теристичен района, опреденение
инимости конпексиеру гощим устройстр, выбор оборудовожене РУ
5. Перечень материалов приложения: (наличие чертежей, таблиц, графиков, схем,
программных продуктов, иллюстративного материала и т.п.) *Тертенсе - 6 ист
таблись - 24 ил, програменые продумы - 3
6. Консультанты по выпускной квалификационной работе (с указанием относящихся к
ним разделов) КОИСУЛЕТТЕНТ по безодасиости и Экагоминности
A.b. byriakob.
7. Дата выдачи задания <u>5. 04.2 019</u>
Shipmin Shipmin
Руководитель выпускной квалификационной работы: <u>Мемедов Ю.в. к. ти</u> края (фамилия, имя, отчестве, должность, ученая степень, ученое силим.
Задание принял к исполнению (дата): 5.64.2019 (помись студента)

РЕФЕРАТ

Работа содержит 81 стр., 7 рисунков, 24 таблицы, 86 формул, 21 источник, 3 приложения.

ЭЛЕКТРОСНАБЖЕНИЕ, ПОДСТАНЦИЯ, СИЛОВОЙ ТРАНСФОРМАТОР, НАДЕЖНОСТЬ ЭЛЕКТРОСНАБЖЕНИЯ, ЗАМЫКАНИЕ НА ЗЕМЛЮ, СИЛОВОЙ ВЫКЛЮЧАТЕЛЬ, ОГРАНИЧИТЕЛЬ ПЕРЕНАПРЯЖЕНИЙ, ЗАЩИТА ЛИНИИ, БЕЗОПАСНОСТЬ, ЗАЩИТНОЕ ЗАЗЕМЛЕНИЕ

В данной работе разработан вариант развития участка «Ольдой» прииска «Соловьевский», в частности проведен расчет электрических нагрузок основных потребителей таких как оборудование самой драги и вахтового поселка для обслуживающего персонала. В настоящее время устаревшее оборудование требует замены для предотвращения выхода его из строя и остановки технологического процесса.

Также в представленной работе были выполнены расчёты и выбрано основное электротехническое оборудование, которое необходимо для выполнения качественного электроснабжения, в частности воздушные линии 6 кВ, выключатели 6 кВ измерительные трансформаторы тока и напряжения. Выбор всего указанного оборудования выполнялся на основании расчетных данных о токах короткого замыкания и нагрузке в нормальном режиме работы. Также было уделено внимание расчётам экономических показателей таких как капиталовложения в реконструкцию сети, рассмотрим также вопросы безопасности в отношении эксплуатации электротехнического оборудования.

СОДЕРЖАНИЕ

Вве	дение	6
	1 Климатическая характеристика района	8
	2 Описание технологического процесса	9
	3 Характеристика потребителей электрической энергии	11
	4 Описание схемы электроснабжения	14
	5 Расчет низковольтной нагрузки потребителей драги и вахтового	
	поселка	18
	6 Выбор типа и номинальной мощности трансформаторов 6/0,4	21
	7 Расчет нагрузок на стороне высокого напряжения трансформаторов	
	$6/0,4~{ m kB}$	23
	8 Расчет нагрузок на стороне низкого напряжения пс 35/6 кВ Драга 230	26
	8.1 Определение мощности компенсирующих устройств	27
	9 Выбор силовых трансформаторов 35/6 ПС «Драга 230»	30
	10 Выбор типа и сечения ВЛ 35 кВ	32
	11 Выбор сечения ВЛ 6 кВ	34
	12 Проверка сечения ВЛ по термической стойкости и потере	
	напряжения	35
	12.1 Проверка линий 6 кВ на воздействие токов КЗ	36
	12.2 Проверка ВЛ 6 кВ по допустимой потере напряжения	36
	13 Выбор конструкции РУ ВН, НН ПС 35кВ «Драга 230»	39
	14 Оценка надежности выбранной схемы ОРУ	41
	15 Расчет токов короткого замыкания	45
	16 Выбор оборудования РУ	51
	16.1 Выбор выключателя 35 кВ	51
	16.2 Выбор выключателя 6 кВ	52
	16.3 Выбор разъединителей	53
	16.4 Выбор трансформаторов тока	53

16.5 Выбор трансформаторов напряжения	56
16.6 Выбор гибкой ошиновки	58
16.7 Выбор жестких шин 6 кВ	58
16.8 Выбор изоляторов 6 кВ	60
16.9 Выбор высокочастотного заградителя	61
16.10 Выбор нелинейного ограничителя перенапряжений 35 кВ	B 62
16.11 Выбор нелинейного ограничителя перенапряжений 6 кВ	62
17 Защита трансформатора	64
17.1 Защита от перегрузки	64
17.2 Максимальная токовая защита	64
17.3 Газовая защита	65
18 Определение экономических показателей	66
19 Безопасность и экологичность	69
19.1 Безопасность	69
19.2 Экологичность	73
19.3 Чрезвычайные ситуации	75
Заключение	79
Библиографический список	80
Приложение А. Расчет электрических нагрузок	82
Приложение Б. Выбор трансформаторов	83
Приложение В. Расчет нагрузок на стороне 6 кВ	84

ВВЕДЕНИЕ

В данной работе рассматривается проект развития системы электроснабжения участка «Ольдой» прииска «Соловьевский» Тындинского Амурской области, района включающего замену всего основного электротехнического оборудования как на самой драге, так и на вахтовых поселках. Устаревшее оборудование мешает нормальному функционированию технологического процесса периодическим выходом из строя и требует скорейшей замены. Оборудование, которое практически полностью израсходовало свой ресурс не может долго находиться в эксплуатации, это может привести к серьезной аварии или человеческим жертвам, поэтому данный проект посвящён полностью решению данного вопроса.

При выполнении данной работы применялись такие программновычислительные комплексы как Mathcad, графически редактор Visio и текстовый редактор MS Word

1 КЛИМАТИЧЕСКАЯ ХАРАКТЕРИСТИКА РАЙОНА

При выборе любого электротехнического оборудования следует учитывать тот факт, что оно может работать только в допустимых климатических

условиях, таких как среднегодовая температура, минимальная и максимальная абсолютная температура, к примеру для воздушных линий электропередач важным параметром является район по ветру, а также район по нормативной толщине стенки гололеда, температура образования гололеда и так далее, для силового коммутационного оборудования которое работает на открытом воздухе важным показателем является степень загрязнения атмосферы продолжительность грозовой деятельности в рассматриваемом районе.

Исходя из вышесказанного в таблице 1 приводим основные характеристики района в котором будет производиться реконструкция электрической сети в частности замена подстанционного и линейного оборудования. Следует отметить тот факт что при неправильном выборе оборудования и несоответствие его климатическим данным оно может работать со сбоями либо не работать вовсе

Таблица 1 – Климатические условия района проектирования

Климатические условия	Величина
Температура воздуха среднегодовая	+1,5 °C
Температура воздуха абсолютная максимальная	+38 °C
Температура воздуха абсолютная минимальная	-50 °C
Район по пляске проводов	Низкий
Степень загрязнения атмосферы	I
Район по ветровому давлению	III
Район по толщине стенки гололеда	II
Число грозовых часов в год	34

Используем указанные данные при выборе оборудования

2 ОПИСАНИЕ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА

Драги используется для разработки различного рода месторождений например золота, платины, алмазов, песка либо гравия а также других полезных ископаемых, такими устройствами в основном разрабатываются обводненные

россыпные, месторождения которые находятся в руслах рек либо морях и океанах. Также имеется опыт разработки этими устройствами мало выходных либо безводных специальных месторождений расположенных в террасах.

В случае использования искусственного водоснабжения организуются дополнительные водоемы. Способ разработки ископаемых с помощью драги является очень эффективным, затраты на добычу одной единицы горной массы при таком способе является очень низкими нежели другими способами при этом способ использования драг менее энергоемкий по сравнению со случаем использования экскаваторов либо гидравлических устройств. Количество энергии приходящееся на одну единицу горной массы при использовании драги колеблется от 1.8 до 3,5 кВт час поэтому остро стоит вопрос об и модернизации драг.

Драга это специальный плавающий агрегат который оснащен землечерпательными устройствами которые обеспечивают механизацию всего основного процесса добычи полезного ископаемого, а также удаление ненужных пород.

Такие устройства предназначены для разработки и извлечения из них полезных и ценных компонентов например металлов и так далее, такие устройства в большинстве своём применяются на прибрежных морских либо глубинных морских осадочных месторождениях которые связаны с горными породами и вязкими глинами.

Драги подразделяются на несколько классов: это континентальные, которые монтируются на плоскодонном понтоне и морские, которые предназначены для разработки месторождений прибрежной зоны, на части акватории крупных озер, они монтируются на килевых самоходных или буксируемых судах которые обеспечивают им эксплуатацию во время шторма.

В зависимости от особенностей конструктивного исполнения драги могут классифицироваться по следующим признакам: по используемой энергии приводными механизмами, — электрические, дизель-электрические, дизельные и паровые; по роду драгирующего аппарата — многочерпаковые с прерывистой

черпаковой цепью (с холостым звеном); то же, со сплошной черпаковой цепью; с грейферным ковшом; с ковшом драглайна; с роторным колесом; по вместимости черпака — малолитражные (до 100 л), среднелитражные (100-250 л) и крупнолитражные (свыше 250 л); способу передвижения (маневрирования) — канатно-свайные, канатно-якорные.

3 ХАРАКТЕРИСТИКА ПОТРЕБИТЕЛЕЙ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

В данном разделе работы рассмотрим подробно всех потребителей которые в результате будут подключаться к шинам низкого напряжения

понизительной подстанции 35/6 кВ. Характеристика потребителей необходима для качественного выполнения работы, в частности для определения активной и реактивной расчетной мощности нагрузки и последующего выбора оборудования. В таблице 2 приведены основные характеристики потребителей.

Таблица 2 – Данные по электрической нагрузке 0,4 кВ

Потребитель	Количество	Номинальная мощность (кВт)	Коэффициент мощности соѕф	Коэффициент использования
1	2	3	4	5
	Оборудова	ние драги №230		
Приводной двигатель	1	320	0,9	0,5
Разгонный двигатель	1	28	0,9	0,5
Генератор привода цепи	1	192	0,8	0,65
Генератор привода мос. леб.	1	36	0,8	0,65
Возбудитель	1	12	0,9	0,3
Рамоподъёмная лебедка	2	60	0,75	0,05
Носовая вспомогательная лебедка	1	30	0,75	0,05
Лебедка свайных канатов	2	22	0,75	0,05
Бочка	2	125	0,8	0,95
Главный транспортер	2	40	0,9	0,7
Лебедка берегового моста	1	11,0	0,75	0,05
Лебедка подъема стакера	1	16,0	0,75	0,05
Кормовая вспомогательная лебедка	1	11,0	0,75	0,05
Лебедка кормовых канатов	2	16,0	0,75	0,05
Насос высокого давления	1	160,0	0,8	0,2
Насос низкого давления	1	160,0	0,8	0,2
Насос 6 НДВ	2	55,0	0,8	0,2
Компрессоры	2	4,5	0,8	0,7
Насос 2НФВМ	1	7,0	0,8	0,2
Вентилятор Ц4-70	1	1,7	0,8	0,7
Насос питания котла	1	20,0	0,8	0,2
Маслонасос ШДП	2	2,8	0,8	0,2
Станция густой смазки	1	1,0	0,8	0,2
Носовой кран поворота	1	1,7	0,75	0,05
Носовой кран подъема груза	1	5,0	0,75	0,05
Носовой кран подъема стрелы	1	2,8	0,75	0,05

Продолжение таблицы 2

1	2	3	4	5
Электрозадвижка	2	1,0	0,75	0,05
Передвижной насос	1	2,8	0,8	0,2
Калорифер 2 1,0 0,8 0,9				
Оборудование вахтового поселка КТП №1				

Освещение	1	20	0,8	0,8
Электрический обогрев	20	2,5	1	0,9
Обо	оудование вахт	ового поселка 1	КТП №2	
Освещение	1	15	0,8	0,8
Электрический обогрев	15	2,5	1	0,9
Обој	оудование вахт	ового поселка 1	КТП №3	
Освещение	1	12	0,8	0,8
Электрический обогрев	13	2,5	1	0,9
Обо	оудование вахт	ового поселка 1	КТП №4	
Освещение	1	10	0,8	0,8
Электрический обогрев	20	2,5	1	0,9
Обој	оудование вахт	ового поселка 1	КТП №5	
Освещение	1	20	0,8	0,8
Электрический обогрев	18	2,5	1	0,9
Оборудование вахтового поселка КТП №6				
Освещение	1	15	0,8	0,8
Электрический обогрев	20	2,5	1	0,9

Рассмотрим подробно характеристику данного оборудования. Электроприемники драги по режиму работы в данном случае различаются как на потребителей с неизменной нагрузкой, например калориферы, либо основной транспортер, который продолжительное время работает без изменения нагрузки, также есть потребители с кратковременной нагрузкой в частности это электрические задвижки, краны, лебедки и т.д.

По номинальной мощности и напряжению также в потребителях драги имеется значительное различие: имеются потребителей большой мощности такие как насосы мощностью до 160 кВт либо малой мощности: лебёдки мощностью 11 кВт, вентилятор, насосы смазки, все указанные потребители подключается на напряжение 0,4кВ. По роду тока все потребители подключаются к сети промышленной частоты 50 Герц.

По степени надежности электроснабжения в данном случае, согласно исходных данных, все потребители получают питание от одного источника питания в частности это одно цепная воздушная линия напряжением 35 кВ, один силовой трансформатор напряжением 35 кВ и понижающий трансформатор 6 кВ, следовательно все электроприемники относим к третьей категории, то есть при перерыве питания не происходит значительного

нарушения в технологическом процессе лиоо возникновение угрозы для жизн
людей.
4 ОПИСАНИЕ СХЕМЫ ЭЛЕКТРОСНАБЖЕНИЯ

На рисунке 1 представлена однолинейная схема электроснабжения на рассматриваемом участке сети на рисунке 2 подробная однолинейная схема электроснабжения потребителей Драги. Рассмотрим подробно каждый участок сети: питание каждой драги осуществляется от РУ 35 кВ ПС «БАМ» по воздушной линии электропередачи соответствующим напряжением, ВЛ выполнена голым проводом марки АС 95. На ПС 35 кВ «Драга 230» как и на остальных подстанциях подобного типа в данном районе предполагается установка одного силового трансформатора 35/6 кВ, в качестве защитного высокого напряжения устанавливается аппарата на стороне высоковольтный вакуумный выключатель предназначенный для напряжения с трансформатора как в нормальном режиме работы например при выводе в ремонт либо в различного рода аварийных ситуациях при коротких замыканиях. Номинальная мощности и тип данного трансформатора будут определены далее, при этом на нем для регулирования напряжения будет применяться устройство РПН.

От трансформатора получает питание небольшое распределительное устройство 6 кВ включающее в себя вводной выключатель и два отходящих фидера один из которых питает саму драгу и трансформаторную подстанцию, второй небольшую систему электроснабжения включающую 5 трансформаторных подстанций так предназначенных же ДЛЯ оборудования вахтового поселка. В данном РУ так же при выборе будет предпочтение вакуумному оборудованию отдаваться как совершенному и надежному. Один из отходящих фидеров по лучевой схеме питает трансформаторную подстанцию номинальным напряжением 6/0,4 кВ предназначенную для питания вахтового поселка, далее отпайка в виде воздушной линии уходит непосредственно на драгу на которой расположено второе распределительное устройство 6 кВ.

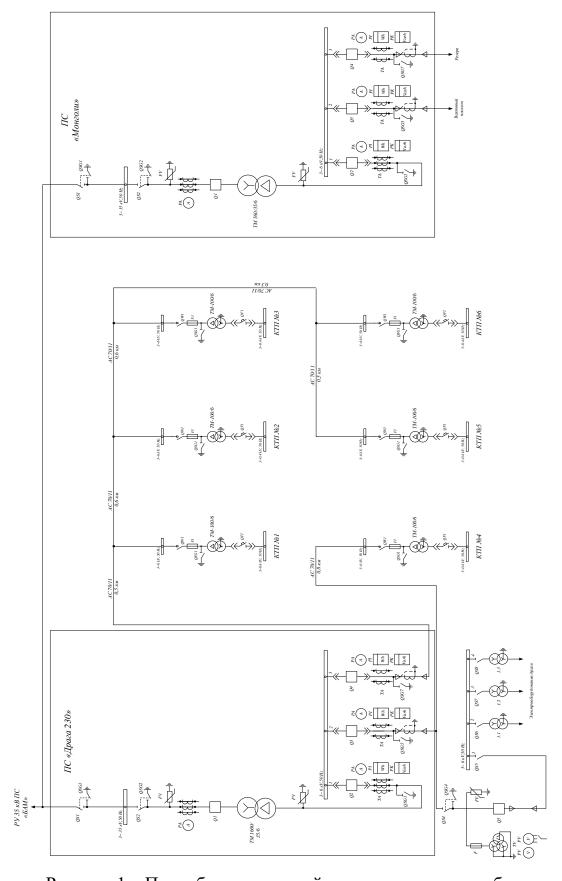


Рисунок 1 – Подробная однолинейная схема электроснабжения прииска

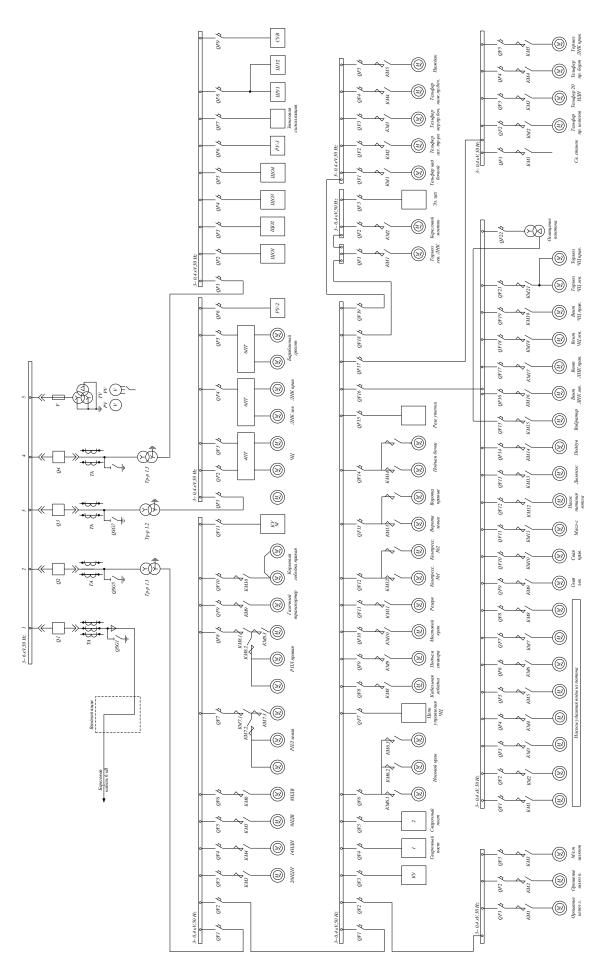


Рисунок 2 – Подробная однолинейная схема электроснабжения Драги 230

Как указано на схеме питание данного РУ осуществляется через выключатель. В данном РУ расположено 3 силовых трансформатора подключенных к общим шинам посредством разъединителей. Трансформаторы питают непосредственно низковольтное оборудование в частности электродвигатели различных механизмов расположенных на самой драге

5 РАСЧЕТ НИЗКОВОЛЬТНОЙ НАГРУЗКИ ПОТРЕБИТЕЛЕЙ ДРАГИ И ВАХТОВОГО ПОСЕЛКА

Согласно однолинейной схеме электроснабжения драни на ней установлено три силовых понизительных трансформатора под номерами 1.1, 1.2, 1.3 от которых непосредственно получают питание электрические двигатели и прочее оборудование. Так же от понизительного трансформатора 35 кВ получают питание и трансформаторные подстанции вахтового поселка 1,2,3,4,5,6. В данном разделе подробно рассмотрим расчет электрической нагрузки на примере оборудования драги, в частности подключенного к трансформатору 1.2, в таблице 3 представлено оборудование, которое непосредственно питается от последнего:

Таблица 3 – Данные по электрооборудованию трансформатора 1.2

Трансформатор	Потребитель	Количество	Номинальная мощность (кВт)	Коэффициент мощности соѕф	Коэффициент использования
	Бочка	2	125	0,8	0,65
1.2	Главный транспортер	2	40	0,9	0,7
	Вентилятор Ц4-70	1	1,7	0,8	0,7

Предварительно определяем групповой коэффициент использования групп электроприемников для данного трансформатора по следующей формуле [3]:

$$K_{Hzp} = \frac{\sum K_{Hi} \times P_{Homi}}{\sum P_{Homi}} \tag{1}$$

где K_{Hi} - коэффициент использования каждого отдельного потребителя.

 P_{Homi} - номинальная мощность согласно паспортным данным для каждого отдельного потребителя (кВт)

Проводим расчет на примере указанного оборудования:

$$K_{Hap} = \frac{2 \cdot 125 \cdot 0,65 + 2 \cdot 40 \cdot 0,7 + 1,7 \cdot 0,7}{2 \cdot 125 + 2 \cdot 40 + 1,7} = 0,66$$

Далее определяем эффективное число электроприемников по следующей формуле [3]:

$$n_{_{9}} = \frac{\left(\sum n_{_{i}} \times P_{_{HOMi}}\right)^{2}}{\sum n_{_{i}} \times P_{_{HOMi}}} \tag{2}$$

где n_i - число электроприемников.

Применительно к данному трансформатору

$$n_9 = \frac{\left(2 \cdot 125 + 2 \cdot 40 + 1 \cdot 1,7\right)^2}{125^2 + 125^2 + 40^2 + 40^2 + 1,7^2} = 3,23$$

Определяем среднюю мощность группы электроприемников подключенных к шинам НН трансформатора 1.2 используя коэффициент использования по следующей формуле:

$$P_{cp} = \sum K_{Hi} \times P_{Homi}$$

$$P_{cp} = 2 \cdot 125 \cdot 0,65 + 2 \cdot 40 \cdot 0,7 + 1,7 \cdot 0,7 = 220,88 \text{ (kBt)}$$

По кривым зависимости определяем коэффициент расчетной нагрузки в зависимости от группового коэффициента использования и эффективного числа электроприемников. В данном случае принимаем Kp=1,2, определяем расчетную активную мощность для группы электроприемников по следующей формуле:

$$P_p = P_{cp} \cdot K_P$$
 (4)
 $P_p = 220,88 \cdot 1,2 = 265,07 \text{ (kBt)}$

Далее определяем значение средней реактивной мощности на шинах HH трансформатора (значение тангенса определяем по значению косинуса):

$$Q_{cp} = \sum K_{IIi} \times P_{Homi} \times tg \varphi_i$$
 (5)
$$Q_{cp} = 2 \cdot 125 \cdot 0,65 \cdot 0,72 + 2 \cdot 40 \cdot 0,7 \cdot 0,47 + 1,7 \cdot 0,7 \cdot 0,72 = 150,78 \text{ (KBap)}$$

Расчетная реактивная мощности при эффективном числе электроприемников менее 10 рассчитывается по формуле:

$$Q_p = 1, 1 \cdot Q_{cp} \tag{6}$$

$$Q_p = 1,1 \cdot 150,78 = 165,87 \text{ (KBap)}$$

Далее проводим расчет полной мощности нагрузки по следующей формуле:

$$S_{p} = \sqrt{P_{p}^{2} + Q_{p}^{2}}$$

$$S_{p} = \sqrt{265,06^{2} + 165,86^{2}} = 312,68 \text{ (KBA)}$$

Таблица 4 – Результаты расчета низковольтной нагрузки на шинах трансформаторов драги и вахтового поселка

Оборудование Драги						
Наименование трансформатора	$P_p(\kappa \mathrm{BA})$	$Q_p(\kappa \mathrm{BA})$	$S_p(\kappa BA)$			
1.1	721,46	452,37	851,55			
1.2	1.2 265,07		312,68			
1.3 125,24		60,16	138,94			
	Оборудование Вахтового поселка					
КТП №1	49,75	11,52	51,07			
КТП №2	45,75	8,64	46,56			
КТП №3	KT∏ №3 38,85		39,46			
KTΠ №4 53,0 KTΠ №5 56,5		5,76	53,31			
		11,52	57,66			
КТП №6	49,75	8,64	50,49			

Используем полученные данные в дальнейших расчетах для выбора основного электротехнического оборудования. Расчет приведен в приложении A

6 ВЫБОР ТИПА И НОМИНАЛЬНОЙ МОЩНОСТИ ТРАНСФОРМАТОРОВ 6/0,4

Проводим расчет номинальной мощности и типа трансформаторов 6 кВ, которые необходимы для организации системы электроснабжения данного участка сети.

Для определения расчетной мощности трансформатора воспользуемся формулой [2]:

$$S_{pmp} = \frac{\sqrt{P_p^2 + Q_p^2}}{K_2 \cdot N}$$
 (8)

где K_3 - номинальный коэффициент загрузки трансформатора (для одно трансформаторных ТП как в данном случае $K_3 = 0.8$ - 0.85;

N – количество трансформаторов в данном случае 1

 S_p - расчетная мощность нагрузки определенная ранее (кВА)

На примере трансформатора 1.2:

$$S_{pmp} = \frac{\sqrt{265,06^2 + 165,86^2}}{0.85} = 367,86 \text{ (kBA)}$$

Принимаем к установке сухой трансформатор имеющий литую изоляцию и защищенное исполнение TC3 номинальной мощностью 400 кВА и напряжением обмоток 6/0,4 кВ.

Далее необходимо определить фактический коэффициент загрузки [2]:

$$K_{3\phi} = \frac{\sqrt{P_p^2 + Q_p^2}}{S_{HOMMD} \cdot N} \le K_3 \tag{9}$$

Фактический коэффициент загрузки:

$$K_{3\phi} = \frac{\sqrt{265,06^2 + 165,86^2}}{400} = 0,78$$

Результаты расчета остальных трансформаторов приведены в таблиц 6.

Таблица 5 – Расчет мощности трансформаторов

Оборудование Драги						
Наименование трансформатора	$S_p(\kappa BA)$	S_{pmp} (κBA)	$S_{\scriptscriptstyle HOMmp}$ (кВА)	$K_{_{3\phi}}$		
1.1	851,55	1001,82	1000	0,85		
1.2	312,68	367,86	400	0,78		
1.3	138,92	163,46	160	0,87		
	Оборудо	вание Вахтового	поселка			
КТП №1	51,08	60,08	63	0,81		
КТП №2	46,56	54,78	63	0,74		
КТП №3	39,46	46,42	63	0,63		
КТП №4	53,31	62,72	63	0,85		
КТП №5	57,66	67,84	63	0,92		
КТП №6	50,49	59,40	63	0,80		

Расчет показывает что все коэффициенты загрузки имеют приемлемое значение значит расчет выполнен правильно, далее приводим технические данные трансформаторов, необходимые для дальнейших расчетов.

Таблица 6 - Технические данные трансформаторов

Марка	$\Delta P_{x}(\kappa B\tau)$	$\Delta P_{\kappa} (\kappa B_T)$	U_k (%)	I _x (%)
TC3 - 63/6	0,37	1,1		3,4
$TM\Gamma - 160/6$	0,7	2,7	5 5	4,0
$TM\Gamma - 400/6$	1,3	5,5	5,5	3,0
$TM\Gamma - 100/6$	3,0	11,5		1,5

Расчет так же приведен в приложении Б

7 РАСЧЕТ НАГРУЗОК НА СТОРОНЕ ВЫСОКОГО НАПРЯЖЕНИЯ ТРАНСФОРМАТОРОВ 6/0,4 КВ

В данном разделе проводим расчеты по определению мощности на шинах высокого напряжения трансформаторных подстанций. Это расчёт будет выполняться с использованием данных о потерях в трансформаторах, таких как потери короткого замыкания и потери холостого хода, при дальнейшем расчёте потери будут суммироваться с нагрузкой на шинах низкого напряжения трансформаторов после суммирования этих нагрузок будет производиться общей мощности на шинах 6 кВ источника питания.

Расчет мощности потребляемой на напряжении 6 кВ необходим в дальнейших расчетах при выборе линейного оборудования сети и силового оборудование ПС 35/6 кВ «Драга 230». Расчет потерь активной мощности в трансформаторах определяем через паспортные данные и коэффициент загрузки фактический по следующей формуле [5]:

$$\Delta P_m = \Delta P_\kappa \cdot K_{s\phi}^2 + \Delta P_x \tag{10}$$

Потери реактивной мощности (квар):

$$\Delta Q_m = \frac{u_{\kappa} \cdot S_{\mu}^2}{100 \cdot S_{\text{mucros}}} + \frac{I_{x} \cdot S_{\text{mhom}}}{100} \tag{11}$$

где P_{H} - расчетная активная мощность нагрузки (кВт)

 $Q_{\scriptscriptstyle H}$ - расчетная реактивная мощность нагрузки (квар)

R - активное сопротивление трансформатора (ом)

X - реактивное сопротивление трансформатора (ом)

 ΔP_{x} - потери активной мощности в режиме холостого хода трансформатора (кВт)

 ΔQ_{x} - потери реактивной мощности в режиме холостого хода трансформатора (квар)

Приводим пример расчета потерь мощности на примере трансформатора 1.2:

$$\Delta P_m = 5.5 \times 0.78^2 + 1.3 = 4.59 \text{ (kBt)}$$

$$\Delta Q_m = \frac{5.5 \times (312.68)^2}{100 \times 400} + \frac{3.0 \times 400}{100} = 25.44 \text{ (KBap)}$$

Определяем полную мощность потерь в трансформаторе:

$$\Delta S_m = \sqrt{\Delta P_m^2 + \Delta Q_m^2}$$

(12)

$$\Delta S_m = \sqrt{4,59^2 + 25,44^2} = 25,86 \text{ (kBA)}$$

Определяем мощность нагрузки на шинах высокого напряжения данного трансформатора путём сложения расчетной мощности нагрузки на шинах низкого напряжения и потерь мощности в трансформаторе:

$$P_{peh} = P_{phh} + \Delta P_m \tag{13}$$

$$Q_{peh} = Q_{phh} + \Delta Q_m \tag{14}$$

$$S_{pgh} = S_{phh} + \Delta S_m \tag{15}$$

где P_{pnn} - расчетная активная мощность нагрузки на шинах низкого напряжения трансформаторов (кВт)

 $Q_{\mbox{\tiny {\it phh}}}$ - расчетная реактивная мощность нагрузки на шинах низкого напряжения (квар)

 $S_{{\it phh}}$ - расчетная полная мощность нагрузки на шинах низкого напряжения (кВА)

Для трансформатора 1.2:

$$P_{neu} = 265,07 + 4,59 = 269,66 \text{ (KBT)}$$

$$Q_{peh} = 165,87 + 25,44 = 191,31 (\text{KBap})$$

$$S_{pgh} = 312,68 + 25,85 = 338,53 \text{ (kBA)}$$

Проводим расчет для остальных КТП результаты сводим в таблицу 7

Таблица 7 – Определение расчетных мощностей 6 кВ трансформаторов

Наименование	ΔP_m	ΔQ_m	ΔS_m	$P_{_{pв extit{BH}}}$	$Q_{\it pbh}$	S_{peh} (KBA)
трансформатора	(кВт)	(квар)	(кВА)	(кВт)	(квар)	рвн
1.1	11,1	54,89	55,98	732,53	507,25	907,54
1.2	4,59	25,44	25,85	269,66	191,31	338,53
1.3	2,75	13,04	13,33	127,98	73,19	152,26
КТП №1	1,08	4,36	4,49	50,83	15,88	55,56
КТП №2	0,69	1,12	1,32	46,44	9,76	64,32
КТП №3	0,58	0,90	1,07	39,43	7,81	64,07
КТП №4	0,80	0,75	1,09	53,8	6,51	64,09
КТП №5	0,85	1,50	1,72	57,35	13,02	64,72
КТП №6	0,75	1,12	1,35	50,5	9,76	64,35
	1428,52	834,49	1775,4			

Полученные данные используем в дальнейших расчетах. Так же расчет приведен в приложении В

8 РАСЧЕТ НАГРУЗОК НА СТОРОНЕ НИЗКОГО НАПРЯЖЕНИЯ ПС 35/6 КВ «ДРАГА 230»

На основании полученных данных далее проводим расчет полной мощности нагрузки на шинах низкого напряжения ПС 35/6 кВ «Драга 230», для выполнения данного расчета производится суммирование полученных расчетных нагрузок на стороне высокого напряжения каждого трансформатора и умножение полученного значения на коэффициент совмещения максимумов нагрузок — зависящего в свою очередь от количества трансформаторов. Расчет соответственно проводим для каждой мощности по следующей формуле [3]:

$$P_{p\Pi C} = k_C \cdot \Sigma \left(P_{pgh} \right) \tag{16}$$

$$Q_{\text{pHC}} = k_C \cdot \Sigma (Q_{\text{pert}}) \tag{17}$$

$$S_{DIIC} = k_C \cdot \Sigma \left(S_{DGH} \right) \tag{18}$$

где k_C - коэффициент совмещения максимумов нагрузки трансформаторов КТП, при количестве трансформаторов от 6 до 10 принимаем равным 0,8 S_{pnn} , P_{pnn} , Q_{pnn} - расчетная полная, активная, реактивная мощность нагрузки на шинах низкого напряжения трансформаторов.

$$P_{pIIC} = 0.8 \times 1428.52 = 1142.81 \text{ (kBt)}$$

$$Q_{p\Pi C} = 0.8 \times 834,49 = 667,59$$
 (квар)

$$S_{p\Pi C} = 0.8 \times 1775, 4 = 1420,32 \text{ (kBA)}$$

Полученные данные позволяют выполнить выбор силового трансформатора на подстанции 35/6 кВ «Драга 230».

8.1 Определение мощности компенсирующих устройств

В связи с наличием электродвигателей в общей массе нагрузки в данной работе стоит вопрос о компенсации реактивной мощности. Устройства компенсации позволяют снизить нагрузку на электрические сети путем выработки для электродвигателей необходимого количества реактивной энергии непосредственно на месте её потребления, таким образом снизить нагрузку на линии электропередач, а также на силовые трансформаторы, повысить уровень напряжения в точке их подключения. В данном разделе будем рассматривать вопрос об установке данного рода устройств на подстанции ПС 35/6 кВ «Драга 230». Расчёт требуемой мощности КУ проводится по коэффициенту мощности задаваемому энергосистемой [5]:

$$Q_K = Q_{pIIC} - P_{pIIC} \cdot tg \cdot \varphi \tag{19}$$

где tg φ — предельный коэффициент реактивной мощности (для сетей 35 кВ принимается равным 0,4)

 $Q_{p\Pi C}$ - расчетная реактивная мощность электроприемников на шинах низкого напряжения ПС «Драга 230» согласно расчетным данным (квар).

 P_{pHC} - расчетная активная мощность потребителей на шинах низкого напряжения ПС 35/6 кВ «Драга 230» согласно расчетным данным (кВт).

Требуемую мощность компенсирующих устройств, устанавливаемых на одну систему шин определяем по формуле (квар):

$$Q_{k1} = \frac{Q_K}{2} \tag{20}$$

где Q_{k1} - мощность компенсирующих устройств, необходимых к установке на одну секцию 6 кВ (квар)

Номинальная мощность УКРМ выбирается с использованием стандартного ряда мощностей:

$$Q_{\text{Heck}} = Q_P - Q_{\text{HOM}} \tag{21}$$

где $Q_{{\scriptscriptstyle HOM}}$ - номинальная мощность компенсирующих устройств согласно паспортным данным, устанавливаемым на обе секции.

Проводим расчет для ПС «Драга 230», мощность УКРМ требуемая:

$$Q_K = 667,59 - 1142,71 \cdot 0,4 = 210,51 \text{ (KBap)}$$

Полученное значение делим на две секции и получаем требуемую мощность УКРМ, которая должна располагаться на одной секции 6 кВ ПС:

$$Q_{k1} = \frac{210,51}{2} = 105,25 \text{ (KBap)}$$

Принимаем значение минимальной номинальной мощности ИЗ мощностей: 150 стандартного ряда квар, принимаем ДЛЯ установки автоматически регулируемую установку типа ВАРНЕТ-А, номинальным 6.3 напряжение кB, далее определяем фактическую мощность компенсирующих устройств:

$$Q_{K\phi} = 150 \cdot 2 = 300 \text{ (KBap)}$$

По поученному значению определяем реактивную мощность которая будет поступать потребителям из сети через силовой трансформатор 35/6 кВ (некомпенсированная мощность):

$$Q_{\text{\tiny HECK}} = 667,59 - 300 = 367,59 \text{ (KBap)}$$

Данный расчет показал что компенсация реактивной мощности в данном случае значительно снижает количество передаваемой реактивной энергии из сети.

Рассмотрим краткую характеристику устройств компенсации реактивной мощности, данное устройство предназначенное для выработки необходимого количества реактивной энергии непосредственно на шинах потребителя в

нашем случае шинах низкого напряжения подстанции Драга 230. Энергия которая будет вырабатываться данными устройствам,и регулируется в автоматическом режиме В зависимости OT количества подключенных конденсаторов. Установка обеспечивает необходимое количество ступеней конденсаторной батареи В зависимости заданной OT мощности c использованием специального регулятора.

Регулятор определяет угол между фазным током и фазным напряжением, для регулировки количество вырабатываемой мощности. При отклонении данного значения от заданного происходит подключение дополнительных батарей либо их отключения, при этом постоянно контролируется количество подключений и время необходимое для разряда конденсаторов.

Регулятор также обеспечивает другие функции такие как измерение и индикацию параметров электрической сети, коэффициента мощности количество перегрузок установки.

Следует отметить тот факт, что в таких установках одна установки ступень может быть постоянно включена в работу, а другая подключаться автоматически при необходимости.

9 ВЫБОР СИЛОВОГО ТРАНСФОРМАТОРА ПС 35/6 КВ «ДРАГА 230»

В данном разделе определяется мощность трансформатора для подстанции «Драга 230», которая определяется из суммарной расчетной активной и некомпенсированной реактивной мощности. Мощность трансформатора должна отвечать требованиям питания электрической энергией всех подключенных к трансформатору электроприемников. Учитывая тот факт, что на рассматриваемой подстанции имеют место только электроприемники 3 категории принимаем решение об установке одного трансформатора.

Требуемая номинальная мощность силового двух обмоточного трансформатора определяется по следующей формуле (MBA) [6]:

$$S_{mp} = \frac{\sqrt{P_{p\Pi C}^2 + Q_{nec\kappa}^2}}{n_T \times K_3^{onm}} \tag{22}$$

где $S_{\it mp}$ — требуемая номинальная мощность трансформатора (кВА);

 $P_{\it pIIC} -$ расчетная активная мощность на шинах 6 кВ (кВт);

 $Q_{{\scriptscriptstyle neck}}$ — расчетная некомпенсированная реактивная мощность на шинах 6 кВ;

 n_{T} — принятое количество трансформаторов;

 K_3^{onm} — оптимальный коэффициент загрузки трансформаторов (принимается равным 0,85).

$$S_{mp} = \frac{\sqrt{1142,81^2 + 367,59^2}}{1 \times 0.85} = 1412,54 \text{ (kBA)}$$

Принимаем ближайшее большее значение мощности: 1600 кВА, и рассчитываем фактический коэффициент загрузки по следующей формуле:

$$K_{s\phi} = \frac{\sqrt{P_{p\Pi C}^2 + Q_{heck}^2}}{n_T \times S_{mhom}}$$
 (23)

где $S_{mном}$ — номинальная мощность трансформатора (кВА);

$$K_{3\phi} = \frac{\sqrt{1142,81^2 + 367,59^2}}{1 \times 1600} = 0,75$$

Проверка нового силового трансформатора показала, что коэффициент загрузки имеет приемлемое значение, а следовательно перегрузка трансформатора происходить не будет. Технические параметры выбранного типа трансформатора приведены в таблице 8.

Таблица 8 – Технические параметры силового трансформатора ТМН 1600/35/6

Тип трансформатора	<i>Uk</i> (%)	<i>Ix</i> (%)	<i>Ивн</i> (кВ)	<i>Uнн</i> (кВ)	<i>Pk</i> (кВт)	Рх (кВт)
TMH 1600/35/6	6,5	1,5	37	6,3	18	2,9

На основании данных о принятом оборудовании далее проводится расчет токов короткого замыкания в РУ 35, 6 кВ ПС «Драга 230» с последующим выбором оборудования.

10 ВЫБОР ТИПА И СЕЧЕНИЯ ВЛ 35 КВ

В данном дипломном проекте рассматривается проектирование дополнительной связи между подстанциями «Драга 231» - «Драга 230» согласно заданию проекта ВЛ должна иметь номинальное напряжение 35 кВ. Протяженность рассматриваемой ВЛ составляет 5,68 км

Исходя из вышесказанного определяем сечение ВЛ согласно [4] по экономическим токовым интервалам в режиме питания ПС «Драга 230» от ПС «Бам». Расчетный ток в сечении рассчитывается по следующей формуле [7]:

$$I_{p} = \frac{\sqrt{P_{\text{Makc}}^{2} + Q_{\text{Heck}}^{2}}}{\sqrt{3} \cdot U_{\text{How}} \cdot n} \alpha_{i} \cdot \alpha_{T}, \qquad (24)$$

где n — количество цепей;

 $U_{{\scriptscriptstyle HOM}}$ — номинальное напряжение ВЛ;

 $P_{_{MAKC}}, \quad Q_{_{HeCK}} \quad - \quad$ максимальные активная и реактивная мощности протекающие по ВЛ. (МВт, МВАр)

 α_i — коэффициент, учитывающий изменение тока по годам эксплуатации;

 $\alpha_{\scriptscriptstyle T}$ – коэффициент, учитывающий число часов использования максимума нагрузки.

Для воздушных линий до 220 кВ α_i принимается равным 1,05.

Для $T_{\scriptscriptstyle M}$ равному 1000 - 3000 часов α_T принимается равным 0,9.

Определяем значение максимального тока в сечении:

$$I_p = \frac{\sqrt{1,14^2 + 0,37^2}}{\sqrt{3} \cdot 35 \cdot 1} 1,05 \cdot 0,9 = 17,9 \text{ (A)}.$$

Согласно экономическим токовым интервалам и учитывая количество цепей и климатическую характеристику рассматриваемого района, принимаем

для ВЛ проводник марки АС 95/16 (сталеалюминевый провод с сечением алюминиевой части $95 \, {\rm MM}^2$ и несущей стальной $16 \, {\rm MM}^2$).

Воздушную линию электропередачи принимаем на стальных опорах для увеличения надежности электроснабжения потребителей ПС «Драга 230».

11 ВЫБОР СЕЧЕНИЯ ВЛ 6 КВ

Сечения линий электропередач выбираются по условиям нагрева токами нагрузки с проверкой:

- а) по термической стойкости при коротких замыканиях;
- б) по наибольшей потере напряжения в нормальном режиме работы

Для выбора сечений линий ВЛ 6 кВ определяется суммарный расчетный ток и выбирается стандартное сечение соответствующее ближайшему большему допустимому току.

Выбор по длительно допустимому току заключается в сравнению расчетного тока в рассматриваемом сечении с длительно допустимым :

$$I_n \leq I_{\partial \partial}$$

где I_p – расчетный ток в сечении , A;

В данном разделе проводим расчет и выбор типа проводника для питания КТП вахтового поселка, учитываем что питание осуществляется по ВЛ, принимаем для данной ВЛ проводник типа СИП-3

Расчетный ток в рассматриваемом сечении определяется по выражению с учетом совмещения максимумов нагрузки:

$$I_{P} = \frac{k_{C} \cdot \Sigma(S_{pgH})}{\sqrt{3} \cdot U_{H}} \tag{25}$$

где S_P – расчетная мощность в сечении (кВА);

$$I_P = \frac{(55,56+64,32+64,07+64,09+64,72+64,35)\cdot 0,85}{\sqrt{3}\cdot 6,3} = 28,97 \text{ (A)}$$

Для полученного значения подбираем соответствующее сечение СИП-3.(принимаем для данного случая сечение 35 мм² с длительно допустимым током 160 A)

12 ПРОВЕРКА СЕЧЕНИЯ ВЛ ПО ТЕРМИЧЕСКОЙ СТОЙКОСТИ И ПОТЕРЕ НАПРЯЖЕНИЯ

Выполняем расчет тока короткого замыкания на шинах высокого напряжения КТП вахтового поселка, схема замещения представлена на рисунке 3.

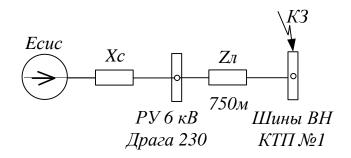


Рисунок 3 – Схема замещения участка сети

Сопротивление энергосистемы определяется по формуле (Ом):

$$X_c = \frac{U_{cp}}{\sqrt{3} \cdot I_{\kappa 36}} \tag{26}$$

где $I_{\kappa_{36}}$ – ток трёхфазного КЗ на шинах 6 кВ ПС «Драга 230»

Активные и индуктивные сопротивления участков СИП-3 (Ом):

$$X_{\pi} = x_0 \cdot L \tag{27}$$

$$R_{_{\pi}} = r_{_{0}} \cdot L \tag{28}$$

где x_0 , r_0 - удельное реактивное и активное сопротивление провода, Ом/км; L- длина участка провода, км.

Периодическая составляющая тока короткого замыкания в начальный момент времени определяется по следующей формуле (кА):

$$I_{no} = \frac{U_{cp}}{\sqrt{3} \cdot \sqrt{R_P^2 + X_P^2}} \tag{29}$$

Ток двухфазного короткого замыкания:

$$I_{_{\Pi O2}} = \frac{\sqrt{3}}{2} I_{_{\Pi O}} \tag{30}$$

Определяем сопротивление системы:

$$X_c = \frac{6.3}{\sqrt{3} \cdot 6.55} = 0.56 \text{ (OM)}$$

Сопротивления участков:

$$X_{\pi} = 0.08 \cdot 0.75 = 0.07 \, (O_{\rm M})$$

$$R_{\pi} = 1.91 \cdot 0.75 = 1.62 \, (OM)$$

Результирующее индуктивное сопротивление до точки КЗ

$$X_P = X_C + X_{_T} \tag{31}$$

$$X_P = 0.56 + 0.07 = 0.63 (O_M)$$

Результирующее активное сопротивление до точки КЗ

$$R_{P} = 1,62$$

Ток трехфазного КЗ:

$$I_{\text{no}} = \frac{6.3}{\sqrt{3} \cdot \sqrt{0.63^2 + 1.62^2}} = 2.09 \text{ (KA)}$$

Ток двухфазного короткого замыкания:

$$I_{1002} = \frac{\sqrt{3}}{2} 2,09 = 1,77 \text{ (KA)}$$

Постоянная затухания апериодической составляющей:

$$T_a = \frac{0.63}{1.62 \cdot 314} = 0.001$$

Коэффициент затухания:

$$K_a = 1 + e^{-\frac{0.01}{T_a}} \tag{32}$$

$$K_a = 1 + e^{-\frac{0.01}{T_a}} = 1 + e^{-\frac{0.01}{0.001}} = 1.18$$

Ударный ток короткого замыкания:

$$I_{yo} = \sqrt{2} \cdot 2,09 \cdot \left(1 + e^{\frac{-0,01}{0,001}}\right) = 2,79 \text{ (KA)}$$

Полученные данные используем при расчете термически стойкого сечения СИП

12.1 Проверка линии 6 кВ на воздействие токов КЗ.

Термически стойкое к токам КЗ сечение линий находим по формуле:

$$S_t = \frac{\sqrt{B_k}}{C} \cdot 1000 \tag{33}$$

где B_k - интеграл Джоуля (определяется согласно данным расчета токов КЗ).

 ${\it C}\,$ - температурный коэффициент, равный для алюминия 95.

$$S_T = \frac{\sqrt{1,62^2 \cdot 1}}{95} \cdot 1000 = 15,05 \, (\text{MM}^2)$$

Полученное значение практически равно сечению принятому на данном участке СИП-3, следовательно, оно проходит проверку, следовательно его принимаем для монтажа.

Расчетные данные о термически стойком к КЗ сечении показывают, что все линии проходят данную проверку.

12.2 Проверка ВЛ 6 кВ по допустимой потере напряжения.

Потеря напряжения в участке линии определяется по следующей формуле:

$$\Delta U = \sqrt{3} \cdot I_p \cdot L \cdot (r_0 \cdot \cos \varphi + x_0 \cdot \sin \varphi) \cdot \frac{100}{U_n}$$
(34)

где r_0 – активное сопротивление линии, Ом/км;

 x_0 – реактивное сопротивление линии, Ом/км.

Определяем потерю напряжения в сечении на участке ВЛ шины НН ПС Драга 230 – КТП вахтового поселка:

$$\Delta U = \sqrt{3} \cdot 5,09 \cdot 0,75 \cdot (1,91 \cdot 0,83 + 0,08 \cdot 0,52) \cdot \frac{100}{6300} = 0,19 \,(\%)$$

Расчет потери напряжения на данном участке сети показывает, что сечение проходит проверку, потеря напряжения не превышает предельного значения в 5%.

13 ВЫБОР КОНСТРУКЦИИ РУ ВН, НН ПС 35 КВ «ДРАГА 230»

В качестве распределительного устройства высокого напряжения на подстанции «Драга 230» предполагается его установка по схеме «Блок линия — трансформатор с выключателем». Данная схема применяется для тупиковых и ответвительных подстанции с числом присоединений 1 и номинальным напряжением 35-220 кВ. При этом на напряжении 6 кВ применяется стандартная схема с одной секцией шин.

Однолинейная схема подстанции «Драга 230» представлена на рисунке 4.

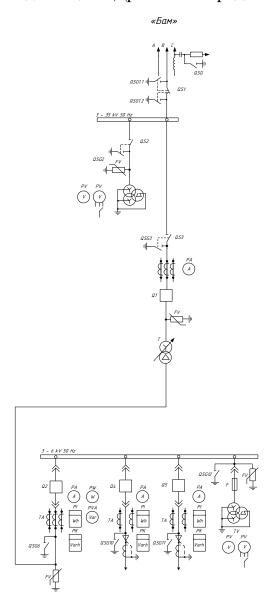


Рисунок 4 - Однолинейная схема ПС «Драга 230»

Рассмотрим подробно преимущества принятой схемы электроснабжения: данная схема обладает средней степенью надежностью и при этом имеет минимальное количество элементов в простую конструкцию и наглядность.

устройства Этот ТИП распределительного высокого напряжения принимается в соответствии с категории потребителей подключенных шинах это потребители 3 низкого напряжения В частности категории. В случае повреждения питающей воздушной линии она будет отключена с двух сторон как со стороны питающей подстанции (ПС «Бам») линейным выключателем, так и со стороны ПС «Драга 230». При этом в случае необходимости на шинах низкого напряжения может быть организовано второе питание в виде специальной дизельной генераторной станции.

Также преимуществом данной схемы электроснабжения является и минимальное количество оперативных переключений при выводе в ремонт оборудования.

Отметим также главный минус данного распределительного устройства это отсутствие резервирования: отключение защитой питающей линии, силового трансформатора либо шин приводит к полному погашению всей подстанции.

14 ОЦЕНКА НАДЕЖНОСТИ ВЫБРАННОЙ СХЕМЫ ОРУ

На рисунке 5 представлена упрощенная схема электроснабжения подстанции «Драга 230».

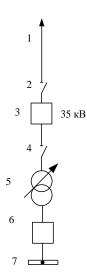


Рисунок 5 - Схема электроснабжения подстанции «Драга 230»

Для удобного расчета каждый элемент по направлению движения мощности нумеруется.

Параметрами характеризующими вероятность отключения элементов сети являются: параметр потокоотказов λ (1/год), среднее время восстановления tв (час), частота преднамеренных отключений λ пр (1/год), среднее время преднамеренных отключений tпр. Параметры элементов сведены в таблицу 9.

Таблица 9 - параметры элементов

Элемент	λ, 1/год	tв, часов	λпр, 1/год	$t_{пр}$, часов.
Выключатель 35 кВ	0,023	25	0,14	9
Разъединитель 35 кВ	0,01	6	0,166	5,5
Воздушная линия 35 кВ (на 100 км)	0,0063	10	0,8	15
Трансформатор 35 кВ	0,007	65	0,25	26
Выключатель 6 кВ	0,023	25	0,14	9
Сборные шины 6 кВ (на одно присоединение)	0,03	7	0,166	5

Определяем вероятность отключения каждого элемента по формулам: Для воздушной линии вероятность отказа определяется [9]:

$$q_{eq} = \frac{\lambda_{eq} \cdot t_{eeq}}{T_{r}} \cdot l \frac{1}{100} \tag{35}$$

$$q_{eq} = \frac{0,0063 \cdot 10}{8760} \cdot 22,25 \frac{1}{100} = 3,79 \cdot 10^{-6}$$

где T_{Γ} — число часов в году (час).

l - длина ВЛ (км).

Для шин 6 кВ:

$$q_{u6} = \frac{\lambda_{u6} \cdot t_{\omega6}}{T_{\Gamma}} \cdot n_{np} \tag{36}$$

$$q_{ui6} = \frac{0.03 \cdot 7}{8760} \cdot 3 = 1.44 \cdot 10^{-4}$$

Для разъединителей 35 кВ:

$$q_p = \frac{\lambda_p \cdot t_{ep}}{T_r} \tag{37}$$

$$q_p = \frac{0.01 \cdot 6}{8760} = 6.849 \cdot 10^{-6}$$

Для трансформатора 35 кВ:

$$q_m = \frac{\lambda_m \cdot t_{em}}{T_{\Gamma}} \tag{38}$$

$$q_m = \frac{0,007 \cdot 65}{8760} = 5,194 \cdot 10^{-5}$$

Для выключателя 35 кВ:

$$q_{e} = \frac{\lambda_{e35} \cdot t_{e35}}{T_{\Gamma}} + a_{\kappa_{3}} \cdot \left(\sum q_{cMexc} \right) + a_{on} \cdot N_{on}$$
(39)

где $a_{_{\!\scriptscriptstyle K\!3}}$ - относительная частота отказов при автоматических отключениях поврежденных смежных элементов $a_{_{\!\scriptscriptstyle K\!3}}\!=0{,}005$;

 $q_{\scriptscriptstyle {\it cmeж}}$ - вероятность отказа смежного с выключателем элемента;

 $a_{\it on}$ - относительная частота отказов выключателя при оперативных переключениях $a_{\it on} = 0.003$;

 $N_{\it on}$ - число оперативных переключений в год, для данной схемы $N_{\it on}$ = 6;

Для выключателя 35 кВ в данной схеме распределительного устройства защищаемыми смежными элементами являются воздушная линия и трансформатор.

$$q_{e35} = \frac{0,007 \cdot 25}{8760} + 0,005 \cdot \left(3,79 \cdot 10^{-6} + 5,194 \cdot 10^{-5}\right) + 0,003 \cdot 6 = 0,02$$

Для выключателя 6 кВ смежными элементами являются трансформатор и шины 6 кВ

$$q_{e6} = \frac{0,023 \cdot 25}{8760} + 0,005 \cdot \left(1,44 \cdot 10^{-4} + 5,194 \cdot 10^{-5}\right) + 0,003 \cdot 6 = 0,02$$

Вся цепь передачи мощности представляет собой некоторое количество последовательно соединенных элементов, следовательно всю цепь можно рассматривать как один элемент с параметрами определяемыми ниже. Рассмотрим подробно расчет надежности электроснабжения относительно шин 6 кВ.

Параметр потока-отказов цепи

$$\lambda_{ij} = \Sigma \lambda_i + \lambda_{npma\kappa}$$

$$\lambda_{ij} = 0.26 + 0.99 = 1.25 (1/год):$$
(40)

где λ_i - параметр потока-отказов всех элементов в цепи ;

 λ_{npmak} - наибольшая частота преднамеренных отключений λ пр;

Вероятность отказа цепи:

$$q_{ij} = \Sigma q_{i} + \frac{\lambda_{np_{Mak}} \cdot t_{np}}{T_{\Gamma}}$$

$$\tag{41}$$

$$q_{u} = \Sigma q_{i} + \frac{\lambda_{np,\text{MAK}} \cdot t_{np}}{T_{r}} = 0.04$$

где q_i - вероятность отказа каждого элемента в цепи ;

Время восстановления цепи:

$$t_{_{6u}} = \frac{q_{_{i}} \cdot T_{_{\Gamma}}}{\lambda_{_{u}} - \lambda_{_{np,_{MAK}}}} \tag{42}$$

$$t_{eq} = \frac{q_i \cdot T_{\Gamma}}{\lambda_{u} - \lambda_{npma\kappa}} = 33,51 \text{ (4ac)}$$

Среднее время безотказной работы системы:

$$T_c = \frac{1}{\lambda_u} \tag{43}$$

$$T_c = \frac{1}{1,25} = 0.8 \, (\text{лет})$$

Таким образом при расчете параметров надежности электроснабжения ПС «Драга 230» были получены следующие данные, вероятность отказа цепи, начиная от ВЛ 35 кВ до шин низкого напряжения 6 кВ, составляет 0,04 ед, при этом время восстановления системы составит 33,51 часа.

15 РАСЧЕТ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ

Проводим расчёт токов короткого замыкания, который необходим для выбора и проверки различного рода электрических устройств, проводников на подстанции. Такие составляющие тока короткого замыкания как периодическая составляющая, а периодическая составляющая, а также ударный ток короткого замыкания необходимы для выбора и проверки коммутационного оборудования в частности выключателей, а так же трансформаторов тока и иного оборудования

Перед началом расчёта токов короткого замыкания определяется характерное место короткого замыкания таким образом, чтобы выявить наиболее тяжёлый случай, в данном случае это шины высокого и низкого напряжения подстанции «Драга 230»

Данный расчет проводился для выбора оборудования на ОРУ 35 кВ ПС «Драга 230». Наибольший ток КЗ в ОРУ 35 кВ будет при КЗ за выключателем 35 кВ, а так же в РУ 6 кВ наибольший ток будет на шинах, схема представлена на рисунке 6.

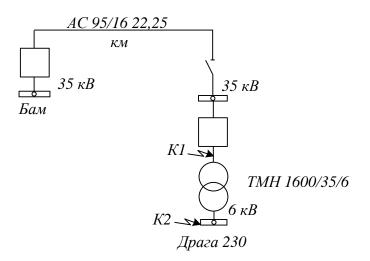


Рисунок 6 – Расчетное место КЗ на ПС «Драга 230»

Последовательное преобразование схемы относительно двух точек короткого замыкания представлено на рисунке 7.

Расчет токов КЗ проведем в именованных единицах приближенным методом. Первоначально расчет проводим относительно точки короткого замыкания К1, за базисную ступень трансформации принимаем шины высокого напряжения подстанции «Драга 230».

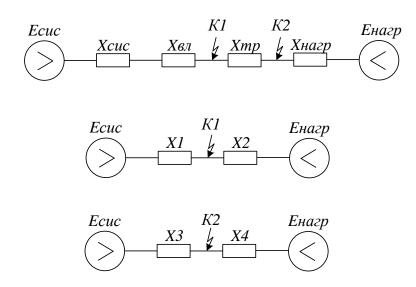


Рисунок 7 – Схема замещения

Сопротивление системы определяется через мощность короткого замыкания на шинах 35 кВ подстанции - «Бам», соответственно ток трехфазного короткого замыкания определяется через отключающую способность выключателя установленного на этой подстанции (номинальный ток отключения 20 кА)

Сопротивления ЛЭП, трансформаторов, нагрузки и системы рассчитываются соответственно по формулам:

Определяем мощность короткого замыкания по формуле (МВА):

$$S_{\kappa_3} = \sqrt{3} \cdot U_c \cdot I_{\mu, om \kappa_1} \tag{44}$$

где S_{κ_3} — мощность короткого замыкания на шинах 35 кВ ПС «Бам»

 U_c — среднее напряжение на стороне 35 кВ (кВ);

 $I_{{\scriptscriptstyle H.Om\kappa ,1}}$ — номинальный ток отключения выключателя 35 кВ ПС «Бам» (кА);

$$S_{\kappa 3} = \sqrt{3} \cdot 37 \cdot 20 = 1281,7 \text{ (MBA)}$$

Сопротивление системы соответственно:

$$X_{cuc} = \frac{U_c^2}{S_{\kappa_3}} \tag{45}$$

$$X_{cuc} = \frac{37^2}{1281,7} = 1,07$$
 (OM)

Сопротивление ВЛ:

$$X_{eq} = X_{vo} \cdot L(O_{\rm M}) \tag{46}$$

где X_{yo} – удельное индуктивное сопротивление ВЛ 35 кВ (Ом/км)

L – длина ВЛ (км);

$$X_{60} = 0.4 \cdot 22,25 = 8.9 \, (O_{\rm M})$$

Сопротивление трансформатора приведенное к высокой стороне:

$$X_{mp} = \frac{u_{\kappa} \cdot U_{cp}^{2}}{100 \cdot S_{HOM}} \tag{47}$$

где u_{κ} — напряжение короткого замыкания трансформатора (%)

 $S_{\scriptscriptstyle HOM}$ — номинальная мощность трансформатора (MBA)

$$X_{mp} = \frac{10.5 \cdot 37^2}{100 \cdot 1.6} = 89.84 \, (O_{\rm M})$$

Сопротивление нагрузки приведенное к высокой стороне, учитывается сопротивление обобщенной нагрузки в относительных единицах равное 0,35 (Ом):

$$X_{\text{harp}} = \frac{x_{\text{omh.harp.}} U_{\text{cp}}^2}{S_{\text{harp}}} \cdot K_m^2 \tag{48}$$

где $x_{omh.hazp.}$ – сопротивление нагрузки (о.е.)

 $S_{\text{нагр}}$ — мощность нагрузки (МВА)

 U_{cp} — среднее номинальное напряжение со стороны нагрузки (кВ)

 $K_{\scriptscriptstyle m}$ — коэффициент трансформации трансформатора

$$X_{\text{harp}} = \frac{0.35 \cdot 6.3^2}{\sqrt{1.1^2 + 0.37^2}} \cdot \frac{37^2}{6.3^2} = 450.82 \text{ (Om)}$$

Определяем ЭДС системы:

$$E_c = E_{c,omn} \cdot U_{cp} \tag{49}$$

где $E_{c,omn} - ЭДС$ системы (o.e.)

$$E_c = 1.37 = 37 \text{ (kB)}$$

Определяем ЭДС обобщенной нагрузки приведенное к высокой стороне трансформатора (кВ):

$$E_{\text{\tiny HAZP}} = E_{\text{\tiny H.OMH}} \cdot U_{\text{\tiny CP}} \cdot K_{\text{\tiny m}} \tag{50}$$

где $E_{{\scriptscriptstyle H.OMH}} - ЭДС$ обобщенной нагрузки (о.е.)

$$E_{\text{\tiny HAPP}} = 0.85 \cdot 6.3 \cdot \frac{37}{6.3} = 31.45 \text{ (KB)}$$

Сворачиваем схему относительно точки К1 и определяем сопротивления:

$$X1 = X_{cuc} + X_{eq} \tag{51}$$

X1 = 1.07 + 8.9 = 9.97 (O_M)

$$X2 = X_{mp} + X_{\text{\tiny HAZP}} \tag{52}$$

$$X2 = 89,84 + 450,82 = 540,66$$
 (OM)

Определяем начальное значение периодической составляющей тока К3 от системы (кA):

$$I_{cuc} = \frac{E_c}{\sqrt{3} \cdot X1} \tag{53}$$

$$I_{cuc} = \frac{37}{\sqrt{3} \cdot 9.97} = 1.6 \text{ (KA)}$$

Определяем начальное значение периодической составляющей тока K3 от нагрузки (кA):

$$I_{_{\mathit{HAP}}} = \frac{E_{_{\mathit{HAPP}}}}{\sqrt{3} \cdot X2}$$

$$I_{\text{\tiny HAZ}} = \frac{31,45}{\sqrt{3} \cdot 540.66} = 0,03 \, \text{(KA)}$$

Результирующий ток в точке короткого замыкания К1 (кА):

$$I_{no} = I_{cuc} + I_{haz} \tag{55}$$

$$I_{no1} = 1.6 + 0.03 = 1.63 \text{ (KA)}$$

Аналогично проводим расчет тока короткого замыкания в точке K2, при этом все сопротивления и ЭДС приводятся к низкой стороне трансформатор.

Значение апериодической составляющей тока короткого замыкания определяется по следующей формуле:

$$I_{at} = \sqrt{2} \cdot I_{no} \cdot e^{\frac{-T_{oe}}{Ta}} \tag{56}$$

где I_{at} – апериодическая составляющая тока короткого замыкания (кA)

 I_{no} — периодическая составляющая тока короткого замыкания в начальный момент времени (кA)

 T_{os} — время отключения выключателя с учетом работы релейной защиты (сек), в данном случае принимается 0.64 сек.

 T_a — постоянная времени.

$$I_{at1} = \sqrt{2} \cdot 1,63 \cdot e^{\frac{-0.64}{0.03}} = 0.21 \text{ (KA)}$$

Постоянная времени определяется по следующей формуле:

$$Ta = \frac{X\Sigma}{\omega \cdot R\Sigma} \tag{57}$$

где $X\Sigma$ — результирующее индуктивное сопротивление до точки короткого замыкания (Ом)

 $R\Sigma$ — результирующее активное сопротивление до точки короткого замыкания (Ом)

 ω – угловая частота (314 рад/сек.)

Результирующее активное сопротивление до очки короткого замыкания определяется аналогично индуктивному сопротивлению, для упрощения расчета постоянную времени принимаем по справочнику - 0,03.

Значение ударного тока короткого замыкания определяется по следующей формуле:

$$I_{yo} = \sqrt{2} \cdot I_{no} \cdot \left(1 + e^{\frac{-0.01}{Ta}}\right) \tag{58}$$

$$I_{y \partial 1} = \sqrt{2} \cdot 1,6 \cdot \left(1 + e^{\frac{-0.01}{0.03}}\right) = 2,3 \text{ (KA)}$$

Результаты расчета токов короткого замыкания сведены в таблицу 10:

Таблица 10 – Результаты расчета токов короткого замыкания

Расчетная точка короткого замыкания	I_{no} ,(κ A)	I_{at} , (κ A)	$I_{y\partial}$,(KA)
K1	1,63	0,21	2,3
K2	6,55	0,08	12,5

16 ВЫБОР ОБОРУДОВАНИЯ РУ

Выбор оборудования РУ ведется на основе данных расчета токов КЗ, выбранной схемы РУ, характера потребителей электроэнергии и климатических условий района размещения подстанции.

Также для выбора оборудования РУ необходимы данные о максимальных рабочих токах.

Значения максимальных рабочих токов на подстанции «Драга 230» приведены в таблице 11.

В данном разделе проводится выбор и проверка следующего подстанционного оборудования: выключатели, разъединители, трансформаторы тока, трансформаторы напряжения, нелинейные ограничители перенапряжений.

Таблица 11 – Максимальные рабочие токи в РУ подстанции

Номинальное	Максимальный рабочий ток (А)
напряжение (кВ)	«Драга 230»
35	26,4
6	146,63

16.1 Выбор выключателя 35 кВ.

Выбираем выключатель на напряжении 35 кВ первоначально принимаем для установки вакуумный выключатель марки BPC -35

Сравнение параметров выбранного выключателя со значениями, полученными при расчете токов КЗ показано в таблице 12.

Таблица 12 – Выбор выключателя 35 кВ

Номинальные параметры выключателя		Расчетные данные	Условия выбора и проверки
1	2	3	4
Номинальное напряжение	$U_{\scriptscriptstyle HOM}=35\mathrm{kB}$	$U_{\text{номсети}} = 35 \mathrm{kB}$	$U_{_{HOM}} \geq U_{_{HOMCemu}}$

1	2	3	4
Номинальный ток	$I_{_{HOM}} = 630\mathrm{A}$	$I_{_{MAKC}} = 26,4 \mathrm{A}$	$I_{_{HOM}} \ge I_{_{MAKC}}$
Номинальный ток включения	$I_{_{6K\Pi}}=12,5\mathrm{KA}$	$I_{no} = 1,63 \mathrm{kA}$	$I_{_{\mathit{GKI}}} \geq I_{n0}$
Наибольший пик тока включения	$i_{e\kappa \tau} = 31 \mathrm{kA}$	$I_{yo} = 2.3 \mathrm{KA}$	$i_{_{\mathit{GK}\mathcal{I}}} \geq i_{_{\mathit{y}\partial}}$
Номинальный ток отключения	$I_{om\kappa\pi} = 12,5 \mathrm{KA}$	$I_{nt} = 1,63 \mathrm{kA}$	$I_{om\kappa n} \ge I_{nt}$
Номинальное значение апериодической составляющей, кА	i _{ан} = 7,9 кА	$I_{at} = 0.21$ KA	$i_{_{a\scriptscriptstyle H}} \geq I_{_{at}}$
Предельный сквозной ток	$i_{npc\kappa e} = 31 \text{ KA}$	$I_{y\partial} = 2.3 \mathrm{KA}$	$i_{npc\kappa e} \geq I_{y\partial}$
Термическая стойкость, $\kappa A^2 c$	$I_{mep}^{2} \cdot t_{mep} = 5000 \text{ κA}^{2}\text{c}$	$B_K = 7.87 \mathrm{\kappa A^2 c}$	$I_{mep}^{2} \cdot t_{mep} \geq B_{K}$

16.2 Выбор выключателей 6 кВ.

На напряжении 6 кВ первоначально принимаем для установки выключатель вакуумный ВВ/ТЕL-10-40/1000А

Сравнение параметров выбранного выключателя со значениями, полученными при расчете токов КЗ показано в таблице 13.

Данный тип выключателя предлагается к установке во вводной и секционной ячейках РУ НН ПС «Драга 230».

Таблица 13 – Выбор выключателя 6 кВ

Номинальные парам	етры выключателя	Расчетные данные	Условия выбора и проверки
1	2	3	4
Номинальное напряжение (кВ)	$U_{{\scriptscriptstyle HOM}}=10{ m kB}$	$U_{\text{номсети}} = 6 \mathrm{kB}$	$U_{_{HOM}} \geq U_{_{HOMCemu}}$
Номинальный ток (А)	$I_{\scriptscriptstyle HOM}=1000\mathrm{A}$	$I_{\text{макс}} = 146,63A$	$I_{_{HOM}} \geq I_{_{MAKC}}$
Номинальный ток включения (кА)	$I_{_{\mathit{GK},1}} = 40\mathrm{kA}$	$I_{no} = 6,55 \mathrm{KA}$	$I_{_{\mathit{GKI}}} \geq I_{_{\mathit{no}}}$
Наибольший пик тока включения (кА)	$i_{\scriptscriptstyle \mathit{GKJ}} = 128 \mathrm{KA}$	$I_{y\partial} = 12,5 \text{ KA}$	$i_{_{\mathit{BKN}}} \geq I_{_{\mathit{YO}}}$
Номинальный ток отключения (кА)	$I_{om\kappa\pi} = 40\mathrm{KA}$	$I_{nt}=6,55\mathrm{kA}$	$I_{\mathit{omkn}} \geq I_{\mathit{nt}}$

Продолжение таблицы 13

1	2	3	4
Номинальное значение апериодической составляющей (кА)	$i_{_{\mathit{dH}}} = 8,48 \mathrm{KA}$	$I_{at} = 0.08 \mathrm{KA}$	$i_{_{a\scriptscriptstyle H}} \geq I_{_{at}}$
Предельный сквозной ток (кА)	$i_{npcкв} = 128$ кА	$I_{yo} = 12,5 \text{ kA}$	$i_{npc\kappa heta} \geq I_{y\partial}$
Термическая стойкость, $\kappa A^2 c$	$I_{mep}^2 \cdot t_{mep} = 4800 \text{ kA}^2 \text{c}$	$B_K = 128,32 \mathrm{\kappa A^2 c}$	$I_{mep}^{2} \cdot t_{mep} \geq B_{K}$

16.3 Выбор разъединителей.

На напряжении 35 кВ, по напряжению и максимальному рабочему току выбираем разъединители марки РДЗ-35/1000 УХЛ1. Привод разъединителя — ПРНЗ. Сравнение параметров выбранного разъединителя со значениями, полученными при расчете токов КЗ показано в таблице 14.

Таблица 14 – Выбор и проверка разъединителя 35 кВ

Номинальные параметры разъединителя		Расчетные данные	Условия выбора и проверки
Номинальное напряжение	$U_{\scriptscriptstyle HOM}=35\mathrm{\kappa B}$	$U_{\text{номсети}} = 35 \mathrm{кB}$	$U_{_{HOM}} \geq U_{_{HOMCemu}}$
Номинальный ток	$I_{_{HOM}} = 1000 \mathrm{A}$	$I_{\text{\tiny MAKC}} = 26,4\mathrm{A}$	$I_{_{HOM}} \geq I_{_{MAKC}}$
Предельный сквозной ток	$i_{npc\kappa e} = 63 \text{ KA}$	$I_{yo} = 2.3 \text{ kA}$	$i_{npc\kappa e} \geq I_{y\partial}$
Термическая стойкость, kA^2c	$I_{mep}^2 \cdot t_{mep} = 1875 \text{KA}^2\text{c}$	$B_K = 7.87 \mathrm{\kappa A^2 c}$	$I_{mep}^{2} \cdot t_{mep} \geq B_{K}$

Данный тип разъединителя предлагается к установке в РУ 35 кВ ПС «Драга 230».

16.4 Выбор трансформаторов тока.

Номинальный ток трансформатора тока должен быть как можно ближе к рабочему току установки, так как недогрузка первичной обмотки приводит к увеличению погрешностей.

Трансформатор тока проверяется на электродинамическую и термическую стойкость, а также по величине нагрузки в заданном классе точности.

Вторичная нагрузка трансформаторов тока состоит из сопротивления приборов, соединительных проводов и переходного сопротивления контактов:

$$Z_2 \approx r_2 = r_{npos} + r_{npu\delta} + r_{\kappa} \tag{59}$$

Сопротивление контактов принимается равным r_{κ} =0,1 Ом. Сопротивление соединительных проводов можно рассчитать по формуле:

$$r_{npos} = \frac{\rho \cdot l}{F} \tag{60}$$

где $\rho = 0.0283 \text{ (Ом·мм}^2)/\text{м} - \text{удельное сопротивление алюминия;}$

l - длина соединительных проводов, для РУ 35 и 6 кВ - 60 м;

F - сечение соединительного провода, $F = 4 \text{ мм}^2$.

Сопротивление соединительных проводов (для 35 и 6 кВ):

$$r_{npos} = \frac{0.0283 \cdot 60}{4} = 0.43 \text{ (OM)}$$

Сопротивление приборов определяется по формуле:

$$r_{npoe} = \frac{S_{np}}{I^2} \tag{61}$$

где *Snp* - мощность, потребляемая приборами;

 $I_{\scriptscriptstyle 2}$ - вторичный номинальный ток трансформатора тока, $I_{\scriptscriptstyle 2}$ =1A.

Для измерения всех необходимых величин предлагается установить трехфазный измерительный комплекс фирмы ABB «Delta +», позволяющий измерять до 46 величин, связанных с качеством электроэнергии, в классе точности 0,2S. Расчет нагрузки наиболее загруженной фазы на напряжении 35, 6 кВ приведен в таблице 15

Таблица 15 – Вторичная нагрузка трансформаторов тока 35 и 6 кВ

Прибор	Тип	Нагрузка фазы, B·A
Амперметр	Э-350	0,5
Счетчик АЭ	Dolto	0.12
Счетчик РЭ	Delta +	0,12

Мощность наиболее загруженной фазы на напряжение 35 и 6 кВ $S_{np}=0.62$ ВА. Тогда сопротивление приборов:

$$r_{npu\delta} = \frac{S_{np}}{I^2} = \frac{0.62}{1} = 0.62 \text{ (OM)}$$

Вторичная нагрузка трансформатора тока (на стороне 35 и 6 кВ):

$$Z_2 = r_{npo6} + r_{npu6} + r_{\kappa} = 0.62 + 0.43 + 0.1 = 1.15 \text{ (Om)}$$

Принимаем трансформатор тока по стороне 35 кВ ТОЛ-35-III с номинальным током первичной обмотки 30 А. Сравнение параметров трансформатора тока 35 кВ приведено в таблице 16.

Данный тип трансформатора тока проходит по всем параметрам следовательно его оставляем.

Таблица 16 – Проверка выбранного TT 35 кВ

Номинальные параметры трансформатора тока		Расчетные данные	Условия выбора и проверки
Номинальное напряжение	$U_{\scriptscriptstyle HOM}=35\mathrm{kB}$	$U_{\text{номсети}} = 35 \mathrm{kB}$	$U_{_{HOM}} \geq U_{_{HOMCemu}}$
Номинальный ток	$I_{\text{\tiny HOM}} = 30\mathrm{A}$	$I_{\text{\tiny MAKC}} = 26,4\mathrm{A}$	$I_{_{HOM}} \geq I_{_{MAKC}}$
Предельный сквозной ток	$i_{npcke} = 125 \text{ KA}$	$I_{y\partial} = 2.3 \mathrm{KA}$	$i_{npc\kappa heta} \geq I_{y\partial}$
Термическая стойкость, kA^2c	$I_{mep}^2 \cdot t_{mep} = 7203 \text{ KA}^2 \text{c}$	$B_K = 7.87 \mathrm{\kappa A^2 c}$	$I_{mep}^{2} \cdot t_{mep} \geq B_{K}$
Номинальная вторичная нагрузка Z2 ном (Ом)	30 Ом	1,15 Ом	$Z_{2\text{HOM}} \ge Z_2$

Принимаем трансформатор тока по стороне 6 кВ ТПЛК - 6/150 с номинальным током первичной обмотки 150 А. Сравнение параметров трансформатора тока 10 кВ приведено в таблице 17.

Таблица 17 – Проверка выбранного ТТ 6 кВ

Номинальные параметрь	и трансформатора тока	Расчетные данные	Условия выбора и проверки
Номинальное напряжение	$U_{_{HOM}}=6\mathrm{kB}$	$U_{HOMCemu} = 6 \mathrm{kB}$	$U_{_{HOM}} \geq U_{_{HOMCemu}}$
Номинальный ток	$I_{\scriptscriptstyle HOM}=150\mathrm{A}$	$I_{\text{макс}} = 146,63 \text{A}$	$I_{{\scriptscriptstyle HOM}} \geq I_{{\scriptscriptstyle MAKC}}$
Предельный сквозной ток	$i_{npc\kappa e} = 140 \text{ KA}$	$I_{y\partial} = 12.5 \mathrm{KA}$	$i_{npc\kappa e} \geq I_{y\partial}$
Термическая стойкость, $\kappa A^2 c$	$I_{mep}^2 \cdot t_{mep} = 58800 \text{ kA}^2 \text{c}$	$B_K = 128,32 \mathrm{\kappa A^2 c}$	$I_{mep}^{2} \cdot t_{mep} \geq B_{K}$
Номинальная вторичная нагрузка Z2 ном (Ом)	15 Ом	1,15 Ом	$Z_{{\scriptscriptstyle 2 \text{\tiny HOM}}} \geq Z_2$

Данный тип трансформатора тока проходит по всем параметрам следовательно его оставляем.

16.5 Выбор трансформатора напряжения.

Трансформаторы напряжения выбираются [2]:

- по напряжению установки
- по конструкции и схеме соединения;
- по классу точности;
- по вторичной нагрузке

$$S_{2\text{\tiny HOM}} \ge S_2 \tag{62}$$

где $S_{2_{HOM}}$ - номинальная мощность в выбранном классе точности;

 S_2 - нагрузка измерительных приборов и реле, присоединенных к трансформатору напряжения.

Нагрузку трансформатора напряжения подключенного к одной из шин РУ определим для случая, когда все присоединения переведены на данную систему шин. Нагрузка состоит из нагрузки приборов в ячейках, а также вольтметров и частотомера. Расчет вторичной нагрузки трансформатора напряжения приведен в таблице.

Выбираем трансформатор напряжения на стороне 35 кВ определяем мощность вторичной нагрузки. Данные представлены в таблице 18.

Таблица 18 – Вторичная нагрузка трансформатора напряжения 35 кВ

Тип прибора	Прибор	Количество приборов	Потребляемая мощность, В А
Вольтметр	Э-335	1	2
Варметр	Д-335	1	1,5
Ваттметр	Д-335	1	1,5
Счетчик АЭ	Dolto	1	4
Счетчик РЭ	Delta +	1	4
Сумма			9

Принимаем к установке трансформатор напряжения типа НАМИ 35 УХЛ1.

Трехфазный анти резонансный масляный трансформатор напряжения типа НАМИ-35 УХЛ1 предназначен для установки в электрических сетях трехфазного переменного тока частоты 50 Гц с изолированной или с компенсированной нейтралью с целью передачи сигнала измерительной информации приборам измерения, устройствам автоматики, защиты, сигнализации и управления.

Проводим проверку по вторичной нагрузке. Данные приведены в таблице 19.

Таблица 19 – Проверка выбранного ТН 35 кВ

Номинальные параметры ТН		Расчетные	Условия выбора и
Поминальные параметря	DI 111	данные проверки	проверки
Номинальная вторичная нагрузка в классе точности 0,2	$S_{2HOM} = 75 \mathrm{BA}$	$S_2 = 9 \text{BA}$	$S_{2{\scriptscriptstyle HOM}} \ge S_2$

Трансформатор напряжения проходит по параметрам, следовательно его оставляем.

Выбираем трансформатор напряжения на стороне 6 кВ НАМИ 6 УХЛ1. Определяем мощность вторичной нагрузки. Данные представлены в таблице 20:

Таблица 20 – Вторичная нагрузка трансформатора напряжения 6 кВ

Тип прибора	Прибор	Количество приборов	Потребляемая мощность, В:А
Вольтметр	Э-335	1	1
Варметр	Д-335	3	1,5
Ваттметр	Д-335	3	1,5
Счетчик АЭ	Delta +	3	4
Счетчик РЭ	Delta +	3	4
Сумма			22

Таблица 21 – Проверка выбранного ТН 6 кВ

Номинальные парам	Расчетные	Условия выбора и	
поминальные парам	стры тт	данные	проверки
Номинальная вторичная нагрузка в классе точности 0,2	$S_{2\text{\tiny HOM}} = 75\mathrm{BA}$	$S_2 = 22BA$	$S_{\scriptscriptstyle 2\text{HOM}} \geq S_{\scriptscriptstyle 2}$

Трансформатор напряжения анти резонансный типа НАМИ – 6 является масштабным преобразователем и предназначен для выработки сигнала

измерительной информации для электрических измерительных приборов и цепей учета, защиты и сигнализации в сетях переменного тока частоты 50 и 60 Гц с изолированной или заземлённой через дугогасящий реактор нейтралью. Трансформаторы изготавливаются для эксплуатации в умеренном и тропическом климате и соответствуют требованиям ГОСТ 1983 — 89 в части электромагнитных трехфазных трех обмоточных трансформаторов.

Трансформатор напряжения проходит по параметрам следовательно его оставляем.

16.6 Выбор гибкой ошиновки.

На напряжении 35 кВ применяются провода таким же сечением как и отходящая ВЛ - 95/16 мм 2 Марка провода АС. Проверку на корону гибкой ошиновки 35 кВ проводить не требуется.

16.7 Выбор жестких шин 6 кВ.

Проводим выбор жестких шин на стороне низкого напряжения подстанции «Драга 230». Максимальный рабочий ток составляет 26,39 А. Принимаем минимальное сечение алюминиевой шины с размерами 50 × 5 мм (250 мм²), длительно допустимый ток для данного сечения составляет 960 А. Шины устанавливаем на изоляторах плашмя, расстояние между фазами принимаем 0,4 м.

Проверяем шины на термическую стойкость, определяем минимальное сечение по условиям нагрева токами КЗ.

$$q_{\min} = \frac{\sqrt{B_{\kappa}}}{C} \cdot 1000 \tag{63}$$

где B_{κ} — интеграл джоуля, рассчитан ранее при выборе выключателей.

 ${\it C}$ - коэффициент для алюминия 91

$$q_{\min} = \frac{\sqrt{128,32}}{91} \cdot 1000 = 124,48 \text{ (MM}^2\text{)}$$

Проверяем шины на механическую прочность, определяем пролет при условии что частота собственных колебаний составит более 200 Гц

$$l \le \sqrt{\frac{173,2}{200} \cdot \sqrt{\frac{J}{q}}} \tag{64}$$

$$l \le \sqrt{\frac{173,2}{200} \cdot \sqrt{\frac{5,21}{2,5}}} = 1,12 \text{ (M)}$$

где J – момент инерции шины (см³×см).

q - сечение проводника, в данном случае 2,5 (см²)

Момент инерции определяется по формуле:

$$J = b \cdot h^{3} \frac{1}{12}$$

$$J = 0.5 \cdot 5^{3} \frac{1}{12} = 5.21 \text{ (cm}^{3} \times \text{cm)}$$
(65)

Согласно расчета принимаем пролет между изоляторами 1,1 м.

Определяем наибольшее удельное усилие при трехфазном коротком замыкании

$$f = \sqrt{3} \cdot 10^{-7} \cdot \frac{i_{y0}^{2}}{a} \tag{66}$$

$$f = \sqrt{3} \cdot 10^{-7} \cdot \frac{12500^2}{0.4} = 48,15 \text{ (H/M)}$$

где $i_{y\vartheta}$ — ударный ток короткого замыкания (A).

a - расстояние между фазами 0,4 (м).

Определяем момент сопротивления по формуле

$$W = b \cdot h^2 \frac{1}{6} \tag{67}$$

$$W = 0.5 \cdot 5^2 \frac{1}{6} = 2.08 \text{ (cm}^3\text{)}$$

Определяем напряжение в проводе:

$$\sigma_{pacu} = \sqrt{3} \cdot 10^{-8} \cdot \frac{i_{yo}^{2} \cdot l^{2}}{W \cdot a} \tag{68}$$

$$\sigma_{pac4} = \sqrt{3} \cdot 10^{-8} \cdot \frac{12500^2 \cdot 1,1^2}{2,08 \cdot 0,4} = 15,38 \text{ (M}\Pi\text{a})$$

При расчете напряжения все длины приведены в метры.

Разрушающее напряжение для принятого материала составляет 60 МПа, расчетное напряжение не превышает разрушающего следовательно данное сечение оставляем.

16.8 Выбор изоляторов 6 кВ.

В распределительных устройствах шины крепятся на опорных, проходных и подвесных изоляторах. Жесткие шины крепятся на опорных изоляторах, выбор которых производится по следующим условиям:

1) по номинальному напряжению:

$$U_{HOM} \geq U_{HOMCemu}$$

2) по допустимой нагрузке:

$$F_{pasp} \cdot 0.6 \ge F_{pacy}$$

где $F_{_{3a3p}}$ — разрушающее усилие для выбранного типа изолятора (H).

 $F_{\it pacч}$ - расчетное усилие в рассматриваемом РУ 6 кВ (H).

Рассмотрим подробно расчет усилия воздействующего на опорные изоляторы в РУ 6 кВ ПС «Драга 230», при горизонтальном или вертикальном расположении изоляторов всех фаз расчетная сила, определяется как:

$$F_{pacu} = \sqrt{3} \cdot \frac{i_{yo}^{2} \cdot l}{a} \cdot 10^{-7} \tag{69}$$

$$F_{pacu} = \sqrt{3} \cdot \frac{12500^2 \cdot 1,1}{0.4} \cdot 10^{-7} = 59,85 \text{ (H)}$$

Выбираем по номинальному напряжению проходной изолятор типа ОСК 8-10 УХЛ2 с номинальным разрушающим усилием 8000 H, проверяем неравенство:

$$8000 \cdot 0.6 = 4800 \ge 59.85$$

Условие выполняется следовательно данный тип изолятора принимаем для установки в РУ 6 кВ ПС «Драга 230»

16.9 Выбор высокочастотного заградителя.

Высокочастотные заградители серии ВЗ предназначены для обеспечения передачи сигналов автоматики, защиты, связи, телемеханики, про модулированных высокой частотой по фазному проводу или грозовому тросу высоковольтной линии электропередачи. Высокочастотный заградитель необходим для исключения шунтирования высокочастотного сигнала с обмоткой трансформатора. Заградитель представляет собой высокочастотный фильтр, который включается в распайку провода высоковольтной линии электропередачи для предотвращения потерь высокочастотного сигнала.

По номинальному напряжению выбираем заградитель типа ВЗ-200 УХЛ1, Сравнение основных данных заградителя с расчетными показаны в таблице 22.

Таблица 22 – Выбор и проверка заградителя 35 кВ

Номинальные параметры высокочастотного заградителя		Расчетные данные	Условия выбора и проверки
Номинальный ток $I_{\scriptscriptstyle HOM} = 200\mathrm{A}$		$I_{\text{макс}} = 26,4 \mathrm{A}$	$I_{_{HOM}} \geq I_{_{MAKC}}$
Предельный сквозной ток	$i_{npcke} = 20 \text{ KA}$	$I_{yo} = 2.3 \mathrm{KA}$	$i_{npcke} \ge I_{y\partial}$

Высокочастотный заградитель типа ВЗ - 200 УХЛ1 проходит по всем показателям его принимаем к установке

16.10 Выбор нелинейного ограничителя перенапряжений 35 кВ

Ограничители перенапряжений выполнены как одно колонковые аппараты опорного типа вертикальной установки. Для присоединения фазного провода и заземляющего провода, ограничители имеют специальную пластину на верхнем фланце и болт заземления на нижнем фланце. Металлические фланцы закреплены на корпусе ограничителя и герметично залиты полимерным компаундом.

Метало оксидные резисторы с высоко нелинейной вольтамперной характеристикой запрессованы в оболочки из полимерного материала и в виде однотипных элементов последовательно соединённых внутри общего корпуса.

Принимаем ОПН - 35 - УХЛ1 номинальным напряжением 35 кВ Сравнение расчетных данных с паспортными ОПН приведено в таблице 23.

Таблица 23 – Выбор и проверка ОПН 35 кВ

Номинальные параметры нелинейно перенапряжений	Расчетные данные	Условия выбора и проверки	
Номинальное напряжение $U_{_{nom}} = 35 \text{кB}$		$U_{\text{номсети}} = 35 \mathrm{kB}$	$U_{_{HOM}} \geq U_{_{HOMCemu}}$
Набольшее напряжение $U_{_{\it Hp}}$ (кВ)	25,56	22,2	$U_{_{\mathit{HP}}} \geq U_{_{\mathit{HP.cemu}}}$

ОПН 35 проходит проверку по всем показателям его принимаем к установке в РУ 35 кВ.

16.11 Выбор нелинейного ограничителя перенапряжений 6 кВ

Принимаем к установке ОПН-6 УХЛ1 Сравнение параметров приведено в таблице 24.

Таблица 24 – Выбор и проверка ОПН 6 кВ

Номинальные параметры нел ограничителя перенапрях	Расчетные данные	Условия выбора и проверки	
Номинальное напряжение $U_{{\scriptscriptstyle HOM}}=6\mathrm{kB}$		$U_{\text{номсети}} = 6 \mathrm{KB}$	$U_{_{HOM}} \geq U_{_{HOMCemu}}$
Набольшее напряжение $U_{\mathit{нp}}$ (кВ) 3,67		3,49	$U_{_{\mathit{H}p}} \geq U_{_{\mathit{H}p.\mathit{cemu}}}$

ОПН 6 кВ проходит проверку по всем показателям его принимаем к установке в РУ 6 кВ ПС «Драга 230».

17 ЗАЩИТА ТРАНСФОРМАТОРА.

17.1 Защита от перегрузки.

Защита действует с выдержкой времени на сигнал, а на необслуживаемых подстанциях — на разгрузку или отключение трансформаторов.

Ток срабатывания защиты от перегрузки (с действием на сигнал) определяется следующим образом:

$$I_{C3} = \frac{k_{OTC}}{k_R} \cdot I_{BHH} \tag{70}$$

$$I_{C3} = \frac{1,05}{0.8} \cdot 26,4 = 35,62 \text{ (A)}$$

где $k_{\it OTC}$ — коэффициент отстройки, принимается равным 1,05

 $k_{\rm {\it B}}-$ коэффициент возврата токового принимается равным 0,8;

Ток срабатывания защиты:

$$I_{CP} = \frac{26.4}{(30/5)} = 4.39 \text{ (A)}$$

Время срабатывания защиты принимаем равным 9 с.

17.2 Максимальная токовая защита.

Максимальная токовая защита устанавливается на всех трансформаторах, если для их защиты не используются предохранители. На понижающих трансформаторах мощностью более 1 МВА МТЗ с минимальным или комбинированным пуском по напряжению используется для защиты от внешних междуфазных КЗ. Время срабатывания МТЗ может оказывать влияние на выбор основной защиты трансформаторов мощностью от 1 до 6,3 МВА.

Если МТЗ трансформатора является его резервной защитой, то нет необходимости отключать при ее действии все выключатели трансформатора.

Ток срабатывания защиты на стороне 35 кВ [14]:

$$I_{C3} = \frac{k_H \cdot k_{CAM}}{k_B} \cdot I_{BHH} \tag{72}$$

$$I_{C3} = \frac{1,2 \cdot 1,5}{0.8} \cdot 26,4 = 59,37 \text{ (A)}$$

где k_{H} – коэффициент надежности, принимается равным 1,2;

 $k_{\it CAM}$ — коэффициент само-запуска принимается равным 1,5;

$$k_{_{q}} = \frac{I^{(2)}_{_{K.MUH}}}{I_{_{C3}}} \tag{73}$$

$$k_{y} = \frac{3,92 \cdot 10^{3} \cdot (6/35)}{59,37} = 11,32$$

Ток срабатывания защиты:

$$I_{CP} = \frac{59,37}{(30/5)} = 9,89 \text{ (A)}$$

17.3 Газовая защита.

Газовая защита трансформатора предназначена для его защиты рт внутренних повреждений, например как междуфазные короткие замыкания, однофазные короткие замыкания и витковые. При возникновении газа в зоне горения дуги он улавливается газовым реле и при большом его объёме реле отключает трансформатор от сети. В данном случае принимаем для установке на рассматриваемом трансформаторе реле «Бухгольца».

18 ОПРЕДЕЛЕНИЕ ЭКОНОМИЧЕСКИХ ПОКАЗАТЕЛЕЙ

В данном разделе проводится расчет укрупненных стоимостных показателей при строительстве ПС «Драга 230», при этом в стоимость включается величина капиталовложений в ячейки и выключателей, в силовой трансформатор, в постоянную часть затрат на ПС.

Определяем стоимость ячеек РУВН, НН ПС «Драга 230»:

$$K_{py} = (n_{35} \cdot k_{35} + n_6 \cdot k_6) \cdot k_u \cdot k_p \tag{74}$$

где k_u - коэффициент перевода цен 2000 года на четвертый квартал 2019 год k_p - районный коэффициент:

 n_{35} - количество вакуумных выключателей 35 кВ:

 k_{35} - стоимость вакуумного выключателя 35 кВ:

 n_6 - количество ячеек вакуумных выключателей 6 кВ

 k_6 - стоимость вакуумного выключателя 6 кВ:

$$K_{pv} = (1 \cdot 0.79 + 0.1 \cdot 3) \cdot 4.28 \cdot 1.3 = 6.06$$
 (млн.руб)

Определяем стоимость трансформаторов ПС «Драга 230»:

$$K_{mp} = (n_{mp} \cdot k_{mp}) \cdot k_u \cdot k_p \tag{75}$$

где k_{mp} - стоимость силового трансформатора 35 кВ: n_{mp} - количество трансформаторов:

$$K_{mp} = (1 \cdot 2,58) \cdot 4,28 \cdot 1,3 = 14,35$$

Определяем постоянную часть затрат при модернизации подстанции «Драга 230»:

$$K_{nocm} = k_{nocm} \cdot k_u \cdot k_p \tag{76}$$

где k_{nocm}^* - постоянная часть затрат на модернизацию ПС «Драга 230» в ценах 2000 года:

$$K_{norm} = 4.7 \cdot 4.28 \cdot 1.3 = 26.15$$

Определяем суммарные капиталовложения в модернизацию ПС «Драга 230»:

$$K_{nc} = K_{py} + K_{mp} + K_{nocm}$$

$$K_{nc} = 6,06+14,35+26,15=46,56$$
 (млн.руб)

Издержки на эксплуатацию и ремонт нового электрооборудования ПС «Драга 230» а так же на его амортизацию вычисляются по формуле:

$$u_{AM} = k_{IIC} \cdot \alpha_{AM} \tag{77}$$

где $\alpha_{{\scriptscriptstyle AM}}$ — нормы отчислений на амортизацию в год для подстанционного оборудования в год;

 $k_{\it \Pi C}$ - капитальные вложения в оборудование ПС «Драга 230».

Нормы отчислений на амортизацию определяются:

$$\alpha_{a_{M}} = \frac{1}{T_{c_{n}}} \tag{78}$$

где $T_{\scriptscriptstyle {\it cn}}$ - срок службы оборудования подстанционного оборудования:

$$u_{\scriptscriptstyle AM} = 46,56 \cdot \frac{1}{20} = 2,33$$
 (млн.руб)

Определяем эксплуатационные издержки для оборудования ПС «Драга 230»:

$$u_{\mathfrak{I}KC.\Pi C} = \alpha_{\mathfrak{I}K.\Pi C} \cdot k_{\Pi C} \tag{79}$$

$$u_{\mathcal{H}C.IIC} = 5.9/100 \cdot 46.56 = 2.75$$
 (млн.руб)

Согласно расчетным данным величина капиталовложений в строительство подстанции «Драга 230» составят 46,56 миллионов рублей, величина издержек на эксплуатацию оборудования за год составит 2,75 миллиона рублей и амортизационные издержки 2,33 миллиона рублей в год.

19 БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ

В данной работе предусматривается реконструкция системы электроснабжения вахтового поселка и драги №230 прииска «Ольдой» в «Амурской области». В частности проект предусматривает замену всего силового оборудования на питающей подстанции с установкой нового трансформатора типа ТМН 1600/35/6, а так же оборудования ЛЭП (воздушных и кабельных) и основного коммутационного оборудования

19.1 Безопасность

Безопасность при строительстве и эксплуатации ВЛ.

При сооружении ВЛ и монтаже проводов ВЛ должны соблюдаться требования государственных документов и локальных документов монтажных организаций:

- 1. Инструкций по охране труда для каждой профессии и на отдельные работы.
- 2. Правил безопасности при строительстве линий электропередачи и производстве электромонтажных работ /РД 153-34.3-03.285-2002/.
- 3. Правил устройства и безопасной эксплуатации грузоподъемных кранов /ПБ-10-382-00/.
- 4. Межотраслевых правил по охране труда при погрузочноразгрузочных работах и размещении грузов /ПОТ РМ 007-98/.
- 5. Правила безопасности при работе с инструментами и приспособлениями / CO 153-34.03.204/.
- 6. Правила пожарной безопасности для энергетических предприятий /CO 34.03.301-00/.
- 7. Инструктивные указания по технике безопасности при ремонтностроительных работах вблизи действующего энергетического оборудования энергопредприятий /CO 153-34.03.224/
- 8. Инструкция по организации и производству работ повышенной опасности /CO 34.03.284-96/

Основные требования мер безопасности вышеперечисленных документов указываются в разделе Требования по охране труда ППР или ТК. Непосредственные руководители и исполнители данных работ перед допуском к их выполнению должны быть ознакомлены с требованиями безопасности на месте работ с фактическими условиями труда, знать и выполнять нормы безопасности в объеме порученных работ.

При строительстве линий электропередач или при их реконструкции должны соблюдаться нормы противопожарной безопасности во избежание возникновения лесных пожаров.

По окончании работ должны быть выравнены участки естественного покрова земли для уменьшения эрозии почвы.

На месте производства работ на провода СИП должны быть наложены заземления. Непосредственно перед наложением заземления необходимо убедиться в отсутствии напряжения на СИП. Наложение и закрепление, а также снятие заземляющих проводов производится при помощи специальной изолирующей штанги.

Эксплуатация линий электропередачи осуществляется филиалом электрических сетей Амурской области и руководствуются в работе правилами технической эксплуатации электрических станций и сетей, правилами техники безопасности при эксплуатации ВЛ электропередачи Правилами техники безопасности при эксплуатации распределительных электросетей.

Безаварийная работа линий СИП обеспечивается выполнением профилактических мероприятий, задачей которых является своевременное обнаружение возникающих неисправностей с тем, чтобы они не вызывали повреждения и выход линии электропередачи из строя.

Данные, полученные в результате осмотров, измерений заносят в специальный журнал и на основании их составляют планы ремонтных работ.

В настоящее время большой объем ремонтных работ на ВЛ выполняют без снятия или с частичным снятием напряжения, для чего используют различные изолирующие защитные средства и устройства.

Основным опасным фактором на электроэнергетических объектах является поражение электричеством. Важным отличием, обуславливающим повышенную опасность электроэнергетических объектов, является то, что электрический ток невидим человеком.

К вредным факторам следует отнести электрические поля промышленной частоты, возникающие при работе электрооборудования подстанций и линий электропередач, акустические шумы от работы силового оборудования.

При производстве всего комплекса ремонтных работ должно быть обеспечено выполнение мероприятий по организации безопасной работы с применением механизмов, ГПМ, транспортных средств, работ на высоте и других технологических операций в соответствии с действующими нормативными правовыми актами.

Безопасные методы и способы ведения работ должны соответствовать предусмотренными в ТК на производство соответствующих видов строительных и монтажных работ. Строительство ВЛ вблизи действующих электроустановок, находящихся под напряжением, должно выполняться с соблюдением нормативных расстояний от проводов ВЛ до работающих машин и механизмов, их надлежащего заземления и других мероприятий по обеспечению техники безопасности.

При монтаже проводов под действующими ВЛ, находящейся под напряжением, необходимо выполнить мероприятия по предупреждению схлестывания проводов. Когда требования норм правил в части расстояния от находящихся под напряжением проводов до работающих механизмов выполнить не удается, на время сборки и установки опор и монтажа проводов необходимо отключать и заземлять находящиеся вблизи действующие линии электропередачи.

Работы вблизи действующих линий, в зоне наведенного напряжения и в стесненных условиях проводить при наличии наряда, после проведения целевого инструктажа о мерах безопасного ведения работы.

Охрана труда при выполнении работ на кабельных линиях

При обнаружении не отмеченных на планах коммуникаций кабелей и трубопроводов в подземных сооружениях а также боеприпасов все земляные работы прекращается для выяснения принадлежности и разрешения соответствующих организаций на продолжение работ.

Запрещается выполнение земельных работ машинами на расстоянии меньше 1 метра, механизмов ударного действия менее 5 метров от трассы электрического кабеля если эти работы связанны с раскопка кабеля.

Открытая муфта электрического кабеля должна укрепляться на специальной доске подвешена с помощью проволоки либо троса перекинутым через траншею досками и закрываться специальной крышкой одна из стенок короба должна быть съёмная и закрепляться без гвоздей.

Перед разрезанием кабельной муфты обязательно необходимо удостовериться в том что работа выполняется именно на том кабеле, который должен подлежать ремонту и что он отключен и выполнены в полном объеме все технические мероприятия.

Перед разрезанием кабеля и вскрытием его соединительной муфты необходимо проверить отсутствие напряжения с использованием специального приспособления которое представляет из себя изолирующую штангу и стальную иглу или режущий наконечник. На кабельной линии имеющей два источника питания отсутствие напряжения проверяется проколом дистанционным способом со всех сторон откуда может быть подано напряжение.

Прокол электрического кабеля следует выполнять с использованием диэлектрических перчаток, а также средств защиты от термических рисков в частности электрической дуги и при этом на изолирующем основании поверх траншеи с наибольшем расстоянии от ремонтируемого кабеля.

Прокол кабеля выполняется двумя работниками допускающим и производителем работ либо производителем работ и ответственным руководителем работ, один из которых должен пройти специальное обучение и будет прокалывать кабель а второй будет наблюдающим.

В случаи заземления прокалывающего приспособления могут быть использованы различные заземлители погруженные в почву на расстоянии не менее 0,5 метра, при этом присоединять заземляющий поводок следует с использованием специальных хомутов, броня кабеля при этом должна быть зачишена.

19.2 Экологичность

Для предотвращения растекания масла и распространения пожара, а также для предохранения почвы от загрязнения маслом при аварии с трансформаторами на ПС «Драга 230» предусматривается сооружение под трансформатором ТМН 1600/35/6 маслоприемника.

Размеры силового трансформатора (м) 3,7×1,55×1,9 и массой масла 2,65 т.

При расчете основных размеров данного маслоприемника принимаются следующие условия.

- 1) Габариты маслоприемников на ПС выступают за габариты трансформатора на 1 м [11].
- 2) Маслоприемник должен быть закрытого типа вмещающий полный объем масла, а также 80 % общего расхода воды от средств пожаротушения. Маслоприемник выполняется с установкой металлической решетки на маслоприемнике, сверху которой насыпан гравий или щебень толщиной слоя 0,25 м [11];
- 3) Маслоприемник имеет сигнализацию о наличии воды с выводом сигнализации. Внутренние поверхности маслоприемника, защищены маслостойким покрытием [11].

Рассмотрим подробно расчет маслоприемника на подстанции «Драга 230». Определяем объем масла в трансформаторе ТМН 1600/35 по формуле:

$$V_{mpm} = \frac{M}{\rho} \tag{80}$$

$$V_{mpm} = \frac{2,65}{0,88} = 3,01 \text{ (M}^3\text{)}$$

где M — масса масла (т).

 ρ — плотность масла (т/м³)

Площадь маслоприемника:

$$S_{Mn} = (A + 2 \cdot \Delta) \cdot (B + 2 \cdot \Delta)$$

$$S_{Mn} = (3,7 + 2 \cdot 1) \cdot (1,55 + 2 \cdot 1) = 20,23 \text{ (M}^2)$$
(81)

где A, B — длинна и ширина трансформатора типа ТМН 1600/35 (м)

 Δ — промежуток между боковой стенкой трансформатора и стенкой маслоприемника

Площадь боковой поверхности трансформатора ТМН 1600/35:

$$S_{\delta n} = (A+B) \cdot 2 \cdot H$$

$$S_{\delta n} = (3,7+1,55) \cdot 2 \cdot 1,9 = 19,95 \quad (M^2)$$
(82)

где H — высота трансформатора (м)

Нормированный коэффициент пожаротушения и нормированное время тушения соответственно равны [11]:

$$K_n = 0.2 \, \left(\pi/(c \times M^2) \right)$$

$$t = 1800(\text{cek})$$

Объем воды необходимый для тушения пожара:

$$V_{H2O} = K_n \cdot t \cdot \left(S_{Mn} + S_{\delta n}\right) \cdot 10^{-3} \tag{83}$$

$$V_{H2O} = 0.2 \cdot 1800 \cdot (20.23 + 19.95) \cdot 10^{-3} = 14.46 \text{ (M}^3)$$

Объем маслоприемника необходимый для приема 100 % масла и 80 % воды [11]:

$$V_{mMH2O} = V_{mpm} + 0.8 \cdot V_{H2O} \tag{84}$$

$$V_{mMH2O} = 3.01 + 0.8 \cdot 14.46 = 14.58 \text{ (M}^3\text{)}$$

Глубина маслоприемника для приема всей жидкости $V_{{\scriptscriptstyle mMH2O}}$

$$H_{Mn} = \frac{V_{MMH2O}}{S_{Mn}} \tag{85}$$

$$H_{Mn} = \frac{14,58}{20,23} = 0,72 \text{ (M)}$$

Высота гравийной подсыпки

$$H_2 = 0.25 \, (M)$$

Высота воздушного зазора

$$H_{en} = 0.05 (M)$$

Полная высота маслоприемника находится как сумма расстояний:

$$H_{nmn} = H_{mn} + H_{en} + H_{z} \tag{86}$$

$$H_{nmn} = 0.72 + 0.05 + 0.25 = 1.02$$
 (M)

19.3 Чрезвычайные ситуации

Пожарная безопасность

Рассмотрим защитные средства от следующих чрезвычайных ситуаций: пожар на ОРУ, прямой удар молнии в ОРУ ПС «Драга 230».

В связи с тем, что на ПС «Драга 230» устанавливаются вакуумные выключатели, снижается уровень возникновения ЧС на ОРУ.

Пожарная безопасность предусматривает обеспечение безопасности людей и сохранения материальных ценностей организации на всех стадиях его жизненного цикла.

Основными системами пожарной безопасности являются системы предотвращения пожара и противопожарной защиты.

Систему предотвращения пожара составляет комплекс мероприятий и технических средств, направленных на исключение возможности возникновения пожара.

Предотвращение пожара достигается: устранением образования горючей среды; устранением образования в горючей среде источника зажигания; поддержанием температуры горючей среды ниже максимально допустимой; поддержание в горючей среде давления ниже максимально допустимого и другими мерами.

Систему противопожарной защиты составляет комплекс средств, направленных на предотвращение воздействия на людей опасных факторов пожара и ограничение материального ущерба от него.

Большое значение в обеспечении пожарной безопасности принадлежит противопожарным преградам и разрывам. Противопожарные преграды предназначены для ограничения распространения пожара внутри здания. К ним относятся противопожарные стены, перекрытия, двери.

Виды пожарной техники, применяемые на РУ 35 кВ ПС «Драга 230».

Пожарная техника, предназначенная для защиты открытого распределительного устройства 35 кВ ПС «Драга 230», классифицируется на следующие группы: пожарные машины, средства пожарной и охранной сигнализации, огнетушители, пожарное оборудование, ручной инструмент, инвентарь и пожарные спасательные устройства [21].

В качестве первичных средств пожаротушения на ПС «Драга 230» применяется песок и огнетушители расположенный у каждого взрывоопасного оборудования.

В качестве огнетушащих средств в данной работе на ПС «Драга 230» устанавливаются: в здании КРУ 6 два огнетушителя типа ОУ-5 и один типа ОУ-25, возле каждого трансформатора также расположены два огнетушителя типа ОХП-10, два ОПС-5, один ящик с песком емкостью 0.5 м³ [21].

В КРУ 6 определены места хранения защитных средств для пожарных подразделений при ликвидации пожара и их необходимое количество. Применение этих средств для других целей не допускается.

Переносные огнетушители размешаются на высоте не более 1,5 м от уровня пола, считая от нижней части огнетушителя. Допускается установка огнетушителей в тумбах или шкафах, конструкция которых должна обеспечивать доступ к нему [21].

Запрещается установка огнетушителей любых типов непосредственно у обогревателей, горячих трубопроводов и оборудования для исключения их нагрева.

Отключение линий электропередач или иного оборудования

При аварийном отключении линии, трансформаторов связи, и другого оборудования:

- а) регулируется допустимый режим работы контролируемых связей (допустимые перетоки мощности для создавшейся схемы, уровни напряжения) и производятся операции по перестройке релейной защиты и противоаварийной автоматики в соответствии с инструкцией энергопредприятия или программой переключений;
- б) включаются потребители, отключенные действием автоматики, а при невозможности включаются после отключения других потребителей по графикам аварийных отключений (или ограничений).
- в) определяются причины отключений на основе показаний устройств телесигнализации и телеизмерений, анализа работы устройств релейной защиты и противоаварийной автоматики, опроса персонала и сообщений с мест, и после устранения причин производится включение оборудования в работу.

После аварийного отключения линии на основе показаний фиксирующих измерительных приборов, анализа работы устройств релейной защиты, осмотра оборудования на подстанциях и при отсутствии видимого повреждения производится опробование ее напряжением; при повторном отключении после

анализа срабатывания устройств релейной защиты линия выводится в ремонт, организуется обход линии и проявление осциллограмм.

При необходимости быстрейшего включения ЛИНИИ ПО условиям надежности схемы электроснабжения или избежание (уменьшения объема) ограничений потребителей допускается неоднократное опробование (особенно при гололедообразовании напряжением или грозе), когда отключение линии часто вызывается неустойчивым КЗ.

Перед опробованием линии напряжением учитывается, что при отказе выключателя, которым подается напряжение на линию, возможно отключение других элементов сети (СШ, ВЛ), сопровождающееся развитием аварии и возможным отключением потребителей.

При необходимости срочного отключения оборудования, связанного с угрозой повреждения оборудования или жизни людей, и невозможности быстрой подготовки режима допускается его отключение без подготовки режима.

ЗАКЛЮЧЕНИЕ

В данной работе разработан вариант развития участка «Ольдой» прииска «Соловьевский», в частности проведен расчет электрических нагрузок основных потребителей таких как оборудование самой драги и вахтового поселка для обслуживающего персонала. В настоящее время устаревшее оборудование требует замены для предотвращения выхода его из строя и остановки технологического процесса.

Также в представленной работе были выполнены расчёты и выбрано электротехническое оборудование которое необходимо основное выполнения качественного электроснабжения, в частности воздушные линии 6 кВ, выключатели 6 кВ измерительные трансформаторы тока и напряжения. Выбор всего указанного оборудования выполнялся на основании расчетных данных о токах короткого замыкания и нагрузке в нормальном режиме работы. Также было уделено внимание расчётам экономических показателей таких как капиталовложения реконструкцию сети, рассмотрим В также безопасности в отношении эксплуатации электротехнического оборудования.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1 Блок В.М. Электрические системы и сети. // В.М. Блок- М.: Высш.шк.,2006. 430 с.
- 2 Блок В.М. Пособие к курсовому и дипломному проектированию для электроэнергетических специальностях вузов //В. М. Блок, Г. К. Обушев и др.; Под ред. В.М.Блок М.:Высш.шк.,2011. 383 с.
- 3 Герасимов В.Г. Электротехнический справочник Т.3 //В. Г. Герасимов, П. Г. Грудинский, В. А. Лабунцов и др. М.: Энергоатомиздат, 2003. 880 с.
- 4 Идельчик В.И. Электрические системы и сети. // В.И. Идельчик М.: Энергоатомиздат, 2005. 592 с.
- 5 Лыкин А.В. Электрические системы и сети: Учебное пособие. // А.В. Лыкин Новосибирск: Изд во НГТУ, 2012. 248 с.
- 6 Неклепаев Б. Н., Электрическая часть электростанций и подстанций: Справочные материалы для курсового и дипломного проектирования// Б.Н. Неклепаев, И.П. Крючков М.: Энергоатомиздат, 2006. 608 с.
- 7 Поспелов Г.Е. Электрические системы и сети. Проектирование: Учебное пособие для вузов.- 2-е изд., испр. и до п.// Г.Е. Поспелов, В.Т. Федин Мн.: Выш. Шк., 2008.-308с.: ил.
- 8 Руководство по защите электрических сетей 6-1150 кВ от грозовых и внутренних перенапряжений. РД 153-34.3-35.125-99. М. 2010.
- 9 Файбисович Д. Л. Справочник по проектированию электрических сетей //Д.Л. Файбисович, И.Г. Карапетян М.: ЭНАС, 2012. 365 с.
- 10 Базуткин В.В., Ларионов В.П., Пинталь Ю.С. Изоляция и перенапряжения в электрических системах: Учебник для вузов М.: Энергоатомиздат, 2006.
- 11 Правила устройства электроустановок. 7-е изд., перераб и доп. И.: Энергоатомиздат, 2016.
- 12 Андреев В. А. Релейная защита и автоматика систем электроснабжения М: Высшая школа, 2008.

13 Железко Ю.С., Артемьев А.В., Савченко О.В., Расчет, анализ и нормирование потерь электроэнергии в электрических сетях. — М.: Издательство НЦ ЭНАС, 2003

14 Методика расчета нормативных (технологических) потерь электроэнергии в электрических сетях. Утверждена приказом Минпромэнерго России от 03 февраля 2005г. №21.

15 Железко Ю.С., Савченко О.В. Определение интегральых характеристик графиков нагрузки для расчета потерь электроэнергии в электрических сетях // Электрические станции. 2001. №10.

16 Железко Ю.С., Костюшко В.А., Крылов С.В., Потери электроэнергии, зависящие от погодных условий. Нормирование, анализ и снижение потерь электроэнергии в электрических сетях, 2002.

17 Положение об организации в Министерстве промышленности и энергетики Российской Федерации работы по утверждению нормативов технологических потерь электроэнергии при ее передаче по электрическим сетям Утверждено приказом Минпромэнерго России от 04 октября 2005г. №267.

18 Бегентаев М.М. Экономика промышленности учебное пособие. — Издательство: Павлодар: Кереку Год: 2008

19 Постановление Правительства РФ от 01.01.2002 №1 о классификации основных средств, включаемых в амортизационные группы (редакция 08.08.2003), 2003.

20 Нормативы затрат на ремонт в процентах от балансовой стоимости конкретных видов основных средств. СО 34.20.611-2003 ОАО РАО «ЕЭС России».— М, 2003.

21 Собурь С.В. Пожарная безопасность электроустановок — М.ПожКнига 2010.

ПРИЛОЖЕНИЕ А Расчет электрических нагрузок

Оборудование Драги					
Наименование трансформатора	$P_p(\kappa \mathrm{BA})$	$Q_p(\kappa \mathrm{BA})$	$S_p(\kappa BA)$		
1.1	721,46	452,37	851,55		
1.2	265,07	165,87	312,68		
1.3	125,24	60,16	138,94		
	Оборудование В	ахтового поселка			
КТП №1	49,75	11,52	51,07		
КТП №2	45,75	8,64	46,56		
КТП №3	38,85	6,91	39,46		
КТП №4	53,0	5,76	53,31		
КТП №5	56,5	11,52	57,66		
КТП №6	49,75	8,64	50,49		

ПРИЛОЖЕНИЕ Б Выбор трансформаторов

Оборудование Драги					
Наименование трансформатора	$S_p(\kappa BA)$	S_{pmp} (kBA)	$S_{\scriptscriptstyle HOMmp}$ (кВА)	$K_{_{^{3}\phi}}$	
1.1	851,55	1001,82	1000	0,85	
1.2	312,68	367,86	400	0,78	
1.3	138,92	163,46	160	0,87	
	Оборудо	вание Вахтового	поселка		
КТП №1	51,08	60,08	63	0,81	
КТП №2	46,56	54,78	63	0,74	
КТП №3	39,46	46,42	63	0,63	
КТП №4	53,31	62,72	63	0,85	
КТП №5	57,66	67,84	63	0,92	
КТП №6	50,49	59,40	63	0,80	

Марка	$\Delta P_{x}(\kappa B\tau)$	$\Delta P_{\kappa} (\kappa B \tau)$	U _k (%)	I _x (%)
TC3 - 63/6	0,37	1,1		3,4
$TM\Gamma - 160/6$	0,7	2,7	5.5	4,0
$TM\Gamma - 400/6$	1,3	5,5	5,5	3,0
$TM\Gamma - 100/6$	3,0	11,5		1,5

ПРИЛОЖЕНИЕ В Расчет нагрузок на стороне 6 кВ

Наименование трансформатора	ДР _т (кВт)	ΔQ_m (квар)	ΔS_m (кВА)	$P_{\scriptscriptstyle p extit{BH}} \ (\kappa extrm{BT})$	$Q_{\scriptscriptstyle pвн}$ (квар)	S _{рвн} (кВА)
1.1	11,1	54,89	55,98	732,53	507,25	907,54
1.2	4,59	25,44	25,85	269,66	191,31	338,53
1.3	2,75	13,04	13,33	127,98	73,19	152,26
КТП №1	1,08	4,36	4,49	50,83	15,88	55,56
КТП №2	0,69	1,12	1,32	46,44	9,76	64,32
КТП №3	0,58	0,90	1,07	39,43	7,81	64,07
КТП №4	0,80	0,75	1,09	53,8	6,51	64,09
КТП №5	0,85	1,50	1,72	57,35	13,02	64,72
КТП №6	0,75	1,12	1,35	50,5	9,76	64,35
	Сумма			1428,52	834,49	1775,4