Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Амурский государственный университет»

Кафедра Математического анализа и моделирования

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ДИСЦИПЛИНЫ

ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ ЛИНЕЙНОЙ АЛГЕБРЫ

Основной образовательной программы по специальности 010501.65 — Прикладная математика и информатика УМКД разработан канд. физ.-мат. наук Максимовой Надеждой Николаевной

Рассмотрен и рекомендован	на заседании кафедры
Протокол заседания кафедрь	тот «28» <u>02_</u> 20 <u>12</u> г. № <u>6_</u>
Зав. кафедрой	/ В.В.Сельвинский /
УТВЕРЖДЕН	
Протокол заседания УМСС (010501.65 – Прикладная математика и информатика
от « <u></u> »20 <u>12</u> г. Ј	<u>№</u>
Предселатель УМСС	– /В В Сельвинский/

СОДЕРЖАНИЕ

1	Рабо	чая программа учебной дисциплины	4
	1.1	Цели и задачи освоения дисциплины	4
	1.2	Место дисциплины в структуре ООП ВПО	4
	1.3	Требования к освоению дисциплины	4
	1.4	Структура и содержание дисциплины	4
	1.5	Содержание разделов и тем дисциплины	6
	1.6	Самостоятельная работа	6
	1.7	Образовательные технологии	7
	1.8	Оценочные средства для текущего контроля успеваемости,	7
		промежуточной аттестации по итогам освоения дисциплины	
	1.9	Учебно-методическое и информационное обеспечение дисциплины	11
	1.10	Материально-техническое обеспечение дисциплины	12
	1.11	Рейтинговая оценка знаний студентов по дисциплине	12
2	Крат	кое изложение программного материала	13
3	Мето	одические указания	15
	3.1	Методические указания к семинарским, практическим и лабораторным занятиям	15
	3.2	Методические указания по выполнению курсовых работ и рефератов	16
	3.3	Методические указания по самостоятельной работе студентов	16
4	Конт	роль знаний	16
	4.1	Текущий контроль знаний	16
	4.2	Итоговый контроль знаний	16
5		рактивные технологии и инновационные методы, используемые в возательном процессе	16

1. РАБОЧАЯ ПРОГРАММА

1.1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цели изучения дисциплины:

– изучение теоретических методов и освоение практических навыков в использовании численных методов линейной алгебры при решении различных прикладных задач.

Задачи изучения дисциплины:

- ознакомить студентов с основами численных методов решения задач линейной алгебры, научить студентов реализовывать численные алгоритмы на ЭВМ и находить решения поставленных задач с указанной точностью, с максимальной скоростью и наиболее эффективным использованием памяти компьютера.
- уметь подобрать наилучший метод для поставленной задачи, оценить погрешность получаемого приближенного решения;
- владеть практическими навыками применения вычислительных методов линейной алгебры для решения задач математики, естествознания.

1.2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВПО

Дисциплина «Вычислительные методы линейной алгебры» является базовой дисциплиной цикла специальных дисциплин Государственного образовательного стандарта высшего профессионального образования (ГОС ВПО) по специальности 010501.65 «Прикладная математика и информатика».

1.3. ТРЕБОВАНИЯ К ОСВОЕНИЮ ДИСЦИПЛИНЫ

В результате освоения дисциплины студенты должны:

знать основы численных методов решения задач линейной алгебры;

уметь подобрать наилучший метод для поставленной задачи, оценить погрешность получаемого приближенного решения, реализовывать численные алгоритмы на ЭВМ;

владеть практическими навыками применения вычислительных методов линейной алгебры.

1.4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет 112 часов.

№ п/п	Раздел дисциплины	Семестр	Неделя семестра	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах) Лекц. Прак. Самост.		я ую работу ов (в часах)	Формы текущего контроля успеваемости (по неделям семестра) Форма промежуточной аттестации (по семестрам)
1	Погрешности приближенных вычислений и основные теоремы	6	1-3	6	6	1	Выполнение индивидуального задания
1.1	Погрешности приближенных вычислений	6	1	1	2	-	
1.2	Нормы векторов и матриц	6	1	1	2	_	
1.3	Обусловленность системы линейных алгебраических уравнений	6	2	2	1	-	

1.4	Основные теоремы	6	3	2	1	_	
2	Прямые методы	6	4-8	10	10	5	
	решения систем						
	линейных						
	алгебраических						
	уравнений						
2.1	Метод Гаусса. Метод	6	4	2	2	1	Выполнение
	Гаусса с выбором						индивидуального
	главного элемента						задания
2.2	Алгоритм вычисления	6	5	2	2	1	Выполнение
	определителя матрицы.						индивидуального
	Алгоритм вычисления						задания
	обратной матрицы						
2.3	Метод Халецкого	6	6	2	2	1	Выполнение
							индивидуального
							задания
2.4	Метод квадратных	6	7	2	2	1	Выполнение
	корней						индивидуального
							задания
2.5	Метод прогонки	6	8	2	2	1	Выполнение
							индивидуального
							задания
3	Итерационные	6	9-	10	10	3	
	методы решения		13				
	систем линейных						
	алгебраических						
	уравнений						
3.1	Метод простой	6	9-	4	4	1	Выполнение
	итерации. Сходимость		10				индивидуального
	итерационных						задания
	процессов. Оценки						
	погрешности метода						
2.2	простой итерации		11		2	1	D
3.2	Метод Зейделя	6	11	2	2	1	Выполнение
							индивидуального
2.2	M		10	A	A	1	задания
3.3	Методы релаксации	6	12-	4	4	1	Выполнение
			13				индивидуального
1	Mama wy y		1.4	10	10	2	задания
4	Методы решения	6	14-	10	10	3	
	задач на собственные		18				
4.1	значения Устойчивость задачи на	6	14	2	2		
4.1	собственные значения	U	14	<i>L</i>		_	
4.2	Степенной метод.	6	15	2	2	1	Выполнение
→.∠	Обратный степенной	U	1.5	4		1	индивидуального
	метод						задания
4.3	Итерационный метод	6	16	2	2	1	Выполнение
7.5	ттерационный метод	U	10	4		1	индивидуального
							задания
4.4	Метод вращения Якоби	6	17-	4	4	1	Выполнение
7.7	ттетод вращения лкоои	U	1/-			1	Бинолиспис

			18				индивидуального
							задания
5	Типовой расчет	6	1-	-	_	5	Выполнение типового
	-		18				расчета
6	Экзамен	6		_	_	23	Подготовка к
							экзамену
7	ИТОГО			36	36	40	-

1.5. СОДЕРЖАНИЕ РАЗДЕЛОВ И ТЕМ ДИСЦИПЛИНЫ

1. Погрешности приближенных вычислений и основные теоремы

Вводная часть (линейное пространство, базис вектора, матрицы, определители, нормы векторов и матриц). Задачи вычислительных методов линейной алгебры. Корректность задачи решения систем уравнений. Катастрофическое влияние ошибок округления на конечный результат. Векторные и матричные нормы, число обусловленности невырожденной матрицы. Оценка возмущения решения системы линейных алгебраических уравнений при возмущении правой части.

2. Прямые методы решения систем линейных алгебраических уравнений

Метод исключения неизвестных (метод Гаусса). Разложение квадратной матрицы в произведение нижней и верхней треугольных матриц. LU-разложение матрицы. Устойчивость и модификации метода Гаусса. Вычисление определителей и обратной матрицы. Метод квадратного корня, разложение Халецкого.

3. Итерационные методы решения систем линейных алгебраических уравнений

Метод простой итерации. Сходимость итерационных методов. Сходимость метода простой итерации. Метод Зейделя. Методы релаксации.

4. Методы решения задач на собственные значения

Постановка задачи на собственные значения. Характеристический полином матрицы. Устойчивость задачи на собственные значения. Степенной метод и обратный степенной метод. Итерационный метод. Метод вращения Якоби.

1.6. САМОСТОЯТЕЛЬНАЯ РАБОТА

	1.0. CA	MOCTORIEJBHAR FABOTA	
No	$\mathcal{N}_{\underline{o}}$	Форма (вид)	Трудоёмкость в
Π/Π	раздела	самостоятельной работы	часах
	(темы)	самостоятельной расоты	часах
1	1	Выполнение индивидуального задания	1
2	1.1		_
3	1.2		_
4	1.3		_
5	1.4		_
6	2	1	5
7	2.1	Выполнение индивидуального задания	1
8	2.2	Выполнение индивидуального задания	1
9	2.3	Выполнение индивидуального задания	1
10	2.4	Выполнение индивидуального задания	1
11	2.5	Выполнение индивидуального задания	1
12	3	1	3
13	3.1	Выполнение индивидуального задания	1
14	3.2	Выполнение индивидуального задания	1
15	3.3	Выполнение индивидуального задания	1
16	4	1	3
17	4.1		
18	4.2	Выполнение индивидуального задания	1

19	4.3	Выполнение индивидуального задания	1
20	4.4	Выполнение индивидуального задания	1
21	5	Типовой расчет	5
22	6	Подготовка к экзамену	23
23	<u>ИТОГО</u>		40

1.7. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Неимитационные методы обучения: проблемная лекция.

Неигровые имитационные методы обучения: метод группового решения задач.

Игровые имитационные методы обучения: мозговой штурм, проектирование.

Тема и вид занятия	Вид ОТ	Количество часов
Прямые методы решения СЛАУ.	Проблемная лекция	2
Введение		
Обращение матриц делением на	Мозговой штурм	2
клетки		
Приведение СЛАУ к виду, удобному	Метод группового решения	2
для применения метода простой	задач	
итерации		
Выполнение типового расчета	Проектирование	5
ИТОГО	11	

1.8. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕ-МОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Оценочные средства состоят из вопросов к экзамену, вариантов индивидуальных работ, задания для типового расчета.

Вопросы к экзамену

- 1. Погрешности приближенных вычислений. Нормы векторов и матриц.
- 2. Обусловленность систем линейных алгебраических уравнений.
- 3. Основные теоремы теории систем линейных алгебраических уравнений (доказательство любых двух теорем).
- 4. Метод Гаусса и метод Гаусса с выбором главного элемента для решения систем линейных алгебраических уравнений.
 - 5. Алгоритм вычисления определителя матрицы.
 - 6. Обращение матриц окаймлением.
 - 7. Обращение матриц делением на клетки.
 - 8. Алгоритм вычисления обратной матрицы.
 - 9. Метод Халецкого.
 - 10. Метод квадратных корней.
 - 11. Метод прогонки.
 - 12. Метод простой итерации.
- 13. Сходимость итерационных процессов для СЛАУ. Оценки погрешности метода простой итерации.
 - 14. Метод Зейделя.
 - 15. Метод релаксации.
 - 16. Каноническая форма метода простой итерации.
 - 17. Задача на собственные значения. Устойчивость задачи.
- 18. Степенной и обратный степенной метод решения задачи на собственные значения.
 - 19. Итерационный метод решения задачи на собственные значения.
 - 20. Метод вращения Якоби.

Пример индивидуального задания (вариант 13)

Индивидуальное задание «Погрешности вычислений»

1) Определить количество верных знаков (в узком и широком смысле) числа, если известна его относительная погрешность.

$$13$$

$$a = 5,6632$$

$$\delta a = 0,008$$

2) Вычислить значения выражений, указать погрешности (все знаки верные).

$$\begin{array}{r}
13 \\
\underline{66,5462} \\
4,562*6,254
\end{array}$$

3) Высота и радиус основания цилиндра равны соответственно $h\pm \Delta_{_h}$ и $r\pm \Delta_{_r}$. Вычислить площадь поверхности и объем, оценить погрешности. Принять $\pi\approx 3{,}14$.

$$\begin{array}{c}
13 \\
h = 5,9 \, \text{m}, \, \Delta_{h} = 0,65 \, \text{m} \\
r = 7,7 \, \text{m}, \, \Delta_{r} = 0,82 \, \text{m}
\end{array}$$

4) Вычислить значение функции при указанных значениях аргумента, указать погрешности.

$$y = \frac{x^2}{x - 1},$$

$$x = 1.0236$$

5) Найти абсолютные погрешности, которые позволяют вычислить значения функций с четырьмя верными знаками.

$$u = \frac{y^{3/2} - \cos x^2}{z^2},$$

$$x = 2.03694,$$

$$y = 0.09412,$$

$$z = 0.09561$$

6) Дан многочлен

$$P(x) = -0.2x^{7} + 0.21x^{6} + 0.5x^{5} - 2.3x^{4} - 5.1x^{3} + 2x^{2} + 4x - 9.6.$$

Вычислить значение $P(x_0)$, где $x_0 = 0.5 + 0.2k$, $k = \overline{1,13}$ — номер варианта.

- 7) Вычислить значение e^{x^2} , где $x_0=0.5+0.02k$, $k=\overline{1.13}$ номер варианта, с точностью 10^{-5} .
- 8) Вычислить значение $\frac{\cos x}{x}$, где $x_0 = 0.25 + 0.2k$, $k = \overline{1,13}$ номер варианта, с точностью 10^{-5} .
- 9) Вычислить значение chx, где $x_0 = 2.7 + 0.05k$, $k = \overline{1,13}$ номер варианта, с точностью 10^{-6} .

<u>Индивидуальное задание «Метод Гаусса и метод Гаусса с выбором главного</u> <u>элемента».</u> Используя схему Гаусса и схему Гаусса с выбором главного элемента, решить систему уравнений с точностью до 0,001. Оценить погрешность.

8

$$\begin{cases} 35,1x_1 + 1,7x_2 + 37,5x_3 - 2,8x_4 = 7,5, \\ 45,2x_1 + 21,1x_2 - 1,1x_3 - 1,2x_4 = 11,1, \\ -21,1x_1 + 31,7x_2 + 1,2x_3 - 1,5x_4 = 2,1, \\ 31,7x_1 + 18,1x_2 - 31,7x_3 + 2,2x_4 = 0,5. \end{cases}$$

Индивидуальное задание «Вычисление обратной матрицы». Обратить матрицу 1) методом Гаусса; 2) методом разбиения на клетки; 3) методом окаймления. Оценить погрешность.

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 2 & 3 \\ 3 & 2 & 1 & 2 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

Индивидуальное задание «Метод Халецкого». Найти решение системы уравнений по схеме Халецкого с точностью до 0,0001. Оценить погрешность.

$$\begin{cases} 0.18x_1 + 2.11x_2 + 0.13x_3 - 0.22x_4 = 0.22; \\ 0.33x_1 - 0.22x_2 - 1.00x_3 + 0.17x_4 = 0.11; \\ -1.00x_1 + 0.11x_2 + 2.00x_3 - 0.45x_4 = 1.00; \\ 7.00x_1 - 0.17x_2 - 0.22x_3 + 0.33x_4 = 0.21. \end{cases}$$

<u>Индивидуальное задание «Метод квадратных корней».</u> Найти решение системы линейных уравнений методом квадратных корней с точностью до 0,001. Оценить погрешность.

$$\begin{cases} 1{,}48x_1 + 0{,}75x_2 - 1{,}23x_3 = 0{,}83,\\ 0{,}75x_1 - 0{,}96x_2 + 1{,}64x_3 = -1{,}12,\\ -1{,}23x_1 + 1{,}64x_2 - 0{,}55x_3 = 0{,}47. \end{cases}$$
 Индивидуальное задание «Метод прогонки». Найти решение системы уравнений

методом прогонки (левой и правой) с точностью 10^{-3} . Оценить погрешность.

$$\begin{cases} 1,8x_1 + 0,11x_2 = 1,22, \\ 0,33x_1 - 2,22x_2 - 1,00x_3 = -0,11, \\ 0,11x_2 + 3,00x_3 - 0,45x_4 = 2,01, \\ -0,22x_3 + 3,33x_4 - 0,12x_5 = -0,21, \\ 0,34x_4 - 5,12x_5 = 1,22. \end{cases}$$

<u>Индивидуальное задание «Метод простой итерации».</u> Найти решение системы уравнений методом простой итерации с точностью 10^{-2} . Оценить погрешность. Оценить количество итераций, необходимых для получения решения с указанной точностью.

$$\begin{cases} 10.8x_1 + 0.11x_2 - 1.23x_3 + 0.75x_4 + 1.45x_5 = 2.02, \\ 0.33x_1 - 21.22x_2 + 1.00x_3 + 0.33x_4 + 1.51x_5 = -1.11, \\ -1.21x_1 + 0.11x_2 + 31.00x_3 - 0.45x_4 + 1.02x_5 = 2.01, \\ 0.23x_1 + 0.56x_2 - 0.22x_3 + 23.33x_4 - 0.12x_5 = -1.21, \\ 2.00x_1 - 2.01x_2 + 3.01x_3 + 0.34x_4 - 25.12x_5 = 3.22. \end{cases}$$

Индивидуальное задание «Метод Зейделя». Найти решение системы уравнений методом Зейделя с точностью 10^{-2} . Оценить погрешность. Оценить количество итераций, необходимых для получения решения с указанной точностью.

$$\begin{cases} 10,8x_1 + 0,11x_2 - 1,23x_3 + 0,75x_4 + 1,45x_5 = 2,02, \\ 0,33x_1 - 21,22x_2 + 1,00x_3 + 0,33x_4 + 1,51x_5 = -1,11, \\ -1,21x_1 + 0,11x_2 + 31,00x_3 - 0,45x_4 + 1,02x_5 = 2,01, \\ 0,23x_1 + 0,56x_2 - 0,22x_3 + 23,33x_4 - 0,12x_5 = -1,21, \\ 2,00x_1 - 2,01x_2 + 3,01x_3 + 0,34x_4 - 25,12x_5 = 3,22. \end{cases}$$

<u>Индивидуальное задание «Метод релаксации».</u> Найти решение системы уравнений методом релаксации с точностью 10^{-2} . Оценить погрешность. Оценить количество итераций, необходимых для получения решения с указанной точностью.

$$\begin{cases} 11.8x_1 + 0.12x_2 + 2.31x_3 + 0.25x_4 + 1.44x_5 = 3.12, \\ 0.34x_1 + 21.21x_2 + 1.12x_3 + 0.31x_4 + 2.01x_5 = 2.11, \\ -0.21x_1 + 1.11x_2 + 31.02x_3 - 1.43x_4 + 2.12x_5 = 3.61, \\ 1.23x_1 + 0.56x_2 + 1.22x_3 + 33.33x_4 - 0.16x_5 = -3.21, \\ 1.03x_1 - 1.21x_2 + 0.41x_3 + 1.34x_4 + 25.02x_5 = -3.22. \end{cases}$$

<u>Индивидуальное задание «Степенной метод и обратный степенной метод».</u> Найти максимальное и минимальное по модулю собственные значения матрицы и соответствующие им собственные вектора с точностью 10^{-2} . Оценить погрешность.

$$A = \begin{pmatrix} 1 & 2 & -2 & 3 & 5 \\ -5 & 1 & 3 & 5 & 4 \\ -2 & 3 & 4 & 7 & 1 \\ 1 & 7 & 2 & 3 & -1 \\ 2 & -2 & 4 & -1 & 3 \end{pmatrix}.$$

<u>Индивидуальное задание «Итерационный метод».</u> Найти максимальное и минимальное по модулю собственные значения матрицы и соответствующие им собственные вектора с точностью 10^{-2} . Оценить погрешность.

$$A = \begin{pmatrix} -1 & 2 & 5 & 6 \\ 4 & 2 & 3 & -4 \\ 5 & -1 & 3 & 4 \\ -2 & 3 & -2 & 1 \end{pmatrix}.$$

<u>Индивидуальное задание «Метод Якоби».</u> Найти собственные значения матрицы с помощью классического метода Якоби с точностью 10^{-2} . Оценить погрешность.

$$A = \begin{pmatrix} 5 & 7 & 6 & 5 \\ 7 & 10 & 8 & 7 \\ 6 & 8 & 10 & 9 \\ 5 & 7 & 9 & 10 \end{pmatrix}.$$

Тематика заданий для типового расчета

Во всех вариантах типового расчета требуется разработать алгоритм, написать программу на одном из языков программирования, произвести отладку и тестирование программы. Результаты представить в соответствии со стандартом АмГУ для оформления выпускных квалификационных и курсовых работ (проектов). В основном тексте работы привести теоретические основы алгоритма. Текст программы и отладочный тест привести в приложении.

- 1. Метод встречной прогонки.
- 2. Метод универсальной прогонки.
- 3. Метод ортогональной прогонки.

- 4. Метод последовательной верхней релаксации.
- 5. Метод наискорейшего спуска.
- 6. Метод сопряженных градиентов.
- 7. Метод Леверье вычисления коэффициентов характеристического полинома.
- 8. Метод Леверье-Фаддеева вычисления коэффициентов характеристического полинома.
 - 9. Метод Крылова вычисления собственных значений и собственных векторов.
 - 10. Метод Данилевского вычисления собственных значений.
 - 11. Метод Лобачевского решения характеристического уравнения.
 - 12. Метод Ланцоша вычисления собственных значений и собственных векторов.
 - 13. QR-алгоритм вычисления собственных значений матрицы.
 - 14. QR-алгоритм со сдвигом вычисления собственных значений матрицы.
 - 15. Метод вращений.
 - 16. Треугольный степенной метод.
 - 17. Метод Самуэльсона.
 - 18. Эскалаторный метод.
 - 19. LR-разложение матрицы.

 - 21. Сингулярное разложение матрицы.
- 22. Обратные итерации с отношениями Релея для симметричных задач на собственные значения.
 - 23. Циклический метод Якоби с барьерами.

1.9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Бахвалов, Н.С. Численные методы: учеб. пособие: рек. Мин. обр. РФ/ Н.С. Бахвалов, Н.П. Жидков, Г.М. Кобельков. 6-е изд. М.: БИНОМ. Лаб. знаний, 2008. 637 с.
- 2. Вержбицкий, В.М. Основы численных методов: учеб.: доп. Мин. обр. РФ / В.М. Вержбицкий. 3-е изд., стер. М.: Высш. шк., 2009. 848 с.
- 3. Марчук, Г.И. Методы вычислительной математики: учеб. пособие / Г.И. Марчук. 4-е изд., стер. СПб.: Лань, 2009.-608 с.

Дополнительная литература:

- 1. Волков, Е.А. Численные методы: учеб. пособие / Е.А. Волков. 4-е изд., стер. СПб.: Лань, 2007. 249 с.
- 2. Вычислительные методы линейной алгебры: учеб.-метод. комплекс для спец. 010501- Прикладная математика и информатика / АмГУ, ФМиИ; сост. А.Н. Гетман. Благовещенск: Изд-во Амур. гос. ун-та, 2007.-116 с.
- 3. Лапчик, М.П. Численные методы: учеб. пособие: рек. Мин. обр. РФ / М.П. Лапчик, М.И. Рагулина, Е.К. Хеннер ; под ред. М.П. Лапчика. 2-е изд., стер. М.: Академия, 2005.-384 с.
- 4. Киреев, В.И. Численные методы в примерах и задачах: учеб. пособие: рек. УМО / В.И. Киреев, А.В. Пантелеев. 3-е изд., стер. М.: Высш. шк., 2008. 480 с.
- 5. Петров, И.Б. Лекции по вычислительной математике: учеб. пособие / И.Б. Петров, А.И. Лобанов. М.: БИНОМ. Лаб. знаний; М.: Интернет-Ун-т Информ. Технологий, 2006. 524 с.
- 6. Ращиков, В.И. Численные методы решения физических задач: учеб. пособие / В.И. Ращиков, А.С. Рошаль. СПб.: Лань, 2005. 206 с.
- 7. Соболь, Б.В. Практикум по вычислительной математике / Б.В. Соболь, Б.Ч. Месхи, И.М. Пешхоев. Ростов н/Д: Феникс, 2008. 345 с.
 - 8. Турчак, Л.И. Основы численных методов: учеб. пособие: рек. Мин. обр. РФ /

- Л.И. Турчак, П.В. Плотников. 2-е изд., перераб. и доп. М.: Физматлит, 2005. 304 с.
- 9. Формалев, В.Ф. Численные методы: учеб. пособие: рек. НМС Мин. обр. РФ / В.Ф. Формалев, Д.Л. Ревизников; под ред. А.И. Кибзуна. 2-е изд., испр. и доп. М.: Физматлит, $2006. 399 \, c.$

Периодические издания:

- 1. Журнал вычислительной математики и математической физики
- 2. Сибирский математический наук
- 3. Известия РАН. Серия математическая
- 4. Успехи математических наук

Программное обеспечение и Интернет-ресурсы:

№	Наименование ресурса	Краткая характеристика
1	http://eqworld.ipmnet.ru/ru	Учебно-образовательная физико-математическая
	/library/mathematics/numerics.htm	литература, содержащая DjVu-файлы и PDF-файлы
		учебников по теме «Численные методы»
2	http://pm298.ru/	Справочник математических формул. Примеры и
		задачи с решениями
3	http://www.twirpx.com/	Учебно-образовательная литература, содержащая
		DjVu-файлы, PDF-файлы, DOC-файлы, по различным
		дисциплинам, в том числе по «Численным методам»
4	http://num-meth.srcc.msu.su/	Научный интернет-журнал «Вычислительные методы
		и программирование» (содержатся PDF-файлы статей
		2000-2012 гг.)

1.10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- 1 Доска, мел, тряпка, линейка.
- 2 Мультимедийный проектор.
- 3 Наглядные пособия.
- 4 Компьютерный класс

1.11. РЕЙТИНГОВАЯ ОЦЕНКА ЗНАНИЙ СТУДЕНТОВ ПО ДИСЦИПЛИНЕ

Текущий контроль включает в себя контрольные аудиторные работы, индивидуальные и общие домашние задания.

Условия начисления премиальных баллов за внеаудиторную работу (олимпиады, конференции, рефераты):

- 1. Подготовка и проведение доклада 5 баллов
- 2. Участие в олимпиаде, конференции с хорошим результатом 5 баллов Начисление штрафных баллов:

За каждый пропуск занятий без уважительной причины из суммы баллов вычитается по 1 баллу.

Учебная дисциплина «Вычислительные методы линейной алгебры» относится к категории дисциплин с экзаменом и оценивается в 100 баллов за семестр. Пересчет рейтинговой оценки дисциплины проводится по шкале:

менее 51 балла – «неудовлетворительно»;

от 51 до 64 баллов – «удовлетворительно»;

от 65 до 80 баллов – «хорошо»;

от 81 до 100 баллов – «отлично».

Рейтинговая оценка студента по дисциплине «Вычислительные методы линейной алгебры» складывается из баллов, набранных по текущему контролю, баллов, набранных за экзамен, и премиальных баллов. Из итоговой суммы вычитаются штрафные баллы за пропуски занятий без уважительной причины.

Бальная структура оценки дисциплины

вальная структура оценки дисциплины				
Учебный модуль	Виды контроля	Сроки выполнения (недели)	Максимальное количество баллов	
1. Погрешности приближенных	Индивидуальное задание	4	4	
вычислений и основные теоремы	«Погрешности вычислений»	•		
bu merenni i oenobibie reopewbi	Максимальное количество баллог	R 39 VUENHLIN	4	
	модуль	b sa y reonbin	-	
2. Прямые методы решения	Индивидуальное задание «Метод	5	4	
систем линейных алгебраических	Гаусса и метод Гаусса с выбором	3		
уравнений	главного элемента»			
уравнении		6	4	
	Индивидуальное задание	o	4	
	«Вычисление обратной матрицы»	7	A	
	Индивидуальное задание «Метод	7	4	
	Халецкого»			
	Индивидуальное задание «Метод квадратных корней»	8	4	
	Индивидуальное задание «Метод прогонки»	9	4	
			20	
	Максимальное количество баллог	в за учеоныи	20	
2 п	Модуль	11	4	
3. Итерационные методы решения	Индивидуальное задание «Метод	11	4	
систем линейных алгебраических	простой итерации»	12	4	
уравнений	Индивидуальное задание «Метод	12	4	
	Зейделя»			
	Индивидуальное задание «Метод	14	4	
	релаксации»			
	Максимальное количество баллог	12		
	модуль			
4. Методы решения задач на	Индивидуальное задание	16	4	
собственные значения	«Степенной метод и обратный			
	степенной метод»			
	Индивидуальное задание	17	4	
	«Итерационный метод»			
	Индивидуальное задание «Метод Якоби»	18	4	
	Максимальное количество баллог	เ ราย กละบุทราท	12	
	модуль	о за у пошен		
Типовой расчет			12	
Максимальная сумма баллов			60	
Дополнительные баллы за активную	ю работу в семестре		10	
ИТОГО за работу в семестре	<u> </u>		70	
Экзамен	1) Ответ на первый вопрос		15	
	2) Ответ на второй вопрос		15	
Сдача экзамена			30	
ИТОГО за семестр			100	
n i oi o sa cemecip			100	

2. КРАТКОЕ СОДЕРЖАНИЕ ПРОГРАММНОГО МАТЕРИАЛА

Лекция 1-3. Погрешности приближенных вычислений и основные теоремы

<u>План лекции.</u> Погрешности приближенных вычислений. Нормы векторов и матриц. Обусловленность системы линейных алгебраических уравнений. Основные теоремы линейной алгебры.

<u>Цели и задачи.</u> Обозначить структуру курса, содержание практических занятий, озвучить правила организации аудиторной и самостоятельной работы студентов, дать методические рекомендации по изучению дисциплины, указать список основной и

дополнительной литературы, рекомендуемой студентам, ознакомить студентов с формами текущего и итогового контроля по дисциплине. Ознакомить студентов с основами и основными понятиями вычислительных методов линейной алгебры. Ознакомить с основными понятиями теории погрешностей: абсолютная и относительная погрешность, правила вычислений, правила округлений. Нормы векторов и матриц и их согласованность. Обусловленность систем линейных алгебраических уравнений, число обусловленности матрицы и ее влияние на решение СЛАУ. Основные теоремы линейной алгебры.

Ключевые вопросы.

- 1) сформулировать основные причины возникновения погрешностей вычислений;
- 2) дать определение абсолютной погрешности;
- 3) дать определение относительной погрешности;
- 4) привести основные нормы вектора;
- 5) привести основные нормы матрицы;
- 6) сформулировать правило согласованности норм векторов и матриц;
- 7) дать определение числа обусловленности матрицы; как его величина влияет на решение СЛАУ?
 - 8) сформулировать основные теоремы линейной алгебры.

Ссылки на литературные источники, приведенные в рабочей программе дисциплины. Основная литература (пп. 1-3), дополнительная литература (пп. 1-3, 5, 6, 8, 9).

<u>Лекция 4-8.</u> Прямые методы решения систем линейных алгебраических уравнений <u>План лекции.</u> Метод Гаусса. Метод Гаусса с выбором главного элемента. Алгоритм вычисления определителя матрицы. Алгоритм вычисления обратной матрицы. Метод Халецкого. Метод квадратных корней. Метод прогонки.

<u>Цели и задачи.</u> Ознакомить студентов с прямыми методами решения СЛАУ, научить студентов находить решение СЛАУ прямыми методами.

Ключевые вопросы.

- 1) дать определение прямых методов решения СЛАУ;
- 2) описать алгоритм метода Гаусса решения СЛАУ;
- 3) чем отличается метод Гаусса с выбором главного элемента от обычного метода Гаусса?
 - 4) описать алгоритм вычисления определителя матрицы;
 - 5) описать алгоритм вычисления обратной матрицы;
 - 6) описать алгоритм вычисления обратной матрицы методом окаймления;
 - 7) описать алгоритм вычисления обратной матрицы разбиением на клетки;
 - 8) описать метод Халекцкого (LU-метод) решения САЛУ:
 - 9) описать метод квадратных корней решения САЛУ;
- 10) описать метод прогонки решения САЛУ; чем отличается левая и правая прогонка?

Ссылки на литературные источники, приведенные в рабочей программе дисциплины. Основная литература (пп. 1-3), дополнительная литература (пп. 1-3, 5, 6, 8, 9).

<u>Лекция 9-13.</u> Итерационные методы решения систем линейных алгебраических уравнений

<u>План лекции.</u> Метод простой итерации. Сходимость итерационных процессов. Оценки погрешности метода простой итерации. Метод Зейделя. Методы релаксации.

Ключевые вопросы.

- 1) дать определение итерационных методов решения СЛАУ;
- 2) описать алгоритм метода простой итерации решения СЛАУ;
- 3) сформулировать достаточные условия сходимости метода простой итерации;

- 4) привести модификации метода простой итерации решения СЛАУ;
- 5) описать алгоритм метода релаксации решения СЛАУ.

Ссылки на литературные источники, приведенные в рабочей программе дисциплины.

Основная литература (пп. 1-3), дополнительная литература (пп. 1-3, 5, 6, 8, 9).

Лекция 14-18. Методы решения задач на собственные значения

<u>План лекции.</u> Устойчивость задачи на собственные значения. Степенной метод. Обратный степенной метод. Итерационный метод. Метод вращения Якоби.

<u>Цели и задачи.</u> Ознакомить студентов с методами решения задач на собственные значения, научить студентов находить решение задачи на собственные значения.

Ключевые вопросы.

- 1) дать определение задачи на собственные значения;
- 2) дать понятие устойчивости задачи на собственные значения;
- 3) описать алгоритм степенного метода решения задачи на собственные значения; для каких целей он применяется?
 - 4) для каких целей применяется обратный степенной метод;
- 5) описать итерационный метод решения задачи на собственные значения; в какиз случаях он применяется?
 - 6) описать метод вращения Якоби решения задачи на собственные значения.

Ссылки на литературные источники, приведенные в рабочей программе дисциплины.

Основная литература (пп. 1-3), дополнительная литература (пп. 1-3, 5, 6, 8, 9).

3. МЕТОДИЧЕСКИЕ УКАЗАНИЯ

3.1. Методические указания к семинарским, практическим и лабораторным занятиям

При проведении практических занятий используется следующая литература:

- 1. Копченова, Н.В. Вычислительная математика в примерах и задачах: учеб. пособие. 2-е изд., стер. / Н.В. Копченова, И.А. Марон. СПб.: Издательство «Лань», 2008. 368 с.
- 2. Формалев, В.Ф. Численные методы: учеб. пособие: рек. НМС Мин. обр. РФ / В.Ф. Формалев, Д.Л. Ревизников; под ред. А.И. Кибзуна. 2-е изд., испр. и доп. М.: Физматлит, 2006. 399 с.

Практический курс предусматривает практические занятия по следующим темам:

Наименование	Кол-во часов	Источники
		(из представленного списка)
Погрешности приближенных вычислений и	6	п. 1 (гл. 1, § 1, № 1-5, § 2, № 1,
основные теоремы		§ 3, № 1-7, § 4, № 1-4, § 5, №
		1-6, гл. 2, § 1, № 1-2, § 2, № 1-
		(3)
		п. 2 (гл. 2, № 220)
Прямые методы решения систем линейных	10	п. 1 (гл. 3, § 2-3, № 1-6, § 4, №
алгебраических уравнений		1-9, § 5, № 1-3, § 6, № 1-5, § 7,
		№ 1-3, § 8, № 1-5)
		п. 2 (гл. 2, № 2.1-2.6)
Итерационные методы решения систем	10	п. 1 (гл. 3, § 9, № 1-5, § 10, №
линейных алгебраических уравнений		1-4)
		п. 2 (гл. 2, № 2.21-2.25)
Методы решения задач на собственные	10	п. 2 (гл. 2, № 2.65)
значения		
ИТОГО	36	

Для выполнения домашнего задания и разъяснения некоторых теоретических вопросов следует также обратиться к литературе, указанной в п. 9 рабочей программы дисциплины.

3.2. Методические указания по выполнению курсовых работ и рефератов

Рабочей программой не предусмотрена курсовая работа по данной дисциплине.

3.3. Методические указания по самостоятельной работе студентов

На самостоятельную работу предусмотрено 40 часов, из которых 23 отводится на подготовку к экзамену. Самостоятельная работа студентов организуется по схеме, указанной в п. 6 рабочей программы.

При подготовке к практическим занятиям, к самостоятельной и контрольной работам, при выполнении домашних и индивидуальных работ, следует пользоваться конспектом лекций, материалом, рассмотренном на практических занятиях, литературой, предусмотренной п. 9 рабочей программы, а так же другими источниками.

4. КОНТРОЛЬ ЗНАНИЙ

4.1. Текущий контроль знаний

Текущий контроль знаний осуществляется проверкой индивидуальных домашних работ (задания к домашней работе выдаются после каждого практического занятия). Примеры индивидуальных домашних работ приведены в п. 8 рабочей программы.

Также предусмотрен типовой расчет. Тематика и структура типового расчета приведены в п. 8 рабочей программы.

4.2. Итоговый контроль знаний

Итоговый контроль знаний осуществляется в виде тестирования по материалу, изученному в семестре, и в виде экзамена. Для подготовки к экзамену представлены вопросы в п. 8 рабочей программы; так же следует повторить все практические задания, рассмотренные на лекционных и практических занятиях.

примерный билет к экзамену			
ФГБО УВПО «Амурский государственный университет»			
Утверждено на заседании кафедры	Кафедра математического анализа и		
« <u>16</u> » <u>мая</u> 2011 г.	моделирования		
Заведующий кафедрой	Факультет математики и информатики		
Утверждаю:	Курс 3 Специальность 010501 – ПмиИ		
	Дисциплина Вычислит. методы лин. алгебры		
Экзаменационный билет 1			
1. Погрешности приближенных вычислений. Нормы векторов и матриц.			
2. Метод простой итерации.			

5. ИНТЕРАКТИВНЫЕ ТЕХНОЛОГИИ И ИННОВАЦИОННЫЕ МЕТОДЫ, ИСПОЛЬЗУЕМЫЕ В ОБРАЗОВАТЕЛЬНОМ ПРОЦЕССЕ

При проведении занятий используются следующие инновационные технологии и методы: применение мультимедийного проектора при чтении лекций, использование ресурсов сети Internet и электронных учебников при самостоятельной работе студентов, дискуссии в обсуждении проблемных ситуаций при выполнении практических заданий.